
The Anatomy of Blockchain Database Systems

Dumitrel Loghin
National University of Singapore

dumitrel@comp.nus.edu.sg

Abstract

Blockchains are around for more than ten years and currently, we are witnessing the adoption of
blockchain techniques in databases, and vice-versa. For example, typical blockchain data structures, such
as cryptographically-linked blocks and Merkle trees, have been integrated into verifiable databases. On
the other hand, database techniques, such as sharding and concurrency control, have been integrated
into blockchains. In this paper, we are looking at systems that combine both blockchain and database
techniques. We classify these systems into (i) permissioned blockchains, (ii) hybrid blockchain database
systems, and (iii) ledger databases. We present their anatomy, including features, techniques, and design
choices, by analyzing a few representative systems. In the end, we highlight their limitations and discuss
future research directions.

1 Introduction

In the last few years, the line between blockchain systems and distributed databases has been blurred to a
certain degree [36, 40]. We have seen the adoption of blockchain techniques in databases. For example, typical
blockchain data structures, such as cryptographically-linked blocks [4] and Merkle trees [29], have been integrated
into verifiable ledger databases [9, 11, 10, 14] and hybrid blockchain database systems [24]. We have also seen
database techniques used in blockchains. For example, sharding is used to scale blockchains [18], while optimistic
concurrency control (OCC) is used to decrease the number of aborted transactions [40, 37].

By zooming into the design and implementation of systems that combine blockchain and database techniques,
we propose classifying them into three categories. Going from systems that have stronger blockchain features to
systems that are closer to databases, these three categories are (i) permissioned blockchains, (ii) hybrid blockchain
database systems, and (iii) ledger databases. From a high-level view, all these systems consist of distributed
server nodes that communicate via a broadcasting service based on some consensus protocol. Each server node
has a ledger (blockchain data structure) and a local database. Both the server nodes and the users (or clients) that
interact with these nodes need to be authenticated. The broadcasting service is implemented either with a Crash
Fault Tolerant (CFT) consensus protocol, that is closer to distributed databases, or a Byzantine Fault Tolerant
(BFT) consensus that resembles typical blockchains.

In this paper, we analyze a few representative systems and present their anatomy in terms of design, techniques,
features, and limitations. We shall present more details on our classification in Section 2, and analyze a few
systems in Section 3. We present challenges, limitations, and future research directions in Section 4, and conclude
in Section 5.

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

48



Table 2: Categories, Features, and Examples.

Permissioned Blockchains Hybrid Blockchain Database Systems Ledger Databases
Administration Decentralized Decentralized Centralized
Broadcasting CFT or BFT Typically CFT CFT
Local Database Tightly-coupled Loosely-coupled Tightly-coupled
Ledger Replicated Replicated Centralized

Examples

Veritas [25] Amazon QLDB [9]
Fabric [4] BigchainDB [2] Alibaba LedgerDB [10]

Quorum [3] BlockchainDB [19] Microsoft SQL Ledger [11]
Corda [27] Blockchain Relational Database [33] Spitz [14]
Diem [10] ChainifyDB [39] Immudb [5]

FalconDB [35] IntegriDB [49]

2 Classification

When analyzing the systems that combine both database and blockchain techniques, we can distinguish three
main categories. First, we have permissioned blockchains (also known as private, enterprise, or consortium)
that have more blockchain features than databases. Second, we have hybrid blockchain database systems which
can be further classified into out-of-blockchain databases and out-of-database blockchains [36]. Third, we
have (centralized) ledger databases. Table 2 presents the features of such systems and a few examples of the
state-of-the-art for each category.

Permissioned blockchains, as opposed to typical permissionless or private blockchains such as Bitcoin [32]
and Ethereum [14], employ authentication for the parties using the blockchain (i.e., clients and peers). They are
named permissioned or private blockchains because only authenticated parties can use them. These blockchains
are typically used in enterprise setups and they are operated by a consortium of organizations, hence, they are
called enterprise or consortium blockchains. In such setups, an organization hosts one or more blockchain peers
(or nodes). Since more than one organization is in charge of administrating and operating the blockchain, a
permissioned blockchain is a decentralized system where the ledger is replicated on all the nodes (or peers).
Initially, some of these permissioned blockchains considered using Byzantine Fault Tolerant (BFT) consensus
protocols to replicate the ledger. For example, Hyperledger Fabric v0.6 [19, 20] used PBFT [23] and Quorum
provides support for IBFT [38]. However, these BFT protocols degrade the performance of a blockchain
concerning throughput and latency [20, 30]. That is why most of the current permissioned blockchains use Crash
Fault Tolerant (CFT) consensus mechanisms, such as Raft [34] and Apache Kafka [1].

Hybrid Blockchain Database Systems are very similar to permissioned blockchains but they have different
motivations, use cases, and database integration. These systems are motivated by the need of organizations to
share a database or parts of a database. In general, this database already exists and it is loosely-coupled to the
hybrid blockchain database system. For example, in a supply chain scenario, there should be a shared database
with shipping options and costs. Shipping companies update this database, while the other parties just read the
data. In such a case, we need a ledger to keep track of the updates in a transparent and tamper-evident way. An
authentication mechanism is needed to access the ledger and the broadcasting service. Given this, most of the
proposed hybrid blockchain database systems consider only CFT broadcasting services. As expected, if a BFT
consensus is used instead, the performance of the system significantly degrades [24].

Ledger Databases are at the other end of the centralized-decentralized administration spectrum since they
are hosted and operated by a single organization. In such a centralized model, the users need to trust that
organization. To increase the trust, ledger databases use tamper-evident data structures and publish the hashes of
the append-only ledger or provide proofs for current states in the database. Such systems may be distributed to
increase fault tolerance and improve performance. However, they are not distributed to increase the trust as is the

49



Local

Database
Ledger

Server Node 1

Local

Database
Ledger

Server Node 2

Local

Database
Ledger

Server Node N

Broadcasting 

Service

Transactions

Results

Transactions

Results

Transactions

Results

Local Logs

Remote Logs

. . .

Figure 1: A Generic Hybrid Blockchain Database System

case for the other two categories. Moreover, the database and the ledger are tightly-coupled to the server nodes.
While such systems require higher trust from the users, they provide higher performance and zero administration
efforts compared to the other two categories.

3 Anatomy

In this section, we start with the similarities among the three proposed categories, after which we present the
particularities of each category together with the details of a few representative systems.

3.1 Overview

Typically, systems that combine blockchain and database features have an architecture similar to the one depicted
in Figure 1. The system consists of some distributed server nodes (or peers), where each node handles user
requests and coordinates with the other nodes via a broadcasting service. The users (or clients) need to be
authenticated before sending requests to the nodes. A server node sends local updates (or logs) to and receives
remote updates (or logs) from the broadcasting service. This broadcasting service can also be distributed across a
few nodes, not necessarily the same as the server nodes. Moreover, the broadcasting service is implemented with
a CFT or BFT consensus protocol. For example, the latest version of Fabric uses Raft [34], which is CFT, while
Quorum supports, among others, IBFT [38].

Each server node connects to a local database and keeps a copy of the distributed ledger. Note that the local
database and the ledger are different. The former keeps the latest version of the data (e.g., states, accounts, assets),
while the latter keeps the entire update history using tamper-evident data structures. For example, Fabric uses
LevelDB or CouchDB as its local database, which is also called World State. On the other hand, the ledger in
Fabric is a linked list of blocks where the header of a block is linked to the header of the previous block using a
cryptographic hash. Other systems use data structures based on Merkle trees [29] to represent the ledger.

We briefly compare these two ledger data structure, as illustrated in Figure 2. The hashed blocks data structure,

50



H0 - Header

D0 - Data

(transactions)

M0 - Metadata

Block 0

H1 = Hash(H0, D1)

D1 - Data

(transactions)

M1 - Metadata

Block 1

H2 = Hash(H1, D2)

D2 - Data

(transactions)

M2 - Metadata

Block 2

(a) Hashed Blocks

T1 T2 T3 T4

H1 = Hash(T1) H2 = Hash(T2) H3 = Hash(T3) H4 = Hash(T4)

H12 = 

Hash(H1, H2)

H34 = 

Hash(H3, H4)

H = 

Hash(H12, H34)

(b) Merkle Tree

Figure 2: Ledger Data Structures

as shown in Figure 2a, is a linked list of blocks where a block points to its predecessor using a cryptographic
pointer, except for the first block which is typically called the genesis block. Each block consists of data, metadata,
and header sections. The data section contains all the transactions that are part of the block. The header is a
digest of the block computed using a hashing function. Most of the blockchains use SHA3 or Keccak hashing
algorithms. The header of all the blocks except the first one is computed as the hash of the concatenation between
the hash of the previous block and the hash of the current block’s data section.

A generic Merkle tree, as shown in Figure 2b, is a tree where the leaves are data representing transactions and
the internal nodes are hashes. Each parent node contains the hash of the concatenation of all the hashes of its
children. Hence, the root node contains the hash that represents all the underlying transactions. We note that
Merkle trees can be combined with hashed blocks: the data section of a block can be organized as a Merkle tree.
For example, Quorum uses this approach to store transactions in its ledger. In contrast, Fabric does not use a
Merkle tree: it just hashes the transaction data as a chunk [9]. We direct the reader to [46] for an analysis of
advanced Merkle tree data structures.

3.2 Permissioned Blockchains

Hyperledger Fabric [4] is a permissioned blockchain developed by Linux Foundation with a significant contribu-
tion from IBM. In Fabric, there are three types of nodes, namely, clients, peers, and orderers. A client sends a
transaction request to a set of peers governed by an endorsement policy. For example, the AND policy includes
all the peers in the network. That is, a client has to send the transaction to and receive endorsements from all
the peers. A peer executes the transaction request in simulation mode and creates read and write sets to mark
which world states are touched by the transaction. Since this is in simulation mode, the peer does not persist the
changes to its local database. Then, the client sends the responses from the peers together with its transaction
to the orderers. These orderers pack the transaction in a block and broadcasts the block to all the peers in the
network. Currently, Fabric adopts the Raft CFT consensus among orderers. In the last phase, all the peers validate
the block and persist the changes of valid transactions to the local database. Note that the peers do not need to
re-execute the transaction: they only persist the write set. In the validation phase, the read set is also verified to
check if any state has been modified since the transaction was simulated. In such a case, the transaction is aborted.
In summary, Fabric implements an execute-order-validate (EOV or XOV) transaction lifecycle, as opposed to
many other blockchains that adopt an order-execute (OX) lifecycle. Fabric supports both LevelDB (default) and
CouchDB for the world states database. The ledger is stored on the filesystem as a linked list of blocks, where the
block headers are linked together via hashing.

Fabric has been extensively analyzed and optimized by the database research community. Many works
benchmark and analyze the performance bottlenecks of Fabric [17, 19, 20, 30, 31, 42]. In our recent work [31],
we show that a Fabric network with up to 10 peers can reach around 1,000 transactions-per-second (TPS).
Other works improve the rate of aborted transactions by relaxing the concurrency model (e.g., using optimistic

51



concurrency control) and by re-ordering the transactions [37, 40].
Quorum [3] is a permissioned blockchain that draws its source code from Ethereum (implemented in the

Go programming language). Naturally, Quorum supports Solidity smart contracts, but it replaces the energy-
inefficient Proof-of-Work consensus with a few alternatives, out of which Raft is the default. Besides Raft,
Quorum also supports IBFT (Istanbul BFT), QBFT (Quorum BFT), and Clique Proof-of-Authority (POA).
IBFT is inspired by PBFT [23], while QBFT is an optimized version of IBFT which is also interoperable with
Hyperledger Besu, an Ethereum client developed by the Hyperledger Foundation. As opposed to Fabric, Quorum
has only peers and clients and adopts the traditional order-execute (OX) transaction lifecycle. That is, a transaction
is first grouped into a block and then executed by each peer in the network. Similar to Fabric, Quorum uses
LevelDB as its local database, but it adopts Merkle Patricia Trie for the ledger. In our recent work [31], we show
that Quorum with Raft exhibits a throughput of 250 TPS, which is relatively low for a permissioned blockchain.

Corda [27] is advertised as a distributed ledger technology (DLT) for enterprises. For that reason, it is built
on Java and Kotlin so it can be better integrated with existing Java enterprise systems. Besides nodes, a Corda
network has notaries which are responsible for validating transactions in terms of uniqueness and validity. In
essence, uniqueness prevents double-spending, while validity means that the transaction passes the input-output
tests and it has all the required signatures. Notaries use a consensus protocol which is Raft-based in the default
version of Corda. This default version uses H2, a relational database management system written in Java, for the
local database. The ledger uses a custom version of Merkle trees to hide transaction details from the entities that
are not involved in the transaction. A recent publication shows that the performance of Corda is very low, at 15
TPS [26]. Even when a single notary is used to minimize the impact of consensus, the performance is low due to
a synchronous (blocking) transaction processing mechanism [26].

Diem [10] is a permissioned blockchain that was developed by a consortium of companies led by Facebook.
It was previously known as the Libra blockchain [10]. The entire project has been discontinued in 2022. However,
Diem implements some powerful features which are worth mentioning. For example, it uses LibraBFT [12], a BFT
consensus based on Hotstuff [45] which further improves PBFT [23]. For the ledger, Diem uses Jellyfish Merkle
tree [23] which is a sparse Merkle tree inspired by the Merkle Patricia Trie used in Ethereum. RocksDB [21], a
fast key-value store derived from LevelDB and developed by Facebook, is used as the underlying database. A
recent study shows that Diem achieves around 600 TPS on 4 nodes [47], which is a decent performance for a
BFT-based blockchain.

3.3 Hybrid Blockchain Database Systems

Veritas [25] is an out-of-blockchain database that consists of a shared database (or table) and a blockchain
ledger for keeping auditable and verifiable updates done on the shared database. Each node is operated by an
organization. A node uploads its local update logs and downloads remote update logs to and from a broadcasting
service. Veritas employs a concurrency control mechanism based on timestamps. The timestamp of a transaction
represents the sequence number of that transaction in the log. A transaction is first verified locally by the node
receiving it. If it passes the verification (e.g., multi-version concurrency control – MVCC), it is included in the
logs and sent to the broadcasting service. Once the other nodes agree to the updates, they send acknowledgments,
and once every node receives the acknowledgments, it persists the updates to the local database and appends them
to the ledger. Note that this mechanism incurs O(N2) communication complexity [24].

The original design of Veritas uses Redis [15], an in-memory NoSQL database, and Apache Kafka [1], a CFT
broadcasting service. The re-implementation of Veritas in [24] achieves around 30,000 TPS, making it the fastest
system among all those analyzed in this paper.

BlockchainDB [19] is an out-of-blockchain database with prominent blockchain features: it is a shared
database built over a blockchain. It is the only hybrid blockchain database that uses sharding to partition the shared
database. Firstly, the blockchain represents the storage layer of a BlockchainDB node. By default, BlockchainDB
uses Ethereum, but other blockchains can be used as well via a plugin interface. With Ethereum, the ledger

52



structure is based on Merkle Patricia Trie. Secondly, a node has a database layer with a simple key-value interface.
Thirdly, there is a shard manager that helps the database layer to identify the shard where a specific key is stored.
Due to the use of such a slow blockchain, like Ethereum with Proof-of-Work (PoW) or Proof-of-Authority (PoA),
BlockchainDB exhibits a throughput of around 50 TPS [24].

FalconDB [35] is another out-of-blockchain database that starts from a blockchain and provides a shared
database to the clients. Different from other systems, FalconDB provides a relational database interface to the
clients. In FalconDB, both the clients and the peers need to keep a digest of the data. The difference is that clients
only keep the blockchain headers to save storage space. However, these headers are sufficient for checking the
correctness of the data queried from the peers. FalconDB uses IntegriDB [49], a verifiable SQL database, to store
the ledger, Tendermint for consensus, and MySQL as the local database. The throughput of the system with a
YCSB write-heavy workload (50% reads and 50% writes) is around 3,000 TPS [35]. Note that a similar YCSB
workload is used to evaluate Veritas, BigchainDB, and BlockchainDB [24].

Blockchain Relational Database (BRD) [33] has a similar design to Veritas, but it starts from a PostgreSQL [7]
relational database. In this sense, BRD is an out-of-database blockchain. Also, different from Veritas, the
broadcasting service orders blocks of transactions (updates) and does not serialize the transactions in a block. To
speedup transaction execution, BRD implements concurrent execution with Serializable Snapshot Isolation (SSI).
Note that BRD uses PostgreSQL [7] as its local database, which supports Serializable Snapshot Isolation. BRD
also uses Apache Kafka as the broadcasting service. Different from Veritas, BRD keeps the ledger in the same
relational database, namely PostgreSQL. According to the BRD paper [33], the system achieves a throughput of
2,500 TPS with a key-value workload.

BigchainDB [2] is another out-of-database blockchain. It starts from MongoDB [6], a NoSQL database, used
as the local database. By using MongoDB, the main data abstraction in BigchainDB is an asset, represented in
JSON format. Otherwise, the transaction lifecycle is similar to the one in Veritas. A transaction is verified locally
by a node, then a request is sent to the broadcasting service. BigchainDB uses a BFT consensus middleware as
the broadcasting service, namely Tendermint [13]. Once the majority of the nodes agree on the transaction, it is
committed in the local database. BigchainDB relies on Tendermint to keep the ledger in the form of a Merkle tree.
Our evaluation of the open-source BigchainDB code shows a maximum performance of around 200 TPS with the
YCSB workloads.

ChainifyDB [39] is an out-of-database blockchain that starts from a relational database which can be either
PostgreSQL or MySQL. Apache Kafka is used for broadcasting the transactions which are SQL statements. The
ledger uses a custom representation based on LedgerBlocks. A LedgerBlock contains all the transactions that are
part of a block, where a transaction is in its SQL form. Next, the LedgerBlock contains a list of bits representing
the successful transactions, a SHA256 hash digest over the data changed by the transactions, and a hash value of
the previous LedgerBlock that was added to the ledger. This representation is similar to the one used by Fabric.
ChainifyDB achieves a throughput of around 1,000 TPS on three nodes using the SmallBank workload when all
three nodes need to reach consensus. When only two out of three nodes need to reach consensus, the throughput
increases to around 5,000 TPS [39].

3.4 Ledger Databases

Amazon Quantum Ledger Database QLDB [9] is a verifiable database developed by Amazon and provided as a
cloud service. QLDB follows the structure depicted in Figure 1 by integrating a relational database and a ledger
in its server node. The database keeps the current states and the history of those states, while the ledger is an
append-only journal that keeps track of all the changes done to the database in an immutable way. While it
is not clear what is the underlying database, the ledger in QLDB is implemented based on Merkle trees. Our
preliminary evaluation of QLDB shows a throughput of 10,000 TPS, which is relatively low for a centralized
system. However, we note that an update in QLDB changes both the database and the ledger, and these two
changes are done sequentially.

53



Table 3: Summary of Systems, Features, and Performance

System Broadcasting Service Ledger Structure Local Database Throughput [TPS]
Fabric [4] Raft (CFT) Linked Blocks LevelDB 1,000 [31]
Quorum [3] Raft (CFT) Merkle Patricia Trie LevelDB 250 [31]
Corda [27] Raft (CFT) Merkle Tree H2 10 [26]
Diem [10] LibraBFT (BFT) Jellyfish Merkle Tree RocksDB 600 [47]
Veritas [25] Kafka (CFT) Sparse Merkle Tree Redis 30,000 [24]
BlockchainDB [19] PoW/PoA (BFT) Merkle Patricia Trie Ethereum(LevelDB) 50 [24]
FalconDB [35] Tendermint (BFT) Merkle Tree(IntegriDB) MySQL 3,000 [35]
BRD [33] Kafka (CFT) Relational PostgreSQL 2,500 [33]
BigchainDB [2] Tendermint (BFT) Merkle Tree(Tendermint) MongoDB 200 [24]
ChainifyDB [39] Kafka (CFT) LedgerBlock PostgreSQL/MySQL 1,000 [39]
QLDB [9] N/A Merkle Tree N/A 10,000
LedgerDB [10] Master-Workers (CFT) Merkle Tree L-Stream 20,000
SQL Ledger [11] N/A Merkle Tree SQL Server 70,000 [11]
Spitz [14] 2PC + timestamp (CFT) Merkle Tree ForkBase 70,000 [14]

LedgerDB [10] is a verifiable database developed by Alibaba and provided as a cloud service. LedgerDB
updates the ledger, which is based on a Merkle tree, asynchronously. Specifically, the transactions are batched and
the Merkle tree is updated with the batched transactions. Hence, this approach is called batch accumulated Merkle
tree (bAMT). LedgerDB supports multiple underlying storage engines, but L-Stream, a custom storage developed
by Alibaba, is the default one. L-Stream is an append-only filesystem created specifically for LedgerDB. In
terms of distributed architecture, the server nodes in LedgerDB are coordinated by a master that ensures CFT
and workload balancing. Our preliminary evaluation of LedgerDB shows a throughput of 20,000 TPS, two times
higher compared to QLDB.

SQL Ledger [11] is a ledger database developed by Microsoft and offered as a service on its Azure cloud. It
has a similar architecture to QLDB and LedgerDB, but it uses Microsoft’s SQL Server as the underlying storage
engine. SQL Ledger keeps a ledger data structure based on Merkle trees and two tables, namely, the Ledger Table
and the History Table. The Ledger Table reflects the latest record for a given key, while the History Table records
the previous version of that record. It is not clear what type of consensus is used to coordinate among multiple
nodes in SQL Ledger. Moreover, the reported evaluation was done on a single server with 72 cores [11]. In this
evaluation, SQL Ledger achieves a throughput of 70,000 TPS with TPC-C workloads. It is expected to see lower
SQL Ledger performance in a distributed setting.

Spitz [14] is a verifiable database that uses ForkBase [43] at the storage level. The authors identify the
source of low performance in the other systems as being the existence of separate sub-systems for the ledger and
database. Hence, Spitz relies on ForkBase for both the ledger and database. Spitz consists of multiple transaction
processing nodes and a common ForkBase backend. The processing nodes coordinate via a two-phase commit
(2PC) protocol. A global timestamp service is used to ensure the order of the transactions. Hence, Spitz is a CFT
system. The ledger is implemented in ForkBase with the help of a data structure inspired by Merkle trees. Spitz
is evaluated on a key-value store application and it achieves up to 70,000 TPS on write operations with 10,000
records. The performance degrades to about 10,000 TPS with more than one million records [14].

3.5 Summary

We summarize the features and the performance of the systems analyzed in this paper in Table 3. In this
table, the values in italic are taken from their respective papers, while the other values are based on our
measurements [24, 31]. Note that for ledger databases, the Broadcasting Service feature is not accurate. However,
we list the mechanisms used by the systems for coordination among distributed nodes under this feature. In the

54



next section, we present the limitations of current systems and some challenges in designing and implementing
systems that combine blockchain and database features.

4 Challenges and Limitations

When analyzing the systems that combine blockchain and database features, we observe the lack of open-source
code for most of the hybrid blockchain databases and ledger databases. Hence, it is difficult to understand the exact
implementation and to assess the performance of these systems. In our previous work [24], we re-implemented
Veritas and BlockchainDB in a modular way that allows us to replace some of the components, such as the
consensus mechanism and the local database. However, more needs to be done to achieve an open-source, flexible
and modular hybrid blockchain database system where the consensus and the underlying database can be replaced
in a plug and play manner.

At the same time, such systems should offer both key-value and relational interfaces to the users. We note
that most of the existing systems offer simple key-value interfaces, with the exception of FalconDB, ChainifyDB,
QLDB, and SQL Ledger. It remains to be analyzed what is the impact of having a flexible user interface on
performance. For example, what is the impact of having a relational interface when the underlying database is
NoSQL? For such designs, the server node needs to be flexible enough and yet exhibit good performance.

Regardless of a BFT or CFT consensus, sharding could be used to improve the scalability and performance of
such hybrid systems. So far, only BlockchainDB considers sharding, but its use of blockchain as the underlying
storage hinders its performance. In one of our previous works [18], we used sharding to scale Fabric v0.6 in a
Byzantine environment. We have shown that Fabric can scale to around 1,000 nodes distributed world-wide,
while achieving a performance of around 4,000 TPS. However, sharding comes with the downside of managing
cross-shard transactions which have a negative impact on performance.

Last but not least, the effect of newer BFT consensus protocols or optimizations should be evaluated. The
existing systems either use a version of PBFT [23] or Tendermint [13]. New consensus frameworks, such as
HotStuff [45], Basil [41], and Leopard [28] among others, are claiming much higher throughput compared
to PBFT. It remains to be analyzed if such systems can improve the performance of blockchains or hybrid
systems. For example, Hotstuff claims more than 100,000 operations per second, while our evaluation of Veritas
with Apache Kafka exhibits 30,000 TPS. If we replace Kafka with Hotstuff, can we achieve at least the same
performance of 30,000 TPS?

5 Conclusions

In this paper, we analyzed systems that combine both blockchain and database techniques. We classify these
systems into three categories, namely, (i) permissioned blockchains, (ii) hybrid blockchain database systems, and
(iii) ledger databases. While sharing a similar architecture, each category and each system in a category has its
own particularities. We then analyzed a few representative systems, such as Fabric [4], Quorum [3], Veritas [25],
QLDB [9], and LedgerDB [10], among others. The exact performance of these systems is hard to evaluate due to
the lack of open-source code. On the other hand, existing implementations are not flexible and modular enough.
By designing and implementing a modular system where the user interface, consensus, and local storage are
plug and play, we could answer more of the existing questions. For example, can we replace a CFT broadcasting
framework with a newer BFT consensus framework while experiencing no performance loss? Such questions
remain to be answered in the future.

55



Acknowledgements

This research/project is supported by the National Research Foundation, Singapore under its Emerging Areas
Research Projects (EARP) Funding Initiative. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation,
Singapore. We would like to thank Prof. Beng Chin Ooi, Prof. Tien Tuan Anh Dinh, Dr. Pingcheng Ruan,
Tianwen Wang, and Cong Yue for their help with this project.

References

[1] Apache Kafka, https://kafka.apache.org/, 2017.

[2] BigchainDB 2.0 The Blockchain Database, Technical report, 2018.

[3] GoQuorum, https://github.com/ConsenSys/quorum, 2021.

[4] Hyperledger Fabric, https://www.hyperledger.org/use/fabric, 2021.

[5] immudb, https://codenotary.io/technologies/immudb/, 2021.

[6] MongoDB, https://www.mongodb.com/, 2021.

[7] PostgreSQL, https://www.postgresql.org/, 2021.

[8] Amazon Quantum Ledger Database (QLDB), https://aws.amazon.com/qldb/, 2022.

[9] Hyperledger Fabric Ledger, https://archive.ph/edzMi, 2022.

[10] Z. Amsden, et al., The Diem Blockchain, https://archive.ph/1xfcy, 2021.

[11] P. Antonopoulos, R. Kaushik, H. Kodavalla, S. Rosales Aceves, R. Wong, J. Anderson, J. Szymaszek, SQL
Ledger: Cryptographically Verifiable Data in Azure SQL Database, page 2437–2449, 2021.

[12] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li, D. Malkhi, O. Naor, D. Perelman,
A. Sonnino, State Machine Replication in the Libra Blockchain, https://archive.ph/Uxlb3, 2019.

[13] E. Buchman, Tendermint: Byzantine Fault Tolerance in the Age of Blockchains, PhD thesis, The University
of Guelph, 2016.

[14] V. Buterin, A Next-Generation Smart Contract and Decentralized Application Platform, http://
archive.fo/Sb4qa, 2013.

[15] J. Carlson, Redis in Action, Manning Shelter Island, 2013.

[16] M. Castro, B. Liskov, Practical Byzantine Fault Tolerance and Proactive Recovery, ACM Transactions on
Computer Systems (TOCS), 2002.

[17] J. A. Chacko, R. Mayer, H.-A. Jacobsen, Why Do My Blockchain Transactions Fail? A Study of Hyperledger
Fabric, page 221–234, 2021.

[18] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, B. C. Ooi, Towards Scaling Blockchain Systems
via Sharding, Proc. of ACM SIGMOD International Conference on Management of Data, page 123–140,
2019.

56



[19] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, J. Wang, Untangling Blockchain: A Data Processing
View of Blockchain Systems, IEEE Transactions on Knowledge and Data Engineering, 30(7):1366–1385,
2018.

[20] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, K.-L. Tan, BLOCKBENCH: A Framework for Analyzing
Private Blockchains, Proc. of ACM SIGMOD International Conference on Management of Data, page
1085–1100, 2017.

[21] S. Dong, A. Kryczka, Y. Jin, M. Stumm, RocksDB: Evolution of Development Priorities in a Key-Value
Store Serving Large-Scale Applications, ACM Trans. Storage, 17(4), oct 2021.

[22] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, R. Ramamurthy, Blockchaindb: A Shared Database On
Blockchains, Proc. VLDB Endow., 12(11):1597–1609, 2019.

[23] Z. Gao, Y. Hu, Q. Wu, Jellyfish Merkle Tree, https://archive.ph/s7pPF, 2019.

[24] Z. Ge, D. Loghin, B. C. Ooi, P. Ruan, T. Wang, Hybrid Blockchain Database Systems: Design and
Performance, Proc. VLDB Endow., 15(5):1092–1104, 2022.

[25] J. Gehrke, L. Allen, P. Antonopoulos, A. Arasu, J. Hammer, J. Hunter, R. Kaushik, D. Kossmann, R. Ra-
mamurthy, S. T. V. Setty, J. Szymaszek, A. van Renen, J. Lee, R. Venkatesan, Veritas: Shared Verifiable
Databases and Tables in the Cloud, Proc. of 9th Biennial Conference on Innovative Data Systems Research
(CIDR), 2019.

[26] R. Han, G. Shapiro, V. Gramoli, X. Xu, On the Performance of Distributed Ledgers for Internet of Things,
Internet of Things, 10:100087, 2020, Special Issue of the Elsevier IoT Journal on Blockchain Applications
in IoT Environments.

[27] M. Hearn, R. G. Brown, Corda: A Distributed Ledger, https://bit.ly/3iLajrI, 2019.

[28] K. Hu, K. Guo, Q. Tang, Z. Zhang, H. Cheng, Z. Zhao, Leopard: Towards High Throughput-Preserving
BFT for Large-scale Systems, 2021.

[29] L. Liu, M. T. Özsu, editors, Merkle Trees, pages 1714–1715, Springer US, 2009.

[30] D. Loghin, G. Chen, T. T. A. Dinh, B. C. Ooi, Y. M. Teo, Blockchain Goes Green? An Analysis of
Blockchain on Low-Power Nodes, 2019.

[31] D. Loghin, T. T. A. Dinh, A. Maw, C. Gang, Y. M. Teo, B. C. Ooi, Blockchain Goes Green? Part II:
Characterizing the Performance and Cost of Blockchains on the Cloud and at the Edge, 2022.

[32] S. Nakamoto, Bitcoin: A Peer-to-peer Electronic Cash System, http://archive.fo/CIl1Y, 2008.

[33] S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, P. Jayachandran, Blockchain Meets Database: Design And
Implementation Of A Blockchain Relational Database, Proc. VLDB Endow., 12(11):1539–1552, 2019.

[34] D. Ongaro, J. Ousterhout, In Search of an Understandable Consensus Algorithm, 2014 USENIX Annual
Technical Conference (USENIX ATC 14), pages 305–319, Philadelphia, PA, 2014. USENIX Association.

[35] Y. Peng, M. Du, F. Li, R. Cheng, D. Song, Falcondb: Blockchain-Based Collaborative Database, Proc. of
ACM SIGMOD International Conference on Management of Data, page 637–652, 2020.

[36] P. Ruan, T. T. A. Dinh, D. Loghin, M. Zhang, G. Chen, Q. Lin, B. C. Ooi, Blockchains vs. Distributed
Databases: Dichotomy and Fusion, Proc. of ACM SIGMOD International Conference on Management of
Data, pages 1–14, 2021.

57



[37] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, B. C. Ooi, A Transactional Perspective on Execute-Order-
Validate Blockchains, Proc. of ACM SIGMOD International Conference on Management of Data, page
543–557, 2020.

[38] R. Saltini, D. Hyland-Wood, Correctness Analysis of IBFT, 2019.

[39] F. M. Schuhknecht, A. Sharma, J. Dittrich, D. Agrawal, ChainifyDB: How to get rid of your Blockchain
and use your DBMS instead, Proc. of 11th Conference on Innovative Data Systems Research (CIDR), 2021.

[40] A. Sharma, F. M. Schuhknecht, D. Agrawal, J. Dittrich, Blurring the Lines between Blockchains and
Database Systems: The Case of Hyperledger Fabric, Proc. of ACM SIGMOD International Conference on
Management of Data, page 105–122, 2019.

[41] F. Suri-Payer, M. Burke, Z. Wang, Y. Zhang, L. Alvisi, N. Crooks, Basil: Breaking up BFT with ACID
(Transactions), Proc. of ACM SIGOPS 28th Symposium on Operating Systems Principles, page 1–17, 2021.

[42] P. Thakkar, S. Nathan, B. Viswanathan, Performance Benchmarking and Optimizing Hyperledger Fabric
Blockchain Platform, Proc. of IEEE 26th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), pages 264–276, 2018.

[43] S. Wang, T. T. A. Dinh, Q. Lin, Z. Xie, M. Zhang, Q. Cai, G. Chen, B. C. Ooi, P. Ruan, Forkbase: An
Efficient Storage Engine for Blockchain and Forkable Applications, Proc. VLDB Endow., 11(10):1137–1150,
2018.

[44] X. Yang, Y. Zhang, S. Wang, B. Yu, F. Li, Y. Li, W. Yan, LedgerDB: A Centralized Ledger Database for
Universal Audit and Verification, Proc. VLDB Endow., 13(12):3138–3151, 2020.

[45] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, I. Abraham, HotStuff: BFT Consensus with Linearity and
Responsiveness, Proc. of 2019 ACM Symposium on Principles of Distributed Computing, page 347–356,
2019.

[46] C. Yue, Z. Xie, M. Zhang, G. Chen, B. C. Ooi, S. Wang, X. Xiao, Analysis of Indexing Structures for
Immutable Data, Proc. of ACM SIGMOD International Conference on Management of Data, page 925–935,
2020.

[47] J. Zhang, J. Gao, Z. Wu, W. Yan, Q. Wu, Q. Li, Z. Chen, Performance Analysis of the Libra Blockchain:
An Experimental Study, 2019.

[48] M. Zhang, Z. Xie, C. Yue, Z. Zhong, Spitz: A Verifiable Database System, Proc. VLDB Endow.,
13(12):3449–3460, 2020.

[49] Y. Zhang, J. Katz, C. Papamanthou, IntegriDB: Verifiable SQL for Outsourced Databases, Proc. of 22nd
ACM SIGSAC Conference on Computer and Communications Security, page 1480–1491, 2015.

58


