
Bulletin of the Technical Committee on

Data
Engineering
June 2022 Vol. 45 No. 2 IEEE Computer Society

Letters
Letter from the Editor-in-Chief . Haixun Wang 1
Letter from the Special Issue Editor . Tien Tuan Anh Dinh 2

Special Issue on Transparent Database Systems
Employing Blockchain Properties for Transparent Databases . Henry F. Korth 4
BlockShare: A Blockchain Empowered System for Privacy-Preserving Verifiable Data Sharing

. Zhe Peng, Jianliang Xu, Haibo Hu, Lei Chen 14
Power-of-Collaboration: A Sustainable Resilient Ledger Built Democratically .

. Junchao Chen, Suyash Gupta, Sajjad Rahnama, Mohammad Sadoghi 25
Transparent Sharding . Deepal Tennakoon, Vincent Gramoli 37
The Anatomy of Blockchain Database Systems . Dumitrel Loghin 48
LEDGERBENCH : A Framework for Benchmarking Ledger Databases .

. Meihui Zhang, Cong Yue, Changhao Zhu, Ziyue Zhong 59

News
Open Calls for Nominations . Erich Neuhold, Amr El Abbadi, Farshad Firouzi 70

Conference and Journal Notices
TCDE Membership Form . 71

Editorial Board

Editor-in-Chief
Haixun Wang
Instacart
50 Beale Suite
San Francisco, CA, 94107
haixun.wang@instacart.com

Associate Editors
Dinh Tien Tuan Anh
Information Systems Technology and Design
Singapore University of Technology and Design
Singapore

Sebastian Schelter
University of Amsterdam
1012 WX Amsterdam, Netherlands

Yangqiu Song
Department of Computer Science and Engineering
HKUST
Hong Kong, China

Jun Yang
Department of Computer Sciences
Duke University
Durham, NC 27708

Distribution
Brookes Little
IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
eblittle@computer.org

The TC on Data Engineering
Membership in the TC on Data Engineering is open to

all current members of the IEEE Computer Society who
are interested in database systems. The TCDE web page is
http://tab.computer.org/tcde/index.html.

The Data Engineering Bulletin
The Bulletin of the Technical Committee on Data Engi-

neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be sent
to the Editor-in-Chief. Papers for each issue are solicited
by and should be sent to the Associate Editor responsible
for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

The Data Engineering Bulletin web site is at

http://tab.computer.org/tcde/bull_about.html.

TCDE Executive Committee

Chair
Erich J. Neuhold
University of Vienna

Executive Vice-Chair
Karl Aberer
EPFL

Executive Vice-Chair
Thomas Risse
Goethe University Frankfurt

Vice Chair
Malu Castellanos
Teradata Aster

Vice Chair
Xiaofang Zhou
The University of Queensland

Editor-in-Chief of Data Engineering Bulletin
Haixun Wang
Instacart

Awards Program Coordinator
Amr El Abbadi
University of California, Santa Barbara

Chair Awards Committee
Johannes Gehrke
Microsoft Research

Membership Promotion
Guoliang Li
Tsinghua University

TCDE Archives
Wookey Lee
INHA University

Advisor
Masaru Kitsuregawa
The University of Tokyo

Advisor
Kyu-Young Whang
KAIST

SIGMOD and VLDB Endowment Liaison
Ihab Ilyas
University of Waterloo

i

Letter from the Editor-in-Chief

The June issue of the Data Engineering Bulletin features a collection of papers curated by Prof. Tien Tuan Anh
Dinh on the topic of Transparent Database Systems. It is the first issue of the Bulletin dedicated to addressing the
rising of blockchain technology and its implication for data management.

A blockchain is an immutable digital ledger of transaction records. It is decentralized, distributed, and
encrypted, making it a potential solution for a variety of data-driven applications with varying transparency and
privacy requirements.

Several papers in this issue concentrated on leveraging the benefits of blockchains for data management. For
example, Korth discussed how to best balance transparency and privacy so that blockchains can provide users
with the level of trust that centralized data management systems cannot. Peng et al., on the other hand, focus on
the potential benefits for data providers and consumers should we succeed in developing a system that allows
privacy-preserving verifiable data sharing using blockchain technology.

While blockchain databases have the potential to offer a variety of benefits such as transparency, privacy,
ownership, and trust, currently, they lack meaningful query and analytics support, making it difficult for them to
support many real-life applications. A digital ledger, to some extent, is a complicated “OLTP” system optimized
for decentralized immutability. Applications that require “OLAP” support may be forced to rely on systems that
re-centralize the distributed data, negating all the benefits that blockchains can provide. We are looking forward
to discussing these challenges in future Bulletin issues.

Haixun Wang
Instacart

1

Letter from the Special Issue Editor

The success of blockchains prompts the database community to revisit the trade-offs between security and
performance in data management systems. In fact, database researchers in the past few years have made
significant contributions to the understanding and advancement of blockchains. This issue focuses on systems that
recently emerged (or was resurrected) at the intersection of blockchains and databases. We call them transparent
databases, which provide data security through transparency. In particular, these systems enable the users to
securely verify that both the data and its history have not been tampered with. They achieve transparency by
maintaining data in an append-only ledger (a core data structure in blockchains), and protecting the ledger with
authenticated data structures such as Merkle trees (core data structures in both blockchains and secure outsourced
databases). Although the security community have been deploying similar systems specifically for public key
infrastructure, for example, key transparency and certificate transparency, our community’s interest in transparent
databases stems from the challenges in building general-purpose, high-performance systems that solve real-world
data management problems. This issue contains perspectives from expert researchers working on this topic. They
share their views on the state-of-the-art, the use cases, and the future research directions.

The issue opens with a contribution from Henry F. Korth, in which he reminds us of how transparency is
often at odds with privacy, and more importantly, their trade-offs are made for us by a trusted party. He explains
how blockchains, which removes the trust on opaque institutions, can revolutionize most data-driven applications.
He highlights two building blocks that are vital to such revolutions: Merkle trees and zero knowledge proofs.
The former allows for selective disclosure of information, and the latter for proving correct execution without
revealing the data. When combined, they enable not only integrity protection of data and computation, but also of
the data provenance. The second paper, by Zhe Peng, Jianliang Xu, Haibo Hu, and Lei Chen, demonstrates how
these techniques can be used to give data owners control over their data. The authors present a timely example
of COVID-19 data sharing, in which users want fine-grained control of what data to share and with whom. For
this use case, a Merkle tree is built over the user data and its root is published on a blockchain. To selectively
share some functions on some data, the user constructs a Merkle proof for the data, and a zero-knowledge proof
showing that the output is computed correctly on the input whose Merkle root is on the blockchain.

Blockchains are an important component of transparent databases, because at very least they can serve
as a public bulletin board where commitments are stored. The next two papers describe the latest techniques
for improving performance and security of blockchains. Junchao Chen, Suyash Gupta, Sajjad Rahnama, and
Mohammad Sadoghi, present interesting insights on the advantages and limitations of two types of consensus
protocols. On the one hand, Byzantine Fault Tolerance (BFT) protocols have high performance, but require
strong identities, and they can be broken when the attacker steals more than f private keys. On the other hand,
Proof of Work (PoW) protocols are harder to break, but they are unsustainable. The authors then propose a new
protocol, called Proof of Collaboration, that aims to have the best of both worlds. Deepal Tennakoon and Vincent
Gramoli discuss the state-of-the-art on blockchain sharding — the popular database technique in which the data is
partitioned into multiple shards. Sharding helps scale blockchain throughputs by distributing the works. However,
the key challenge in blockchain sharding, which does not exist in traditional database settings, is the presence of
malicious attackers that influence shard assignments in order to insert themselves to target shards. If successful,
the attackers can break the fault tolerance threshold of the target shard and subsequently break the security of the
blockchain. The authors explain how probabilistic sharding relies on trusted sources of randomness to avoid such
attacks. They propose another layer of defense, which is to make sharding transparent such that users can verify
how the shard is formed.

While transparent databases can be built directly on existing blockchains that are mainly designed for
cryptocurrency or assets management applications, the next paper by Dumitrel Loghin describes another approach
based on blockchain databases. Such systems integrate blockchain and database features, and are classified
into permissioned blockchains, hybrid systems, and ledger databases. They share a similar architecture that
consists of a ledger storage for data history, a database storage for the states, and a broadcasting service for

2

coordination. Hybrid systems adopt either an out-of-blockchain database design, in which the system starts with a
blockchain and builds database features on top of it, or an out-of-database blockchain design, in which the system
starts with a database and builds blockchain features to it. The author compares the performance of different
systems and shows that ledger databases achieve the highest throughputs. The last paper, by Meihui Zhang, Cong
Yue, Changhao Zhu, and Ziyue Zhong, provides in-depth analysis of ledger databases. The authors identify a
number of design choices that impact the overall security and performance. They then propose a benchmarking
framework, named LedgerBench, for comparing different systems. The framework contains workloads that
stress the unique features of ledger databases such as verification and auditing. It has flexible APIs such that
new workloads and systems can be easily added. This paper also presents interesting experimental results on
their implementations of three commercial systems: LedgerDB from Alibaba, QLDB from Amazon, and SQL
Ledger from Microsoft. One of the main findings is that updating the ledger and verification constitute the main
performance bottleneck.

It is a real pleasure working with the authors for this issue. Their insights are refreshing and I believe the
readers will learn much from reading their contributions.

Tien Tuan Anh Dinh
Singapore University of Technology and Design

3

Employing Blockchain Properties for Transparent Databases

Henry F. Korth
Lehigh University

blockchain.cse.lehigh.edu

Abstract

Both transparency and privacy are important properties in most any information-management application,
yet they are in many ways inherently opposed to each other. The tradeoff between these two goals is
typically intermediated by a trusted system or organization. The resulting tradeoff is only as meaningful
as the level of trust in the intermediary. Blockchains provide a decentralized single source of truth that
allows for the reduction or elimination of the need for trust. This paper explores the options in trading
off transparency and privacy in a blockchain database. It also considers the closely-related concepts of
accountability and auditability and explores how cryptographic techniques allow the disclosures needed
for regulatable information systems while preserving a high degree of privacy.

1 Transparency Versus Privacy and the Role of Trust

In a traditional enterprise information system, the database is the final source of truth. The data in the database
are closely guarded by access controls and integrity checking. Privacy regulations often apply to the use of
data (examples include the U.S. HIPPA and FERPA regulations for health and education records respectively).
Transparency regulations are exemplified by requirements that enterprises provide financial statements at specific
intervals with specific content and by requirements that enterprises disclose to each customer what data they hold
on that customer. Despite these requirements, the entire process depends on a strong degree of trust in enterprises
to provide consistent and truthful disclosures. Ensuring truthfulness requires an audit of enterprise data that, in
turn, mandates further disclosures at least to the auditors. Increasing data disclosure can compromise privacy.

The blockchain properties of irrefutability, immutability, and anonymity [18] offer useful tools in managing
the tradeoffs among privacy, transparency, and trust. However, much depends on how those tools are used. A
simple move to a blockchain database presents a variety of challenges. A public blockchain is public to all.
The only secret is the mapping between blockchain IDs and the identity of the corresponding real-world person
or organization. That mapping can often be determined by correlation of on-chain and off-chain activity. The
primary value of a blockchain in a transparent, privacy-preserving information system is its role as a trusted
source of truth. The “truth” stored on that blockchain can take a variety of forms. From a database standpoint, the
most important stored data are cryptographic commitments to protected data (using Merkle trees [16]) whose
contents can be disclosed in part or in aggregate with a proof of the correctness of such disclosures. In such a

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

4

system, the blockchain holds mainly commitments. Data themselves are stored off-chain at much lower cost than
on-chain storage.1

Disclosure of data is not the only trust consideration. When the disclosure is some function computed over
the actual full dataset, one must trust the agent who did the computation. A flawed computation from correct
data is of no more use than inaccurate data. Thus, beyond data, one must consider the provenance of data, that
is, what data were used in the computation and what code was used to do the computation. Provenance in data
has been studied at length for well over a decade [7]. Zero-knowledge proofs[2] (henceforth, ZK-proofs) are a
cryptographic method for allowing a verifier to validate the correctness of an execution without having to know
the actual data on which the execution operated. This makes it possible to prove that the disclosed result was
produced by a specific program running on the same dataset to which a commitment was made. No information
need be revealed about the data other than the result itself. The combination of provenance management and
ZK-proofs of execution enable transparent trust not only in data but also in how those data were generated.

Our discussion of blockchain and database transparency is thus largely focused on trust. The ability of a
blockchain to move the focus of trust from centralized authorities to a decentralized consensus creates trust in a
process rather than in an opaque institution. This re-focusing of trust can revolutionize virtually all information-
driven applications. A few examples follow:

• Supply chain: Businesses enter into supply-chain agreements via a legally binding contract. Traditional
day-to-day tracking of those relationships either depends on a trusted member of the chain storing data or
on a collection of separately managed repositories. A blockchain-based supply-chain information system
replaces that with cryptographic signatures[8] for irrefutability, and verifiable, distributed updates for
immutability. Trust in the final-product producer is limited only to that firm admitting the right set of users
to the system. The blockchain is a single source of supply information that enables fast, effective product
recalls with no “finger pointing” among suppliers trying to blame each other for supplying a defective
component.

• Real assets: Governments maintain trusted records of asset ownership (real estate, vehicles, etc.). These
systems require trust not only in government but also in the controls implemented by government on their
databases. Each transaction becomes a complex process of validation of identity – of the parties involved
and of the asset involved. In a blockchain-based system, the only function the government needs to provide
is a single, permanent mapping between the real asset and a unique blockchain token (that is, a non-fungible
token, or NFT2). Transactions regarding asset ownership then become simple blockchain transactions
requiring no central intermediation by government. The amount of trust left to a central institution is
limited to maintaining the physical-asset-to-NFT mapping.

• Market making: The creation of markets for trading stocks, exchanging currencies, etc. is a large,
slow, high-overhead business. Most New York Stock Exchange trades take two business days to settle.
International funds transfer via the SWIFT system may be anything but what that name suggests. The
SWIFT system is a messaging system among correspondent banks, with funds transfers following the
messaging. The process can still take days.

In contrast, competing blockchain systems in this space take seconds (e.g., Stellar[13] and Ripple).
Automated market-makers adjust prices with each trade. Automated arbitrageurs maintain price-equivalence
across markets. No institution needs to be trusted; trust is in only publicly readable code.

1On-chain storage costs vary. On the Ethereum chain, based on gas price and ETH prices at the time this paper was written, storing 1MB
of data on-chain would have cost about 30000 US dollars. Decentralized storage services like Filecoin employ cryptographically-secured
off-chain storage.

2To be clear, our focus here is about assets like houses and cars, not cryptokitties, cyberpunks, bored apes, or something similar.

5

• Lending: Much like market-making, an automated system can manage real-time interest rates both for
lenders and borrowers. Liquidators earn a fee for managing loans that become under-collateralized and
doing so in an automated manner.

The list could go on. In each case, there is a gain in speed from taking humans out of the transaction path,
and a gain in trustlessness by removing or reducing the need to trust institutions whose operation is opaque.
Open-source security replaces institutional trust and “security by obscurity.”

In what follows, we explore the implications of blockchain technology on traditional information-based
applications from the standpoints of transparency, privacy, and trust.

2 Hiding Information in Public View

Implementing personal and business interactions require selective, limited disclosure of information. Disclosures
may be limited in content and scope for a variety of sound reasons. For example, one does not publish one’s salary,
net worth, or medical history on one’s web site, yet there are cases where certain disclosures are required. The
technology and mathematics that has come together in blockchain systems enables separate, limited disclosures.
Furthermore, these capabilities allow one to prove independent disclosures to be consistent with each other.

2.1 Securing Data Using a Merkle Tree

One key to information hiding is cryptographic hash functions, which have the property that although it is
relatively easy to compute H(x), given a value y, it is infeasible, given y, to find an x such that H(x) = y. Here,
“infeasible” means that is strong evidence that there is no better algorithm to find x than guessing. Standard
cryptographic hash functions have ranges on the order of 256-bit integers, meaning the likelihood of a successful
guess is virtually zero. Blockchains use this to include in each block the hash of the prior block, making it
infeasible to modify a block without modifying subsequent blocks. Merkle trees[16] create a tree structure of
nodes that contain hashes of their children, down to leaves that hold actual data. The root of a Merkle tree
(referred to as a “Merkle root”) is thus a hash of the full dataset. The tree structure and the associated algorithms
allow one to to prove the a single data item is, or is not, a member of the dataset, without disclosing anything
more about the overall data in the dataset.

Placing a Merkle root in a transaction on a public blockchain creates a signed, public commitment by a user
to a dataset without revealing anything about the dataset. Subsequently, that user can reveal specific data items
(say to a tax authority) and show that those items are in the dataset to which a public commitment had been
made. A future disclosure, if needed, can be proved similarly to be from that same base dataset. The result of this
combination of Merkle trees and blockchain allows for a framework for selective information disclosure while
ensuring privacy of associated data.

2.2 Proving Execution of Code Using Zero Knowledge

The selective-disclosure capability enabled by Merkle trees does not address transparency fully. Oftentimes,
what is desired is aggregate reporting regarding a dataset rather than just disclosure of a few specific elements of
that dataset. A Merkle tree alone cannot prove anything about an aggregation of data unless one is willing to
disclose every data item that went into that aggregation. A better compromise between privacy and transparency
would be achieved if one could show that an aggregate report was generated from a base dataset to which a
public cryptographic commitment had been made, without actually disclosing any members of the underlying
dataset. To state that precisely, let D be a dataset stored privately but with a Merkle root M published on a public
blockchain. Let P be a program computing an aggregate report, and let R = P (D) be the report generated
when running P on dataset D. Using a ZK-proof, it is possible to prove that report R was generated, using

6

program P , from a dataset for which M is the Merkle root. The result of this is that the user has disclosed only
the actual report R, the report-generating software P, and the Merkle root M of the input. Neither the input data
themselves (D) nor the details of this particular execution of P are disclosed, only the ZK-proof. It is relatively
easy computationally to verify a ZK-proof, meaning that it is practical to verify aggregate reports based on a
standard reporting methodology without the need to know anything about the underlying data. If there is a future
need to audit that report, specific data from the underlying dataset can be revealed on demand without needed to
reveal anything more than the minimum requested.

2.3 Transparent Provenance of Data

Generalizing from the above observations, one can consider a sequence of actions that lead to an action or to
the generation of certain data items. Beyond just the certification of a single aggregate report, one can certify a
sequence of events and prove in a publicly verifiable manner how the end result was obtained. The result is that
transparency is not only about the current state of the database but also about the means through which the current
state was generated. Such transparency can result in trustworthy information versus information based on trust in
a centralized information provider. This high degree of transparency underlies the concept of Web 3, in which
users control their own data and their exchange of data, based on an underlying blockchain infrastructure. The
Web 3 vision stands in contract to most current web-based interactions (referred to as Web 2) in which centrally
managed search engines, social networks, and information providers serve as intermediaries controlling user
access to and interpretation of data.

This level of transparency allows for a public proof of how products are sourced. With a blockchain, rather
than a corporation or government, serving as the central source of truth, one can provide a public proof that an end
product being sold to a consumer arrived on the shelf via a validated supply chain in which the workers involved
in producing the product were paid a fair wage. Starting from wages paid on a blockchain via cryptocurrency,
through transfers in a supply chain documented in signed blockchain transactions, to the end consumer’s purchase,
there can be a public verification of the provenance of the product and the data related to it. There are many
technical issues in getting to this point (including identity, which we discuss below in Section 4), and a variety of
prototype projects underway, including one involving Lehigh Blockchain students, a local blockchain firm, and a
Central American coffee producer with the goal of certifying fair-trade coffee on a blockchain.

A publicly verifiable proof of provenance is critical component of transparency. Given that transparency, the
next problem is the evaluation of that provenance to determine whether it meets standards of correctness in the
flow of data and work. This may seem not to be a major concern in the report-generation examples we have seen
so far, but can be a larger problem in other cases, depending on the application.

2.4 Challenges

The above discussion of the possibilities of an apparently ideal mix of privacy and transparency does have its
limitations. First, the viability of using a Merkle tree depends on agreed-upon and strict data formats. Changing
even a bit in a data value changes its hash unpredictably. Adherence to such a specific, detailed degree of
standardization may be challenging in practice. To test the practicality of the requisite standarization, we are
currently prototyping a design of such a framework to automate major parts of accounting and audit.[11]

Another serious limitation is the difficulty in generating ZK-proofs efficiently. To generate a proof, one must
compile the program into a low-level language, typically one consisting of simple arithmetic circuits (of the
form A op B = result). An execution is represented as a polynomial over the program variables and temporary
variables in the compiled code. Each statement in the execution defines a constraint on that polynomial. Finding
these high-degree polynomials subject to the massive number of constraints is a huge computational problem.
Production zero-knowledge systems have constraint sizes in the tens of millions. Billions (or more) are envisioned
in future applications. Fortunately, the computations are parallelizable. In [24], a parallelized, ASIC-based

7

approach is presented. As ZK-proofs become a widely used tool, not only for the transparency and privacy issues
we discuss here, but also for blockchain performance acceleration, commodity parallel hardware such as GPUs are
a promising tool for ZK-proof generation. ZK-proof computation moves from a numerical computation challenge
to a database-style challenge when one considers the sheer volume of constraint systems. GPU parallelization
alone is unable to overcome the performance impact of secondary-storage bottlenecks of large constraint systems.
An alternative approach of nested parallelism using multiple GPUs and data sharing via RDMA is needed to
exploit the parallelism of this database-scale problem[19].

3 Digital Currency

Although most modern financial transactions are processed digitally, physical cash and checks still are in wide
use. Taking the last steps in a full transition to digital currency presents a variety of data management challenges
and opportunities. One of the most notable opportunities is making bank-like service available to vast number of
unbanked individuals.3 We explore first data issues in a government-sponsored digital currency, referred to as a
central-bank digital currency(CBDC). Next, we explore stablecoins, private currencies that aim to track the value
of a government-backed fiat currency.

In both cases of digital currency, we face tradeoffs among transparency, privacy, regulatability, and perfor-
mance.

3.1 CBDCs

The concept of a digital currency issued by a government central bank is gaining global attention[17]. The finance
and policy details are beyond the scope of this paper, but the technical options available in CBDC applications
serve to illustrate the tradeoffs among transparency, privacy, and regulatability.

At one end of the spectrum is the approach taken by the People’s Republic of China[9], in which currency
management is structured in a manner closer to a centrally administered database than to a decentralized
blockchain. There, techniques associated with blockchains, such as digital signatures, are employed instead
towards the goals of centralization. Other national central banks are studying digital currencies, many from a
more decentralized standpoint. Of note is a recent statement by the U.S. central bank, the Federal Reserve[4], and
the possibilities of achieving the benefits of some degree of decentralization similar to the current cash-based
system[10]. Private currencies have launched as well, most notably Libra, which began with the backing of major
financial (and other) firms, but quickly lost favor (despite its technical strengths – see, e.g.[45]) due to opposition
from central banks, government leaders, and others. A key lesson from the Libra debacle is the need for digital
currency solutions not only to be technically sound but also to provide policy makers with the politically desired
degree of oversight and policy options.

Underlying all of these developments are database-centric issues of transparency and privacy. Regulation
aimed at avoiding money laundering, “know-your-customer” rules aimed at avoiding funding illicit organizations,
etc., require some level of disclosure of financial transactions. However, people generally seek to have a strong
degree of privacy in their personal finances. The technical challenge here is to generate the requisite reporting
and oversight while limiting not only the amount of personal data disclosed but also to whom those disclosures
are made. Here, again, we see the concept of selective, limited disclosure that we discussed in Section 2.

Beyond the use of Merkle trees and ZK-proofs for reporting and disclosure, one must consider the ownership
of the underlying data pertaining to digital-currency transactions. Centralized data ownership mandates a total
trust in that central data owner. Most national financial systems have decentralized data ownership of financial
data (e.g. credit-card companies, payment systems, and banks) with specific personal data available externally

3World Bank[20] data indicates that roughly 1.7 billion people globally are unbanked. While most are in the underdeveloped world,
the problem is widespread. In the U.S., about 6% of the population is unbanked.

8

only in aggregate or via subpoena. A consequence of decentralized data ownership is decentralized control over
transaction commit. That suggests use of a blockchain, since decentralized data ownership and decentralized
control are foundations of blockchain systems. Translating those blockchain strengths to a database-scale
framework like a digital-currency system is hard. Given the high transaction rates of a global-scale digital
currency, consensus performance needs to be much greater than that of a typical blockchain. Parallelism and
concurrency offer hopes for increased performance, but concurrency leads to further contention and performance
impact. Decentralization of ownership and control was studied in the database research community in the 1980s
and 1990s in the context of federated databases, or multidatabases[15, 23], that were assumed to be managed
by independent semi-autonomous organizations. The results of that research present some important insights
into the challenges of partially decentralized digital currencies. Tasks that are relatively simple in centrally
administered distributed systems become hard. Global transaction commit via two-phase commit conflicts with
autonomy, leading to relaxed notions of atomicity[12] including optimistic commit, and semantic correctness as
an alternative to serializability. Approximate consistency, however, is not acceptable in a financial system beyond
discrepancies that are deemed “non-material.” Any non-material inconsistencies in a financial system must be
safe from systemic exploitation that generates material inconsistencies.

Offline transactions are an important component of digital currency that presents a largely new problem to the
database community. In the early days of mobile computing, there was discussion of a model of computing that
included “frequent, foreseeable disconnection,"[1] but that concern quickly evaporated with the advent of virtually
ubiquitous connectivity. In the world of personal financial transactions, the demand for offline transactions is
likely to persist. Offline transactions could, admittedly, be for illicit purposes, but they also serve an important
role for personal privacy and convenience. The argument that one should not fear any loss of privacy (“if you
have nothing to hide...”) would require trust in the government not to implement a surveillance state. For a
currency with global aspirations, it is not reasonable to expect that level of trust to hold throughout the world.
This observation is the key reason why the offline transaction problem is of great importance. The nation-state
competition emerging to unseat the dollar as the global currency is likely to be influenced heavily the the ease of
use of that currency in offline transactions around the world.

Offline transactions are a special case of the well-known issue of network partitioning. The CAP theorem[3]
provides a strong formal statement of the issues in meeting the real-world requirement for offline transactions.
The programmable-money concept[10] provides a model of storing information for subsequent reconciliation.
The solution to this problem relies on a proper abstraction of the provenance of offline payments that allows for
their eventual reconciliation with online data. Stated differently, we seek a form of eventual consistency with
transaction properties that are more ACID-like and less BASE-like.4

While much has been written about the policy and geopolitical issues around digital currency, much remains
to be done in turning the vision into reality. The database community can offer useful insight here not only in
algorithms and systems, but also in providing a conceptual framework to allow policy-makers to make the levels
of privacy and transparency, and concepts supporting data consistency explainable to the public.

3.2 Stablecoins

A stablecoin is a cryptocurrency not issued by a government, but one that comes with a promise that its value will
track a government fiat currency (typically the U.S. Dollar). That “promise” may be based on transparency, trust,
of some combination thereof. Stablecoin implementation can be split into two categories: reserve-backed and
algorithmic. In a reserve-backed stablecoin, there is a promise that the stablecoin is backed by safe, secure assets
in the underlying fiat currency (bank deposits, government-issued debt, and other assets generally accepted as low
risk). Trust in a reserve-backed stablecoin rests on trust in the promised asset backing. An algorithmic stablecoin
is backed not by fiat currency reserves, but rather an automated system that maintains the fiat-currency peg by

4The BASE properties are an analog to the well-known ACID properties of database transactions: Basically Available, Soft state,
Eventually consistent.

9

automated trades and/or incenting certain actions by arbitrageurs. Trust in an algorithmic stablecoin rests on trust
in its code and the mathematical model that the code implements.

Assessment of the backing of a reserve-backed stablecoin requires a high-degree of transparency regarding
the holdings of the backer of the stablecoin. While such transparency is desirable, there is a substantial degree of
opacity in the nature of the backing of certain present-day stablecoins. As stablecoins become more systemically
important to the financial system, calls are emerging for bank-like regulation of stablecoins. An alternative model
to traditional regulation is a highly-automated, globally verifiable audit system based on the concepts of Section 2.
Such a model can provide complete transparency for the reserve, with frequent updates to the audit possible. As
stablecoins come under closer public scrutiny, innovative approaches to transparent, publicly verifiable accounting
and audit of stablecoin reserves are likely to become important research topics.

Algorithmic stablecoins do not have a reserve in the underlying fiat currency. Instead the stablecoin is paired
with a second cryptocurrency that serves as a backing to the actual stablecoin. Algorithmically-enabled exchanges
between these two cryptocurrencies aim to keep the stablecoin very close to its fiat peg. This was the structure of
the recently failed TerraUSD UST stablecoin.

MakerDAO and the associated DAI stablecoin is backed by non-fiat overcollateralization and is run by an
automated system implemented in a smart contract as a decentralized autonomous organization (DAO). The
collateral provides a degree of security, but since that collateral is not in the associated fiat currency, there are
risks that are algorithmically mitigated, e.g., by a liquidation mechanism. Such currencies’ transparency is largely
beyond the scope of databases, since the operation is algorithmically driven and thus backed by code rather than
data.

3.3 Security of a High-Value Digital-Currency Database

Our discussion of digital currency has focused on routine transactions and the supporting database. Unlike
enterprise databases (such as those of banks), digital currencies are directly open to the public with little or
no intermediation. This creates a wide range of security vulnerabilities beyond those typically considered in a
database setting. Whereas an enterprise database is private and thus secured by not only database authorization
but also by the operating system’s security and the enterprise network firewalls, a public blockchain is truly
public. Anyone can join. Anyone can submit a transaction. This openness enables not only a high level of
transparency but also a high-level of risk. In a controlled-access database environment, one need not worry
about a denial-of-service attack because there are other mechanisms external to the database to control that. A
digital-currency database is, by its nature, necessarily open and public, yet it presents a high-value target of attack,
for example, by an enemy nation-state.

While it is beyond our scope here to go into the details of security, it is worthwhile to consider the tradeoff
between transparency, privacy, and security for a digital currency. The virtues of a transparent, open digital
currency including global use and banking for the unbanked, create potential openings for a malicious user or
set of users to launch an attack. A permissioned blockchain, as is typical of an enterprise setting, can expel a
malicious member because of the centralization of membership control. Applying that concept to an open digital
currency results in some central authority granting (and, subsequently enforcing) the right of access. Designing
such an authority in a way that makes it highly permissive yet secure requires careful real-time analysis of the
behavior of anonymous users both individually and collectively. This is a hard data-analytics problem in its own
right, but becomes a deep research challenge when coupled with the real-time performance constraints of a digital
currency.

3.4 Quis custodiet ipsos custodes?

This famous quote (“who will guard the guards themselves?”) from the Roman poet Juvenal is highly relevant in
a large-scale financial system. A node that processes digital-currency transactions may have sufficient knowledge

10

of the overall set of transactions to allow that node to reorder the sequence of events to another correct order more
to that node’s financial advantage. Thus, governance of the system’s consensus mechanism is required to ensure
that not only is consensus reached on a syntactically correct execution, but also that the agreed-upon execution
satisfies broader constraints. Enforcement of global data consistency constraints of this sort was not a major
focus in early blockchain design, and gaps in those constraints have been exploited[6]. Prevention, detection,
and mitigation of such concerns is a further component of the design of consensus mechanisms in financial
systems[5].

4 Identity Management

Identity is perhaps the single largest challenge in blockchain systems that interact with the physical world.
Blockchain IDs identify the submitters of transactions and owners of crypto-assets, but ownership of physical-
world assets must be enforced in the real-world. That requires some level of authority to map physical assets to
blockchain assets (NFTs) and map blockchain identities to actual people or enterprises.

The permanence and universality of blockchain IDs creates an extreme transparency at the potential price
of privacy. Once the mapping between a blockchain ID and an individual is established, that individual’s entire
transactional history becomes public. In the off-chain world, the ubiquity of a government-issued ID (e.g., U.S.
social-security numbers), presents an even greater threat since disclosure of such an ID not only can violate
privacy but also enable identity theft. Matters are less dire in the blockchain world since disclosure of who
owns a blockchain ID does not enable computation of the corresponding private key. Thus the disclosure of the
mapping between blockchain identity and real-world identity impact “only” privacy without enabling forging of
transactions. Nevertheless, the potential of one’s ID being disclosed is a substantial and unrepairable privacy
threat.

The W3C verifiable credentials data model[21] provides a means of creating digital credentials that can be
submitted as proof that the bearer has certain properties or qualifications (e.g., is over 21, is a licensed driver,
holds a specific academic degree). A digital verifiable credential differs from traditional credentials in its use
of cryptographic signatures and zero-knowledge. An issuer can provide a verifiable credential to an individual
and sign it. The individual may then also sign it and present it for whatever purpose. The value of the verifiable
credential rests in its ability to be verified digitally using the public key of each signer. Under such a scheme, a
purchaser of alcoholic beverages could prove age without having to reveal other information (such as driver’s
license number). This verification scheme allows transparent proof that certain regulations, rules, etc. are being
followed without disclosure of personal identifiers.

In the enterprise-blockchain environment, Hyperledger Aries (one of several projects under the Hyperledger
umbrella – Hyperledger Fabric is the most widely known) is a toolkit for the use of verifiable credentials. It is
gaining use in a variety of applications, especially supply chains in which a collection of firms cooperate with
some degree of trust, but not absolute trust.

The ability to infer full provenance of data and the possibility of matching blockchain identity with real-world
identity presents challenges beyond credentials. Consider an employee whose salary is paid in cryptocurrency.
Each “paycheck” is public on that blockchain, creating the possibility that the employee’s salary could become
public. While salary information is revealed routinely to tax authorities, credit providers, etc., most individuals
would not be comfortable publishing their salaries to the world. This legitimate desire of financial privacy runs
counter to the transparency requirements of regulators seeking to prevent money laundering, funding of terrorism,
etc.

In the traditional pre-blockchain world, identity management and protection is intermediated by a trusted
provider. For the paycheck example, a bank or other financial institution accepts the payment and credits the funds
to a database it owns and manages. The employees can spend income from that paycheck without there being any
public connection between the paycheck and the spending pattern; only the trusted bank knows. Blockchains

11

achieve a similar level of privacy by hiding the identity of a party to a transaction. Continuing the paycheck
example, the employee would use one ID to receive pay, then have that ID send the funds through a transaction
privacy tool to several other IDs owned by that same employee. Those latter IDs would be used for expenditures.

The above example may initially appear perfectly legitimate, but it could be used by a malicious actor for
money laundering. If we assume that our example employee is not a money launderer, but rather just an individual
who does not believe personal finances should be public, we then need a means of allowing that individual to
provide proof of the propriety of transactions to authorities without needed to provide a full public disclosure.
This is yet another example of the need for privacy with selective transparency. Using techniques similar to those
we discussed in Section 2, Tornado Cash (tornado.cash) provides a tool for private transactions not visible to
the public. Tornado Cash offers what it calls a “compliance tool” for a user to obtain a publicly verifiable proof
of the source of specific funds. The user can then (presumably in a private, secure manner) submit that proof
to authorities of the user’s choice. Where this mechanism differs from the use of a traditional bank is that here,
the intermediary (Tornado Cash) obtains no identity information from it users. All it certifies is a flow of funds
among IDs. In our example, the user would have to prove ownership of the IDs to authorities, which can be done
through the verifiable credentials approach discussed earlier.

5 Conclusion

Blockchain-driven information systems provide a foundation for a trust-free or trust-minimized environment for
users to manage the inherent conflicts among transparency, privacy, and regulation/audit. The use of a blockchain
is a necessary but not sufficient feature of such environments. A blockchain provides a crowd-certified source of
truth (and thus trust), but the management of information itself requires further use of blockchain technologies
from the realm of cryptography, including Merkle trees and zero-knowledge.

Initial blockchain applications have been able to succeed with modest transaction performance levels and
modest data volumes. However, enterprise applications are bringing the scale of enterprise databases into the
realm of blockchain-centric transparency/privacy tradeoffs. Similarly, the rise of digital currencies, especially
CBDCs, are soon to generate transactions rates well beyond those of current database applications.

The technical challenges of scaling blockchains to database levels are made greater by the more open,
thus attack-prone, setting of public blockchains. Finding the right tradeoff between the controls of a private,
permissioned blockchain, and the social benefits of open access to a financial system is a challenge spanning
computer science and public policy. Blockchain databases present a challenge to the database community to
revisit traditional research issues in a different framework: different computational model, different data structures,
and different target applications.

Acknowledgments

Lehigh Blockchain (blockchain.cse.lehigh.edu) is supported by gifts from Steel Perlot, the Stellar Foundation, the
Oracle Corporation, and a Lehigh CORE grant.
We acknowledge our collaborators in Lehigh’s Scalable Systems and Software Research Group (sss.cse.lehigh.edu),
Lehigh’s Institute for Data, Intelligent Systems, and Computation (https://idisc.lehigh.edu/), and Lehigh’s Center
for Financial Services (business.lehigh.edu/centers/center-financial-services).

References
[1] R. Alonso and H. F. Korth. Database System Issues in Nomadic Computing. Proc. ACM SIGMOD International

Conference on Management of Data, 1993.

12

[2] M. Ben-Or, O. Goldreich, S. Goldwasser, J. Håstad, J. Kilian, S. Micali, and P. Rogaway. Everything Provable is
Provable in Zero-Knowledge. Advances in Cryptology — CRYPTO’ 88., Springer, 1988.

[3] E. Brewer. CAP Twelve Years Later: How the “Rules" Have Changed. Computer, vol. 45, no. 2, pp. 23-29, Feb. 2012.
[4] Board of Governors of the Federal Reserve System. Money and Payments: The U.S. Dollar in the Age of Digital

Transformation, Jan 2022.
[5] J. Byers. Combating Front-running in the Blockchain Ecosystem. Masters Thesis, Lehigh University, 2022.
[6] P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and A. Juels. Flash Boys 2.0: Frontrunning

in Decentralized Exchanges, Miner Extractable Value, and Consensus Instability. 2020 IEEE Symposium on Security
and Privacy

[7] J. Cheney and S. Chong, N. Foster, M. I. Seltzer, S. Vansummeren. Provenance: a future history. OOPSALA, 2009.
[8] W. Diffie and M. Hellman. New Directions in Cryptography. IEEE Transactions on Information Theory, 22:6, 1976.
[9] Y. J. Fanusie and E. Jin. China’s digital currency. Technical report, Center for a New American Security, 2021.

[10] Knox Networks Provides Feedback to the Federal Reserve on a Potential US Digital Dollar, May
2022. https://medium.com/@knoxnetworks/knox-networks-provides-feedback-to-the-federal-reserve-on-a-potential-
digital-dollar-fb7e77418fca

[11] H. F. Korth, N. M. Snow, and B. B. Fanuscu. Provably Correct Financial Disclosures. In Preparation. 2022.
[12] E. Levy, H. F. Korth, and A. Silberschatz. A Theory of Relaxed Atomicity. Proc. 1991 ACM Symposium on Principles

of Distributed Computing (PODC).
[13] G. Losa, E. Gafni, and D. Mazières. Fast and secure global payments with Stellar. Proc. 27th ACM Symposium on

Operating Systems Principles (SOSP), 2019.
[14] O. Malekan. Re-Architecting Trust: The curse of history and the crypto cure for money, markets, and platforms.

Bookbaby, Pennsauken, NJ, 2022.
[15] S. Mehrotra, R. Rastogi, Y. Breitbart, H. F. Korth, and A. Silberschatz. The Concurrency Control Problem in

Multidatabases: Characteristics and Solutions. ACM SIGMOD International Conference on Management of Data,
1992.

[16] R C. Merkle. A Digital Signature Based on a Conventional Encryption Function. Advances in Cryptology — CRYPTO
’87, Springer, 1987.

[17] W. Peracchio. Design Considerations for Central Bank Digital Currencies. Masters Thesis, Lehigh University, 2021.
[18] A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts, 7th edition, chapter 26: Blockchain

Databases. McGraw Hill Education, New York, NY, 2020.
[19] M. Vezenov. Accelerating zkSNARKs on Modern Architectures. Masters Thesis, Lehigh University, 2022.
[20] World Bank. Global Findex Database. global.findex.worldbank.org
[21] World-Wide Web Consortium. Verifiable Credentials Data Model v1.1, March 2022 https://www.w3.org/TR/vc-data-

model/
[22] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham. HotStuff: BFT Consensus with Linearity and

Responsiveness Proc. 2019 ACM Symposium on Principles of Distributed Computing (PODC).
[23] A. Zhang and A. K. Elmagarmid. A Theory of Global Concurrency Control in Multidatabase Systems. VLDB Journal

vol. 2 no. 3, 1993.
[24] Y. Zhang, S. Wang, X. Zhang, J. Dong, X. Mao, F. Long, C. Wang, D. Zhou, M. Gao, and G. Sun. PipeZK:

Accelerating Zero-Knowledge Proof with a Pipelined Architecture. 48th ACM/IEEE Annual International Symposium
on Computer Architecture, ISCA 2021.

13

BlockShare: A Blockchain Empowered System for
Privacy-Preserving Verifiable Data Sharing

Zhe Peng∗, Jianliang Xu∗(B), Haibo Hu†, and Lei Chen‡

∗Hong Kong Baptist University
∗{pengzhe, xujl}@comp.hkbu.edu.hk
†Hong Kong Polytechnic University

†haibo.hu@polyu.edu.hk
‡Hong Kong University of Science and Technology

‡leichen@cse.ust.hk

Abstract

Data has become the most valuable resource, as it is essential to analytics, decision making, and artificial
intelligence. To unleash the value of data, data sharing has become a prerequisite to bringing tremendous
benefits for both data providers and data consumers. However, existing solutions for data sharing are
mostly server-centric, i.e., they rely on the control of a trusted server, which increases security and privacy
concerns among data users. The design of a privacy-preserving verifiable data sharing framework to
simultaneously secure user privacy and data integrity has not been sufficiently studied and remains a
grand challenge. In this paper, we propose BlockShare, a privacy-preserving verifiable data sharing
system based on blockchain. First, we design a novel blockchain-based architecture, together with a
new authenticated data structure scheme to efficiently verify any portion of a shared data record in a
decentralized fashion. Second, we develop a zero-knowledge verification scheme that enables a user to
prove a dynamic condition without disclosing the specific data attribute, minimizing privacy loss. We
implement BlockShare and conduct experiments to evaluate the system performance. Experimental results
demonstrate the effectiveness of our proposed system.

1 Introduction

Data has been considered the “oil" of the digital world, as it is essential to analytics, decision making, and artificial
intelligence. Recent years have witnessed increasing availability of personal data such as health, financial, and
geo-social data. Sharing such data with relevant stakeholders is a prerequisite for unleashing its value. For
example, sharing medical records with healthcare organizations can improve the quality of patient care, reduce
insurance fraud, advance clinical research, and timely predict epidemic outbreaks like COVID-19. To achieve
secure data sharing, most existing systems rely on the security of cloud service providers, who claim to protect
client data for storage and sharing.

However, with the increasing value of data and growing cybersecurity threats, these cloud systems cannot
fully address users’ security and privacy concerns. On the one hand, there have been many reported cloud security

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

14

breaches, such as Apple’s iCloud data leak in 2014 and Instagram’s exposure of 49 million user accounts in 2019.
On the other hand, the Facebook-Cambridge Analytica data scandal in 2018 has exposed the issue of corporate
dishonesty to grab users’ data without consent for her benefit. Both causes have affected users’ willingness
to share personal data using cloud-based solutions. New data privacy legislation, such as the European Union
General Data Protection Regulation (GDPR) [1] or the EFF’s call for information fiduciary rules for businesses
[2], is an important step towards addressing data abuses, complemented by modern technological solutions that
put users back into control.

Emerging blockchain or distributed ledger technology (DLT) has been adopted as a trustworthy data storage
solution in various fields [3, 4, 5]. It allows trustless parties to collectively maintain a single version of data
without a central authority. By features of decentralization, immutability, and transparency, blockchain enables
the decentralized and secure exchange of digital information and assets without a central trusted server. As such,
this new paradigm has fundamentally changed the way of data sharing and give rise to data markets controlled by
users, instead of surrendering data governance to a few tech giants [6]. It has also increased willingness to share
data and break data silos to enforce cross-organization or even cross-border data cooperation.

From these observations, we identify the following key challenges that a secure blockchain empowered data
sharing system should address. First, data privacy protection, especially during data storage and distribution, is
known to have a critical impact on the uptake of such a system [7]. Therefore, concealing user privacy becomes
the very first requirement in the full life cycle of data sharing. Most current decentralized data sharing applications
[8, 9] utilize blockchain and smart contracts to accomplish the sharing of personal data. However, existing
approaches either forfeit availability guarantees for private data [10] or fall back on semi-centralized solutions
for key management [11, 12], thereby subduing data privacy to a single point of failure or compromise. These
potential system security issues might lead to serious private user data leakage.

Second, data integrity verification is crucial to ensure the correctness of the data shared by blockchain.
This challenge is two-fold: (i) how to securely and efficiently store data on the blockchain without incurring
unaffordable storage and computational overheads; and (ii) how to prevent data from being tampered with when
sharing data with high granularity. Prior systems [13, 14, 15] mainly adopt distributed ledger technology to store
more general data and leverage smart contracts to control the data sharing process. Nevertheless, since such
general data (such as text, documents, and images) is usually large, it is not scalable to store raw data directly
on-chain. Even worse, most approaches are not capable of fine-grained data sharing to generate customized data
records for various data consumers on-demand. The integrity of a fragmented data record cannot be verified,
which leaves space for data fraud.

To tackle the issues mentioned above, we propose BlockShare, a blockchain empowered data sharing system,
which simultaneously secures user privacy and data integrity. The system allows the data owner to dynamically
generate data records for sharing with tailored privacy protection on an as-needed basis, where a trusted central
server is unnecessary. Concretely, we make the following contributions in the paper.

• We introduce a novel BlockShare framework, together with a new authenticated data structure scheme that
can efficiently verify any portion of a shared data record in a decentralized fashion.

• We develop a zero-knowledge verification scheme that enables a user to prove a dynamic condition without
disclosing the specific data attribute, minimizing privacy loss.

• We implement BlockShare using readily-available infrastructural primitives. Experimental results show
that our system achieves verifiable sharing of personal data in a privacy-preserving manner.

2 Related Work

In this section, we briefly review related studies and discuss relevant techniques.

15

Blockchain and Smart Contract. Blockchain has recently raised major attention in both industries and
academia, owing to the boom of cryptocurrencies such as Bitcoin [16]. As a distributed and cryptographically
hardened ledge, blockchain is recognized as a revolutionary technology for data-intensive applications. Many
new blockchain techniques, such as Ethereum [17] and Hyperledger fabric [18], also introduce smart contracts to
develop and execute customized programs on blockchain virtual machines.

In order to protect data privacy in blockchain systems, Kosba et al. [19] propose a framework for building
privacy-preserving smart contracts. The Hawk compiler could automatically compile the smart contract to a
cryptographic protocol between contractual parties and the blockchain to retain transactional privacy. Many
researchers also devote their efforts to designing solutions to support various queries on the blockchain. These
methods, including VQL [20] and vChain [21], can help to greatly improve the query efficiency with data integrity
guarantee for blockchain systems. In addition, some approaches have been designed to efficiently store and
manage blockchain data, such as SlimChain [22], BlockchainDB [23], FalconDB [24], and CALYPSO [25]. Due
to the immutability and transparency features, we could build a secure and decentralized data sharing system
based on blockchain.

Blockchain-based Data Sharing. Data sharing has received extensive research attention with the advent of
the big data era. To keep data security and privacy in sharing, data is usually stored after encryption and further
attached with certain access policies [26, 27]. In the traditional cloud setting, the centralized architecture is
compromised with potential single-point failures or insider attacks [28]. Recently, many works have revealed some
insights to show that the introduction of blockchain can significantly enhance system security in a decentralized
way [29, 30]. Various applications have been developed for data sharing in healthcare, smart vehicles, IoT, and
e-finance, using tokens as on-chain credentials for personal data [31, 32].

In addition to committing data records and recording sharing, blockchain can also provide functionalities
such as access control, participant incentive, transaction auditing, and user identification for underlying data
marketplaces, as well as providing services like dispute arbitration and data warranties for upper-layer data
applications [33, 34]. Many systems have been developed in recent years by leveraging blockchain and smart
contracts to enhance data interoperability and unlock the economic benefits of data assets [35].

Nevertheless, given the unique properties that data can be replicated and redistributed, existing studies fail to
address data privacy issues. While many works adopt encryption of managed data records, a one-size-fits-all
record often contains superfluous information, violating the “minimum necessary" principle and creating privacy
risks.

3 System Overview

In this section, we present the overview of our proposed BlockShare system for privacy-preserving verifiable data
sharing.

System Model. As illustrated in Figure 1, the system model includes four parties: (i) data source, (ii) data
owner, (iii) blockchain, and (iv) data consumer. To protect data privacy and make the whole system scalable, a
decentralized storage architecture is employed. Specifically, raw data from various sources (e.g., health records,
financial transactions, and social contacts) are generated and stored off-chain by their data owners (i.e., users).
Each data object is modeled as a tuple oi =< id, Vi >, where id denotes the object’s ID, and Vi defines a set of
data attributes. Meanwhile, an authenticated data structure (ADS) will be constructed for each data record and
stored on the blockchain. The on-chain ADSs are immutable, serving as notarizations of the raw data.

In order to unlock the value of data, the data owner can prepare tailored data records with different privacy
protection levels and share them with relevant stakeholders. For example, a vaccine certificate (or “vaccine
passport") with only the coarse-grained vaccination information is issued when entering restaurants, while a
vaccine passport with detailed vaccination and personal information will be made for use at the customs. After
receiving the shared data record, the data consumer (e.g., hospital, customs, or insurance company) verifies the

16

Data Owner

.

Blockchain

Smart Contract

Decentralized Storage Data Consumers

Q
Data

Healthcare

Education

Finance

Data Sources

Health
Records

Social
Records

Financial
Records

Geospatial
Records

E-Commerce

R, Proof

ADS ADS

Figure 1: System Model of BlockShare

data integrity without violating the user’s privacy. On the one hand, the integrity of the data record is checked with
the corresponding ADS obtained from the blockchain such that no fraudulent data is transmitted. On the other
hand, the data owner can generate a zero-knowledge proof for the data consumer such that personal information
disclosure can be controlled with high granularity.

Threat Model. In our system, security threats come from two aspects: (i) the data owner is not fully trusted
and might modify the requested data records intentionally or unintentionally; and (ii) the data consumer is curious
and may attempt to infer some knowledge pertaining to its interests from the received data. To address these
threats, we need to ensure data integrity without compromising users’ privacy during data sharing. Concretely,
we define three criteria of security constraints as follows:

• Soundness. All of the shared data records are not tampered with and are truly the results with respect to
the data consumer’s desires. This is a basic requirement for any data sharing service.

• Completeness. No valid data attributes are missing regarding the data sharing request. That is, the shared
data record is complete during the process of fine-grained data sharing.

• Zero-Knowledge Confidentiality. Any information beyond the “minimum necessary" standard is protected.
That is, the data owner can prove a data attribute satisfying a specific condition without disclosing the
concrete attribute value or even its size.

In addition, we assume that there is no collusion between data sources, data owners, and data consumers.
Regarding the blockchain, we also assume that the adversary cannot gain any advantage in attacking the consensus
protocol and thus the execution integrity of the smart contract is guaranteed.

4 BlockShare Design

In this section, we present BlockShare, a privacy-preserving and verifiable data sharing initiative based on
blockchain. We begin by introducing a dynamic data verification scheme to efficiently verify multiple versions of
the shared data record with high granularity. Furthermore, we propose a zero-knowledge condition verification
scheme to maximally protect the privacy of personal data under the umbrella of data integrity.

17

1_Vax
Name

1_Lot
No.

2_Vax
Name

2_Lot
No.

N_
Date

N_
Result

I_
Date

I_
Result

Personal Info Vaccination Info Testing Info

Eng_
Family
Name

Eng_
Given
Name

Eng_
Name

First Letter

Chi_
Family
Name

Chi_
Given
Name

Doc
Type

Doc
ID

ID
First
Half

ID
Second

Half
1_Vax
Date

1_Vax
Premises

2_Vax
Date

2_Vax
Premises

Merkle Root

Figure 2: ADS Construction Example for the Vaccination Record

4.1 Dynamic Data Verification

ADS Construction and Storage. The verification for the shared data is built upon a blockchain-based decen-
tralized storage model. Recall that in the proposed BlockShare architecture, original data records are generated
from the trusted data sources and distributed to the relevant data owners for local storage. At the same time,
an authenticated data structure (ADS) is constructed for each data record and kept on-chain as a proof of data
integrity. Concretely, we utilize Merkle Hash Tree (MHT) [36] to derive a Merkle Root (serving as the ADS) to
support data integrity verification.

We use Figure 2 as an example to show the ADS construction of the COVID-19 vaccination record. In view
of the surge of COVID-19 cases in the community, many countries have developed an immunization information
system to manage vaccination records for pandemic control. Generally, the vaccination record consists of three
parts, including personal information, vaccination information, and testing information (e.g., nucleic acid test
and serum IgG antibody test). In order to prove the virus immunity, citizens are required to show their vaccine
passports when entering some premises. During this process, one challenge is that the user might forge or modify
historical vaccination records to generate a fake vaccine passport for some purposes (e.g., avoiding quarantine,
extending the expiration date of vaccination, or protecting privacy).

To remedy this problem, we build a semantic-oriented MHT to accurately model each part of the vaccination
record. Specifically, to enhance data privacy and prevent rainbow attacks, a unique random number will be
associated with each attribute in the data record to generate a “salted" record. As such, each leaf node contains
a hash value hleaf computed as hleaf = H(H(v)∥H(nonce)), where H(·) is a cryptographic hash function,
v is the value of attribute, nonce is an attribute-specific random number, and “∥" denotes the concatenation
operation. The hash value stored on each internal node is recursively calculated using its all child nodes. Finally,
as illustrated in Figure 2, the Merkle Root is generated on the top of three independent sub-trees.

In addition, as the write operation on the blockchain is very extensive, the frequent on-chain storage of the
whole MHT would incur massive gas consumption. At the same time, we observe that only the Merkle Root is
needed from the blockchain during the data authentication. Therefore, an optimal method is to suppress all nodes
in the MHT and only materialize the Merkle Root on the blockchain.

Information Masking and Verification. In practical data sharing, the diversity of privacy protection levels
exists in many scenarios. The data owner might prefer to issue a tailored data record by sharing a portion of data
attributes according to the dynamic requirements. For instance, the user can only indicate whether he/she has
been vaccinated during a period without disclosing the entire ID number, vaccine name, vaccine lot number, and
vaccination premises. It would be costly, if not impossible, to generate and store a specialized ADS for each
version of the data record. As such, we propose a new “one-ADS-for-multiple-versions" paradigm in which the
data source only needs to generate a single ADS for one data record and store the ADS on the blockchain.

More specifically, for a given attribute in a data record, many sub-attributes will be appended in the MHT as
leaf nodes to support different privacy constraints. For example, as shown in Figure 2, two more sub-attributes

18

(i.e., the first half of ID and the second half of ID) are derived from the ID number and added to the MHT. With
this appended MHT, the data owner has multiple options to disclose the concrete content in the data record, while
the Merkle Root keeps unique for verification. Furthermore, the data owner can mask unnecessary attributes into
hash values to generate a specific version of the data record. For the shared attributes in the data record, the data
owner generates a verification object (i.e., the Merkle Path) based on the unique ADS. Then, with the verification
object and the on-chain ADS, the data consumer can verify the integrity of the received data record (e.g., the
tailored vaccine passport).

4.2 Zero-Knowledge Privacy Protection

In the previous information masking scheme, although the unnecessary attributes can be masked to protect privacy,
the shared data attributes might still contain more personal information than what is needed. For example, to
show that the vaccination has been completed for a period (e.g., 14 days), the campus visitor has to disclose the
concrete vaccination date. Thus, to further enhance privacy, we propose a general privacy protection scheme for
the shared data attributes based on non-interactive zero-knowledge (NIZK) proof technology [37]. This scheme
enables the data owner to prove a dynamic condition without revealing the specific value, limiting the disclosure
of personal data to the minimum necessary while guaranteeing data integrity.

In this scheme, a constraint will be first defined for a specific attribute. Usually, this constraint represents
the data information needed by the data consumer. Then, the data owner will generate a proof of satisfiability
and pass it without the attribute value to the data consumer for verification. With this scheme, the data owner
can indicate only a qualified period instead of a detailed date, an area instead of a concrete vaccination premise,
or an age group instead of exact age. Given a constraint of an attribute, we present the formal definition of the
zero-knowledge condition verification as follows:

Definition 1 (Zero-Knowledge Condition Verification): For the input attribute value v, a range R, a random
number nonce associated with the attribute, the hash value h of the attribute, ADS mRoot of the data record o,
and global parameters G,H ∈ E(Fq), this scheme can prove to a verifier that the prover knows an assignment to
v such that hash(v, nonce) = h ∧ v ∈ R, without revealing v. It consists of the following algorithms:

• {G = (G1, · · · , Gn),H = (H1, · · · , Hn), G,H} ← Setup(1λ): Call the parameter generation algorithm
Setup to generate public security parameters for zero-knowledge proof. On input a security parameter 1λ,
it outputs public parameters {G,H, G,H} acting as implicit input for other functions.

• π ← zkProofGen(v, nonce,R, h): The prover calls the zero-knowledge proof generation algorithm
zkProofGen to generate a proof for the shared attribute with zero knowledge. On input an attribute value
v, the random number nonce associated with the attribute, a range R for the attribute, and the hash value h
of the corresponding leaf node, it outputs a zero-knowledge proof π.

• mPath← mkProofGen(h,mTree): The prover calls the Merkle proof generation algorithm mkProofGen
to generate a proof for the leaf node with the Merkle tree. On input the hash value h of the corresponding
leaf node, and a Merkle tree mTree, it outputs a Merkle path mPath.

• {0, 1} ← zkProofVer(π,R, h): The verifier calls the zero-knowledge proof verification algorithm
zkProofVer to verify the received zero-knowledge proof. On input a zero-knowledge proof π, a range R
for the attribute, and the hash value h of the corresponding leaf node, it outputs 1 if the verification is valid.

• {0, 1} ← mkProofVer(h,mPath,mRoot): The verifier calls the Merkle tree authentication algorithm
mkProofVer to verify the received Merkle proof. On input the hash value h of the corresponding leaf node,
the received Merkle path mPath, and the public Merkle root mRoot, it outputs 1 if the verification is
valid.

19

To summarize, owing to the dynamic data verification and zero-knowledge proof design, the data sharing
process is verifiable while the data owner has full control over the information disclosure through the following
features:

• Multi-version support. The data owner can dynamically generate multiple versions of a data record to
meet different application needs.

• Data integrity support. The data owner can support integrity verification for multiple versions of a data
record by using a single ADS.

• Privacy protection support. The data owner can quantify the information disclosure with different privacy
protection levels using two predominant privacy metrics: (i) Suppression: the data owner can mask partial
information of a data record with high granularity, while an adversary is unable to infer the preimage of the
masked information. (ii) Generalization: a shared data attribute can be generalized to an arbitrary coarse
granularity, for example, “more than 2 weeks" instead of a concrete date and “in the 20-30 age group"
instead of exact age.

5 Implementations and Evaluation

In this section, we present the implementation of BlockShare and evaluate its performance in detail.

5.1 Experimental Implementation

We have designed and implemented a prototype of BlockShare, including the data source, data owner, and data
consumer in JavaScript and Python, and the blockchain in Solidity. Arithmetic circuits for NIZK proofs, along
with the core logic of circuit compilation, universal setup, proof generation and verification are implemented using
Circom and Snarkjs. We perform the evaluation on a desktop computer with a 3.6 GHz Intel Xeon processor, 64
GB RAM, and 1 TB SSD. All experiments are conducted based on a synthetic dataset.

5.2 Performance Evaluation

1) ADS Construction: We first perform an evaluation on the time cost of ADS generation at three length settings
of hash functions based on the data records of 1K, 2K, 4K, 8K, and 16K entries, respectively. As we can see
from Figure 3, the time cost of ADS construction raises linearly in all cases as the amount increases. It only takes
roughly 74ms to construct ADSs for 1K records and 0.8s for all of 16K records, when the hash value has 128 bits.
In addition, although calculating a longer hash value usually needs more time, constructing ADSs with 512-bit
length for all of 1K records can still be finished in 0.2s. When the amount of records increases to 16K, only 3s
will be needed to finish the ADS construction process. These benefits come from the high efficiency of a hash
function.

2) Proof Performance: We further evaluate the zero-knowledge verification scheme with three metrics: (i)
NIZK proof size, (ii) proof generation time, and (iii) proof verification time. We use λ to indicate how many
conditions need to be proved for corresponding attributes in a data record. For each metric, three comparison
experiments are conducted, with different values of λ, including 1, 2, and 4, respectively.

Figure 4 shows the total size of NIZK proofs when the number of data records is varied from 100 to 1.6K. Our
proposed scheme needs 80KB of storage space, if there are 100 data records and each record has one condition to
be proved. Moreover, if we increase the dataset volume to 1.6K and each record has four conditions to be proved,
the total storage cost for the proofs is limited to 2.7MB. It can be concluded that the proof size keeps succinct
(< 3 MB) in BlockShare.

20

2 4 6 8 10 12 14 16
Data Records (x103)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

AD
S

Ge
ne

ra
tio

n
Ti

m
e

(s
) 128-bit

256-bit
512-bit

Figure 3: Time cost of ADS generation

2 4 6 8 10 12 14 16
Data Records (x102)

0.0

0.5

1.0

1.5

2.0

2.5

Pr
oo

f S
ize

 (M
B)

= 1
= 2
= 4

Figure 4: Storage cost of NIZK proof

2 4 6 8 10 12 14 16
Data Records (x102)

102

103

104

105

Pr
oo

f G
en

er
at

io
n

Ti
m

e
(s

) = 1
= 2
= 4

Figure 5: Time cost of proof generation

2 4 6 8 10 12 14 16
Data Records (x102)

101

102

103

Pr
oo

f V
er

ifi
ca

tio
n

Ti
m

e
(s

)

= 1
= 2
= 4

Figure 6: Time cost of proof verification

Figure 5 illustrates the total proof generation cost in terms of prover CPU time with a varied amount of data
records. For a dataset consisting of 100 records, it takes about 7 minutes to complete the proof generation for
all records when each record has an attribute to be protected with zero-knowledge privacy. We can find that the
increase in proof generation time is noteworthy with the raising of dataset size and constraint volume. The reason
is that our implementation of zero-knowledge condition verification based on arithmetic circuits trades the proof
generation time for a succinct proof size to save communication bandwidth. To ease this issue, a potential method
is to pre-generate and re-use the proof for a specific condition.

In Figure 6, we plot the total proof verification cost in terms of verifier CPU time with regard to the number
of data records. The proof verification process could be completed in only 33s when there are 100 data records
and one condition for each record. If we increase the number of records to 1.6K, 5 minutes will be spent to
verify all of the data records. Compared with the proof generation process, we can see that our zero-knowledge
proof verification is more efficient. High verification efficiency could be an advantage to encourage more data
consumers to join the data sharing system.

3) Gas Consumption: The smart contract in BlockShare is deployed on the Goerli testnet of Ethereum,

21

enforcing the storage and request of ADS on the blockchain. As shown in Table 1, the deployment is a one-time
effort, costing approximately 530,548 gas. Gas spent for method invocation is also evaluated. Since ADSs only
record and manage the metadata of data records, the gas spent for the ADS storage function is quite economical.
It only costs 69,923 gas per time for the 256-bit ADS regardless of the size of a data record. Regarding the gas of
the on-chain ADS request for data verification, it costs around 29,402 gas, i.e., approximately $0.06 when ETH is
at the price of $2,000. The gas appears practically low because reading a value on the blockchain is very cheap in
gas.

Table 1: Gas consumption of smart contract

Operation Gas Consumed

Contract Deployment 530,548
ADS Storage 69,923
ADS Request 29,402

6 Conclusion

In this paper, we propose BlockShare, a privacy-preserving verifiable data sharing system based on blockchain.
We first design a novel blockchain-based decentralized architecture, together with a new authenticated data
structure scheme to efficiently verify any portion of a shared data record. Then, we develop a zero-knowledge
verification scheme allowing a user to prove a dynamic condition without disclosing the specific data attribute,
maximally protecting data privacy. We implement BlockShare and experimental results show that our system
achieves verifiable sharing of personal data in a privacy-preserving manner.

Acknowledgement

This work was supported by Hong Kong RGC Grants C2004-21GF, 12202221, and 12201520.

References

[1] European Parliament and Council of the European Union, “General Data Protection Regulation (GDPR),”
Official Journal of the European Union (OJ) L119, pp. 1–88, 2016.

[2] A. Schwartz and C. Cohn, ““Information Fiduciaries" Must Protect Your Data Privacy,” Electronic Frontier
Foundation, 2018.

[3] Z. Peng, J. Xu, X. Chu, S. Gao, Y. Yao, R. Gu, and Y. Tang, “VFChain: enabling verifiable and auditable
federated learning via blockchain systems,” IEEE Transactions on Network Science and Engineering, vol. 9,
no. 1, pp. 173–186, 2021.

[4] Z. Peng, C. Xu, H. Wang, J. Huang, J. Xu, and X. Chu, “P2B-Trace: Privacy-preserving blockchain-based
contact tracing to combat pandemics,” in Proc. of ACM SIGMOD International Conference on Management
of Data, 2021.

[5] H. Wang, C. Xu, C. Zhang, J. Xu, Z. Peng, and J. Pei, “vChain+: Optimizing verifiable blockchain boolean
range queries,” in Proc. of IEEE International Conference on Data Engineering (ICDE), 2022.

22

[6] H. Subramanian, “Decentralized blockchain-based electronic marketplaces,” Communications of the ACM,
vol. 61, no. 1, pp. 78–84, 2017.

[7] T. Salman, M. Zolanvari, A. Erbad, R. Jain, and M. Samaka, “Security services using blockchains: A state
of the art survey,” IEEE Communications Surveys & Tutorials, vol. 21, no. 1, pp. 858–880, 2018.

[8] B. Shen, J. Guo, and Y. Yang, “MedChain: Efficient healthcare data sharing via blockchain,” Applied
Sciences, vol. 9, no. 6, pp. 1–23, 2019.

[9] J. Kang, R. Yu, X. Huang, M. Wu, S. Maharjan, S. Xie, and Y. Zhang, “Blockchain for secure and efficient
data sharing in vehicular edge computing and networks,” IEEE Internet of Things Journal, vol. 6, no. 3,
pp. 4660–4670, 2018.

[10] X. Liang, J. Zhao, S. Shetty, J. Liu, and D. Li, “Integrating blockchain for data sharing and collaboration in
mobile healthcare applications,” in Proc. of IEEE international symposium on personal, indoor, and mobile
radio communications, pp. 1–5, 2017.

[11] X. Cheng, F. Chen, D. Xie, H. Sun, and C. Huang, “Design of a secure medical data sharing scheme based
on blockchain,” Journal of medical systems, vol. 44, no. 2, pp. 1–11, 2020.

[12] G. Zyskind, O. Nathan, et al., “Decentralizing privacy: Using blockchain to protect personal data,” in Proc.
of IEEE Security and Privacy Workshops, 2015.

[13] R. Matzutt, J. Hiller, M. Henze, J. H. Ziegeldorf, D. Müllmann, O. Hohlfeld, and K. Wehrle, “A quantitative
analysis of the impact of arbitrary blockchain content on bitcoin,” in Proc. of Financial Cryptography and
Data Security (FC), 2018.

[14] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “Medblock: Efficient and secure medical data sharing via
blockchain,” Journal of medical systems, vol. 42, no. 8, pp. 1–11, 2018.

[15] Z. Su, Y. Wang, Q. Xu, and N. Zhang, “LVBS: Lightweight vehicular blockchain for secure data sharing in
disaster rescue,” IEEE Transactions on Dependable and Secure Computing, 2020.

[16] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decentralized Business Review, p. 21260,
2008.

[17] G. Wood, “Ethereum: A secure decentralised generalised transaction ledger,” Ethereum project yellow
paper, vol. 151, pp. 1–32, 2014.

[18] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, et al., “Hyperledger fabric: a distributed operating system
for permissioned blockchains,” in Proc. of ACM European Conference on Computer Systems (EuroSys),
2018.

[19] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The blockchain model of cryptography
and privacy-preserving smart contracts,” in Proc. of IEEE symposium on security and privacy (S&P), 2016.

[20] H. Wu, Z. Peng, S. Guo, Y. Yang, and B. Xiao, “VQL: Efficient and verifiable cloud query services for
blockchain systems,” IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 6, pp. 1393–1406,
2021.

[21] C. Xu, C. Zhang, and J. Xu, “vChain: Enabling verifiable boolean range queries over blockchain databases,”
in Proc. of ACM SIGMOD International Conference on Management of Data, 2019.

23

[22] C. Xu, C. Zhang, J. Xu, and J. Pei, “SlimChain: scaling blockchain transactions through off-chain storage
and parallel processing,” Proc. of the VLDB Endowment, vol. 14, no. 11, pp. 2314–2326, 2021.

[23] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, and R. Ramamurthy, “BlockchainDB: A shared database
on blockchains,” Proc. of the VLDB Endowment, vol. 12, no. 11, pp. 1597–1609, 2019.

[24] Y. Peng, M. Du, F. Li, R. Cheng, and D. Song, “FalconDB: Blockchain-based collaborative database,” in
Proc. of ACM SIGMOD International Conference on Management of Data, 2020.

[25] E. Kokoris-Kogias, E. C. Alp, L. Gasser, P. Jovanovic, E. Syta, and B. Ford, “CALYPSO: Private data
management for decentralized ledgers,” Proc. of VLDB Endowment, vol. 14, no. 4, pp. 586–599, 2020.

[26] X. Liu, Y. Zhang, B. Wang, and J. Yan, “Mona: Secure multi-owner data sharing for dynamic groups in the
cloud,” IEEE Transactions on Parallel and Distributed Systems, vol. 24, no. 6, pp. 1182–1191, 2012.

[27] T. F.-M. Pasquier, J. Singh, D. Eyers, and J. Bacon, “CamFlow: Managed data-sharing for cloud services,”
IEEE Transactions on Cloud Computing, vol. 5, no. 3, pp. 472–484, 2015.

[28] C. Wang, S. Wang, X. Cheng, Y. He, K. Xiao, and S. Fan, “A privacy and efficiency-oriented data sharing
mechanism for iots,” IEEE Transactions on Big Data, 2022.

[29] B.-K. Zheng, L.-H. Zhu, M. Shen, F. Gao, C. Zhang, Y.-D. Li, and J. Yang, “Scalable and privacy-preserving
data sharing based on blockchain,” Journal of Computer Science and Technology, vol. 33, no. 3, pp. 557–567,
2018.

[30] S. Qi, Y. Lu, Y. Zheng, Y. Li, and X. Chen, “CPDS: enabling compressed and private data sharing for
industrial internet of things over blockchain,” IEEE Transactions on Industrial Informatics, vol. 17, no. 4,
pp. 2376–2387, 2020.

[31] K. Yu, L. Tan, M. Aloqaily, H. Yang, and Y. Jararweh, “Blockchain-enhanced data sharing with traceable
and direct revocation in IIoT,” IEEE Transactions on Industrial Informatics, vol. 17, no. 11, pp. 7669–7678,
2021.

[32] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, and M. Guizani, “MeDShare: Trust-less medical data
sharing among cloud service providers via blockchain,” IEEE Access, vol. 5, pp. 14757–14767, 2017.

[33] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain empowered asynchronous federated
learning for secure data sharing in internet of vehicles,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 4, pp. 4298–4311, 2020.

[34] M. Shen, J. Duan, L. Zhu, J. Zhang, X. Du, and M. Guizani, “Blockchain-based incentives for secure and
collaborative data sharing in multiple clouds,” IEEE Journal on Selected Areas in Communications, vol. 38,
no. 6, pp. 1229–1241, 2020.

[35] J. Liu, X. Li, L. Ye, H. Zhang, X. Du, and M. Guizani, “BPDS: A blockchain based privacy-preserving data
sharing for electronic medical records,” in Proc. of IEEE Global Communications Conference (GLOBE-
COM), 2018.

[36] R. C. Merkle, “A certified digital signature,” in Proc. of Conference on the Theory and Application of
Cryptology (CRYPTO), 1989.

[37] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit, “Efficient zero-knowledge arguments for arithmetic
circuits in the discrete log setting,” in Proc. of International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), 2016.

24

Power-of-Collaboration: A Sustainable Resilient Ledger
Built Democratically

Junchao Chen, Suyash Gupta†, Sajjad Rahnama, Mohammad Sadoghi
Moka Blox LLC

Exploratory Systems Lab
University of California, Davis

†University of California, Berkeley

Abstract

The recent surge in blockchain applications has accelerated the research in designing efficient decen-
tralized currencies. Building a decentralized economy on the traditional byzantine fault-tolerant (BFT)
protocols or the Proof-of-Work (POW) consensus protocol is inadequate as the immutability of the ledger
created by the former is at the mercy of the long-term safe-keeping of private keys of participants, while
the latter yields an extremely inefficient and environmentally unsustainable consensus. To ameliorate this
situation, we envision the design of our HYBRIDCHAIN architecture, which offers the best of both worlds.
Our HYBRIDCHAIN design runs a traditional BFT protocol to commit client transactions and employs
our novel Power-of-Collaboration (POC) protocol to notarize the BFT chain. Unlike POW, our POC
protocol advocates for participants to work together collaboratively instead of competing (often selfishly),
which results in a safe, high-throughput, and resource-efficient consensus design.

1 Introduction

The past decade has observed a surge in the design and deployment of decentralized systems. A key reason for this
surge is the growing desire in the society to have self-governing democratic financial systems that are not under
the control of a privileged set of entities. A central control often translates to a forced trust model with limited
provision to support transparency and accountability. The adoption of Blockchain, for example, is a by-product of
the ability to break away from the forced-central control in a trust-worthy fashion [8]. The emerging blockchain
platforms facilitate a reliable execution of any digital contracts (i.e., transactions) in a decentralized manner
despite the existence of malicious actors. At the core of any blockchain platform is a Byzantine fault-tolerant
(BFT) consensus protocol and a tamper-proof replicated ledger [2, 8, 24]. The BFT protocol helps to achieve
consensus on the order of incoming client requests among all the replicas, while the ledger logs this agreement.

Traditional BFT protocols expect a permissioned system where the identities of all the replicas (i.e., par-
ticipants) are known prior to any consensus as they rely on having a verifiable voting right in a democratic
setting. These protocols rely on a communication-oriented consensus model, where all the participants exchange
endorsements across multiple rounds before they can reach a decision [1, 3, 4, 7, 9, 10, 11, 17, 19, 41, 45]. In

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

25

these protocols, a system of n replicas can reach a common decision if at most f of them are malicious, such that
n ≥ 3f + 1. The n parties are said to reach a decision when at least a majority of honest parties agrees to that
decision. This decision is logged by requiring all the agreeing parties to sign the decision. Hence, the reached
decision is considered tamper-proof because it has support of a majority of honest participants.

Despite being around for more than two decades, traditional BFT protocols did not see any major practical
applications until the introduction of blockchain technology. We attribute two key factors for this lack of adoption.
(i) To ensure that the malicious participants do not spawn multiple identities, these BFT protocols need an authority
(i.e., a forced trust gateway) to verify and register every participant to verify every vote [6]; some participants may
find this intrusive if they do not want to reveal their personal information. (ii) To overwrite the ledger, malicious
participants just require access to the private keys of honest participants. In a sense, the proof of the validity of
the ledger is not self-contained, and it operates on the assumption that the private-keys are kept safe externally
indefinitely.

To resolve these challenges, initial blockchain platforms such as Bitcoin [16] and Ethereum [22] offer a
permissionless model of consensus. These systems employ the Proof-of-Work (POW) protocol [16, 22], which
follows a computation-oriented consensus model and requires all the participants to compete with each other and
try to solve a complex puzzle. Whichever participant solves the puzzle first gets to add a new entry (block) to the
ledger. As a result, POW protocol eliminates the three challenges seen by traditional BFT protocols. (i) Malicious
participants can spawn multiple identities, but what actually matters is the available compute power. (ii) Each
block includes the hash of the previous block; overwriting the ledger requires recomputing all the blocks making
it computationally infeasible. (iii) Since reaching the consensus is based on presenting the proof of work that is
embedded on the ledger (i.e., self-contained), there is no longer any need for external safe-keeping of private keys
to sign endorsements.

These properties offered by POW protocol help blockchain platforms to design a decentralized economy,
where any person can participate in the consensus process, and the economy has a self-generating currency to
monetize its participants. Monetizing the participants is necessary as the POW protocol expects the participants to
spend their resources to solve a complex puzzle. Clients of the Bitcoin platform, create transactions that exchange
Bitcoins and send them to the participants (miners) in the POW protocol. These miners check if the transaction is
valid; the client has sufficient Bitcoins to transfer. If the transaction is valid, they run POW protocol to include
this transaction in the ledger. The winning miner of POW gets a portion of the client’s Bitcoin as fees, while
the mining process (POW) mints new tokens to fund the economy. This new token is transferred to the winning
miner’s account and is recorded as a transaction in the block.

The key challenge with platforms like Bitcoin is their practicality. These platforms have abysmally low
throughput in the order of 10 transactions per second in part due to inadequate choice of small block sizes.
Furthermore, as more miners join the network, the complexity of the puzzle has to be increased. For example,
the complexity of the current Bitcoin puzzle is so high that the miners work in large groups to have any positive
probability of creating the next winning block [8]. Moreover, as miners are competing with each other, it leads
to massive wastage of computational resources (energy) as only the winning miner’s efforts are recorded and
rewarded. This results in an unsustainable ecosystem [5, 21].

We observe these challenges in the designs of existing BFT protocols and blockchain platforms and envision
a HYBRIDCHAIN system that learns from these models and eliminates their key challenges. Essentially, we
aim to establish a new research agenda; a new field of hybrid consensus protocols that depart from competitive
consensus to a collaborative consensus that is both resilient and sustainable. Our HYBRIDCHAIN architecture
takes a step in this direction by running two consensuses on each client transaction while ensuring there is no
increase in the latency observed by the client. Each client request is first ordered through a state-of-the-art BFT

consensus protocol (commitment), subsequently, this ordered request is engraved into the ledger through the
POW-style consensus (settlement). Specifically, HYBRIDCHAIN causes no increase in commitment latency while
improving the settlement latency observed by existing protocols. Ordering the client transaction through a BFT

consensus protocol first allows our HYBRIDCHAIN system to guarantee the following benefits: (i) clients receive

26

T1 T2 T3 T4

VERSION

PREVIOUS HASH

MERKLE ROOT

NBITS

NONCE

TIME

Figure 1: A Bitcoin-style block containing a header and a body with transactions (T1, T2, T3 and T4).

low-latency responses, and (ii) POW participants no longer need to compete, resulting in a high-throughput
sustainable chain. As a result, instead of employing the POW for consensus, we design a novel protocol that
allows miners to collaborate. We refer to this paradigm as Power-of-Collaboration (POC).

Our POC protocol splits the complex puzzle into disjoint slices and requires each miner to work on a distinct
slice. This slice distribution significantly reduces the resource wastage and provides each honest miner with a
reward for each new transaction added to the ledger. As each ledger entry is added collaboratively, any malicious
entity that wishes to overwrite the ledger needs to match the computational power of all the existing miners
making it practically impossible. These features of our HYBRIDCHAIN system make it lucrative; its design is the
bedrock for a secure and efficient decentralized economy.

2 Preliminaries

We adopt the standard communication and failure model adopted by most BFT protocols [7, 3, 10]. We consider
a service S of the form S = {R,M, C}. The set R consists of nR replicas of which at most fR can behave
arbitrarily. The remaining nR − fR are honest: they will follow the protocol and remain live. Similarly, the
setM consists of nM miners of which at most fM can act maliciously. We assign each anonymous miner and
replica a unique identifier, which can be obtained by a call to the function id(). The range of these identifiers are
[0, |R|] for replicas and [0, |M|] for miners. We further consider the existence of a finite set of clients C of which
arbitrarily many can be malicious.

We assume authenticated communication: replicas employ standard cryptographic primitives such as MAC

and digital signatures (DS) to sign messages. We denote a message m signed by a replica R using DS as ⟨m⟩R.
We permit malicious replicas to impersonate each other but no entity can impersonate an honest replica. We
assume that like Bitcoin miners are identifier through their public-keys (i.e., anonymous), while the identities
of replicas is known before consensus (i.e., known verified identity). We employ a collision-resistant hash
function hash(·) to map an arbitrary value v to a constant-sized digest hash(v) [15]. Each replica only accepts
a message if it is well-formed.

We adopt the same partial synchrony model adopted in most consensus systems: safety is guaranteed in
an asynchronous environment where messages can get lost, delayed, or duplicated. Liveness, however, is only
guaranteed during the periods of synchrony [3, 7, 9, 10, 45].

Safety. If two honest replicas R1 and R2 order a transaction T at sequence numbers k and k′, then k = k′.

Liveness. If a client sends a transaction T , then it will eventually receive a response for T .

27

h0 = DIGEST(T1) h1 = DIGEST(T2) h2 = DIGEST(T3) h3 = DIGEST(T4)

h01 = DIGEST([h0, h1]) h23 = DIGEST([h2, h3])

h0123 = DIGEST([h01, h23])

Figure 2: A Merkle tree over four transactions (T1, T2, T3 and T4) stored at the leaf nodes of the tree.

3 Background: Proof-of-Work Consensus

The settlement phase in our HYBRIDCHAIN architecture makes use of our novel POC protocol. The intuition
behind POC’s design stems from the POW protocol that helps create an immutable chain of blocks. The term
immutable refers to the fact that each block appended to the chain requires miners to spend their resources. As a
result, if an adversary attempts to over-write (or rollback) a part of the chain, it needs to create an alternate chain
of all the desired blocks. However, to force all the honest miners to switch to this alternate chain, the adversary
needs to compute this chain of blocks at a much faster rate than the original chain. This implies that the adversary
needs to have much greater power than the honest miners. Prior works have illustrated that such an attack is hard
to realize [12].

Prior to running the POW protocol, each miner M ∈ M needs to create a block of transactions. Although
each miner M has access to the certificate C, it needs to arrange the contents of this certificate in the format of a
block. To explain the format of a block, we follow the popular blockchain platform, Bitcoin, where each block
includes a header and body (refer to Figure 1) [8]. The header includes: (i) version for this block, (ii) hash of the
previous block, (iii) merkle root of all transactions, (iv) nBits, which determines the difficulty of the puzzle, (v)
nonce, the solution for puzzle, and (vi) time at which block is created once the nonce is found.

Computing Merkle root of all the transactions is trivial (refer to Figure 2) and requires a miner M to compute
a pairwise hash from the leaf to the root. This Merkle root helps to verify if a transaction was included to create
the Merkle tree. However, the main challenge for a miner is to determine the nonce. In existing POW-based
platforms, to solve the complex puzzle, each miner needs to calculate the hash of the block such that it contains
a specific number of leading zero bits. For this purpose, the miners have to find a nonce value that yields the
specific hash. This essentially makes the POW protocol like a race where all the miners are competing against
each other to find the nonce. Whichever miner finds a valid nonce first, it gets the chance to propose the next block
to be added to the chain. Hence, coming up with the correct number of leading zero bits in the hash is important
as it sets the difficulty of the puzzle which simplicity controls the average time taken for each winning miner to
propose a block. Once a miner finds the valid nonce, it can fill all the entries in the header, and it broadcasts the
new block to all the other miners.

Notice that the ledger is essentially a chain of blocks (refer to Figure 3). In POW, it is possible that multiple
miners propose the next block with valid nonces at approximately the same period of time. In such a case, the
protocol states that each miner would only accept the first block it receives. This could lead to temporary branches
or forks, all of which have the same previous hash. However, this condition resolves as time goes by because the
protocol also expects the honest miners to stick to the longest chain—the one with the largest number of blocks.
Eventually, all the shorter forks are discarded, and only the longest chain survives.

Incentives. Considering discarded forks and resources spent in the search for a valid nonce, what motivates
a miner to participate in POW consensus? The answer is incentives. POW-based systems like Bitcoin reward
the winning miner of the block present in the longest chain. These rewards help to offset the mining costs and
maintain a sufficient number of honest miners. This requires a few more entries in the block header, which
provide information such as the miner’s account address and the reward amount.

28

HASH

T1, . . . , T100

HASH

T101, . . . , T200

HASH

T201, . . . , T300

HASH

T301, . . . , T400

BLOCK B1 BLOCK B2 BLOCK B3 BLOCK B4

HASH

T1, . . . , T200

HASH

T201, . . . , T400

BLOCKS [B1-B2] BLOCKS [B3-B4]

PBFT CHAIN

POC CHAIN

Figure 3: A schematic representation of a blockchain or ledger in the HYBRIDCHAIN architecture that consists of
PBFT chain (i.e., layer 1) and POC chain (i.e., layer 2) that shows committed and settled transactions T1, . . . , T400

on the PBFT and POC chains, respectively. The ith block holds a hash value hashi−1 that identifies the preceding
block and Block B1 is the genesis block that does not have the preceding block.

3.1 POW Challenges

The key issue with running the POW consensus is that it leads to massive waste in energy and efforts: (1) Forks
of the longest chain are subsequently discarded, which is a loss of resources for some miners who did find a valid
nonce but did not receive any rewards. (2) Rational miners may acquire more resources to improve their chances
of proposing the next block, but this leads to increasing the difficulty of hash computation to ensure fairness.
(3) As the number of miners increases, the frequency of a single miner winning rewards decreases. (4) Several
miners may work together in groups to find the valid nonce to increase their probability of winning rewards. This
behavior significantly decreases the probability for a lone miner to propose the next block. (5) Malicious miners
may attempt to perform attacks like selfish mining and double-spending, which can rollback client transactions
and invalidate the rewards earned by honest miners [8].

These issues are so prevalent in blockchain systems like Bitcoin that, at present, almost every miner is trying
to join some existing group. In these groups, miners pool their resources to find a valid nonce and propose
the next block [18]. Every pool has its own participation rules and distributes rewards according to its policies.
Despite this, the difficulty of hash computation is periodically increased or decreased in accordance with the
average time to find a nonce by a pool of miners.

To address these challenges, in this paper, we aim to initiate a new avenue of research centered around hybrid
consensus and collaborative mining. In particular, as a first step, we propose our novel Power-of-Collaboration
(POC) protocol that re-imagines the POW consensus.

4 HYBRIDCHAIN Architecture

Our HYBRIDCHAIN runs two distinct consensus protocols in parallel. Specifically, it requires the replicas in set
R to commit each client transaction through a BFT consensus protocol (commitment phase), following which the
miners in setM run our POC consensus (settlement protocol). As all the BFT protocols follow the consensus
dictated by PBFT [3], we use PBFT as the representative protocol for the ensuing discussions. To summarize:
each client sends its request to the replicas running the PBFT protocol. Once these replicas commit this request,
they forward it to the miners. These miners collaboratively run the POC consensus protocol, post which they add
a block to the ledger. Next, we discuss each of these steps in detail.

4.1 Client Request and Transaction Ordering

PBFT follows the primary-backup model where one replica is designated as the primary while other replicas act
as backups. Each consensus is led by the primary replica of the current view. In the case the primary is malicious,
view-change takes place to replace the primary. We use Figure 4 to illustrate the three phases of PBFT.

29

R3

R2

R1

P

c
T

PREPREPARE PREPARE COMMIT INFORM

Figure 4: A schematic representation of the normal-case of the PBFT protocol with nR = 4 and fR = 1.

Client Request. A client c that wants to process a transaction T in our HYBRIDCHAIN architecture creates a
request ⟨T ⟩c and sends it to the replica designated as the primary of the view v. The client c uses DS to sign this
message and adds a monotonically increasing timestamp to this message.

Pre-prepare. When the primary P replica receives a well-formed client request m := ⟨T ⟩c, it assigns m a
sequence number k and creates and sends a PREPREPARE message to all the replicas. This PREPREPARE message
also includes a digest hash(m) of m, which is used in future communication to save space. During this phase,
it is sufficient for the primary to sign the messages using MAC. When a replica R ∈ R receives a well-formed
PREPREPARE message from the primary P of view v, it agrees to support the order k for m if it has not agreed
to order another request at sequence number k. The replica R shows its support by broadcasting a PREPARE

message.
Prepare. When a node R receives identical PREPARE messages from 2fR + 1 distinct replicas (can include

its own message to reach the count), it marks the request m as prepared and broadcasts a COMMIT message. In
HYBRIDCHAIN, we require each replica R to use DS to sign the COMMIT message.

Commit. When R receives identical COMMIT messages from 2fR + 1 replicas, it marks m as committed. If R

has executed all requests with sequence number less than k, it executes m and sends a RESPONSE message to the
client, which includes the result of execution r. The client c marks ⟨T ⟩c as processed when it receives identical
RESPONSE messages from at least fR + 1 replicas.

Chain Communication. Post consensus on m, each replica R creates a certificate C, which includes: (i) the
client request m, (ii) COMMIT messages for m from 2fR + 1 replicas, and (iii) the result r. Next, the replicas
may follow the cluster-sending protocol [13] or delayed replication protocol [14] to communicate with the miners
in setM.1 The cluster-sending protocol guarantees the delivery of at least one message between the two clusters,
given that less than one-third of members of each cluster are malicious. To do so, each member from the sending
cluster sends a message to a distinct member in the receiving member. In our case, we need the certificate C to be
sent to at least 2fM + 1 miners: replica R1 sends C to miner M1; replica R2 sends C to miner M2, and so on.

When a miner M ∈ M receives a certificate C from a replica R ∈ R, it broadcasts this certificate to all the
other miners. As at least 2fM + 1 miners receive certificates, there is a guarantee that at least one honest miner
will broadcast the certificate. As a result, each miner will have access to the certificate C, and it can proceed with
the POC computation.

4.2 Collaborative Mining

Post PBFT consensus, our HYBRIDCHAIN system runs the POC protocol on the agreed transaction to securely
bind it to the ledger. POC requires all the miners to collaborate and work together to compute the required hash.
To do so, POC divides the POW hash computation into nM disjoint subproblems and requires each miner to
work on a distinct predetermined subproblem.

1We can model chain communication as either push- or pull-based model using existing peer-to-peer communication primitives.

30

BLOCK
CREATION

NONCE
DISCOVERY

CHAIN
APPEND

[0, 1]

[2, 3]

[4, 5]

[6, 7]M4

M3

M2

M1

PBFT

Figure 5: A schematic representation of the POC protocol withM = {M1, M2, M3, M4}. The total solution space
S is [0, 7] and is divided into four slices ([0, 1], [2, 3], [4, 5], [6, 7]). Miners receive transactions from the PBFT

replicas. Post creating a block, each Miner Mi, i ∈ [1, 4] tries to discover the nonce in its slice Si. Assume the
valid nonce is 2, then once M2 discovers the nonce, it broadcasts the same to other miners.

Let, S represent the solution space; all the random numbers that a miner has to try to find a valid nonce.
Without the loss of generality, let us divide S into nM equal slices, {S1,S2, · · · SnM}, such that

S1 ∩ S2 ∩ · · · ∩ SnM = ∅ (1)

S1 ∪ S2 ∪ · · · ∪ SnM = S (2)

Our POC protocol assigns slice S1 to miner M1, S2 to M2, and Si to Mi, i ∈ [1,nM]. The key assumption is
that if a miner takes time τ to find a valid nonce on the solution space S, then if all the miners are honest and
follow the POC protocol, the time required to find the nonce should be of the order O(τ

nM
).

Further, POC protocol ensures that each honest miner gets rewarded for their efforts; rewards are distributed
among miners. If ♢ is the reward for a miner to find a valid nonce in POW protocol, then in our POC protocol,
each ith miner Mi receives a reward ♢i proportional to the size of its slice Si.

♢i =
|Si|
|S|
∗ ♢ (3)

In the rest of this paper, for simplicity, we assume that all the slices have the same size.

4.2.1 POC Protocol

Our POC protocol works in rounds, and within each round each miner tries to find if a valid nonce exists in its
slice of the block. In the rest of this section, we assume that the solution space S can be deterministically divided
into nM disjoint equal slices by each miner. For example, in Figure 5, the solution space S = [0, 7] is divided
into nM = 4 slices; the slices are: S1 = [0, 1], S2 = [2, 3], S3 = [4, 5], and S4 = [6, 7]. Designing optimal slice
distribution schemes is an interesting research avenue, which we consider outside the scope of this work.

Certificate Dissemination. The POC protocol starts when a miner M receives a certificate C from a replica.
The miner M checks if C is well-formed and C includes signatures from 2fR + 1 replicas; a proof that these
replicas agreed to sequence this batch of transactions at a sequence number k. If this is the case, M broadcasts
this certificate to other miners. Note: although while explaining PBFT we considered consensus on a single
transaction, it can be trivially extended to a batch of transactions. This batching optimization is employed by all
the existing BFT protocols to increase their throughputs [3, 7, 9].

Block Creation. When a miner M has the nonce for the block ordered at sequence number k − 1, it initiates
the creation of a block at sequence k. It does so by generating a Merkle root of all the transactions in kth batch
and a new block header. As each miner M knows there are a total of nM miners, it creates nM slices and assigns
itself the ith slice Si in round 0, where i = id(M).

31

BLOCK [B1] NONCE
DISCOVERY

TIMEOUT
SLICE
SHIFT

NONCE
DISCOVERY

(FIND NONCE 2)

CHAIN
UPDATE

PENALIZE M2

M4

M3

M2

M1

PBFT

[0, 1]

[2, 3]

[4, 5]

[6, 7]

[2, 3]

[4, 5]

[6, 7]

[0, 1]

Figure 6: An illustration of the slice shifting procedure. Here, we assume 2 is the valid nonce of the block, and
the miner M2 is malicious. Hence, M2 does not broadcast the block to other miners, which triggers slice shifting
procedure. Post slice shifting, M1 discovers the nonce and broadcasts to other miners.

Nonce Discovery. We assume that each miner M knows the characteristics of the expected hash (the number
of leading zeroes). The miner uses this information to go over all the possible nonces in its slice range to find a
valid nonce. Once a miner M computes the correct hash, it has access to a valid nonce. The miner M uses this
information to complete the block header and forwards the block to all the miners.

Chain Append. When a miner receives a block from another miner, it first validates the nonce. If the nonce is
valid, the miner appends this block to its local blockchain and assumes the POC protocol for the corresponding
batch as complete. Notice that if all the miners are well-behaving, then our POC protocol requires only one round
to find the valid nonce as the nonce is present in one of the slices. Post discovering the nonce, each miner starts
working on the next block to be added to the chain.

4.2.2 Slice Shifting Protocol

In our HYBRIDCHAIN system, each miner receives certificates from the PBFT replicas. These certificates include
client transactions that have been ordered by at least 2fR + 1 replicas. Our HYBRIDCHAIN architecture uses
the POC protocol to add these transactions to the ledger in the order defined by PBFT replicas. As a result, a
malicious miner has limited attack opportunities; if a malicious miner finds a valid nonce in its slice, it can avoid
forwarding this information to the honest miners. If such is the case, despite searching over its slice, each honest
miner would not find any possible solution and would not be able to make progress.

To resolve this attack, our POC protocol requires each miner to set a timer δ. Each miner M starts a timer δ
when it receives a certificate from the PBFT replicas. M stops δ if it discovers the valid nonce or it receives a valid
block from another miner. If M’s timer δ expires, and it does not have access to the valid nonce, it initiates the
slice shifting protocol. Once the slice shifting is endorsed by the majority of miners, then each miner searches
for the nonce in the next slice. Specifically, if prior to slice shifting a miner M was working on the ith slice Si,
post slice shifting M will work on ((i+1) mod nM)th slice, S(i+1). As each miner already has access to all the
slices, this switch does not require any additional communication.

The key intuition behind the slice shifting procedure is that even if a malicious miner decides to hide the
nonce, post switch, it will be discovered by another miner. However, it is possible that up to fM consecutive
miners may be malicious. As a result, the honest miners will discover the valid nonce after fM shifts.2

4.2.3 Reward and Penalty Economy

Frequent slice shifting due to malicious miners will be detrimental to the performance of our POC protocol; it
forces honest miners to do more work and wastes their resources. Moreover, why would any rational miner want

2The search space can be salted deterministically upon shifting to expand the search space and guard against rare cases in which the
original problem may have no solution irrespective of minors’ behavior.

32

16 32 64 120
0.0

200,000.0

400,000.0

600,000.0

800,000.0

Number of Replicas

T
hr

ou
gh

pu
t(
tx
n
/s

)

16 32 64 120
0.0

0.2

0.4

0.6

0.8

1.0

Number of Replicas

C
om

m
itm

en
tL

at
en

cy
(s

)

Figure 7: Evaluating peak throughput and commitment latency attained by PBFT consensus in HYBRIDCHAIN.

to join the POC network and invest its computational resources? To make POC protocol fruitful, we incentivize
all the honest miners for their efforts; all miners are assumed honest until proven guilty.

First, like existing blockchain systems, such as Bitcoin and Ethereum, one of the aims of our HYBRIDCHAIN

system is to establish a decentralized economy. To do so, like Bitcoin, in POC, when a miner discovers a nonce
and broadcasts the valid block to other miners, we assume the creation of a new token. For brevity, we skip diving
into the crypto-economics of the token generation and disbursement, and refer to the existing literature on the
same [16, 22]. However, the key goal is that this token is equally divided among the honest miners. Further,
like Bitcoin and Ethereum, we expect each client to pay some fees for getting its transaction processed by our
HYBRIDCHAIN system. This fees is also equally divided among all the miners working on the current block.

To disburse transaction fees and tokens among the miners, there are two possible approaches: (i) Like Bitcoin,
each miner includes nM transactions that assigns an equal fraction of the reward to every other miner’s public-key
(account). These transactions can be deterministically created by each miner prior to mining and are included
while creating the Merkle root. However, this will create unnecessary book-keeping, increasing the size of
blocks. (ii) We assume that the genesis block of the ledger records the information about the founding miners
and their respective initial slices. Further, miners can redistribute, resale, and divide their slices to other miners
(similar to buying and selling of stocks), and any such transactions must be stored on the ledger before becoming
effective. Assume that when a miner purchases a slice, sufficient tokens are reserved to enable penalization of
misbehaving miners, which results in slashing their reserve funds similar to Proof-of-Stake designs [8]. Given
all this information, when a block is formed by the POC miners, we add the incentives to the accounts of the
respective miners; miners can validate if they received incentives or not.

This rewarding process of POC is similar to strategies adopted by mining pools in systems like Bitcoin. Most
importantly, in POC, the agreement on what to be included in the next block is strictly determined by PBFT

chain, not miners. This substantially simplifies the design of POC by making it deterministic, eliminating any
lottery-based or leader-less consensus challenges that traditional POW must cope with. Furthermore, we present
the novel idea of slice shifting for the cases when no miner in a round broadcasts a valid nonce. As slice shifting
requires each miner to work on the next slice to find the nonce, it is expensive. We mitigate the need for slice
shifting by heavily penalizing malicious miners. Specifically, we require each miner to count the number of shifts
it took to find a valid nonce and to identify the miner who failed to find the valid nonce. Further, as the order
of all initial slice assignments is known to all the miners, so each miner can trivially determine which miner
was responsible for previous shifts. Notice that any misbehaving miner will be discovered and penalized as it
diminishes the returns for other honest miners.

5 Proof-of-Concept Evaluation

We now present an initial evaluation of our vision of HYBRIDCHAIN architecture, which we implement in the
open-sourced RESILIENTDB fabric [7, 10, 9, 17].3

3For our proof-of-concept of HYBRIDCHAIN architecture, we employ an experimental version of RESILIENTDB with the codename
of NexRes (Next Generation RESILIENTDB); this is an architectural rewrite of the RESILIENTDB 3.0 (the latest stable version).

33

120k 160k 200k 240k 280k
0.0

20,000.0

40,000.0

60,000.0

80,000.0

100,000.0

Block Batch Size

T
hr

ou
gh

pu
t(
tx
n
/s

)

(a) M=120

D=8
D=9

120k 160k 200k 240k 280k
0.0

200.0

400.0

600.0

Block Batch Size

Se
ttl

em
en

tL
at

en
cy

(s
) (b) M=120

D=8
D=9

64 96 120
0.0

20,000.0

40,000.0

60,000.0

80,000.0

100,000.0

Number of miners (n)

T
hr

ou
gh

pu
t(
tx
n
/s

)

(c) D=9

B=160k
B=200k
B=240k

64 96 120
0.0

200.0

400.0

600.0

Number of miners (n)

Se
ttl

em
en

tL
at

en
cy

(s
) (d) D=9

B=160k
B=200k
B=240k

Figure 8: Evaluating POC throughput and average settlement latency with different difficulty (D), miners (M)
and block batch size (B).

Experimental Setup. We use Oracle Cloud Infrastructure’s VM.Standard2.8 architecture to deploy miners
and replicas (16 cores, 8.2Gbps bandwidth, 120 GB Memory). In our experiments, we generate 400 million
client requests of size 64B each, while client response has size 17B. We average results over three runs. We
require clients to sign their messages using ED25519 while replicas use CMAC.

Batching. We employ the standard practice of batching client transactions, which we refer to transaction
batching, to optimize the PBFT consensus. Additionally, during the POC consensus, each miner aggregates
multiple batches from PBFT consensus, ’ which we refer to block batching, prior to mining.

PBFT Scaling. In Figure 7, we gauge the peak throughput and commitment latency incurred by the PBFT

consensus of our HYBRIDCHAIN architecture. This is an important metric as it informs the rate at which we
can reply to the clients. For this experiment, we increase the number of replicas from 16 to 120 and require the
primary to process a batch of 100 transactions per consensus; transaction batch size is set to 100. As expected, on
increasing the number of replicas, there is a drop in peak throughput and an increase in incurred latency, which
remains in the subsecond range. This phenomenon occurs because, at each setting, we are approximately hitting
the network bandwidth; as the number of replicas increases, more messages are communicated per consensus. In
summary, the peak throughput reaches well over 800 k transactions/second at 16 replicas while sustaining over
100 k transactions/second even when scaling to as many as 120 replicas.

POC Scaling. Next, we study the impact of our POC consensus protocol on the HYBRIDCHAIN architecture.
We deploy 120 replicas for running PBFT consensus. For the POC setting, we set the solution space parameter to
42 nonce bits and split it into equal disjoint slices based on the number of miners. Notice that the difficulty of
each problem is the number of leading zeros in the hash. In Figure 8, we present our results; here D refers to
difficulty (with the default of D = 9), M refers to the number of miners (with the default of M = 120), and B
refers to the number of batches in a block. As stated earlier, for every B blocks produced by PBFT a single block
is notarized and minted by POC.

In Figures 8(a) and 8(b), we fix the number of miners to 120, which allows creating 120 equal slices, and
increase the block size from 120 k to 280 k. We test at two difficulty levels: D = 8 and D = 9. Our results
indicate that D = 8 is relatively easy, due to which each miner has to perform a smaller amount of work. As a
result, any increase in batch size does not increase peak throughput. Hence, we test on D = 9 at which mining
smaller batch size impacts the system throughput as miners have to participate in a larger number of consensus
rounds. On further increasing the block size, we observe that the throughput hits the PBFT’s peak as desired.
Thus, notarizing the blocks by POC no longer hinders the system throughput, it only prolongs the settlement
latency as expected. When examining the end-to-end system throughput of HYBRIDCHAIN which includes
both PBFT and POC, we observe a sustained throughput of 105 k with a commitment latency of 1 second and
the settlement latency of 198 seconds when the batch size is set to 200 k. Note: We could not test at difficulty
beyond D = 9 as each nonce computation became prohibitively time- and resource-intensive given our available
commodity hardware.

In Figures 8(c) and 8(d), we gauge the performance of POC when there are 64 to 120 miners. For these
experiments, we also test at three different block batch sizes. As expected, the degree of collaborative mining is
directly proportional to the number of miners. As we increase the number of miners, there is an increase in peak

34

throughput and a decrease in the settlement latency.

6 Conclusions

In this paper, we present the vision of our HYBRIDCHAIN system, which facilitates the creation of a safe and
efficient decentralized economy. HYBRIDCHAIN achieves these guarantees by separating the life-cycle of a client
transaction into two phases: commitment and settlement. In the commitment phase, HYBRIDCHAIN employs a
traditional BFT protocol to order the client transactions. Post this, HYBRIDCHAIN requires a set of miners to
run the settlement phase, where they notarize the ordered client transactions. Our HYBRIDCHAIN architecture
does not impact the transaction latency observed by the client as each client receives the commitment response
post BFT consensus. Further, to efficiently notarize transactions during the settlement phase, our HYBRIDCHAIN

architecture introduces the notion of collaborative mining, where participants work together instead of competing
with each other. These notarized transactions are written to a ledger and can be queried in the future.

7 Acknowledgments

This work was supported in part by (1) Oracle Cloud Credits and related resources provided by the Oracle for
Research program and (2) the NSF STTR under Award Number 2112345 provided to Moka Blox LLC.

References

[1] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned
Blockchains Over Network Clusters, page 76–88. Association for Computing Machinery, 2021.

[2] Mohammad Javad Amiri, Chenyuan Wu, Divyakant Agrawal, Amr El Abbadi, Boon Thau Loo, and
Mohammad Sadoghi. The bedrock of BFT: A unified platform for BFT protocol design and implementation.
CoRR, abs/2205.04534, 2022.

[3] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance and proactive recovery. ACM Trans.
Comput. Syst., 20(4):398–461, 2002.

[4] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin, and Beng Chin Ooi.
Towards scaling blockchain systems via sharding. In Proceedings of the 2019 International Conference on
Management of Data, pages 123–140. ACM, 2019.

[5] Alex de Vries. Bitcoin’s growing energy problem. Joule, 2(5):801–805, 2018.

[6] John R. Douceur. The sybil attack. In Peter Druschel, Frans Kaashoek, and Antony Rowstron, editors,
Peer-to-Peer Systems, pages 251–260, Berlin, Heidelberg, 2002. Springer Berlin Heidelberg.

[7] Suyash Gupta, Jelle Hellings, Sajjad Rahnama, and Mohammad Sadoghi. Proof-of-Execution: Reaching
consensus through fault-tolerant speculation. In Proceedings of the 24th International Conference on
Extending Database Technology, 2021.

[8] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. Fault-Tolerant Distributed Transactions on
Blockchain. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2021.

[9] Suyash Gupta, Jelle Hellings, and Mohammad Sadoghi. RCC: resilient concurrent consensus for high-
throughput secure transaction processing. In 37th IEEE International Conference on Data Engineering,
ICDE 2021, Chania, Greece, April 19-22, 2021, pages 1392–1403. IEEE, 2021.

35

[10] Suyash Gupta, Sajjad Rahnama, Jelle Hellings, and Mohammad Sadoghi. ResilientDB: Global scale resilient
blockchain fabric. Proc. VLDB Endow., 13(6):868–883, 2020.

[11] Suyash Gupta, Sajjad Rahnama, Shubham Pandey, Natacha Crooks, and Mohammad Sadoghi. Dissecting
BFT consensus: In trusted components we trust! CoRR, abs/2202.01354, 2022.

[12] Suyash Gupta and Mohammad Sadoghi. Blockchain transaction processing. In Encyclopedia of Big Data
Technologies, pages 1–11. Springer, 2019.

[13] Jelle Hellings and Mohammad Sadoghi. Brief announcement: The fault-tolerant cluster-sending problem.
In Jukka Suomela, editor, 33rd International Symposium on Distributed Computing, DISC 2019, volume
146 of LIPIcs, pages 45:1–45:3, 2019.

[14] Jelle Hellings and Mohammad Sadoghi. Coordination-free byzantine replication with minimal communica-
tion costs. In 23rd International Conference on Database Theory, ICDT, pages 17:1–17:20, 2020.

[15] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. Chapman and Hall/CRC, 2nd
edition, 2014.

[16] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2009.

[17] Sajjad Rahnama, Suyash Gupta, Rohan Sogani, Dhruv Krishnan, and Mohammad Sadoghi. RingBFT:
Resilient Consensus over Sharded Ring Topology. In Proceedings of the 25th International Conference on
Extending Database Technology, pages 2:298–2:311. OpenProceedings.org, 2022.

[18] Meni Rosenfeld. Analysis of Bitcoin pooled mining reward systems, 2011.

[19] Chrysoula Stathakopoulou, Matej Pavlovic, and Marko Vukolic. State machine replication scalability made
simple. In Yérom-David Bromberg, Anne-Marie Kermarrec, and Christos Kozyrakis, editors, EuroSys ’22:
Seventeenth European Conference on Computer Systems, pages 17–33. ACM, 2022.

[20] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang, Lorenzo Alvisi, and Natacha Crooks.
Basil: Breaking up bft with acid (transactions). In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 1–17. Association for Computing Machinery, 2021.

[21] Harald Vranken. Sustainability of bitcoin and blockchains. Current Opinion in Environmental Sustainability,
28:1–9, 2017.

[22] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger. 2015.

[23] Maofan Yin, Dahlia Malkhi, Michael K. Reiter, Guy Golan Gueta, and Ittai Abraham. HotStuff: BFT
consensus with linearity and responsiveness. In Proceedings of the ACM Symposium on Principles of
Distributed Computing, pages 347–356. ACM, 2019.

[24] Kaiwen Zhang and Hans-Arno Jacobsen. Towards dependable, scalable, and pervasive distributed ledgers
with blockchains. In 2018 IEEE 38th International Conference on Distributed Computing Systems (ICDCS),
pages 1337–1346, 2018.

36

Transparent Sharding

Deepal Tennakoon
University of Sydney

dten6395@uni.sydney.edu.au

Vincent Gramoli
University of Sydney

vincent.gramoli@sydney.edu.au

Abstract

Sharding is a well known technique to scale distributed systems horizontally. With the recent advent of
blockchains, which typically run in open networks in the presence of malicious participants, new forms of
sharding techniques have arisen. While the database sharding was typically seemless for the client of the
system, blockchain sharding allows clients to select the location of their data, or the shardchain where
their contract executes.

A critical requirement in this new adversarial environment is for clients to be able to consult the current
sharding state without being fooled by malicious participants, a property we refer to as transparency.

In this chapter, we survey classic sharding techniques inherited from the database literature and
more recent sharding techniques inherited from the blockchain literature. Finally, we focus on a recent
technique that builds upon these techniques and exploits the smart contract logic to adjust sharding on
demand and the transparency of the blockchain to let clients consult the current sharding state securely.

1 Introduction

Sharding is a term originally tossed in the context of massively multiplayer online games, in which parallel
worlds use the same database source but evolve different database runtime dedicated to different players. One
explanation for the term “shard” stems from the game Ultima Online whose fictional story mentioned shattering a
crystal into shards, holding copies of a world continent, such that these copies evolve in parallel [15].

Due to the growing amount of transactions, sharding became popular to scale databases horizontally [6, 8].
The sharding technique consists of replicating a database structure across multiple machines while splitting its
dataset into chunks, each maintained by a distinct set of machines, called a shard. In particular by assigning
different machines to the maintenance of separate rows of a table, sharding lowers the size of the database
index at each machine. This allows to speed up the information retrieval by searching into a smaller index. By
adding resources, sharding helps increasing the performance of database services. In particular, sharding can
be used to dynamically adjust the provisioning of resources based on the demand, a notion often referred to as
elasticity [23, 22, 24, 2].

Due to the scalability limitations of classic blockchains [20, 29], sharding has naturally been applied to
blockchains [19, 14, 32] in the hope of scaling blockchains horizontally. However, the context of blockchains
differs significantly from the traditional context in which databases operate: instead of running in the closed
networks of datacenters, blockchains typically run in open networks where users are incentivized to steal digital

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

37

assets. The arbitrary (byzantine) failure model that can mimic a coalition of malicious users is thus a central
problem of blockchains and differs radically from the crash failure or isolated arbitrary failure models present in
datacenters. As an example, Figure 1 illustrates two different contexts in which the techniques used for database
sharding and blockchain sharding can be implemented.

Figure 1: The database sharding (left) is typically using a load balancer to direct requests to the right shards
running in closed networks whereas the blockchain sharding (right) typically uses different chains, like a
mainchain and multiple shardchains, that run in an open networks where malicious participants can collude to
attack the system.

Due to the growing demand for decentralized applications (DApps), the blockchain sharding techniques
are evolving from static sharding techniques [25] to more dynamic sharding techniques [1]. These dynamic
sharding techniques promise the elasticity of database sharding [23, 22, 24, 2]: they aim at adjusting the resource
provisioning based on the demand. In some cases, the user could exploit this dynamism by deploying its popular
DApp in a separate blockchain shard to avoid the congestion in other shards. In some other cases, one could
migrate less demanded DApps in the same shard to decommission resources.

Unfortunately, most dynamic blockchain sharding solutions focus on creating or modifying shards [16],
without considering how to access the existing sharding state. In other words the shard state is not transparent. If
a user requests to adjust the amount of resources in a shard, then it typically ignores whether this adjustment was
successful. The problem of offering transparency is not easy precisely because of the open networks in which the
blockchains operate. A user could for example easily be fooled by a malicious participants that misinforms it of
the success of its request, while the malicious participant never relayed it to the rest of the blockchain participants.

In this chapter, we survey existing sharding techniques and describe a new design that could leverage the
inherent transparency of the blockchain to offer dynamic sharding that can be securely monitored, despite the
presence of byzantine failures.

The rest of the chapter is organized as follows. In Section 2 we present the preliminaries. In Section 3, we
present the database sharding techniques and in Section 4, we survey the blockchain sharding techniques. We
present transparent sharding in Section 5. Finally, we present the related work in Section 6 and conclude in
Section 6.

2 Preliminaries

We consider a distributed system of n nodes that exchange messages via a network. The failure model is different
depending on the type of networks. The network can be closed, in which case nodes need to be authorized to
join the network or open, in which case any nodes can join the network. Examples of closed and open networks
are a local area network within a single datacenter and the Internet, respectively. It is typically more frequent to
observe arbitrary failures in an open network than in a closed network, simply because one does not control the
nodes joining the open network or their motivations.

38

In general, we consider that nodes communicate via point-to-point reliable channel. Hence if a node sends a
message to another node and none of them fail, then the message is eventually received. Note that point-to-point
channels can be implemented using secure channel. At times, we consider that every message takes less than
some amount of time to be delivered, in which case we say that the network is synchronous. However, it is hard
to predict the time a message will take in an open network due to various reasons (e.g., congestion, failures,
disasters) that are out of the control of any administrator. Hence we often relax the synchrony assumption and
assume that the network is partially synchronous [11] in that the bound exists but is not known by the protocol.

We assume the presence of up to f nodes that can fail among the n nodes of the group (we consider the group
as either all nodes or just the nodes taking part in a shard). And we consider two types of failures: crash failures
after which the faulty node stops acting and does no longer send messages and byzantine failures, when the faulty
node behaves arbitrarily by not necessarily following the protocol. Interestingly, since byzantine nodes can store
and send any arbitrary data to other nodes, it is important to provide a secure way for correct (i.e., non-faulty)
nodes to retrieve the correct information. The property by which the system offers a node the possibility to
retrieve correct information about the system is called transparency.

Blockchains are distributed systems [20]. Upon receiving client transactions, blockchain nodes first validate
and broadcast them to the blockchain network. Then, all correct nodes in the blockchain agree upon the order to
execute client transactions. This is known as reaching consensus on the order of transactions. Subsequently, all
correct nodes execute transactions according to the order determined by consensus, reaching the same final state.
After execution, the blockchain nodes store the transactions in blocks and each block points to the previous block
forming a chain of blocks (i.e., an immutable ledger), hence the name “blockchain”. Finally, the client queries the
blockchain to retrieve the result of the execution from the blockchain nodes. Just like databases, blockchains
store the results of transaction executions, however, blockchains differ by the openness of the network in which
they typically operate and the crytpography they require to avoid trusting a central entity.

3 Database Sharding

Sharding comes originally from the database literature where it proved instrumental for optimizing performance.
It offers a natural way to adjust resource provisioning to serve the demand.

3.1 Storage Database Sharding

Google has been influential in the design of novel sharding techniques to scale its storage systems, in particular
with BigTable [6] and Spanner [8].

BigTable [6] offers eventual consistency to NoSQL data by replicating the data on clusters of machines to
offer horizontal scalability. It is optimized to offer low latency single-value reads and writes. The client requests
a front-end server that redirects the request to a bigtable cluster, whose nodes, called tablet servers handle subsets
of requests. One can improve the performance by adding tablet servers to the cluster. Bigtable stores data in
tables, each being a key-value map, that is sharded into blocks of contiguous rows but tablet servers simply points
to the data without hosting them, hence rebalancing tablets from one node to another is fast.

Spanner [8] is an SQL distributed database that scales horizontally. Rows are organized lexicographically by
primary keys. Spanner replicates data across multiple zones. The data is sharded by ranges of rows across the
multiple replicas of a zone. The replicas execute the Paxos consensus protocol to guarantee that consistent data
are sufficiently replicated to tolerate potential crash failures before being committed. In case of failures, the data
are migrated across machines to balance the load.

3.2 Dynamic Database Sharding

Dynamic sharding consists of modifying the sharding state at runtime. It is key to provide database elasticity.

39

Slicer [2] is a dynamic sharding solution for datacenters that proved effective to allocate resources to web-
service frontends and increase the efficiency of web caches. Slicer derives a key from a request and exploits a
centralized slicing service that monitors load and task availability to map key ranges or slices to tasks. Slicer
combines with the Google Stubby’s RPC system to balance tasks across datacenters. Slicer minimizes resource
usage by 63% compared to a static sharding technique. Slicer uses a centralized algorithm rather than a client-
based consistent hashing.

Accordion [22] offers the possibility to scale out and scale in a distributed database system by provisioning
more or less servers as the load varies. Usually, databases are horizontally partitioned such that each partition is
owned by exactly one server. The partitioning algorithm is key to the performance of the system but the placement
of partitions is generally static. Accordion makes this mapping of partition to servers dynamic. E-Store [24] is an
elastic technique for on-line transaction processing that exploits a two-tier horizontal partitioning technique that
migrates data when load imbalance is detected to address the problem of the workloads being skewed towards the
same resources.

Basil [23] presents a vertical database sharding approach for ACID transactions, maintaining a sharded
key-value store in a byzantine fault-tolerant setting. This facilitates the execution of transactions concurrently
in different shards. Basil requires the clients (i.e., the transaction senders) to decide to commit or abort the
transactions based on the votes of replicas in a shard. Consequently, the client relays the outcome to the
application. By ensuring byzantine isolation, whereby correct clients observe a state of the database produced
by correct clients alone, and byzantine independence, whereby byzantine participants cannot collude to abort a
client’s transaction, Basil provides safety and liveness. However, the dynamism of Basil is limited as it does not
explain how to change the number of shards at runtime. It also requires 5f + 1 replicas per shard to ensure the
aforementioned properties.

4 Blockchain Sharding

As blockchain typically operate in open networks, the blockchain sharding solutions must typically cope with
byzantine failures. This is why multiple probabilistic techniques able to rotate the shard membership in an
unpredictable way have become popular.

4.1 Deterministic sharding

Deterministic sharding [5, 7, 10] consists of assigning transactions to shards deterministically. The advantage of
such an approach is that the current shard state is inherently transparent as anyone can infer the shard responsible
for each transaction by simply computing a local deterministic function.

SharPer [5] creates shards deterministically based on geographical distribution. Nodes that are located close to
each other are assigned to the same shard. Red Belly Blockchain [10] shards only the verification without sharding
the consensus nodes. The motivation stems from the fact that the verification of cryptographic signatures is CPU
intensive. Instead of having all nodes verifying all transactions, Red Belly Blockchain assigns deterministically
each transaction, based on its hash, to two subsets of nodes: its f + 1 primary verifiers and its f secondary
verifiers. The secondary verifiers wait for some time for the primary verifiers to verify the transaction. If the
primary verifiers are too slow or unresponsive, then the secondary verifiers start verifying the transaction. A node
detects whether a transaction is properly signed once it receives the same response from f + 1 distinct verifiers.

The drawback of deterministic sharding is that the outcome of the function is predictable, which makes the
system vulnerable to attacks. In particular, an attacker can exploit this information in order to bribe the nodes that
are responsible of a shard. If the attacker manages to bribe a sufficient portion of a shard then it can prevent the
members of this shard from reaching consensus, potentially leading the system to an inconsistent state. Such
inconsistent states are called “forks” and are exploited by various attacks [21, 12] to double spend. SSChain [7]

40

allows nodes to freely join a shard deterministically. To avoid shard-takeovers SSChain follows a two-chained
approach: a root chain that verifies the blocks coming from each shard before committing them, and a shardchain
that agrees upon blocks to send to the root chain. The root chain is able to make an accurate verification of shard
blocks by keeping the full state of the blockchain.

4.2 Probabilistic sharding

To cope with the predictability of deterministic sharding, probabilistic sharding protocols were proposed [14,
19, 32, 13]. Probabilistic sharding relies on a mainchain also known as beacon chain, final committee, or main
committee, that performs administrative tasks like creating new shards and synchronizing the states of multiple
shards. The mainchain creates each shard, also called shardchain, probabilistically which maintains separate
state, transactions, blocks and a chain. Each shard verifies a unique subset of transactions and executes consensus
separately on those transactions. Unlike deterministic sharding, the probabilistic creation of shards mitigate
risks of shard-takeovers. For this purpose, probabilistic sharding mechanisms typically select a shard size and a
number of shards to guarantee with high probability that the shard members can reach a consistent state through
consensus. In particular, when the network is open, one cannot predict the time a message takes to be delivered,
hence the sharding mechanisms must ensure that less than 1/3 of the shard members are byzantine nodes with
high probability [11]. In probabilistic sharding to mitigate bribery from slowly-adaptive adversaries, shards are
changed within a specific time period known as an epoch. This is to avoid a shard-takeover potentially causing
double spending.

OmniLedger [14] is a permissionless sharded blockchain that creates shards probabilisitically based on the
RANDHOUND protocol and a VRF. A shard remains active in a time period known as an epoch. OmniLedger
assumes synchrony for shard creation and partial synchrony in a shard epoch. OmniLedger handles cross-shard
transactions using an atomic commit-abort protocol run by clients sending transactions. However, clients can
censor cross-shard transactions as they are tasked with creating cross-shard transactions. OmniLedger has
performance enhancements such as concurrent processing of non-conflicting transactions in a shard as well as
using state blocks as checkpoints to reduce the size of the downloaded blockchain when syncing. The fault
tolerance of clients is not mentioned. Assuming synchrony for shard creation is not realistic for real-world cases.

RapidChain [32] assumes synchrony within an epoch but assumes partial synchrony in all other parts of the
protocol. RapidChain’s probabilistic shard creation involves a reference committee using proof-of-work (PoW)
coupled with randomization to assign nodes to shards in a way that minimizes the probability of f > n/3 where
f is the number of byzantine nodes and n is the number of shard nodes.

In contrast, Monoxide [27] assumes asynchrony and creates zones (i.e., shards) by assigning random identifiers
to miners which assign those miners to zones. Each zone processes transactions, keeps state and executes
consensus separately. Within a zone Monoxide uses PoW to agree on the order of transactions, hence making
the consensus probabilistic. To mitigate adversaries centralizing their mining power to one zone to take over
a zone, Monoxide [27] introduces a novel proof-of-work scheme known as Chu-ko-nu mining. This scheme
allows a miner to create a block in any zone by solving a PoW puzzle, which evenly distributes the mining power
across all zones, preventing it from being gathered to a single zone. Cross zone transactions are processed in
an asynchronous and lock-free manner that allows the zones to concurrently process transactions. However, the
number of zones in Monoxide is not adjustable at runtime to the best of our knowledge.

The next major release of Ethereum known as Ethereum 2.0 is said to contain a probabilistic sharding
mechanism consisting of a fixed set of 64 shard chains and a single beacon chain [13]. Nodes require to escrow a
deposit to Eth2.0 before assigning them to shardchains probabilistically using a random beacon. Eth2.0 requires a
minimum of 111 nodes to be in a shard [28] to lower the probability of having 2/3 adversarial nodes in a shard
to 2−40. Each shard runs a series of 64 Casper FFG consensus instances per epoch, after which a new block
containing the shard states is appended to the beacon chain.

41

4.3 Probabilistic transaction sharding

Probabilistic transaction sharding creates shards probabilistically and inherits all characteristics of probabilistic
sharding except it only shards transactions. In other words it assigns transactions to a subset of nodes (i.e., shards).
The state, chain and blocks are not sharded.

Elastico [19] is a permissionless byzantine fault tolerant blockchain that partitions the network into shards
that only process a subset of the entire set of transactions. Elastico assumes partial synchrony and achieves linear
scalability. Since Elastico is permissionless, Sybil resistance is achieved by establishing identities using a PoW
puzzle, public key and IP addresses. An adversary’s capability to create multiple identities is limited since they
require to solve a PoW puzzle. Elastico consists of a final committee and multiple committees each running
its own BFT consensus. Based on the generated node identities and a random beacon generated by the final
committee, nodes are assigned to shard committees per epoch. The final committee receives all agreed values
from each committee at the end of an epoch and reaches consensus using a BFT consensus. Note that epochs in
Elastico are based on an adjustable value N such that N is the number of blocks. To tolerate adaptive adversaries,
Elastico rotates entire committees after an epoch, in contrast to the gradual or constant number of nodes rotated
in other probabilistic approaches [13, 32]. As a result, Elastico nodes, despite being assigned to shards, require to
store the entire state of all shards.

Zilliqa [25] exploits PoW and a random beacon to select nodes into a “DS committee”, which is Zilliqa’s
mainchain. Every newly elected node in the DS committee churns out the oldest node making sure that at all
times the most recently elected n nodes are in the DS committee. Nodes wanting to join shards use PoW and a
random beacon generated by the DS committee to solve a puzzle and derive a nonce which is submitted to the DS
committee. By reaching consensus on nonces, the DS committee assigns nodes to shards probabilistically where
each shard processes a subset of transactions.

4.4 Probabilistic state sharding

Probabilistic state sharding creates shards probabilistically by only sharding states. It inherits all other character-
istics of probabilistic sharding.

Al-Bassam et al. [3] presents ChainSpace that assigns smart contract objects to a set of nodes randomly
based on Ψ(o) = id(o) mod K where K represents the constant number of shards and id(o) is the SHA256
hash of the object. Since smart contract objects are assigned to separate shards, each shard keeps a separate
state corresponding to the smart contract objects. ChainSpace assumes asynchronous communications and uses
BFT-Smart for consensus.

In the NEAR protocol1, the set of nodes that have the highest stake in an epoch are randomly assigned to
shards probabilistically. Each shard keeps a separate state. A node can be a member of one or many shards. When
a node is a member of multiple shards it keeps the state of all those shards.

5 Transparent dynamic sharding

As recent sharding techniques offer blockchain users the ability to control the locations of their data or to select
the shard in which they execute their contract, it has become crucial for sharding to be transparent.

5.1 Dynamic blockchain sharding

Dynamic blockchain sharding (DBS) [1] is a blockchain sharding protocol made transparent by exploiting the
blockchain transparency itself. It shares commonalities with traditional sharding from the database literature [22,
24, 2, 23] that offer elasticity: new shards can be created and existing shards can be closed at runtime, hence

1https://near.org/papers/economics-in-sharded-blockchain/

42

https://near.org/papers/economics-in-sharded-blockchain/

adjusting potentially the provisioning of resources based on the demand. It differs from traditional sharding
from the database literature by tolerating byzantine participants. It runs the Democratic Byzantine Fault Tolerant
consensus protocol [9] so that any shard adjustment is decided by all correct nodes unanimously, despite partial
synchrony and the presence of up to f < n/4 byzantine nodes, and it rotates shards probabilistically to cope with
slowly-adaptive adversaries, similar to probabilistic sharding approaches [14, 19, 32, 13].

5.2 Transparency

To achieve transparency, DBS differs from other techniques by exploiting the smart contract logic to adjust the
sharding state. Initially, when the blockchain starts, it is equiped with a built-in smart contract that exposes to
client users the functions to create a new shard by spawning potentially more computational resources, to close
an existing shard by decommissioning computational resources, and to adjust the size of the existing shards at
runtime.

As each function invocation to adjust the shards consists of a blockchain transaction request that gets securely
stored in the distributed ledger (like any other blockchain transactions), a node simply needs to consult the current
state of the mainchain to derive the most current sharding state. This state indicates the amount of shards that
exist, the number of nodes in each shard, the locations (e.g., static IP addresses, domain names) of these nodes.
Note that if the client needs to retrieve the state of the shard (e.g., its DApps, past transactions), then the client
would need to download the corresponding shardchain as well.

When a client wants to download the mainchain, it first contacts the nodes running the mainchain. Note that
it is reasonable to assume that a client can retrieve the nodes of the mainchain, otherwise this client would not
be able to use the service (classic blockchains like Bitcoin [20] and Ethereum [29] use hard-coded DNS seed
for clients to retrieve blockchain nodes). The client then asks a copy of the blockchains to the mainchain nodes.
Upon confirmation of the current state of the mainchain by f + 1 distinct mainchain nodes, then it knows that
this mainchain state is correct. This is because f is the maximum number of byzantine nodes in the system by
assumption, so there cannot be f + 1 malicious nodes responding to the client with a fake state. Note that we
could hardcode directly the domain names of the nodes hosting the shards but every adjustment to the shard
would require a lengthy DNS reconfiguration.

5.3 Mainchain and shardchains

DBS lets existing users of the initial blockchain, called the mainchain, become a user of a shard, called a
shardchain, by depositing assets into the mainchain while invoking the shard creation function. These deposited
assets remains frozen in the mainnet but can be used to transact in the shardchain for the lifetime of the shardchain.
When the shardchain is closed, the balances are reconciled and the remaining deposits are returned to their users.
DBS was shown instrumental to accelerate the performance of the blockchain almost linearly with the number of
shards in good executions. In case of unexpected network delays, DBS may not succeed in adjusting the sharding
during the first attempt, then it retries after allocating more time for the second attempt and so forth. As the
network is partially synchronous, there is a point in the execution where DBS has allocated a sufficient amount of
time for the sharding adjustment to succeed.

Once the client has successfully downloaded the mainchain, as explained in Section 5.2, then it is easy to
reconstruct the current sharding state. The client can inspect the history of transactions stored in the mainchain
and retrieves one by one the smart contract function invocations that created, closed and altered the shards. By
replaying these transactions, the client can derive the current sharding state, by retrieving exactly the resources
(computational nodes involved in running the shards) and the users (the users that deposited assets to access each
shardchain).

43

6 Related work

There exist several surveys on blockchain sharding [26, 31, 30]. In this section, we discuss similarities and
disparities of these surveys with our blockchain sharding survery.

In [26], the authors provide a systemic and comprehensive review of blockchain sharding methods. First,
they introduce the basic concepts of blockchain sharding such as identity establishment, randomness generation
for shard creation, intra-shard consensus, cross-shard transactions, epochs, and shard committee reconfiguration.
Then they discuss the key characteristics of state-of-the art sharding methods and they summarized in a table based
on shard creation method, network model, intra-shard consensus, inter-shard consensus, safety and performance.
Our survey in contrast classifies database sharding and then blockchain sharding methods based on common
characteristics.

Yu et al. [31] present a systemic survey of blockchain sharding techniques for permissionless blockchains.
However they do not cover sharding blockchain works such as Red Belly Blockchain [10], NEAR 2 and
Zilliqa [25]. This survey, similar to Sok [26] summarizes the surveyed blockchain sharding techniques according
to their key characteristics but in contrast does not discuss database sharding approaches and its lead up to
blockchain sharding.

Xi et al. [30] perform a comprehensive survey on blockchain sharding that includes Monoxide [27], Elas-
tico [19], OmniLedger [14], RapidChain [32], ChainSpace [4], Ethereum2.0 [13] and TEEEChain [17]. They
identify the following characteristics of each sharded blockchain: the network model (e.g. synchronous, partially-
synchronous), node allocation method into shards (e.g. PoW, random beacon, deterministic, etc), transaction
model (e.g. UTXO, account-based), intra-shard consensus algorithm, threat model, cross-shard transaction
processing techniques and performance. Similar to our work, Xi et al. [30] classify blockchain sharding into three
categories. Namely, network sharding, transaction sharding and state sharding. However, they do not explicitly
assign sharded blockchains to these three categories.

In [18], the authors offer a systematic analysis of existing sharded blockchain systems. They decompose
the blockchains that benefit from sharding into functional components, classify these systems, and analyze their
components. They present a layered decomposition similar to the layers 0, 1, 2 of Xi et al. [30] but called them
network, consensus and application layers. In their context, sharding consists of splitting the work so that each
shard generates its own independent chains completely disconnected from other chains. As a result, they consider
solutions that partially order transactions. This is a distinction with some of the sharding techniques we consider,
like verification sharding, that totally order all transactions [10].

Interestingly, the large body of work on blockchain sharding explains how shards can be created or modified
despite the presence of malicious participants, however, they do not explain how one can retrieve the current
sharding state in a secure way. By contrast, we consider transparency as an important property to allow users to
retrieve the current state of the blockchain sharding despite the presence of malicious participants.

7 Conclusion

In this chapter, we surveyed sharding techniques both in the database context and in the blockchain context.
Although the blockchain sharding techniques are inspired by the database context, they raise an interesting
challenge related to the openness of the network in which they execute. In this novel context, an interesting
problem is the one of transparency where the users can retrieve the correct sharding state despite the presence of
malicious coalitions. We presented a recent solution to this problem that lets users adjust the shards dynamically
and consult the current sharding state securely through transparency.

2https://near.org/papers/economics-in-sharded-blockchain/

44

https://near.org/papers/economics-in-sharded-blockchain/

Acknowledgements

This research is supported under Australian Research Council Future Fellowship funding scheme (project number
180100496) entitled “The Red Belly Blockchain: A Scalable Blockchain for Internet of Things”.

References

[1] Deepal tennakoon and vincent gramoli. In Proceedings of the Fifth International Symposium on Foundations
and Applications of Blockchain (FAB), 2022.

[2] Atul Adya, Daniel Myers, Jon Howell, Jeremy Elson, Colin Meek, Vishesh Khemani, Stefan Fulger, Pan
Gu, Lakshminath Bhuvanagiri, Jason Hunter, Roberto Peon, Larry Kai, Alexander Shraer, Arif Merchant,
and Kfir Lev-Ari. Slicer: Auto-sharding for datacenter applications. In Proceedings of the 12th USENIX
Conference on Operating Systems Design and Implementation, page 739–753, 2016.

[3] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George Danezis. Chainspace: A
sharded smart contracts platform. arXiv preprint arXiv:1708.03778, 2017.

[4] Mustafa Al-Bassam, Alberto Sonnino, Shehar Bano, Dave Hrycyszyn, and George Danezis. Chainspace: A
sharded smart contracts platform. In 25th Annual Network and Distributed System Security Symposium
NDSS. The Internet Society, 2018.

[5] Mohammad Javad Amiri, Divyakant Agrawal, and Amr El Abbadi. SharPer: Sharding Permissioned
Blockchains Over Network Clusters, page 76–88. Association for Computing Machinery, New York, NY,
USA, 2021.

[6] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed storage system for structured data.
ACM Trans. Comput. Syst., 26(2), 2008.

[7] Huan Chen and Yijie Wang. Sschain: A full sharding protocol for public blockchain without data migration
overhead. Pervasive and Mobile Computing, 59:101055, 2019.

[8] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, J. J. Furman, Sanjay
Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian Kanthak,
Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,
Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang, and Dale
Woodford. Spanner: Google’s globally distributed database. ACM Trans. Comput. Syst., 31(3), 2013.

[9] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal. DBFT: efficient leaderless Byzantine
consensus and its application to blockchains. In Proc. 17th IEEE Int. Symp. Netw. Comp. and Appl (NCA),
pages 1–8, 2018.

[10] Tyler Crain, Christopher Natoli, and Vincent Gramoli. Red Belly: a secure, fair and scalable open blockchain.
In Proceedings of the 42nd IEEE Symposium on Security and Privacy (S&P’21), May 2021.

[11] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. Consensus in the presence of partial synchrony.
Journal of the ACM, 35(2):288–323, 1988.

[12] Parinya Ekparinya, Vincent Gramoli, and Guillaume Jourjon. The Attack of the Clones against Proof-of-
Authority. In Proceedings of the Network and Distributed Systems Security Symposium (NDSS’20), Feb
2020.

45

[13] The eth2 upgrades. Accessed: 2022-03-26.

[14] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta, and Bryan Ford.
Omniledger: A secure, scale-out, decentralized ledger via sharding. Cryptology ePrint Archive, Report
2017/406, 2017.

[15] Ralph Koster. Database “sharding” came from uo?, 2009. Accessed:2022-04-23 - https://www.
raphkoster.com/2009/01/08/database-sharding-came-from-uo/.

[16] Jae Kwon and Ethan Buchman. Cosmos White Paper. Accessed:2022-05-30 - https://v1.cosmos.
network/resources/whitepaper

[17] Joshua Lind, Ittay Eyal, Florian Kelbert, Oded Naor, Peter R. Pietzuch, and Emin Gün Sirer. Teechain:
Scalable blockchain payments using trusted execution environments. Technical Report 1707.05454, arXiv,
2017.

[18] Yizhong Liua, Jianwei Liua, Marcos Antonio Vaz Sallesb, Zongyang Zhanga, Tong Lia, Bin Hua, and
Rongxing Luc Fritz Hengleinb. Building blocks of sharding blockchain systems: Concepts, approaches,
and open problems. Technical Report 2102.13364, arXiv, 2021.

[19] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Prateek Saxena. A secure
sharding protocol for open blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, page 17–30, 2016.

[20] Satoshi Nakamoto. Bitcoin: a peer-to-peer electronic cash system, 2008.

[21] C. Natoli and V. Gramoli. The balance attack or why forkable blockchains are ill-suited for consortium. In
47th IEEE/IFIP Int. Conf. Dependable Syst. and Netw. (DSN), Jun 2017.

[22] Marco Serafini, Essam Mansour, Ashraf Aboulnaga, Kenneth Salem, Taha Rafiq, and Umar Farooq Minhas.
Accordion: Elastic scalability for database systems supporting distributed transactions. Proc. VLDB Endow.,
7(12), 2014.

[23] Florian Suri-Payer, Matthew Burke, Zheng Wang, Yunhao Zhang, Lorenzo Alvisi, and Natacha Crooks.
Basil: Breaking up bft with acid (transactions). In Proceedings of the ACM SIGOPS 28th Symposium on
Operating Systems Principles, SOSP ’21, page 1–17, New York, NY, USA, 2021. Association for Computing
Machinery.

[24] Rebecca Taft, Essam Mansour, Marco Serafini, Jennie Duggan, Aaron J. Elmore, Ashraf Aboulnaga, Andrew
Pavlo, and Michael Stonebraker. E-store: Fine-grained elastic partitioning for distributed transaction
processing systems. Proc. VLDB Endow., 8(3), 2014.

[25] The ZILLIQA Team. The zilliqa technical whitepaper. Technical report, Zilliqa, 2017. Accessed February
2022.

[26] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han. Sok: Sharding on blockchain. In Proceedings of
the 1st ACM Conference on Advances in Financial Technologies, page 41–61, 2019.

[27] Jiaping Wang and Hao Wang. Monoxide: Scale out blockchains with asynchronous consensus zones. In
16th USENIX Symposium on Networked Systems Design and Implementation (NSDI 19), pages 95–112.
USENIX Association, February 2019.

[28] SJ Wels. Guaranteed-tx: The exploration of a guaranteed cross-shard transaction execution protocol for
ethereum 2.0. Master’s thesis, University of Twente, 2019.

46

https://www.raphkoster.com/2009/01/08/database-sharding-came-from-uo/
https://www.raphkoster.com/2009/01/08/database-sharding-came-from-uo/
https://v1.cosmos.network/resources/whitepaper
https://v1.cosmos.network/resources/whitepaper

[29] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger, 2015. Yellow paper.

[30] Jinwen Xi, Shihong Zou, Guoai Xu, Yanhui Guo, Yueming Lu, Jiuyun Xu, Xuanwen Zhang, and Francesco
Gringoli. A comprehensive survey on sharding in blockchains. Mob. Inf. Syst., jan 2021.

[31] Guangsheng Yu, Xu Wang, Kan Yu, Wei Ni, J. Andrew Zhang, and Ren Ping Liu. Survey: Sharding in
blockchains. IEEE Access, 8:14155–14181, 2020.

[32] Mahdi Zamani, Mahnush Movahedi, and Mariana Raykova. RapidChain: Scaling blockchain via full
sharding. In ACM CCS, pages 931–948, 2018.

47

The Anatomy of Blockchain Database Systems

Dumitrel Loghin
National University of Singapore

dumitrel@comp.nus.edu.sg

Abstract

Blockchains are around for more than ten years and currently, we are witnessing the adoption of
blockchain techniques in databases, and vice-versa. For example, typical blockchain data structures, such
as cryptographically-linked blocks and Merkle trees, have been integrated into verifiable databases. On
the other hand, database techniques, such as sharding and concurrency control, have been integrated
into blockchains. In this paper, we are looking at systems that combine both blockchain and database
techniques. We classify these systems into (i) permissioned blockchains, (ii) hybrid blockchain database
systems, and (iii) ledger databases. We present their anatomy, including features, techniques, and design
choices, by analyzing a few representative systems. In the end, we highlight their limitations and discuss
future research directions.

1 Introduction

In the last few years, the line between blockchain systems and distributed databases has been blurred to a
certain degree [36, 40]. We have seen the adoption of blockchain techniques in databases. For example, typical
blockchain data structures, such as cryptographically-linked blocks [4] and Merkle trees [29], have been integrated
into verifiable ledger databases [9, 11, 10, 14] and hybrid blockchain database systems [24]. We have also seen
database techniques used in blockchains. For example, sharding is used to scale blockchains [18], while optimistic
concurrency control (OCC) is used to decrease the number of aborted transactions [40, 37].

By zooming into the design and implementation of systems that combine blockchain and database techniques,
we propose classifying them into three categories. Going from systems that have stronger blockchain features to
systems that are closer to databases, these three categories are (i) permissioned blockchains, (ii) hybrid blockchain
database systems, and (iii) ledger databases. From a high-level view, all these systems consist of distributed
server nodes that communicate via a broadcasting service based on some consensus protocol. Each server node
has a ledger (blockchain data structure) and a local database. Both the server nodes and the users (or clients) that
interact with these nodes need to be authenticated. The broadcasting service is implemented either with a Crash
Fault Tolerant (CFT) consensus protocol, that is closer to distributed databases, or a Byzantine Fault Tolerant
(BFT) consensus that resembles typical blockchains.

In this paper, we analyze a few representative systems and present their anatomy in terms of design, techniques,
features, and limitations. We shall present more details on our classification in Section 2, and analyze a few
systems in Section 3. We present challenges, limitations, and future research directions in Section 4, and conclude
in Section 5.

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

48

Table 2: Categories, Features, and Examples.

Permissioned Blockchains Hybrid Blockchain Database Systems Ledger Databases
Administration Decentralized Decentralized Centralized
Broadcasting CFT or BFT Typically CFT CFT
Local Database Tightly-coupled Loosely-coupled Tightly-coupled
Ledger Replicated Replicated Centralized

Examples

Veritas [25] Amazon QLDB [9]
Fabric [4] BigchainDB [2] Alibaba LedgerDB [10]

Quorum [3] BlockchainDB [19] Microsoft SQL Ledger [11]
Corda [27] Blockchain Relational Database [33] Spitz [14]
Diem [10] ChainifyDB [39] Immudb [5]

FalconDB [35] IntegriDB [49]

2 Classification

When analyzing the systems that combine both database and blockchain techniques, we can distinguish three
main categories. First, we have permissioned blockchains (also known as private, enterprise, or consortium)
that have more blockchain features than databases. Second, we have hybrid blockchain database systems which
can be further classified into out-of-blockchain databases and out-of-database blockchains [36]. Third, we
have (centralized) ledger databases. Table 2 presents the features of such systems and a few examples of the
state-of-the-art for each category.

Permissioned blockchains, as opposed to typical permissionless or private blockchains such as Bitcoin [32]
and Ethereum [14], employ authentication for the parties using the blockchain (i.e., clients and peers). They are
named permissioned or private blockchains because only authenticated parties can use them. These blockchains
are typically used in enterprise setups and they are operated by a consortium of organizations, hence, they are
called enterprise or consortium blockchains. In such setups, an organization hosts one or more blockchain peers
(or nodes). Since more than one organization is in charge of administrating and operating the blockchain, a
permissioned blockchain is a decentralized system where the ledger is replicated on all the nodes (or peers).
Initially, some of these permissioned blockchains considered using Byzantine Fault Tolerant (BFT) consensus
protocols to replicate the ledger. For example, Hyperledger Fabric v0.6 [19, 20] used PBFT [23] and Quorum
provides support for IBFT [38]. However, these BFT protocols degrade the performance of a blockchain
concerning throughput and latency [20, 30]. That is why most of the current permissioned blockchains use Crash
Fault Tolerant (CFT) consensus mechanisms, such as Raft [34] and Apache Kafka [1].

Hybrid Blockchain Database Systems are very similar to permissioned blockchains but they have different
motivations, use cases, and database integration. These systems are motivated by the need of organizations to
share a database or parts of a database. In general, this database already exists and it is loosely-coupled to the
hybrid blockchain database system. For example, in a supply chain scenario, there should be a shared database
with shipping options and costs. Shipping companies update this database, while the other parties just read the
data. In such a case, we need a ledger to keep track of the updates in a transparent and tamper-evident way. An
authentication mechanism is needed to access the ledger and the broadcasting service. Given this, most of the
proposed hybrid blockchain database systems consider only CFT broadcasting services. As expected, if a BFT
consensus is used instead, the performance of the system significantly degrades [24].

Ledger Databases are at the other end of the centralized-decentralized administration spectrum since they
are hosted and operated by a single organization. In such a centralized model, the users need to trust that
organization. To increase the trust, ledger databases use tamper-evident data structures and publish the hashes of
the append-only ledger or provide proofs for current states in the database. Such systems may be distributed to
increase fault tolerance and improve performance. However, they are not distributed to increase the trust as is the

49

Local

Database
Ledger

Server Node 1

Local

Database
Ledger

Server Node 2

Local

Database
Ledger

Server Node N

Broadcasting

Service

Transactions

Results

Transactions

Results

Transactions

Results

Local Logs

Remote Logs

. . .

Figure 1: A Generic Hybrid Blockchain Database System

case for the other two categories. Moreover, the database and the ledger are tightly-coupled to the server nodes.
While such systems require higher trust from the users, they provide higher performance and zero administration
efforts compared to the other two categories.

3 Anatomy

In this section, we start with the similarities among the three proposed categories, after which we present the
particularities of each category together with the details of a few representative systems.

3.1 Overview

Typically, systems that combine blockchain and database features have an architecture similar to the one depicted
in Figure 1. The system consists of some distributed server nodes (or peers), where each node handles user
requests and coordinates with the other nodes via a broadcasting service. The users (or clients) need to be
authenticated before sending requests to the nodes. A server node sends local updates (or logs) to and receives
remote updates (or logs) from the broadcasting service. This broadcasting service can also be distributed across a
few nodes, not necessarily the same as the server nodes. Moreover, the broadcasting service is implemented with
a CFT or BFT consensus protocol. For example, the latest version of Fabric uses Raft [34], which is CFT, while
Quorum supports, among others, IBFT [38].

Each server node connects to a local database and keeps a copy of the distributed ledger. Note that the local
database and the ledger are different. The former keeps the latest version of the data (e.g., states, accounts, assets),
while the latter keeps the entire update history using tamper-evident data structures. For example, Fabric uses
LevelDB or CouchDB as its local database, which is also called World State. On the other hand, the ledger in
Fabric is a linked list of blocks where the header of a block is linked to the header of the previous block using a
cryptographic hash. Other systems use data structures based on Merkle trees [29] to represent the ledger.

We briefly compare these two ledger data structure, as illustrated in Figure 2. The hashed blocks data structure,

50

H0 - Header

D0 - Data

(transactions)

M0 - Metadata

Block 0

H1 = Hash(H0, D1)

D1 - Data

(transactions)

M1 - Metadata

Block 1

H2 = Hash(H1, D2)

D2 - Data

(transactions)

M2 - Metadata

Block 2

(a) Hashed Blocks

T1 T2 T3 T4

H1 = Hash(T1) H2 = Hash(T2) H3 = Hash(T3) H4 = Hash(T4)

H12 =

Hash(H1, H2)

H34 =

Hash(H3, H4)

H =

Hash(H12, H34)

(b) Merkle Tree

Figure 2: Ledger Data Structures

as shown in Figure 2a, is a linked list of blocks where a block points to its predecessor using a cryptographic
pointer, except for the first block which is typically called the genesis block. Each block consists of data, metadata,
and header sections. The data section contains all the transactions that are part of the block. The header is a
digest of the block computed using a hashing function. Most of the blockchains use SHA3 or Keccak hashing
algorithms. The header of all the blocks except the first one is computed as the hash of the concatenation between
the hash of the previous block and the hash of the current block’s data section.

A generic Merkle tree, as shown in Figure 2b, is a tree where the leaves are data representing transactions and
the internal nodes are hashes. Each parent node contains the hash of the concatenation of all the hashes of its
children. Hence, the root node contains the hash that represents all the underlying transactions. We note that
Merkle trees can be combined with hashed blocks: the data section of a block can be organized as a Merkle tree.
For example, Quorum uses this approach to store transactions in its ledger. In contrast, Fabric does not use a
Merkle tree: it just hashes the transaction data as a chunk [9]. We direct the reader to [46] for an analysis of
advanced Merkle tree data structures.

3.2 Permissioned Blockchains

Hyperledger Fabric [4] is a permissioned blockchain developed by Linux Foundation with a significant contribu-
tion from IBM. In Fabric, there are three types of nodes, namely, clients, peers, and orderers. A client sends a
transaction request to a set of peers governed by an endorsement policy. For example, the AND policy includes
all the peers in the network. That is, a client has to send the transaction to and receive endorsements from all
the peers. A peer executes the transaction request in simulation mode and creates read and write sets to mark
which world states are touched by the transaction. Since this is in simulation mode, the peer does not persist the
changes to its local database. Then, the client sends the responses from the peers together with its transaction
to the orderers. These orderers pack the transaction in a block and broadcasts the block to all the peers in the
network. Currently, Fabric adopts the Raft CFT consensus among orderers. In the last phase, all the peers validate
the block and persist the changes of valid transactions to the local database. Note that the peers do not need to
re-execute the transaction: they only persist the write set. In the validation phase, the read set is also verified to
check if any state has been modified since the transaction was simulated. In such a case, the transaction is aborted.
In summary, Fabric implements an execute-order-validate (EOV or XOV) transaction lifecycle, as opposed to
many other blockchains that adopt an order-execute (OX) lifecycle. Fabric supports both LevelDB (default) and
CouchDB for the world states database. The ledger is stored on the filesystem as a linked list of blocks, where the
block headers are linked together via hashing.

Fabric has been extensively analyzed and optimized by the database research community. Many works
benchmark and analyze the performance bottlenecks of Fabric [17, 19, 20, 30, 31, 42]. In our recent work [31],
we show that a Fabric network with up to 10 peers can reach around 1,000 transactions-per-second (TPS).
Other works improve the rate of aborted transactions by relaxing the concurrency model (e.g., using optimistic

51

concurrency control) and by re-ordering the transactions [37, 40].
Quorum [3] is a permissioned blockchain that draws its source code from Ethereum (implemented in the

Go programming language). Naturally, Quorum supports Solidity smart contracts, but it replaces the energy-
inefficient Proof-of-Work consensus with a few alternatives, out of which Raft is the default. Besides Raft,
Quorum also supports IBFT (Istanbul BFT), QBFT (Quorum BFT), and Clique Proof-of-Authority (POA).
IBFT is inspired by PBFT [23], while QBFT is an optimized version of IBFT which is also interoperable with
Hyperledger Besu, an Ethereum client developed by the Hyperledger Foundation. As opposed to Fabric, Quorum
has only peers and clients and adopts the traditional order-execute (OX) transaction lifecycle. That is, a transaction
is first grouped into a block and then executed by each peer in the network. Similar to Fabric, Quorum uses
LevelDB as its local database, but it adopts Merkle Patricia Trie for the ledger. In our recent work [31], we show
that Quorum with Raft exhibits a throughput of 250 TPS, which is relatively low for a permissioned blockchain.

Corda [27] is advertised as a distributed ledger technology (DLT) for enterprises. For that reason, it is built
on Java and Kotlin so it can be better integrated with existing Java enterprise systems. Besides nodes, a Corda
network has notaries which are responsible for validating transactions in terms of uniqueness and validity. In
essence, uniqueness prevents double-spending, while validity means that the transaction passes the input-output
tests and it has all the required signatures. Notaries use a consensus protocol which is Raft-based in the default
version of Corda. This default version uses H2, a relational database management system written in Java, for the
local database. The ledger uses a custom version of Merkle trees to hide transaction details from the entities that
are not involved in the transaction. A recent publication shows that the performance of Corda is very low, at 15
TPS [26]. Even when a single notary is used to minimize the impact of consensus, the performance is low due to
a synchronous (blocking) transaction processing mechanism [26].

Diem [10] is a permissioned blockchain that was developed by a consortium of companies led by Facebook.
It was previously known as the Libra blockchain [10]. The entire project has been discontinued in 2022. However,
Diem implements some powerful features which are worth mentioning. For example, it uses LibraBFT [12], a BFT
consensus based on Hotstuff [45] which further improves PBFT [23]. For the ledger, Diem uses Jellyfish Merkle
tree [23] which is a sparse Merkle tree inspired by the Merkle Patricia Trie used in Ethereum. RocksDB [21], a
fast key-value store derived from LevelDB and developed by Facebook, is used as the underlying database. A
recent study shows that Diem achieves around 600 TPS on 4 nodes [47], which is a decent performance for a
BFT-based blockchain.

3.3 Hybrid Blockchain Database Systems

Veritas [25] is an out-of-blockchain database that consists of a shared database (or table) and a blockchain
ledger for keeping auditable and verifiable updates done on the shared database. Each node is operated by an
organization. A node uploads its local update logs and downloads remote update logs to and from a broadcasting
service. Veritas employs a concurrency control mechanism based on timestamps. The timestamp of a transaction
represents the sequence number of that transaction in the log. A transaction is first verified locally by the node
receiving it. If it passes the verification (e.g., multi-version concurrency control – MVCC), it is included in the
logs and sent to the broadcasting service. Once the other nodes agree to the updates, they send acknowledgments,
and once every node receives the acknowledgments, it persists the updates to the local database and appends them
to the ledger. Note that this mechanism incurs O(N2) communication complexity [24].

The original design of Veritas uses Redis [15], an in-memory NoSQL database, and Apache Kafka [1], a CFT
broadcasting service. The re-implementation of Veritas in [24] achieves around 30,000 TPS, making it the fastest
system among all those analyzed in this paper.

BlockchainDB [19] is an out-of-blockchain database with prominent blockchain features: it is a shared
database built over a blockchain. It is the only hybrid blockchain database that uses sharding to partition the shared
database. Firstly, the blockchain represents the storage layer of a BlockchainDB node. By default, BlockchainDB
uses Ethereum, but other blockchains can be used as well via a plugin interface. With Ethereum, the ledger

52

structure is based on Merkle Patricia Trie. Secondly, a node has a database layer with a simple key-value interface.
Thirdly, there is a shard manager that helps the database layer to identify the shard where a specific key is stored.
Due to the use of such a slow blockchain, like Ethereum with Proof-of-Work (PoW) or Proof-of-Authority (PoA),
BlockchainDB exhibits a throughput of around 50 TPS [24].

FalconDB [35] is another out-of-blockchain database that starts from a blockchain and provides a shared
database to the clients. Different from other systems, FalconDB provides a relational database interface to the
clients. In FalconDB, both the clients and the peers need to keep a digest of the data. The difference is that clients
only keep the blockchain headers to save storage space. However, these headers are sufficient for checking the
correctness of the data queried from the peers. FalconDB uses IntegriDB [49], a verifiable SQL database, to store
the ledger, Tendermint for consensus, and MySQL as the local database. The throughput of the system with a
YCSB write-heavy workload (50% reads and 50% writes) is around 3,000 TPS [35]. Note that a similar YCSB
workload is used to evaluate Veritas, BigchainDB, and BlockchainDB [24].

Blockchain Relational Database (BRD) [33] has a similar design to Veritas, but it starts from a PostgreSQL [7]
relational database. In this sense, BRD is an out-of-database blockchain. Also, different from Veritas, the
broadcasting service orders blocks of transactions (updates) and does not serialize the transactions in a block. To
speedup transaction execution, BRD implements concurrent execution with Serializable Snapshot Isolation (SSI).
Note that BRD uses PostgreSQL [7] as its local database, which supports Serializable Snapshot Isolation. BRD
also uses Apache Kafka as the broadcasting service. Different from Veritas, BRD keeps the ledger in the same
relational database, namely PostgreSQL. According to the BRD paper [33], the system achieves a throughput of
2,500 TPS with a key-value workload.

BigchainDB [2] is another out-of-database blockchain. It starts from MongoDB [6], a NoSQL database, used
as the local database. By using MongoDB, the main data abstraction in BigchainDB is an asset, represented in
JSON format. Otherwise, the transaction lifecycle is similar to the one in Veritas. A transaction is verified locally
by a node, then a request is sent to the broadcasting service. BigchainDB uses a BFT consensus middleware as
the broadcasting service, namely Tendermint [13]. Once the majority of the nodes agree on the transaction, it is
committed in the local database. BigchainDB relies on Tendermint to keep the ledger in the form of a Merkle tree.
Our evaluation of the open-source BigchainDB code shows a maximum performance of around 200 TPS with the
YCSB workloads.

ChainifyDB [39] is an out-of-database blockchain that starts from a relational database which can be either
PostgreSQL or MySQL. Apache Kafka is used for broadcasting the transactions which are SQL statements. The
ledger uses a custom representation based on LedgerBlocks. A LedgerBlock contains all the transactions that are
part of a block, where a transaction is in its SQL form. Next, the LedgerBlock contains a list of bits representing
the successful transactions, a SHA256 hash digest over the data changed by the transactions, and a hash value of
the previous LedgerBlock that was added to the ledger. This representation is similar to the one used by Fabric.
ChainifyDB achieves a throughput of around 1,000 TPS on three nodes using the SmallBank workload when all
three nodes need to reach consensus. When only two out of three nodes need to reach consensus, the throughput
increases to around 5,000 TPS [39].

3.4 Ledger Databases

Amazon Quantum Ledger Database QLDB [9] is a verifiable database developed by Amazon and provided as a
cloud service. QLDB follows the structure depicted in Figure 1 by integrating a relational database and a ledger
in its server node. The database keeps the current states and the history of those states, while the ledger is an
append-only journal that keeps track of all the changes done to the database in an immutable way. While it
is not clear what is the underlying database, the ledger in QLDB is implemented based on Merkle trees. Our
preliminary evaluation of QLDB shows a throughput of 10,000 TPS, which is relatively low for a centralized
system. However, we note that an update in QLDB changes both the database and the ledger, and these two
changes are done sequentially.

53

Table 3: Summary of Systems, Features, and Performance

System Broadcasting Service Ledger Structure Local Database Throughput [TPS]
Fabric [4] Raft (CFT) Linked Blocks LevelDB 1,000 [31]
Quorum [3] Raft (CFT) Merkle Patricia Trie LevelDB 250 [31]
Corda [27] Raft (CFT) Merkle Tree H2 10 [26]
Diem [10] LibraBFT (BFT) Jellyfish Merkle Tree RocksDB 600 [47]
Veritas [25] Kafka (CFT) Sparse Merkle Tree Redis 30,000 [24]
BlockchainDB [19] PoW/PoA (BFT) Merkle Patricia Trie Ethereum(LevelDB) 50 [24]
FalconDB [35] Tendermint (BFT) Merkle Tree(IntegriDB) MySQL 3,000 [35]
BRD [33] Kafka (CFT) Relational PostgreSQL 2,500 [33]
BigchainDB [2] Tendermint (BFT) Merkle Tree(Tendermint) MongoDB 200 [24]
ChainifyDB [39] Kafka (CFT) LedgerBlock PostgreSQL/MySQL 1,000 [39]
QLDB [9] N/A Merkle Tree N/A 10,000
LedgerDB [10] Master-Workers (CFT) Merkle Tree L-Stream 20,000
SQL Ledger [11] N/A Merkle Tree SQL Server 70,000 [11]
Spitz [14] 2PC + timestamp (CFT) Merkle Tree ForkBase 70,000 [14]

LedgerDB [10] is a verifiable database developed by Alibaba and provided as a cloud service. LedgerDB
updates the ledger, which is based on a Merkle tree, asynchronously. Specifically, the transactions are batched and
the Merkle tree is updated with the batched transactions. Hence, this approach is called batch accumulated Merkle
tree (bAMT). LedgerDB supports multiple underlying storage engines, but L-Stream, a custom storage developed
by Alibaba, is the default one. L-Stream is an append-only filesystem created specifically for LedgerDB. In
terms of distributed architecture, the server nodes in LedgerDB are coordinated by a master that ensures CFT
and workload balancing. Our preliminary evaluation of LedgerDB shows a throughput of 20,000 TPS, two times
higher compared to QLDB.

SQL Ledger [11] is a ledger database developed by Microsoft and offered as a service on its Azure cloud. It
has a similar architecture to QLDB and LedgerDB, but it uses Microsoft’s SQL Server as the underlying storage
engine. SQL Ledger keeps a ledger data structure based on Merkle trees and two tables, namely, the Ledger Table
and the History Table. The Ledger Table reflects the latest record for a given key, while the History Table records
the previous version of that record. It is not clear what type of consensus is used to coordinate among multiple
nodes in SQL Ledger. Moreover, the reported evaluation was done on a single server with 72 cores [11]. In this
evaluation, SQL Ledger achieves a throughput of 70,000 TPS with TPC-C workloads. It is expected to see lower
SQL Ledger performance in a distributed setting.

Spitz [14] is a verifiable database that uses ForkBase [43] at the storage level. The authors identify the
source of low performance in the other systems as being the existence of separate sub-systems for the ledger and
database. Hence, Spitz relies on ForkBase for both the ledger and database. Spitz consists of multiple transaction
processing nodes and a common ForkBase backend. The processing nodes coordinate via a two-phase commit
(2PC) protocol. A global timestamp service is used to ensure the order of the transactions. Hence, Spitz is a CFT
system. The ledger is implemented in ForkBase with the help of a data structure inspired by Merkle trees. Spitz
is evaluated on a key-value store application and it achieves up to 70,000 TPS on write operations with 10,000
records. The performance degrades to about 10,000 TPS with more than one million records [14].

3.5 Summary

We summarize the features and the performance of the systems analyzed in this paper in Table 3. In this
table, the values in italic are taken from their respective papers, while the other values are based on our
measurements [24, 31]. Note that for ledger databases, the Broadcasting Service feature is not accurate. However,
we list the mechanisms used by the systems for coordination among distributed nodes under this feature. In the

54

next section, we present the limitations of current systems and some challenges in designing and implementing
systems that combine blockchain and database features.

4 Challenges and Limitations

When analyzing the systems that combine blockchain and database features, we observe the lack of open-source
code for most of the hybrid blockchain databases and ledger databases. Hence, it is difficult to understand the exact
implementation and to assess the performance of these systems. In our previous work [24], we re-implemented
Veritas and BlockchainDB in a modular way that allows us to replace some of the components, such as the
consensus mechanism and the local database. However, more needs to be done to achieve an open-source, flexible
and modular hybrid blockchain database system where the consensus and the underlying database can be replaced
in a plug and play manner.

At the same time, such systems should offer both key-value and relational interfaces to the users. We note
that most of the existing systems offer simple key-value interfaces, with the exception of FalconDB, ChainifyDB,
QLDB, and SQL Ledger. It remains to be analyzed what is the impact of having a flexible user interface on
performance. For example, what is the impact of having a relational interface when the underlying database is
NoSQL? For such designs, the server node needs to be flexible enough and yet exhibit good performance.

Regardless of a BFT or CFT consensus, sharding could be used to improve the scalability and performance of
such hybrid systems. So far, only BlockchainDB considers sharding, but its use of blockchain as the underlying
storage hinders its performance. In one of our previous works [18], we used sharding to scale Fabric v0.6 in a
Byzantine environment. We have shown that Fabric can scale to around 1,000 nodes distributed world-wide,
while achieving a performance of around 4,000 TPS. However, sharding comes with the downside of managing
cross-shard transactions which have a negative impact on performance.

Last but not least, the effect of newer BFT consensus protocols or optimizations should be evaluated. The
existing systems either use a version of PBFT [23] or Tendermint [13]. New consensus frameworks, such as
HotStuff [45], Basil [41], and Leopard [28] among others, are claiming much higher throughput compared
to PBFT. It remains to be analyzed if such systems can improve the performance of blockchains or hybrid
systems. For example, Hotstuff claims more than 100,000 operations per second, while our evaluation of Veritas
with Apache Kafka exhibits 30,000 TPS. If we replace Kafka with Hotstuff, can we achieve at least the same
performance of 30,000 TPS?

5 Conclusions

In this paper, we analyzed systems that combine both blockchain and database techniques. We classify these
systems into three categories, namely, (i) permissioned blockchains, (ii) hybrid blockchain database systems, and
(iii) ledger databases. While sharing a similar architecture, each category and each system in a category has its
own particularities. We then analyzed a few representative systems, such as Fabric [4], Quorum [3], Veritas [25],
QLDB [9], and LedgerDB [10], among others. The exact performance of these systems is hard to evaluate due to
the lack of open-source code. On the other hand, existing implementations are not flexible and modular enough.
By designing and implementing a modular system where the user interface, consensus, and local storage are
plug and play, we could answer more of the existing questions. For example, can we replace a CFT broadcasting
framework with a newer BFT consensus framework while experiencing no performance loss? Such questions
remain to be answered in the future.

55

Acknowledgements

This research/project is supported by the National Research Foundation, Singapore under its Emerging Areas
Research Projects (EARP) Funding Initiative. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the author(s) and do not reflect the views of National Research Foundation,
Singapore. We would like to thank Prof. Beng Chin Ooi, Prof. Tien Tuan Anh Dinh, Dr. Pingcheng Ruan,
Tianwen Wang, and Cong Yue for their help with this project.

References

[1] Apache Kafka, https://kafka.apache.org/, 2017.

[2] BigchainDB 2.0 The Blockchain Database, Technical report, 2018.

[3] GoQuorum, https://github.com/ConsenSys/quorum, 2021.

[4] Hyperledger Fabric, https://www.hyperledger.org/use/fabric, 2021.

[5] immudb, https://codenotary.io/technologies/immudb/, 2021.

[6] MongoDB, https://www.mongodb.com/, 2021.

[7] PostgreSQL, https://www.postgresql.org/, 2021.

[8] Amazon Quantum Ledger Database (QLDB), https://aws.amazon.com/qldb/, 2022.

[9] Hyperledger Fabric Ledger, https://archive.ph/edzMi, 2022.

[10] Z. Amsden, et al., The Diem Blockchain, https://archive.ph/1xfcy, 2021.

[11] P. Antonopoulos, R. Kaushik, H. Kodavalla, S. Rosales Aceves, R. Wong, J. Anderson, J. Szymaszek, SQL
Ledger: Cryptographically Verifiable Data in Azure SQL Database, page 2437–2449, 2021.

[12] M. Baudet, A. Ching, A. Chursin, G. Danezis, F. Garillot, Z. Li, D. Malkhi, O. Naor, D. Perelman,
A. Sonnino, State Machine Replication in the Libra Blockchain, https://archive.ph/Uxlb3, 2019.

[13] E. Buchman, Tendermint: Byzantine Fault Tolerance in the Age of Blockchains, PhD thesis, The University
of Guelph, 2016.

[14] V. Buterin, A Next-Generation Smart Contract and Decentralized Application Platform, http://
archive.fo/Sb4qa, 2013.

[15] J. Carlson, Redis in Action, Manning Shelter Island, 2013.

[16] M. Castro, B. Liskov, Practical Byzantine Fault Tolerance and Proactive Recovery, ACM Transactions on
Computer Systems (TOCS), 2002.

[17] J. A. Chacko, R. Mayer, H.-A. Jacobsen, Why Do My Blockchain Transactions Fail? A Study of Hyperledger
Fabric, page 221–234, 2021.

[18] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, B. C. Ooi, Towards Scaling Blockchain Systems
via Sharding, Proc. of ACM SIGMOD International Conference on Management of Data, page 123–140,
2019.

56

https://kafka.apache.org/
https://github.com/ConsenSys/quorum
https://www.hyperledger.org/use/fabric
https://codenotary.io/technologies/immudb/
https://www.mongodb.com/
https://www.postgresql.org/
https://aws.amazon.com/qldb/
https://archive.ph/edzMi
https://archive.ph/1xfcy
https://archive.ph/Uxlb3
http://archive.fo/Sb4qa
http://archive.fo/Sb4qa

[19] T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, J. Wang, Untangling Blockchain: A Data Processing
View of Blockchain Systems, IEEE Transactions on Knowledge and Data Engineering, 30(7):1366–1385,
2018.

[20] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi, K.-L. Tan, BLOCKBENCH: A Framework for Analyzing
Private Blockchains, Proc. of ACM SIGMOD International Conference on Management of Data, page
1085–1100, 2017.

[21] S. Dong, A. Kryczka, Y. Jin, M. Stumm, RocksDB: Evolution of Development Priorities in a Key-Value
Store Serving Large-Scale Applications, ACM Trans. Storage, 17(4), oct 2021.

[22] M. El-Hindi, C. Binnig, A. Arasu, D. Kossmann, R. Ramamurthy, Blockchaindb: A Shared Database On
Blockchains, Proc. VLDB Endow., 12(11):1597–1609, 2019.

[23] Z. Gao, Y. Hu, Q. Wu, Jellyfish Merkle Tree, https://archive.ph/s7pPF, 2019.

[24] Z. Ge, D. Loghin, B. C. Ooi, P. Ruan, T. Wang, Hybrid Blockchain Database Systems: Design and
Performance, Proc. VLDB Endow., 15(5):1092–1104, 2022.

[25] J. Gehrke, L. Allen, P. Antonopoulos, A. Arasu, J. Hammer, J. Hunter, R. Kaushik, D. Kossmann, R. Ra-
mamurthy, S. T. V. Setty, J. Szymaszek, A. van Renen, J. Lee, R. Venkatesan, Veritas: Shared Verifiable
Databases and Tables in the Cloud, Proc. of 9th Biennial Conference on Innovative Data Systems Research
(CIDR), 2019.

[26] R. Han, G. Shapiro, V. Gramoli, X. Xu, On the Performance of Distributed Ledgers for Internet of Things,
Internet of Things, 10:100087, 2020, Special Issue of the Elsevier IoT Journal on Blockchain Applications
in IoT Environments.

[27] M. Hearn, R. G. Brown, Corda: A Distributed Ledger, https://bit.ly/3iLajrI, 2019.

[28] K. Hu, K. Guo, Q. Tang, Z. Zhang, H. Cheng, Z. Zhao, Leopard: Towards High Throughput-Preserving
BFT for Large-scale Systems, 2021.

[29] L. Liu, M. T. Özsu, editors, Merkle Trees, pages 1714–1715, Springer US, 2009.

[30] D. Loghin, G. Chen, T. T. A. Dinh, B. C. Ooi, Y. M. Teo, Blockchain Goes Green? An Analysis of
Blockchain on Low-Power Nodes, 2019.

[31] D. Loghin, T. T. A. Dinh, A. Maw, C. Gang, Y. M. Teo, B. C. Ooi, Blockchain Goes Green? Part II:
Characterizing the Performance and Cost of Blockchains on the Cloud and at the Edge, 2022.

[32] S. Nakamoto, Bitcoin: A Peer-to-peer Electronic Cash System, http://archive.fo/CIl1Y, 2008.

[33] S. Nathan, C. Govindarajan, A. Saraf, M. Sethi, P. Jayachandran, Blockchain Meets Database: Design And
Implementation Of A Blockchain Relational Database, Proc. VLDB Endow., 12(11):1539–1552, 2019.

[34] D. Ongaro, J. Ousterhout, In Search of an Understandable Consensus Algorithm, 2014 USENIX Annual
Technical Conference (USENIX ATC 14), pages 305–319, Philadelphia, PA, 2014. USENIX Association.

[35] Y. Peng, M. Du, F. Li, R. Cheng, D. Song, Falcondb: Blockchain-Based Collaborative Database, Proc. of
ACM SIGMOD International Conference on Management of Data, page 637–652, 2020.

[36] P. Ruan, T. T. A. Dinh, D. Loghin, M. Zhang, G. Chen, Q. Lin, B. C. Ooi, Blockchains vs. Distributed
Databases: Dichotomy and Fusion, Proc. of ACM SIGMOD International Conference on Management of
Data, pages 1–14, 2021.

57

https://archive.ph/s7pPF
https://bit.ly/3iLajrI

[37] P. Ruan, D. Loghin, Q.-T. Ta, M. Zhang, G. Chen, B. C. Ooi, A Transactional Perspective on Execute-Order-
Validate Blockchains, Proc. of ACM SIGMOD International Conference on Management of Data, page
543–557, 2020.

[38] R. Saltini, D. Hyland-Wood, Correctness Analysis of IBFT, 2019.

[39] F. M. Schuhknecht, A. Sharma, J. Dittrich, D. Agrawal, ChainifyDB: How to get rid of your Blockchain
and use your DBMS instead, Proc. of 11th Conference on Innovative Data Systems Research (CIDR), 2021.

[40] A. Sharma, F. M. Schuhknecht, D. Agrawal, J. Dittrich, Blurring the Lines between Blockchains and
Database Systems: The Case of Hyperledger Fabric, Proc. of ACM SIGMOD International Conference on
Management of Data, page 105–122, 2019.

[41] F. Suri-Payer, M. Burke, Z. Wang, Y. Zhang, L. Alvisi, N. Crooks, Basil: Breaking up BFT with ACID
(Transactions), Proc. of ACM SIGOPS 28th Symposium on Operating Systems Principles, page 1–17, 2021.

[42] P. Thakkar, S. Nathan, B. Viswanathan, Performance Benchmarking and Optimizing Hyperledger Fabric
Blockchain Platform, Proc. of IEEE 26th International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunication Systems (MASCOTS), pages 264–276, 2018.

[43] S. Wang, T. T. A. Dinh, Q. Lin, Z. Xie, M. Zhang, Q. Cai, G. Chen, B. C. Ooi, P. Ruan, Forkbase: An
Efficient Storage Engine for Blockchain and Forkable Applications, Proc. VLDB Endow., 11(10):1137–1150,
2018.

[44] X. Yang, Y. Zhang, S. Wang, B. Yu, F. Li, Y. Li, W. Yan, LedgerDB: A Centralized Ledger Database for
Universal Audit and Verification, Proc. VLDB Endow., 13(12):3138–3151, 2020.

[45] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, I. Abraham, HotStuff: BFT Consensus with Linearity and
Responsiveness, Proc. of 2019 ACM Symposium on Principles of Distributed Computing, page 347–356,
2019.

[46] C. Yue, Z. Xie, M. Zhang, G. Chen, B. C. Ooi, S. Wang, X. Xiao, Analysis of Indexing Structures for
Immutable Data, Proc. of ACM SIGMOD International Conference on Management of Data, page 925–935,
2020.

[47] J. Zhang, J. Gao, Z. Wu, W. Yan, Q. Wu, Q. Li, Z. Chen, Performance Analysis of the Libra Blockchain:
An Experimental Study, 2019.

[48] M. Zhang, Z. Xie, C. Yue, Z. Zhong, Spitz: A Verifiable Database System, Proc. VLDB Endow.,
13(12):3449–3460, 2020.

[49] Y. Zhang, J. Katz, C. Papamanthou, IntegriDB: Verifiable SQL for Outsourced Databases, Proc. of 22nd
ACM SIGSAC Conference on Computer and Communications Security, page 1480–1491, 2015.

58

LEDGERBENCH: A Framework for Benchmarking Ledger
Databases

Meihui Zhang
Beijing Institute of Technology

meihui_zhang@bit.edu.cn

Cong Yue
National University of Singapore

yuecong@comp.nus.edu.sg

Changhao Zhu
Beijing Institute of Technology

zhuchanghao@bit.edu.cn

Ziyue Zhong
Beijing Institute of Technology

ziyue_zhong@bit.edu.cn

Abstract

Ledger databases protect the integrity of data, history and query results. However, existing ledger
databases adopt different design choices, and there is a lack of benchmarking tools to evaluate them
comprehensively. Therefore, it is unclear how each design choice performs and it is difficult for users to
choose a system that is appropriate for their use case in practice. In this paper, we first conduct a survey
on the designs of existing systems. We categorize the design of ledger database into four components and
discuss the design choices of each component. Based on the study, we then outline LEDGERBENCH, a
benchmarking framework for ledger databases, for both macro- and micro-benchmarking. To evaluate
the system performance of ledger databases, LEDGERBENCH provides macro-benchmarks consisting of
verification-aware workloads adapted from Smallbank. To evaluate the performance of each component
of a system, it provides micro-benchmarks with respect to verification, verification delay, auditing and
storage. Lastly, we conduct comprehensive experiments on existing ledger databases. From the results,
we observe that updating the ledger structure and verification is the main bottleneck of ledger databases.
The cost can however be significantly reduced by adopting deferred verification and carefully crafted
asynchronous ledger update functions that enforce minimum locking.

1 Introduction

With the extensive application of cloud computing, outsourced databases and collaborative applications involving
multiple parties, users of applications are exposed to various threats caused by the malicious behaviours of outside
adversaries and untrusted third-party service providers. There is an increasing demand to protect data security.

In recent years, the ledger database is gaining attention in protecting the integrity of data, history and query
results. It maintains data or log in the form of append-only ledger, which can generate proofs for users to verify
the integrity. Compared to conventional databases, a ledger database has several advantages. 1) It provides

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

59

efficient verification. The users only need to maintain a cryptographic hash, called digest of the ledger, and
integrity check can be performed by comparing the digest against the reproduced hash computed from the proof.
2) It reduces the surface of misbehavior. Since the ledger is immutable, all historical data is protected by the
digest. Adversaries cannot tamper with the history without changing the hashes. 3) It can be publicly verified.
Everyone can verify the integrity of the data or the log with the ledger. Compared to blockchains, ledger databases
offer high performance without the performance bottleneck at consensus layer. Ledger databases are therefore
suitable for maintaining financial transactions, logistic orders, healthcare data, etc., where the integrity of data
evolution history and proof of data lineage are important.

There are several types of systems that expose ledger APIs, i.e., the system maintains the data and full history
in an append-only hash protected authenticated data structure, and can generate proof of each read, update, insert
and delete operation to verify the integrity. Recently, a bunch of commercial ledger databases has been offered
by major service providers, e.g., QLDB [9], LedgerDB [10], and SQL Ledger [11]. The systems build Merkle
tree variances over the transaction logs, and data in the transaction logs are materialized to index structures with
meta-information of the log entry. Hence, all queried data can be verified using the log. Another type of systems
is certificate transparency [4, 6, 7, 8], where public keys and certificates are protected by Merkle tree variances.
Consistency checks can be performed using Merkle proof. In addition, blockchains [1, 2, 3] also expose ledger
API. The systems maintain a sequence of hash-chained blocks, and the integrity is guaranteed by replicating the
blocks using a byzantine fault tolerant protocol [23]. However, they are not our focus due to having a different
threat model and design space, and suffering from low performance.

Despite the development of ledger databases, there is a lack of benchmarking tools to systematically and
fairly evaluate existing systems. Existing key-value and OLTP workloads are unaware of ledger-related functions
such as verification and auditing, and therefore, cannot offer accurate analysis of ledger databases. In this paper,
we outline LEDGERBENCH, a benchmarking framework for ledger databases. We first conduct a survey on
the designs of existing systems. We categorize the design of ledger database into four components, namely
ledger structure, query processing, verification, and auditing, and discuss the design choices of each component.
We then design LEDGERBENCH to evaluate on all four components with micro-benchmarks and the system
performance with macro-benchmarks consisting of verification-aware OLTP workloads adapted from Smallbank.
Lastly, we re-construct existing ledger systems based on our understanding of the systems in a consistent manner.
We subsequently conduct extensive experiments on existing ledger databases to illustrate the strengths and
weaknesses of each design and system, which may be useful for the future development of ledger databases.

In summary, we make the following contributions.

• We outline LEDGERBENCH, the first benchmark for databases that expose ledger APIs. The benchmark is
designed to evaluate the performance on all aspects of a ledger database.

• We implement an open source LEDGERBENCH, which can be used or further developed to evaluate other
ledger databases.

• We conduct an extensive evaluation of re-constructed QLDB [9], LedgerDB [10], and SQL Ledger [11].
Our results pinpoint the performance bottleneck of existing ledger databases, and show the advantage of
various design choices.

The remaining of the paper is organized as follows. Section 2 briefly surveys the existing ledger databases.
Section 3 explains the design of LEDGERBENCH. Section 4 presents the performance evaluation of four
representative systems using LEDGERBENCH. Section 5 discusses the related work before Section 6 concludes.

2 Ledger Databases

In this section, we will describe the details of ledger databases and the design choices of existing systems.

60

T1 T2 T3 T4

Merkle tree

document hashes

Current state History

Indexed tables

Figure 1: QLDB architecture

Prev Hash ··· Tx MT Root··· ···

Database LedgerLedger Tables
(Data store)

State Table

History Table

Ledger View

Digest StorageRequest

Merkle tree for transactions
Merkle tree for updated rows

Data flows
Pointers

User Identity
Timestamp

Row MT Root

Figure 2: SQL Ledger architecture

T1 T2 T3 T4

Head of
“cat”

Head of
“cap”

431

321

ca

cap cat

MPT

MPT node

Clue indexes

SequencePrev Hash Digest MPT root

Merkle tree
T Transaction

...

3 3

ca

p t

Figure 3: LedgerDB architecture

Tree Root

Leaf hash

···

···

Hash

Entry

Root hash

Leaf hash

Entry

Leaf hash

···

Hash

Entry

Leaf hash

Entry

···

Sub TreeLeaf Data ···

Storage Layer

Index

Figure 4: Trillian architecture

2.1 Threat Model

Ledger databases adopt a threat model assuming that a single-party service provider can be malicious or
compromised. Users are only able to detect the malicious behaviors instead of preventing them. Many systems
also rely on a group of trusted auditors to help verify the data integrity and notify the users of malicious behaviours,
and therefore, relieve the burden on users.

2.2 Ledger Structure

Ledger is the key data structure of ledger databases. It maintains all current and historical data in an authenticated
data structure (ADS), where proofs can be generated for verifying the data integrity. The ADS is usually a Merkle
variance. For example, QLDB builds a Merkle tree over hashes of all data as shown in Figure 1. SQL Ledger
constructs a Merkle tree over the modified data for each transaction, and another Merkle tree over the transaction
entries batched in a block. The root hash of the latter Merkle tree is stored in the block entry with the previous
block entry’s hash to form a hashed chain as shown in Figure 2. LedgerDB adopts a batched accumulated Merkle
tree, which adopts copy-on-write when new transactions are appended to reduce the contention as shown in
Figure 3. Trillian shown in Figure 4 adopts a sparse Merkle tree to store the data, therefore, it does not allow
different versions of the same key. CONIKS stores the data in Merkle prefix trees, the root hashes of which are
linked in a linear hash chain as shown in Figure 5. To improve the efficiency of verification for the latest versions,
Merkle2 shown in Figure 6 constructs a forest of full Merkle trees over data in chronological order, and each
internal node contains the root hash of a prefix tree built over data in lexical order.

2.2.1 Chronological order vs. lexical order

Systems such as QLDB, LedgerDB, and SQL Ledger construct ADS over data in chronological or transaction
order. The ADS is used only for integrity proof, and separate index structures are required to query the data.

61

H(child0) H(child1)

0

0

1

···

···
0

STRi+1

Prev Hash

Tree Rooti+1

Epochi+1

···

STRi

Prev Hash

Tree Rooti

Epochi

···
···

STR0

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛

Tree Root0

Epoch0

···

0 1

STR Signed Tree Roots

Interior nodes

Leaf nodes (with data
entries)

Empty nodes

1

Figure 5: CONIKS architecture

Auditor

C A D B

Chronological tree
Prefix tree

DCBA

DB

Server

User side

Storage

Verifier

Application

Auditor side
Server side

C, A, D, B, ...

digests

𝐻𝐻 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙 | 𝑝𝑝𝑟𝑟𝑙𝑙𝑙𝑙𝑟𝑟𝑝𝑝_𝑟𝑟𝑟𝑟𝑟𝑟𝑙𝑙)

Figure 6: Merkle2 architecture

This causes two problems: 1) updating and proof generation become slower when the ADS grows larger; 2) It
requires additional protection of the indexes, e.g., LedgerDB uses a Merkle Patricia Trie(ccMPT) to protect its
clue indexes, while the index tables in QLDB and SQL Ledger are not hash protected, rendering its inability
to guarantee that the value is the latest. While systems like Trillian, CONIKS, and Merkle2 embed additional
Merkle variance in lexical order, which could serve as protected indexes of data.

2.3 Query Processing

2.3.1 Abstraction

Certificate transparency logs, for the purpose of storing keys and certificates, usually expose simple key-value
store abstractions. While commercial ledger databases, which target on exchanging of assets or general business
logic, support transaction with ACID properties. In particular, QLDB and LedgerDB directly build the ledger
over the transaction logs. Alternatively, SQL Ledger commits the transaction to a separate transaction log for
failure recovery, and creates the ledger at a later stage.

2.3.2 Batching

The update of the ledger is expensive since it involves calculating intensive cryptographic hashes and incurs
high contention, especially for the root node, making it hard for parallelism. To reduce the hash calculation and
mitigate the read/write contention against proof generation operations, LedgerDB updates its ADSs by batches of
transactions and adopts copy-on-write when updating the ADSs. SQL Ledger constructs an individual Merkle tree
for each transaction and block, making it contention-free when appending new blocks to the ledger. Similar to
LedgerDB, SQL Ledger batches multiple transactions in a block to reduce the overhead of calculating block-level
hashes.

2.4 Verification

To guarantee the integrity of data and query results, ledger databases provide proofs that can be publicly verified
by the users or third-party verifiers for each request. The proofs of a ledger database typically consist of a digest
which is a hash summary of the entire ledger structure, a proof containing the hashes of the Merkle tree nodes
along the path from the root to the leaf node the data located. The client, upon receiving the proof, can reproduce
the digest by calculating the hashes recursively. It then verifies the integrity of data by comparing the original and
reproduced digest.

62

Configuration
Loader

Database Adapter

Log Analyzer

Workload
Interface

Workload
Generator

LedgerBench

Configurations

Workload Database Experiment

Reports

Workloads

TPC-C YCSB SmallBank
···

Ledger
databases

LedgerDB

QLDB

GlassDB

···

Figure 7: LEDGERBENCH architecture

Query
processing

Ledger
structure

Verific
ation

Auditing

Verification

End-to-end
latency, Delay,
Batch capacity

YCSB, TPC-C, SmallBank

(overall) Throughput,
Latency

Range, Provenance

Storage consumption, verification
time

Auditing

Total latency

Figure 8: Abstraction of ledger databases and the cor-
responding workloads and metrics of each component.

2.4.1 Deferred verification

It is expected that providing proof for each operation is costly. LedgerDB [10] and SQL Ledger [11] adopt
deferred verification. The system, on completion of the operation, will return a promise containing the data and
block sequence the data resides to the users for future verification. The client can batch the proof generation
request and verification process for higher performance. However, there is a trade-off between performance and
security. There is a verification time window that the integrity of data could be temporarily violated.

2.5 Auditing

Systems such as certificate transparency, LedgerDB, and SQL Ledger rely on auditors to check the consistency of
the ledger and detect malicious behaviors. The auditors will rebuild the ledger based on the logs and compare
the digest of the rebuilt ledger and that requested from servers. It will notify the users of the misbehavior if any
mismatching is found. The auditing process is typically expensive. Any third-party entities or powerful users can
play the role of the auditor. The systems require at least one honest auditor so that any malicious behaviours can
be detected and notifications can be sent to the users. QLDB does not rely on auditors to check the consistency of
the ledger. Consequently, users have to check the consistency of the ledger if required.

3 Design

3.1 Architecture

Figure 7 shows the architecture of LEDGERBENCH. It contains a configuration loader, a workload generator,
database adapters, and a log analyzer. The configuration loader loads the parameters of the benchmarks. The
workload generator creates tasks by generating the operations and corresponding arguments based on the
parameters. It sends the generated tasks to the database adapters through HTTP requests. The database adapters,
on receiving the tasks, initialize database clients for execution. It logs the metrics collected, which are later
processed by the log analyzer for final results.

Configuration loader. Configuration Loader is responsible for loading all experiment-related configurations
at runtime. It reads the parameters from the command line and configuration files. The configurations include
workload configurations, e.g., distribution of operations, database configurations, e.g., block time, and experiment
configurations, e.g., number of testing threads, request rate, etc.

Workload generator. Workload generator issues the tasks to the database adapter via HTTP. According to
the workload configuration, it creates the tasks consisting of the operation type and a list of parameters. Users
can control the load by specifying in the experiment configurations the number of nodes and threads to run the
workload generators and the request rate of each workload generator. The workload generator is implemented in

63

a way that is easy to extend. It exposes a uniform workload interface, based on which a driver is implemented
for each workload type. Users can add customized workloads by simply implementing the workload interface.
Depending on the configuration, the workload generator initiates different drivers.

Database adapter. Database adapter maintains a pool of database client instances, which connect to the
ledger database being evaluated. Upon receiving the requests from the task generators, database adapters store the
tasks in a queue, from which the client instances fetch tasks and send them to the database for execution. Similar
to workload generator, it is easy for users to extend new database systems to LEDGERBENCH as it exposes a
general interface for each workload operation. Users only need to implement the function with the database
clients to be tested. Database adapters can be implemented in any programming language since the tasks are sent
via HTTP.

Log analyzer. Measurements are taken and logged before and after the execution of the workload tasks. The
log analyzer processes the logs and calculates the required metrics.

3.2 API

In this section, we describe the APIs of the workload generator and database adapter. Users are able to include
customized workloads and ledger databases by simply inheriting the interfaces. First, we describe the API of the
workload generator as follows.

• NextTask(conf). The interface takes the workload configuration as input and generates the next task
including the operation type and a list of parameters. The configuration usually contains the ratio, dis-
tribution, and ranges of operations, keys and values. For example, a configuration of Smallbank workload in-
cludes D(operation) = uniform,D(account) = uniform,R(account) = [0, 100000], R(ammount) =
[0, 1000], where D is the distribution, and R is the range. The interface returns the generated tasks, e.g.,
< SendPayment, 1, 2, 200 >, which represents account 1 paying $200 to account 2.

Next, we introduce the APIs of the database adapter. Depending on the database under evaluation, the
database adapter may be implemented in different programming languages.

• ExecuteTransaction(task, db). The interface takes the task generated by NextTask and the
database adapter, db, as the input and returns the status of execution. The inherit function implemented by
the user shall execute the transaction with a sequence of Put, Get, and Verify operations provided by
the database adapter.

• Put(keys, values). This interface defines the operation to update or insert a list of keys and values
in the database. It will return the proof optionally for databases that do not support deferred verification.

• Get(keys). This interface defines the operation to get the values of a list of keys from the database. It
will return the proof optionally for databases that do not support deferred verification.

• Verify(keys, block_seqs). This interface is for deferred verification, where a batch of keys
could be verified together. The input of the interface is a list of keys and block sequences the keys are
located. The inherit function shall get the proofs from the database, verify the proofs, and return the
verification result.

• Verify(proof). This interface is for immediate verification, where the input proof can be obtained
from the Get and Put operations. The interface returns the verification result.

To extend LEDGERBENCH with a new workload, users need to implement the NextTask and TransactionX.
To include a new database for evaluation, users need to implement the Put, Get, and Verify.

64

3.3 Metrics

LEDGERBENCH evaluates ledger databases on their four components described in Section 2. Figure 8 shows the
metrics with respect to each component. The query processing component is responsible for query execution
and data commitment. It is critical to know how fast the system can process data. Therefore, we measure the
system-level throughput and latency of running key-value or OLTP workloads. While for ledger structures,
the time- and space-efficiency of the access and verification methods are the key factors. Hence, the storage
consumption and execution time of verification performed by the clients are taken as metrics. To evaluate the
verification performance, we take the end-to-end latency of user verification requests, the number of keys each
verification request will process for a batched verification, and vary the delay time for a deferred verification.
Lastly, LEDGERBENCH evaluates the auditing process by taking the latency of auditing a batch of transactions.

3.4 Workloads

In this section, we describe the workloads used in LEDGERBENCH. We include a verification-aware workload
adapted from Smallbank. We also implement range query workloads in addition to the point queries covered in
Smallbank. Users can easily extend LEDGERBENCH with more workloads with the API described in Section 3.2.

SmallBank. There are two tables in our SmallBank workload, namely saving and checking, to simulate bank
services such as querying balances, depositing and transferring money, and amalgamating assets among 100,000
bank accounts. Similarly, we implement all the six transactions in the context of verifiable databases, i.e., each
transaction will return the corresponding proof to verify the integrity of this execution.

Range. To evaluate the effectiveness of indexing and block policies of a ledger database, we implement the
range query workload. It queries a random range of keys. In our experiments, the queried keys follow a uniform
distribution. Besides the corresponding values, we also request a promise, which is used later to validate the
integrity of the ledger.

4 Evaluation

In this section, we benchmark the state-of-the-art ledger databases, namely, QLDB, LedgerDB, and SQL Ledger.
QLDB is a commercial product offered by Amazon. LedgerDB is an industrial prototype implemented by
Alibaba. SQL Ledger is a commercial product provided by Microsoft. We evaluate the systems with both
macro-benchmarks and micro-benchmarks. Since there are no source codes for the systems, we re-implement the
systems based on the online documentation and paper. We conduct the experiments on 24 machines equipped
with 10×2 Intel Xeon W-1290P processors, 128GB RAM, and 10 Gbps Ethernet. We start 16 server nodes and 8
client nodes. Each client node will run 20 client processes.

4.1 Macro Benchmarks

This section evaluates the performance of an end-to-end query processing with Smallbank, and range workloads.

4.1.1 Smallbank

We initialize 100,000 users with 1000 dollars in their saving account and 50 dollars in their balance account. The
experiment is conducted by feeding the system with transactions that consist of one of the six operations with
equal probability. We first vary the total request rates from 16,000 to 192,000. Figure 9b shows the throughputs of
the system with increasing client requests. LedgerDB outperforms SQL Ledger by up to 1.4×, and outperforms
QLDB by 2.4×. LedgerDB and SQL Ledger outperform QLDB by adopting asynchronous ledger updates and
deferred verification. In contrast, QLDB incurs significant overhead updating the ledger for each commit and

65

 0

 20

 40

 60

 80

 100

 120

16 32 64 96 128 160 192

(x
10

3)
 T

ra
ns

ac
tio

n/
s

(x103) Request/s

LedgerDB
SQLLedger

QLDB

(a) Throughput

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Amalgamate

Get balance

Update balance

Update saving

Send payment

Write check

La
te

nc
y

(m
s)

LedgerDB
SQLLedger

QLDB

(b) Latency

Figure 9: Performance for Smallbank workloads

 0

 5

 10

 15

 20

 25

 5 10 15 20 25

(x
10

3)
 T

ra
ns

ac
tio

n/
s

(x103) Request/s

LedgerDB
SQLLedger

QLDB

(a) Throughput

 0

 5

 10

 15

 20

Range Verification

La
te

nc
y

(m
s)

LedgerDB
SQLLedger

QLDB

(b) Latency

Figure 10: Performance for range workload.

performing verification after each operation. LedgerDB performs better than SQL Ledger because the clue
indexes used to access the data are built over versions, and therefore, much smaller compared to the ledger and
history table indexes in SQL Ledger. The heads of the clue indexes are stored in memory for executing queries
efficiently. Figure 9a shows the average latency of specific operations. The results show similar trends that
LedgerDB has the lowest latency, while QLDB has the highest latency.

4.1.2 Range

We conduct the experiment with a dataset consisting of 100,000 keys. The ranges are selected with random sizes
from 10 keys to 20 keys. The results are depicted in Figure 10. LedgerDB has the highest throughput. It builds a
separate clue index for each key and requires scanning the head of all clue indexes when processing the range
query. The overhead is mitigated since all clue index heads are stored in memory. SQL Ledger requires fetching
additional metadata for future verification. The verification process is more costly due to the need of scanning the
blocks. QLDB performs the worst as it verifies the data after each operation.

4.2 Micro Benchmarks

In this section, we evaluate each component of the systems with micro-benchmarks.

4.2.1 Verification

We evaluate the execution time and proof size for verifying one key from the client side, and show the results in
Figure 11. LedgerDB has the highest proof size and verification time. This is because the verification of clue
indexes is expensive. In particular, users need to verify the ccMPT to validate the number of entries stored in the
clue index, and then verify each entry on the ledger. Though such tasks can be delegated to the auditors, users
cannot guarantee the clue indexes are not tampered with after the auditing process. The proof sizes of QLDB and
SQL Ledger are small, since they only contain a list of hashes on a path of the Merkle tree. However, QLDB and
SQL Ledger fail to guarantee that the fetched data is the latest.

4.2.2 Delay

In this section, we evaluate how delay time affects the performance. We use a range of delay time from 10ms
to 1280ms, and depict results in Figure 12. We can observe that the performance of all systems increases as
the delay time increases in the beginning. This is because a higher delay time will result in a larger verification
batch, which allows the servers to provide more efficient batched proof. As the delay time keeps increasing,
the performance will drop because the overwhelming data cause significant overhead and high contention when
generating the proofs.

66

 0

 10

 20

 30

 40

 50

Verification

La
te

nc
y

(µ
s)

LedgerDB
SQLLedger

QLDB

Proof size
 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

S
to

ra
ge

 (
M

B
)

Figure 11: Verification la-
tency and proof size.

 0

 5

 10

 15

 20

 0 200 400 600 800 1000 1200

(x
10

3)
 T

ra
ns

ac
tio

n/
s

Delay (ms)

LedgerDB SQLLedger

Figure 12: Performance
with delay setting.

 0

 100

 200

 300

 400

 500

 600

LedgerDB SQLLedger

La
te

nc
y(

m
s)

Figure 13: Latency for au-
diting one block.

 0

 50

 100

 150

 200

1 2 4 8 16

S
to

ra
ge

 (
M

B
)

#Records (x104)

LedgerDB
SQLLedger

QLDB

Figure 14: Storage con-
sumption.

4.2.3 Audit

This section evaluates the cost of the auditing process for LedgerDB and SQL Ledger. We start with 16 server
nodes and 8 client nodes with each client node running 20 client processes. We feed all clients with a read-write
key-value workload. Then we start an audit client executing audit tasks every second. To fairly compare the two
systems, we set the block time of both systems to be 10ms, i.e., all transactions within the period are collected to
a block and appended to the ledger. The auditor will verify the block of transactions for each auditing request.
Figure 13 shows the average latency for auditing one block. Both systems batch around 700 transactions in a
block. The latency of LedgerDB is 4× the latency of SQL Ledger. This is because verification for clue indexes is
expensive in LedgerDB. Note that SQL Ledger does not verify its ledger table and history table, therefore, the
integrity of data cannot be fully guaranteed. Though the queried data can be verified using the proof generated
from the ledger, the system can always return stale data and still pass the verification.

4.2.4 Storage

We measure the storage consumption of the systems with respect to the total number of records stored in the
systems, from 10,000 to 160,000. LedgerDB and SQL Ledger adopt transaction batching and update the ledger
less frequently, and are therefore more space-efficient than QLDB. SQL Ledger consumes slightly more storage
compared with LedgerDB because of the additional indexes.

5 Related Works

Existing works have been done to explore the opportunity of fusion designs of blockchain and database [15, 16,
17, 18, 19, 20, 21, 22]. However, the systems above try to enable database’s query ability on top of blockchains,
therefore suffering from the low performance of blockchains. While the ledger databases [9, 10, 11] use the
ledger structures similar to the blockchain and build verifiable database with a central party, therefore, are more
practical in processing OLTP workloads. Spitz [14] proposes to integrate a ledger in the HTAP system. This
work focuses more on evaluating the ledger databases and their designs, though it can also be used to evaluate
blockchains.

There are many existing benchmark frameworks. BlockBench [12] is the first framework to comprehensively
evaluate the private blockchains from the application layer, execution engine, data model and consensus. Hyper-
ledger Caliper [13] is another widely-used blockchain benchmark tool, supporting a range of systems such as
Hyperledger Fabric [1], Ethereum [2], Fisco-Bcos [25], etc. OLTP-Bench [26] and YCSB [27] are benchmarking
tools for relational database and key-value store, respectively. While LEDGERBENCH focuses on the ledger
database specific designs to evaluate the systems in every aspect.

67

6 Conclusions

With the increasing digitization of businesses and cloud hosting, there have been increasing demands for
transactions to be verifiable and auditable. Various commercial ledger databases have been designed to meet
the demands by supporting the integrity of data, history and query results. We conduct a survey on the designs
of some existing systems. We examine the design of these representative ledger databases, identify four major
components and discuss the design choices of each component. We then outline LEDGERBENCH, a framework
for benchmarking ledger databases, for both macro- and micro-benchmarking. We conduct extensive performance
study and identify various bottlenecks and their possible causes. We hope the study and open source of the
framework will facilitate further development in this important area.

References
[1] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstantinos Christidis, Angelo De Caro, David

Enyeart, Christopher Ferris, Gennady Laventman, Yacov Manevich, et al. 2018. Hyperledger fabric: a distributed
operating system for permissioned blockchains. In EuroSys. 30.

[2] Gavin Wood et al . 2014. Ethereum: A secure decentralised generalised transaction ledger. Ethereum project yellow
paper 151, 2014 (2014), 1–32.

[3] ConsenSys. 2020. ConsenSys/quorum: A permissioned implementation of Ethereum supporting data privacy.
https://github.com/ConsenSys/quorum.

[4] Google. 2020. Certificate Transparency. https://www.certificate-transparency.org/.
[5] Google. 2020. Trillian: general transparency. https://github.com/google/trillian.
[6] Marcela S. Melara, Aaron Blankstein, Joseph Bonneau, Edward W. Felten, and Michael J. Freedman. 2015. CONIKS:

Bringing Key Transparency to End Users. In Usenix Security.
[7] Yuncong Hu, Kian Hooshmand, Harika Kalidhindi, Seung Jin Yang, Raluca Ada Popa. 2021. Merkle2: A Low-Latency

Transparency Log System. In IEEE Symposium on Security and Privacy.
[8] Mark D. Ryan. 2014. Enhanced Certificate Transparency and End-to-End Encrypted Mail. In NDSS.
[9] Amazon. 2019. Amazon Quantum Ledger Database. https://aws.amazon.com/qldb/.

[10] Xinying Yang, Yuan Zhang, Sheng Wang, Benquan Yu, Feifei Li, Yize Li, and Wenyuan Yan. 2020. LedgerDB: A
Centralized Ledger Database for Universal Audit and Verification. PVLDB.

[11] Panagiotis Antonopoulos, Raghav Kaushik, Hanuma Kodavalla, Sergio Rosales Aceves, Reilly Wong, Jason Anderson,
Jakub Szymaszek. 2021. SQL Ledger: Cryptographically Verifiable Data in Azure SQL Database. In SIGMOD.

[12] Tien Tuan Anh Dinh, Ji Wang, Gang Chen, Rui Liu, Beng Chin Ooi, and Kian-Lee Tan. 2017. BLOCKBENCH: A
Framework for Analyzing Private Blockchains. In SIGMOD.

[13] Hyperledger foundation. 2018. https://www.hyperledger.org/use/caliper.
[14] Meihui Zhang, Zhongle Xie, Cong Yue, and Ziyue Zhong. 2020. Spitz: a verifiable database system. PVLDB.
[15] Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang Chen, Qian Lin, and Beng Chin Ooi.

2021. Blockchains vs. Distributed Databases: Dichotomy and Fusion. In SIGMOD.
[16] Pingcheng Ruan, Gang Chen, Tien Tuan Anh Dinh, Qian Lin, Beng Chin Ooi, and Meihui Zhang. 2019. Fine-grained,

secure and efficient data provenance on blockchain systems. PVLDB.
[17] Johannes Gehrke, Lindsay Allen, Panagiotis Antonopoulos, Arvind Arasu, Joachim Hammer, Jim Hunter, Raghav

Kaushik, Donald Kossmann, Ravishankar Ramamurthy, Srinath T. V. Setty, Jakub Szymaszek, Alexander van Renen,
Jonathan Lee, Ramarathnam Venkatesan.2019. Veritas: Shared Verifiable Databases and Tables in the Cloud. CIDR.

[18] Trent McConaghy, Rodolphe Marques, Andreas Müller, Dimitri De Jonghe, Troy McConaghy, Greg McMullen, Ryan
Henderson, Sylvain Bellemare, Alberto Granzotto. 2016. Bigchaindb: a scalable blockchain database. white paper,
BigChainDB.

[19] Muhammad El-Hindi, Carsten Binnig, Arvind Arasu, Donald Kossmann, and Ravi Ramamurthy. 2019. BlockchainDB:
a shared database on blockchains. PVLDB.

[20] Zerui Ge, Dumitrel Loghin, Beng Chin Ooi, Pingcheng Ruan, and Tianwen Wang. 2022. Hybrid blockchain database
systems: design and performance. PVLDB.

68

[21] Pingcheng Ruan, Tien Tuan Anh Dinh, Dumitrel Loghin, Meihui Zhang, Gang Chen. 2022. Blockchains: Decentralized
and Verifiable Data Systems. Preprint.

[22] Tien Tuan Anh Dinh, Rui Liu, Meihui Zhang, Gang Chen, Beng Chin Ooi and Ji Wang. 2017. "Untangling Blockchain:
A Data Processing View of Blockchain Systems," in TKDE.

[23] Miguel Castro, Barbara Liskov. 1999. Practical byzantine fault tolerance. In OsDI.
[24] Kai Mast, Lequn Chen, Emin Gün Sirer. 2018. Enabling strong database integrity using trusted execution environments.

arXiv preprint arXiv:1801.01618.
[25] FISCO BCOS. The Building Block of Open Consortium Chain. https://www.fisco-bcos.org/
[26] Djellel Eddine Difallah, Andrew Pavlo, Carlo Curino, and Philippe Cudre-Mauroux. 2013. OLTP-Bench: an extensible

testbed for benchmarking relational databases. PVLDB.
[27] Brian Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, Russell Sears. 2010. Benchmarking cloud serving

systems with YCSB. In SoCC.

69

Open Calls for Nominations

The IEEE Technical Community on Data Engineering (TCDE) Nominations Committee requests nominations for
qualified individuals to fill the TCDE Chair position for the 2023-2024 term.

Self-nominations are allowed. Nominations should be submitted to the Nominations Committee chair Erich
Neuhold erich.neuhold@univie.ac.at with copies to Amr El Abbadi <amr@cs.ucsb.edu> and Farshad Firouzi
<farshad.firouzi@duke.edu>.

The Nominations & Appointments Committee requests the following information regarding each candidate
for consideration:

1. Candidate’s name and contact information (as it should appear on all election materials), Business Title/Po-
sition, Business Name, Business Address, Preferred Phone, Email address, and a short Bio not exceeding
250 words.

2. A brief statement, not to exceed 250 words, on the candidate’s prior achievements for the benefit of IEEE
CS and IEEE TCDE.

3. A statement of candidacy (not to exceed 250 words) explaining the candidate’s plans for using their office
to strengthen IEEE TCDE.

Duties from the Technical and Confernce Activities Board Handbook:
The Chair is the leader for TC vitality, and is responsible for building a strong organization and officer

structure in support of the TC’s mission. The chair is responsible for making sure T&C Activities Board policy is
carried out in relation to TC activities, and is the vital communication link between the TC and the T&C Activities
Board. It is the responsibility of the Chair to see that the TC operates within T&C Activities Board guidelines,
and that any deviations from T&C Activities Board policy are brought to the attention of the T&C Activities
Board. Roles specific to the technical committee of interest should be discussed with the current or previous chair,
as each TC is different. The Chair is accountable to both TC members and the T&C Activities Board.

The TC Chair has ultimate authority and responsibility for the conduct of a TC. While duties may be delegated
to other parties, typically a Vice Chair or Executive Committee members, it is the Chair that bears responsibility
for the successful operation of the TC. Only the Vice-President for Technical and Conference Activities or the CS
President may overturn the decision of a Chair.

Erich Neuhold, Amr El Abbadi, Farshad Firouzi
TCDE Nominations Committee

70

71

72

IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

Non-profit Org.
U.S. Postage

PAID
Los Alamitos, CA

Permit 1398

