Logical Queries on Knowledge Graphs:
Emerging Interface of Incomplete Relational Data

Zihao Wang' Hang Yin? Yangqiu Song'
T Department of CSE, HKUST, Hong Kong, China  {zwanggc, ygsong}@cse.ust.hk
! Tsinghua University, Beijing, China  h-yin20@mails.tsinghua.edu.cn

Abstract

As a graph abstraction of real-world relational data, knowledge graphs contain large amounts of
factual knowledge but suffer from incompleteness. Such incompleteness, also known as the open-world
assumption, prevents logical queries from being answered through the query-answering paradigms for
relational databases. In this paper, we discuss how learning-based models bridge incomplete relational
data and logical queries from the perspective of rigorous formal logic. Existing works are structured as a
three-party game among knowledge graphs, logical queries, and learning-based models. Compared to
the well-established tale between databases and queries in the database theory, current achievements are
still preliminary. Our work pointed out several possible directions for future work.

1 Introduction

The knowledge graph is perhaps one of the simplest representations of relational knowledge [8, 56, 38]. A
knowledge graph contains a large number of triples, where each triple (h, r,t) contains a head entity h, a tail
entity ¢, and the relation r in between. Such a simple format enables factual knowledge to be adapted to answer
real-world questions [49, 62, 46, 40, 32].

Under the view of data engineering, a knowledge graph is no more than a (relational) database [1]. It is
natural to expect first-order queries, a fundamental type of relational database queries that have been well-
understood theoretically [30] and efficiently solved practically [29], can also be answered on knowledge graphs.
However, applying the existing query-answering algorithms designed for (relational) databases can not address
logical queries on knowledge graphs. The major obstacle is that large-scale knowledge graphs are inherently
incomplete. Modern large-scale knowledge graphs are constructed by crowd-sourcing [56] or even by automatic
information extraction pipelines [11]. Given an observed knowledge graph, the non-existence of a triple does
not imply that such a triple is not part of the underlying knowledge graph. This issue is acknowledged as the
open-world assumption [31]. Therefore, the actual answers to logical queries are not guaranteed by running
existing query-answering algorithms on knowledge graphs.

The issue of missing knowledge founds its partial solution with learning-based models. Models that learn
from the existing observed triples can predict the missing triples in the underlying knowledge graph. The
research topic focusing on the prediction of missing triples with learned embeddings is known as knowledge
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graph representation or knowledge base completion [25, 45]. Then, the logical queries can be addressed by
combining the query-answering algorithms and the learning-based models [42, 28, 16]. The participation of
learning-based models brings unique strengths and weaknesses to logical query answering, especially compared
to traditional query answering algorithms for relational databases [42]. For traditional databases, query-answering
algorithms are discussed from the data perspective and the query perspective. The complexity of such algorithms
is characterized by the data complexity (the complexity grows with the size of the database) and the query
complexity (the complexity grows with the size of the query), respectively. When answering logical queries with
learning-based models, it is essential to understand how learning-based models interact with knowledge graphs
(model-data interaction) and logical queries (model-query interaction), besides how to design, train, and infer
such models.

In this paper, we review recent advancements in logical query answering on knowledge graphs. Our
introduction begins with how to define the problems and construct datasets and then to learning-based query
answering methods. Our discussion is organized from three perspectives: knowledge graphs (data) perspective,
logical query perspective, and model perspective. Section 2 introduces the logical query answering tasks on
knowledge graphs in the rigorous language of model theory. All existing datasets and benchmarks are discussed
in Section 3 based on the rigorous definitions. Section 4 discusses the learning-based methods for knowledge
graph logical query answering. Existing approaches are categorized by their interaction with the knowledge graph
(data perspective) and the logical queries (query perspective). Section 5 discusses the limitation of the existing
work and several possible future directions.

2 Preliminaries for Logical Queries

Logical queries are formally defined by £-formula on an £-structure, which are central concepts in model
theory [36]. Specifically, L-structure rigorously justifies the concept of knowledge graphs while £-formula
formally defines the scope of queries. Formal definitions provide a framework to investigate the data and the
query aspects of the knowledge graph logical query answering tasks.

The minimal and informal description of knowledge graphs is a set of triples {(h;, r;, t;)} that encapsulates
the real-world knowledge, where h;,t; € £ are the head and tail entities and r; € R is the connected relation.
Formally speaking, a knowledge graph is an £ g g-structure defined by a language L i for knowledge graphs.
The concept of language and structure, which concerns syntax and semantics of first-order logic respectively, is
defined in Definition 1 and Definition 2.

Definition 1 (Language): A language L is a triple (£, R, F) where £ is the set of constant symbols, R is the
set of predicate symbols, and F is the set of function symbols. For each r € R and f € F, associated integers n,.
and n indicate the number of inputs for R and F’, respectively.

All (classic) knowledge graphs can be described by a language L by letting (1) R be the set of binary relations
(n, = 2), (2) the constant set & is finite and contains all entities, and (3) F = (). £ and R are finite sets without
further classification.

Definition 2 (L-structure): An L-structure M for the language £ is a pair (M, I),where M is a non-empty set
called the universe of M and I is an interpretation function that: (i) For each ¢ € &£, I(C') € M; (ii) For each
r € R,I(r) C M™ , where n, is the size of relations; (iii) For each f € F, a function I(f) : M"™f — M,
where n is the number of inputs in f.

A knowledge graph KG induces an £ g g-structure by letting M = £ (with Ve € £, I(e) = e), so that each
relation I(r) is a subset of M?2. The open world assumption of knowledge graphs can then be formally stated in
Definition 3.



Definition 3 (Open world assumption): For a given language L i of knowledge graph, there is an underlying
L i -structure KG,,, and one (or more) observed L i -structure (s) KG,, such that for each relation » € R, the
relation set of G, and KG,, satisfies Ixg, () C Ig, (r) € M2

Then, it is ready to define the logical queries with formal concepts, including £-terms and £-formulae. The
current discussion focuses on first-order logic.

Definition 4 (L-term): L-terms be the smallest set of 7 such that: (i) e € T for each constant symbol e € &;
(ii) Any variable v; € T for 1, 2, ... ; (iii) if ¢4, %2, ...,to, € T and f € F, then f(t1,....,t,,) € T.

Definition 5 (Atomic £-formula): ¢ is an atomic £-formula if ¢ is r(¢1, ..., ¢y, ), where r € R is a relation
symbol and ¢. are L-terms. Given L-structure M , we say M |= r(r1, ..., 7y, ) is True if and only if the tuple
(t1,...stn,) € I(r).

Definition 6 (L-formula): The set of £-formula is the smallest set ¢ containing all atomic formulae such that:
(i) if ¢ € @, then ¢ € ®; (ii) if ¢,1) € @, then (¢ A1) € ® and (¢ V ) € P; (iii) if ¢ € ® and v; is any
variable, then Jv;¢p € ® and Vv;¢ € P.

We say a variable v is free if there are no associated quantifiers. Otherwise, it is bounded. We use ¢(v)
indicates the £-formula ¢ contains a free variable v. An £-formula without free variables is called an £-sentence.
Logical queries are £-formulae and can be evaluated given a knowledge graph KG. As studied in the database
literature [55], we discuss boolean queries, set-valued queries, and aggregate queries.

A boolean query is an L -sentence s. Given the £ g g-structure M, its answer is the boolean value indicating
whether M |= s or not.

A set-valued query is an £ i g-formula ¢ with exactly one free variable v. Given the £-model M, its answer set
is{e:ec E, M= d(v=ce)}.

An aggregate query looks for the aggregation statistics of the answer set of a set-valued query, such as counting,
summation, and so on.

3 Logical Query Answering Datasets and Evaluations

Based on the formal concepts given in Section 2, we are ready to formally justify existing datasets from the
knowledge graphs (the data perspective) that are queried and the scope of logical queries (the query perspective)
to be answered. Instead of going through all existing datasets, we discuss the underlying knowledge graphs and
logical queries.

3.1 Knowledge Graphs

Table 1 shows the knowledge graphs investigated in existing datasets. Existing evaluation includes knowledge
graphs of different scales (from 103 to 10) and various properties. Notably, the knowledge graphs with
hierarchical relation [37, 5] contain the prior and more complicated structures on entities and relations, respectively,
which could be leveraged to improve the performance of query answering method. Inductive logical query
answering [19] also considers an inductive KG setting [51], which is more challenging under the open-world
assumption.

3.2 Logical Queries

The scope of queries that can be answered is not rigorously justified in the existing works. Though some works
claim they are addressing the first-order queries [43] or logical queries in general [33], their definitions are still a



Table 1: Summation of open source knowledge graphs used in the existing datasets. KGs are sorted by the number
of entities.

Knowledge graph # Entities # Relations  # Total edges Comment Datasets
FB15k-237 [9] 14,505 237 310,079 - [42,43,19, 23, 58]
FB15k [53] 14,951 1,345 592,213 - [42, 43, 58]
DBPedia [5] 34,575 3 240,942 Hierarchical KG [14]
WNI8RR [37] 40,903 11 103,509 Hierarchical KG [24]
NELL955 [59] 63,361 200 142,804 - [42, 43, 23, 58]
DRKG [64] 97,238 107 5,874,271 - [13]
FB400k [50, 8] 409,829 918 2,151,671 - [41]
ogbl-wikikg2 [22] 2,500,604 535 17,137,181 - [41, 19]
Freebase [8] 86,054,151 14,824 338,586,276 - [41]

Table 2: Formal definitions of three typical query families. Compared to the first-order logic formula defined
formally with Definition 6, three query families are defined using a subset of connectives or quantifiers (indicated
by V).

J

Query Family

Conjunctive Query (CQ)
Existential Positive First Order (EPFO)
Existential First Order (EFO)
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NN X%x | <
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NN NI
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strict subset of the first-order queries defined in Definition 6. Table 2 summarizes the formal definitions for three
typical query families. The scopes of three query families are sorted in increasing order, i.e., CQ C EPFO C
EFO. The universal quantifier V is not widely discussed because its semantics is not usually interpretable over the
knowledge graphs. This is the same order for query families that learning-based query answering methods tried
to solve.

However, additional assumptions are made so that queries are more suitable to be answered by learning-based
methods. Common assumptions include that (1) the query is assumed to be acyclic and (2) only one free variable
in the logical formula. The first assumption skips the queries that may involve hard constraint satisfaction
problems and the second assumption restricts the space complexity of search within O(|€]). These assumptions
are not necessary for all learning-based models. For example, BiQE [28] accepts conjunctive queries with multiple
free variables, and CQD [4] answers general EPFO queries without any additional assumptions. Most existing
datasets are usually constructed as companions to evaluate the proposed methods, especially query embedding
methods with the operator tree representation discussed in Section 4.2.1. Such methods assume the answers with
respect to the only free variable can be computed by executing learnable set operators. The execution order of set
operators is decided by compiling the query formula into an operator tree. Thus, popular datasets [42, 43, 58] for
EPFO and EFO queries also accept implicit assumptions: (1) the only free variable v is assumed to be the root of
the set operator tree; (2) all leaf nodes must be constant entity symbols rather than existential variables.

We see that these assumptions are not related to the logic but only to make the queries easier to solve by a
special class of learning-based methods. There are no serious empirical evaluations for queries without such
assumptions.
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Figure 1: Paradigms for logical query answering on knowledge graphs. The solid line indicates the query
answering procedures, and the dashed lines indicate the procedures to obtain the model.

3.3 Evaluation Metrics

The query families are categorized by the formulation of logical formulae. Moreover, for each family, it is also
able to construct three types of queries. Here we list popular evaluating metrics.

* For boolean query, this becomes a classification problem, and thus standard classification metrics can be
applied, like ROC AUC score [43, 21].

* For set-valued query, standard metrics include Mean Reciprocal Rank (MRR) [42], Adjusted Mean Rank
Index (AMRI) [2], Average percentile rank (APR) [21], and Hits at K (H@K) [42].

* For aggregate query, counting is the only problem that has been considered. Spearman’s rank correlation
coefficient [43] and Pearson’s correlation coefficient [35] have been proposed when the model is incapable
of predicting the precise number. Otherwise, Mean Absolute Error (MAE) is used [35].

4 Learning-Based Methods

Traditional database query answering algorithms are executed over the raw data to find the answers, see Figure 5(b).
This paradigm fails in the cases of knowledge graph queries, where the underlying data is not observed. Current
knowledge graph logical query answering methods address the open-world assumption with learning-based
methods, see the blue boxes in Figure 1(b) and 1(c). In this paper, we categorize the learning-based methods into
two categories by how they process the queries. The first category is Continuous Query Decomposition (CQD)
and the second is Query Embedding (QE). We see that learning-based models are essential for both the CQD
method and the QE method. The participation of the learning-based models adds an intermediate layer between
incomplete knowledge graphs and logical queries.

The key to understanding learning-based methods is not only how to define the model but also how models
interact with the knowledge graph data and logical queries. The model-query and model-data interaction jointly
define the scope of queries that can be answered by each method. Specifically, the model-data interaction refers to
how to obtain the model from data, including both training data and algorithms, and the model-query interaction
refers to how learning-based models are combined with query answering algorithms. The model-data and
model-query interaction are indicated by the dashed arrows and the arrows in Figure 1(b) and 1(c), respectively.

The rest of this section presents the details of these two types of methods. Table 3 compares these two types
from three aspects, including training data (model-data interaction), query answering algorithms (model-query
interaction), and queries that can be solved. The most distinct difference between CQD and QE is how they



Table 3: Comparison between CQD and QE methods with their training data, query answering algorithms, and
solvable queries. } indicates that the actual solvable queries may not be the formally defined logical query family.

Methods Training Data  Query Answering Algorithms  Solvable Queries
Continuous Query Decomposition (CQD) KG triples Model + Optimization EPFO

QA samples Operator Tree + Model EFO-1 T
Query Embedding (QE) QA samples Query Graph + Model EFO-1 T

QA samples Sequence + Model EPFO T

treat the model as part of the query answering algorithms. Continuous query decomposition estimates the
answer embedding by solving an optimization problem with continuous objective induced from the original
logical formula with logical t-norms [20]. This objective, computed by the result of the model inference, will
be evaluated multiple times during the optimization process. Therefore, the model will be inferred multiple
times. This formulation is denoted as Model + Optimization in Table 3 where the term Model is placed before
Optimization. In contrast, query embedding methods first compile the logical queries into various representations
such as operator trees, query graphs, or sequences. Then, the answer embedding, or the embedding of logical
query, is estimated by simple forward inferring the model only once. This formulation is denoted as X + Model,
where the term Model is placed after X indicating one of the operator trees, query graphs, or sequences. As
natural consequences of such distinct differences in query answering algorithms, CQD and QE require different
types of training data to obtain the model and can solve different types of queries. Moreover, the solvable query
families for QE methods differ when the queries are compiled into different representations. We note that the
solvable queries are confirmed in existing works, and they can be of course extended to broader classes.

The Disjunctive Normal Form (DNF) [36] of the logical queries is of particular interest. This is because (1)
all first-order queries can be converted to DNF, and (2) The answer set of DNF existential queries can be regarded
as the union of the answer sets of its containing conjunctive clauses. For example, EPFO queries can be answered
by compositing the solutions of conjunctive queries. Similarly, general existential logical queries can be answered
once the queries with conjunction and negation can be well answered.

4.1 Continuous Query Decomposition (CQD)

The model used in CQD [4] method is no more than a neural link predictor, which is the key part of knowledge
graph representaiton [65, 25]. Specifically, CQD leverages the pretrained ComplEx embedding [54] and achieves
state-of-the-art performances in EPFO queries on dataset [42]. The training of the neural link predictor is
not related to the logical queries but only knowledge graphs themselves. Recent survey [25] summarizes the
construction of neural link predictors and how to train neural link predictors well is discussed in [45].

CQD uses neural link predictors to solve EPFO queries with a search algorithm. It considers the EPFO query
¢(v) in the following DNF form.

d(v) =31, o, Tp, (ra A AT ) VeV (i A ATy, (D

where 7;j is the atomic formula (without negation) and v is the only free variables associated to one or more 7.

Once the neural link predictor is obtained, each atomic formula r(h, ) can be evaluated with its probability

p(h,r,t) of being true. Let p;; be the probability of ij-th triple, T and L be the t-norm and ¢-conorm [20], we
rewrite the EPFO query in Equation (1) into the optimization problem:

i (pur T Tpuy )L Llpa T - Tow,)- 2

The objective in Problem (2) is continuous since p, T, and L is continuous. Embedding of variables v, x1, ..., T,

will be optimized over the continuous embedding space with gradient-based optimization or searched on the



Natural Language: Which cities are located on rivers that flow through Germany and France?
Logical Query: ¢(v) = Ix HasRiver(Germany, x) A HasRiver(France, x) A PassesCity(x,v)

HasRiver HasRiver

France France

[mask]
[mask]

HasRiver PassesCity

Germany . 0 Germany

(a) Operator Tree (b) Query Graph
| [mask] | | PassesCity | | HasRiver | | France | | [mask] | | PassesCity | | HasRiver | | Germany |
ST N T T TN | S T

(c) Sequence

Figure 2: Three ways to represent logical query in the query embedding methods. The example is taken from [28].
We see the logical query is converted into three formats, including (a) operator tree [58], where each node is a set
operator; (b) query graph [34], where the nodes are terms and predicates; (c) sequences [28], where a logical
query is transformed as the concatenation of several multi-hop queries with a special positional encoding.

discrete set £ with beam-search. Therefore, complex structures of logical queries are handled by solving the
optimization problem with the compositional objective function. CQD is also applicable to EPFO queries with
multiple free variables in principle. However, this is not empirically justified because of the lack of corresponding
datasets. The drawback of CQD is also apparent: CQD eventually estimates the embedding of variables, which
remains a significant gap in answering aggregate queries.

4.2 Query Embedding (QE)

In contrast to CQD, query embedding methods use explicit representations of the query structures. Direct
inference of the learning-based model over specific query representation estimates the embedding of the target
variable, i.e., the query embedding. Then the answers can be retrieved according to the query embedding. The
general advantages and disadvantages of QE methods are also clear. On the one hand, models are inferred only
once to obtain the answers. On the other hand, specific representation restricts the scope of solvable queries. In the
current stage, there is no dominant representation of the queries. Figure 2 summarizes popular choices including
operator trees [58], query graphs [34], and sequences [28]. Then we categorize different query embedding
methods by their query representations and discuss each type from four perspectives: query representation, model
design, training, and query answering algorithms.

4.2.1 Logical Queries as Operator Trees

Operator trees materialize the procedure of searching for answers as the execution of set operators, including set
projection, intersection, union, and complement (with respect to a universe). Each entity itself is regarded as the
simplest singleton, a set with only one element. The set projection is converted from relations by conducting a



Skolemization [36] process of a logical formula. Other set operations such as intersection, union, and difference
or negation are naturally induced by logical operators. Only a subset of first-order formulae can be converted into
the operator trees because such a representation of logical queries imposes additional assumptions to Definition 6,
as discussed in [58]. Meanwhile, the choice of set operators is not identical. For example, the set complement
can be replaced by the set difference [33], and the set union can be replaced by intersection and vice versa with
the set complement, according to De Morgan’s laws. The learning-based model for operation tree representation
is designed to simulate the sets in the continuous embedding spaces and the set simulations with differentiable
computations (usually with neural networks). Then we discuss the spaces used to represent sets and the modeling
of the set operations.

Geometric Region Embeddings. Sets, as a collection of discrete objects for logical query answering, are
naturally related to the geometrical region of some spaces. Compared to complex variable embeddings as vectors
in CQD, embedding sets as geometric regions provides a straightforward estimation of the size of the answer
set. The chosen forms of geometric regions are usually simple to be parameterized, such as the boxes used by
Query2Box [42] and NewLook [33], sector cones two-dimensional spaces used by ConE [67], and hyperboloid
used by HypE [14]. The set projection is usually modeled by neural networks that map the parameterized regions
to new ones. Intersection and union operators in NewLook are modeled by some variants of deep set network [63]
to merge multiple regions into one. Notably, the design of ConE [67] allows a closed-form set complement with
sector cones, while NewLook [33] models the set difference between boxes with neural networks. How to handle
negation operation using hyperboloid is not yet discussed.

Probabilistic Distribution Embeddings. Another thread of work models sets with the probabilistic distributions.
Parameterized probabilistic distribution families include Beta distribution in BetaE [43], Gaussian distribution in
PERM [13], and Gamma distribution in GammaE [61]. Probabilistic distributions are more sophisticated than
geometrical regions in set representation because the techniques to construct new probabilistic distributions can
be applied to model set operators. For example, a mixture of probabilistic distributions can be used to construct
the union operation [13, 61]. Also, altering one parameter to its reciprocal is straightforward to represent the
set complement for some family of distributions [43, 61]. Meanwhile, the normalized product of the Probability
Distribution Functions (PDF) of Gamma distribution is also Gamma distribution. This fact enables GammakE to
simplify the design of the intersection operator. Well-defined distances and divergences between distributions
are powerful tools for defining the distances between the answer sets, such as Mahalanobis distance [13] and
KL-divergence [43, 61]. Following the intuition of probabilistic distributions, LinE [24] considers the histogram
as the unnormalized discretization of arbitrary PDF, and Query2Particles [6] handles a set of empirical samples
(particles) from an arbitrary PDF. Such designs sacrifice parts of the closed-form properties but enlarge the family
of underlying distributions with non-parametric representations.

Fuzzy Vector Embeddings. Fuzzy vector space [27] brings supreme advantages in modeling the set operations.
Set intersection, union, and negation can be precisely modeled with fuzzy logical t-norms and ¢-conorms [20]
by embedding sets as fuzzy vectors [35, 12], i.e., vectors in [0, 1]¢ where d is the dimension. The one thing left
is to model the set projections with neural networks. FuzzQE [12] models the set projection by relational base
decomposition [47] and LogicE [35] uses simple multi-layer perceptron. In addition, LogicE [35] models the
lower and the upper bounds of the fuzzy logic truth value, which quantifies the uncertainty of each embedding to
answer the aggregate query.

In contrast to various designs for embedding spaces, MLPMix [3] just embedded queries as the vectors in
the Euclidean space. Such a simple embedding space does not guarantee any set properties, so it requires more
advanced neural networks [52] to model set operators. Notably, MLPMix still has strong performance with simple
embedding space compared to its predecessors. This might suggest that even the simplest Euclidean space is
large enough. The overall performance results from the trade-off between set embeddings and set operations.

Neural symbolic methods also shed light on another way to improve performances. “Neural” indicates
methods answering queries in low-dimensional embedding spaces and neural networks, while “symbolic” indicates
referring to the original symbolic knowledge graphs. GNN-QE [68] estimates the probabilities of all entities given
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the set projection with graph neural network, NBFNet [69] over the observed knowledge graph. ENeSy [60]
ensembles the neural model prediction and symbolic model prediction at each set projection, where the symbolic
part is conducted by the TensorLog [15]. These methods show outstanding performances compared to the neural
query embedding methods. However, scalability is always an issue since the intermediate states will unavoidably
grow with the size of the underlying knowledge graph.

While various models for operator trees were proposed, the method to train the model is almost the same
as the first proposed to train Query2box [42]. Let D(e, ¢) be the distance function between the entity e and the
query embedding g, the objective function is

k
1
lo(a,q) = —logo(y = D(a,q)) — - > logo(D(vi,q) =), 3)
i=1
where o = H% is the sigmoid function, -y is the margin, a is an arbitrary answer, and v; are k negative sampled
answers.

4.2.2 Logical Queries as Query Graphs

Query graph presentation represents the terms and predicates in to graphs [16, 34, 57]. Query graph representation
does not assume the acyclicity as operator tree representation. Therefore it represents a larger set of logical
queries. However, existing query graphs are not related to the disjunction. The disjunction can be handled by
converting existing queries to DNF queries, whose answer set is the combination of all conjunctive queries that
can be addressed in the query graphs. More specifically, a conjunctive query is represented by two kinds of query
graphs: (1) heterogenuous information networks (HIN) [48] where relations and entities are all nodes [34]; (2)
constraint graphs where nodes are terms and edges are atomic formulas [4, 57]. This representation is connected
to the constraint programming [44].

The learning-based models for query graphs are basically Graph Neural Networks (GNN). For constraint
graph representation, MPQE [16] applies message passing networks on EPFO queries and LMPNN [57] employs
the pretrained knowledge graph embeddings to answer queries with negation. kgTransformer [34] uses graph
transformers whose multi-layer perceptrons are upgraded by a Mixture of Experts (MoE) architecture. Besides
the negative sampling objectives shown in Equation (3), kgTransformer proposed to first pretrain the model on
sampled subgraphs and then finetune the model with the negative sampling loss on query answering data.

4.2.3 Logical Queries as Sequences

The last type of representation is to represent the queries in sequences. BiQE [28], see Figure 2 (c), proposes
to convert the query graph to multiple paths from the answer node to the anchor entity nodes. Compared to the
query graphs, the sequence representation even neglects the existential variables, only the anchor entity and the
relations on its path to the answer node remain. Relative positional embeddings are also used to describe the
distance from each token to the answer node. This representation also focuses on conjunctive queries, which do
not contain disjunction and negation. Queries with disjunctions can be handled by combining conjunctive queries
in the DNF. However, it is still not known how to handle the negation operation.

Once the sequence is defined, the sequence can be put into the transformer models. The output embedding of
the [mask] token is aggregated to obtain the answer. Unlike the query graph representation that enforces the
query structures explicitly, transformers could learn implicit logical structures via the self-attention mechanism.

5 Future Directions

Research about knowledge graphs logical query answering, though rapidly developed in recent years, is still
limited compared to the well-established study about query answering on the relational database. For example,
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the query types that can be answered by the model are strict fragments of first-order queries. In this section,
we discuss what is left in current research compared to logical query answering on incomplete relational data,
which is the ultimate goal of this line of research. Formal definitions from model theory in Section 2 picture the
gap between existing works and the ambitious goal. we summarize the limitations and discuss possible future
directions from the data, query, and model perspectives.

5.1 Towards General Relational Data

A relational language £ can describe general relational data. However, the language L k¢ for knowledge graphs
is defined with three additional assumptions, see Section 2. By rethinking three assumptions about £ ¢ and the
open world assumption, we could extend the existing data model of knowledge graphs.

KG with Relations of n, > 2. Knowledge graphs with n-ary relations [66] relax the first assumption that
n, = 2,VR € R by accepting the relations whose 2 < n, < n. Thus, each element of the knowledge graph now
is an n + 1 triple list that contains n entities and one relation. The concept of n-ary relation is also related to the
hyper-relation [18, 2] and the knowledge graph is extended from the directed graphs to hypergraphs.

KG with Attributes. Attributes expand the constant set £ from all entities to entities with attribute values, thus
relaxing the second assumption. Typical attributes include entity types [5, 23], triple timestamps [26, 46], and
triple probabilities [11]. Additional attributes can be described in the n-ary relations. For example, the timestamp
t associated with a triple (s, p, 0) can be described with 4-triples (s, p, o, t). New attributes bring new predicates,
enlarge the universe set, and enrich the query semantics. Two timestamps can be compared by “before”, “equal”,
and “after”, and can be composed to a time interval, which also introduces new predicates such as “during”.
The triple probabilities, as discussed in probabilistic databases [55], enable the estimation of the probabilities
for boolean queries, the probability for each answer entity for set-valued queries, and the total probability for
aggregate queries.

KG with Functions. Introducing attributes also makes it possible to define functions between attribute values.
Taking the timestamp attribute as an example, new timestamps can be computed by a time movement function with
a timestamp and a time interval as inputs. These features are rigorously defined in pure symbolic systems [17]. It
is worth discussing how to combine them with learning-based methods.

More Challenging Open World Assumption. In the inductive setting, the entity set £ is divided into an observed
set £, and an inempty inductive set £ with respect to the relation r € R, thatis E,NET = 0, E;UET = E,Vr € R.
Under such a setting, the open world assumption in Definition 3 is rewritten as Iicg (r) C &) x &) C Ikg, (1) C
& x &. This setting makes it very hard to estimate the relations over £ x & — &) x &/.

5.2 Towards First Order Queries and Beyond

The semantics of the logic queries lacks serious discussion. There is no standard dataset and benchmark for
first-order queries with cycles, multiple free variables, or universal quantifiers even for the simplest L i language.
Moreover, it is also worth discussing first-order queries over general relational data such as KGs with attributes
and attribute functions. It is also worthwhile to expand the first-order logic to fixed-point or monadic second-order
logic [30].

5.3 Towards Versatile Learning-based Models

Existing methods are incapable of addressing more and more challenging queries and complex data discussed
above. It is essential to investigate the graph or sequence-based query embedding models to solve various queries.
Given the combinatorial natures of the query answering problems, new opportunities could be found with neural
combinatorial solvers [7]. Meanwhile, large language models, as a proven effective way to encapsulate world
knowledge [39, 10], could be considered as another approach to modeling the relational data.
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6 Conclusion

Big data and world knowledge are usually uncertain and dynamic. Logical queries over knowledge graphs are
essential ways to understand the world as a simplified data model through the lens of logic and reasoning. In this
paper, we structure the existing knowledge graph logical query answering tasks and methods as a three-party
game between data, query, and models. With the rigorous concepts from finite model theory [36, 30], our work
portrays a detailed landscape of the achievements and limitations of existing work. Our discussion shows that
there are various gaps between current research to the ambitious goal in terms of data, queries, and models. We
hope our paper can be a practical guide for traveling in the uncertain and dynamic data world.
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