
Knowledge Graph Comparative Reasoning for Fact Checking:
Problem Definition and Algorithms

Lihui Liu*, Ruining Zhao*, Boxin Du‡*, Yi Ren Fung*, Heng Ji*, Jiejun Xu†, Hanghang Tong*
*Department of Computer Science, University of Illinois at Urbana Champaign

†HRL Laboratories, LLC., jxu@hrl.com
‡Amazon, boxin@amazon.com

*lihuil2, ruining9, yifung2, hengji, htong@illinois.edu

Abstract

Knowledge graphs are ubiquitous data structure which have been used in many applications. Knowl-
edge graph reasoning aims to discover or infer knowledge based on existing information in the knowledge
graph. However, most of the existing works belong to point-wise approaches, which perform reasoning
w.r.t. a single piece of clue. Comparative reasoning over knowledge graph focuses on inferring common-
ality and inconsistency with respect to multiple pieces of clues which is a new research direction and can
be applied to many applications. In this paper, we formally give the definition of comparative reasoning
and propose several different methods to tackle comparative reasoning in both pairwise and collective
cases. The idea of the proposed methods is that we find a knowledge segment from the knowledge graph
to best represent the semantic meaning of the given claim, and reasons according to it. We perform
extensive empirical evaluations on real-world datasets to demonstrate that the proposed methods have
good performances.

1 Introduction

Knowledge graphs are ubiquitous data structure which are used to store really world entities (e.g., Alan
Turing) and their relations (Alan Turing, wasBornIn, United Kingdom). Since the debut in 2012,
several widely used knowledge graphs have been proposed, which include Yago, Wikidata, Freebase and so on.
Knowledge graph reasoning which aims to discover/explain existing knowledge or infer new knowledge from
existing information in the knowledge graph has emerged as an important research direction over the last few
years [20].

Despite the great achievement in both academia and industry, most of the existing works on knowledge graph
reasoning belong to the point-wise approaches, which perform reasoning w.r.t. a single piece of clue (e.g., a triple
[1], a multi-hop query [20], a complex query graph [17]). For example in fact checking, given a claim (e.g.,
represented as a triple of the knowledge graph), it decides whether the claim is authentic or falsified [26, 2].
However, comparative reasoning ([18, 19]) is rarely studied. Different from point-wise reasoning (or reasoning

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

*The publication was written prior to the employee joining Amazon.

19

over knowledge graph). Comparative reasoning over knowledge graph [18] focuses on inferring commonality
and/or inconsistency with respect to multiple pieces of clues (e.g., multiple claims about a news article), which
is a new research direction over knowledge graphs and can be widely applied to other applications, e.g., fact
checking.

Comparative reasoning has many unique advantages compared with point-wise (single claim) fact checking.
This is because in many real-world situations, e.g., multimodal fake news detection [21], single claim fact
checking alone is insufficient, while comparative reasoning offers a more complete picture w.r.t. the input
clues, which in turn helps the users discover the subtle patterns (e.g., inconsistency) that would be invisible by
point-wise approaches. When we verify the two claims/triples at the same time, the result may be inconsistent
even though each claim/triple itself is consistent if we evaluate it individually. Figure 1 gives an example to
illustrate the power of comparative reasoning. Suppose there is a multi-modal news article and we wish to verify
its truthfulness. To this end, two query graphs are extracted from the given news, respectively. One query graph
contains all the information from the text, and the other contains the information from the image. If we perform
point-wise reasoning to check each of these two query graphs separately, both seem to be true. However, if we
perform reasoning w.r.t. both query graphs simultaneously, and by comparison, we could discover the subtle
inconsistency between them (i.e., the different air plane types, the difference in maximum flying distances). In
addition, comparative reasoning can also be used in knowledge graph expansion, integration and completion
[18].

In this paper, we address the problem of comparative reasoning. We mainly focus on two problems: pairwise
comparative reasoning and collective comparative reasoning. To be specific, we address two key challenges
as follows. We leverage graph neural network and graph kernel to reveal the commonality and inconsistency
among input clues according to the information in the background knowledge graph. We propose several different
algorithms and demonstrate their effectiveness. A common building block of comparative reasoning is knowledge
segment, which is a small connection subgraph of a given clue (e.g., a triple or part of it) to summarize its
semantic context. Based on that, we present core algorithms to enable both pairwise reasoning and collective
reasoning. The key idea is to use the structure and semantic information in knowledge segments to help discover
vague contradictions.

The main contributions of the paper are

• Problem Definition. We introduce comparative reasoning over knowledge graphs, which complements
and expands the existing point-wise reasoning capabilities.

• Algorithms. We propose a family of comparative reasoning algorithms which can solve both pairwise
comparative reasoning and collective comparative reasoning.

• Empirical Evaluations. We perform extensive empirical evaluations to demonstrate the efficacy of our
proposed methods.

The rest of the paper is organized as follows. Section 2 introduces notations used in this paper and gives
the problem definition. Section 3 introduces how to extract the knowledge segment from the knowledge graph.
Section 4 proposes different methods to solve comparative reasoning problem. The experiment results are
presented in Section 5, and the related work is reviewed in Section 6. Finally, the paper is concluded in Section
7.

2 Problem Definition

In this section, we first introduce the symbols that will be used throughout the paper, then we introduce other
important concepts and formally define the comparative reasoning problem.

20

Air Force One

Obama

Image
Analysis

Text
Analysis

Refused by
GEO-Place

Play

6000 Miles

Helicopter
People

In front of

Sport Harvard

US

President

DoD

Obama

Golf

Air Force

Columbia

Political
Science

Live

Is

Command
Command

Like

Name

Graduate

Command

Major

Golf

Fly

Navy

Air Force One

Helicopter

Study

Command

Command

Knowledge Graph

Query 2

Sport

President

DoD

Obama

Golf

Air ForceIs

In charge

Command

Like

Name

Command

Air Force One

President

DoD

Obama

Air Force
Is

In charge

Command

People Subclass

Helicopter

CommandCommand

Conflict

600M
Maximum
Distance 6000M

Maximum Distance

600M
Maximum
Distance6000M

Maximum
Distance

Query graph 1

Query graph 2

Input multi-modal news asset

Law

Conflict

Knowledge Segment of Query graph 1

Query 1

Knowledge Segment of Query graph 2

Inconsistency Detection

Inconsistency Detection

Command

Command

Command Graduate

Figure 1: An illustrative example of using comparative reasoning for semantic inconsistency detection. Source of
the image at the top-left: [4]. The example is borrowed from [18].

Table 4: Notations and definitions

Symbols Definition Symbols Definition
G={V G, EG, LG} a knowledge graph vi the ith entity/node in knowledge graph

ri the ith relation/edge in knowledge graph ei the ith given by the user
Q={V Q, EQ, LQ} an attributed query graph KSi knowledge segment i

Ai adjacency matrix of KSi A× kronecker product of A1 and A2

N l diagonal matrix of the lth node attribute N× combined node attribute matrix
Ni attribute matrix of KSi, the j th row Si,j single entry matrix Si,j(i, j) = 1 and zeros elsewhere

denotes the attribute vector of node j in KSi

Table 4 gives the main notations used throughout this paper. A knowledge graph can be denoted as
G = (V,R,E) where V = {v1, v2, ..., vn} is the set of nodes/entities, R = {r1, r2, ..., rm} is the set of relations
and E is the set of triples. Each triple in the knowledge graph can be denoted as (h, r, t) where h ∈ V is the
head (i.e., subject) of the triple, t ∈ V is the tail (i.e., object) of the triple and r ∈ R is the edge (i.e., relation,
predicate) of the triple which connects the head h to the tail t.

Given multiple pieces of clues, the goal of comparative reasoning is to infer commonality and/or inconsistency
among them. If the given information is a pair of clues, we call it pairwise comparative reasoning or pairwise
fact checking. The goal is to deduce whether these two clues are coherent or not. If the given information is a
connected query graph, the goal is to detect whether there is inconsistency inside the given graph. The problem is
called collective comparative reasoning or collective fact checking. Different from traditional point-wise reasoning
methods, comparative reasoning can unveil some subtle patterns which point-wise approaches may overlook.
Take knowledge graph based fact checking as an example, considering two claims/triples: (Barack Obama,
graduatedFrom, Harvard University) and (Barack Obama, majorIn, Political Science).
Even each clue/claim is true, but if we check them together at the same time, we can see that they cannot be both
true. This is because Barack Obama majored in law instead of Political Science when he studied at
Harvard University. So, we might fail to detect the inconsistency between them without appropriately
examining different clues/claims together.

21

To facilitate comparative reasoning, how to utilize the background information in knowledge graph is an
important problem. If we can find a subgraph in the knowledge graph which can best express the semantic
meaning of each input clue, the hidden conflicts can be easier to detect. Ideally, this subgraph should contain all
the meaningful/important entities and relations in the knowledge graph which are related to the given clue. We
call this subgraph knowledge segment, which is formally defined as follows.

Definition 1: Knowledge Segment (KS for short) is a connection subgraph of the knowledge graph that best
describes the semantic context of a piece of given clue (i.e., a node, a triple or a query graph).

Figure 1 gives an example of knowledge segment. Given two clues which are two query graphs extracted
from the text and image respective, their corresponding knowledge segments are shown in the bottom of the
Figure. As we can see, expressing the given clues with knowledge segments can help us detect the inconsistency
without difficulty.

Given the knowledge segments of multiple pieces of clues, comparative reasoning aims to infer the common-
ality and inconsistency among these knowledge segments to make decision. For pairwise case, the commonality
refers to the common elements of these two knowledge segments. The inconsistency includes any elements
that are contradicts with each other. Assuming the two given clues are two edges/triples: EQ

1 =< s1, p1, o1 >

and EQ
2 =< s2, p2, o2 > where s1, o1, s2, o2 ∈ V and p1, p2 ∈ E. We denote their corresponding knowledge

segments as KS1 for EQ
1 and KS2 for EQ

2 , respectively. The commonality and inconsistency between these two
knowledge segments are defined as follows.

Definition 2: Commonality. Given two triples (EQ
1 andEQ

2) and their knowledge segments (KS1 andKS2), the
commonality of these two triples refers to the shared nodes and edges between EQ

1 and EQ
2 , as well as the shared

nodes and edges between KS1 and KS2: ((V KS1 ∩ V KS2) ∪ (V Q1 ∩ V Q2), (EKS1 ∩EKS2) ∪ (EQ1 ∩EQ2)).

Definition 3: Inconsistency. Given two knowledge segments KS1 and KS2, the inconsistency between these
two knowledge segments refers to any element (node, node attribute or edge) in KS1 and KS2 that contradicts
with each other.

Different from pairwise comparative reasoning, collective comparative reasoning aims to find the common-
ality and/or inconsistency inside a query graph which consists of a set of inter-connected edges/triples. The
corresponding definition is given below.

Definition 4: Collective Commonality. For each edge EQ
i in a query graph Q, let KSi be its knowledge

segment. The collective commonality between any triple pair in the query graph is the intersection of their
knowledge segments.

Definition 5: Collective Inconsistency. For each edge EQ
i in a query graph Q, let KSi be its knowledge

segment. The collective inconsistency refers to any elements (node or edge or node attribute) in these knowledge
segments that contradict with each other.

Given the above notation and information, the problem of comparative reasoning is formal defined as:

Problem Definition 1: Pairwise Comparative Reasoning:
Given: (1) A knowledge graph G, (2) two triples EQ

1 and EQ
2 ;

Output: A binary decision regarding the consistency of EQ
1 and EQ

2 .

Problem Definition 2: Collective Comparative Reasoning:
Given: (1) A knowledge graph G, (2) a query graph Q;
Output: A binary decision regarding the consistency of Q.

22

3 Knowledge Segment Extraction

In this section, we introduce how to extra knowledge segment to best express the semantic meaning of a given
claim. We first introduce how to transform the knowledge graph into a relation specified weighted graph, then
introduce how to extract Edge-specific Knowledge Segment and Subgraph-specific Knowledge Segment from it.

Generally speaking, given a clue (e.g., a triple or a query graph) from the user, the goal of knowledge segment
extraction is to extra a subgraph which can best express the semantic meaning of the given clue. Many existing
methods have been proposed to extract a concise subgraph from the source node of the querying edge to its target
node in weighted or unweighted graphs. For example, multi-hop method [9], minimum cost maximum flow
method [24], K-simple shortest paths based method [8] or connection subgraph [7], [11], [23] extraction
methods.

However, these methods do not directly apply to knowledge graphs because the edges (i.e., predicates) of a
knowledge graph have specific semantic meanings (e.g., types, relations). To address this issue, we seek to convert
the knowledge graph to a weighted graph by designing a predicate-predicate similarity measure for knowledge
segment extraction.

3.1 Predicate-Predicate Similarity

In order to transform the knowledge graph into weighted graph, We propose to use a TF-IDF based method to
measure the similarity between different predicates, and transfer the knowledge graph into a weighted graph
whose edge weight represents the similarity between the edge predicate and query predicate. The key idea behind
TF-IDF based method is that we can treat each triple in the knowledge graph and its adjacent neighboring triples
as a document, and use a TF-IDF like weighting strategy to calculate the predicate similarity. For example,
predicate receiveDegreeFrom may have neighbor predicates major and graduateFrom. These predicates
should have high similarity with each other.

To be specific, we use the knowledge graph to build a co-occurrence matrix of predicates, and calculate their
similarity by a TF-IDF like weighting strategy as follows. Let i, j denote two different predicates. We define the
TF between two predicates as TF(i, j) = log(1 +C(i, j)w(j)), where C(i, j) is the co-occurrence of predicate i
and j. The IDF is defined as IDF(j) = log |M |

|{i:C(i,j)>0}| , where M is the number of predicates in the knowledge
graph. Then, we build a TF-IDF weighted co-occurrence matrix U as U(i, j) = TF(i, j)× IDF (j). Finally, the
similarity of two predicates is defined as Sim(i, j) = Cosine(Ui, Uj), where Ui and Uj are the ith row and jth

row of U , respectively.
For the predicate-predicate similarity, suppose we want to calculate the similarity between major and study.

Both major and study have only one adjacent neighboring predicate graduate. This means that for any
predicate i ̸= graduate, U(major, i) = U(study, i) = 0. Since E(graduate) = 0, we have w(graduate) =
2σ(∞) − 1 = 1. We have TF(major, graduate) = TF(study, graduate) = log(1 + 1 × 1) = 1, and
U(major, graduate) = U(study, graduate) = IDF (graduate) = log 8

4 = 1. If we compare the two
vectors, Umajor and Ustudy, we find that they are the same. Therefore, we have that Sim(major, study) = 1.

3.2 Edge-specific Knowledge Segment

Edge-specific knowledge segment extraction aims at finding a knowledge segment to best characterize the
semantic context of the given edge (i.e., a triple). Several connection subgraph extraction methods exist for a
weighted graph, e.g., [33] uses a random walk with restart based method to find an approximate subgraph; [11]
uses maximal network flow to find a subgraph and [8] aims to find a denser local graph partitions. In this paper,
after transforming the knowledge graph into a weighted graph, we find k-simple shortest paths [11] from the
subject to the object of the given query edge as its knowledge segment.

23

3.3 Subgraph-specific Knowledge Segment

Following the idea of edge-specific knowledge segment extraction, we extract a knowledge segment for
each edge in the given subgraph and we call the graph which contains all the edge-specific knowledge segments
subgraph-specific knowledge segment. In other words, a subgraph-specific knowledge segment consists of
multiple inter-linked edge-specific knowledge segments (i.e., one edge-specific knowledge segment for each edge
of the input query subgraph).

The subgraph-specific knowledge segment provides richer semantics, including both the semantics for each
edge of the query graph and the semantics for the relationship between different edges of the input query graph.

4 Comparative Reasoning

In this section, we introduce the technical details behind comparative reasoning. We first introduce on what
condition we need to exert pairwise reasoning for two pieces of clues (e.g., two edges/triples), and then introduce
two methods which focus on pairwise reasoning. Finally, we present the collective comparative reasoning. The
main idea behind these functions is that we use a knowledge segment to express the semantic meaning of each
query triple, and check the inconsistency according to information in the knowledge segments.

4.1 Pairwise Comparative Reasoning Condition

Given a pair of clues < s1, p1, o1 > and < s2, p2, o2 >, we can divide it into the following six cases, including

C1. s1 ̸= s2, s1 ̸= o2, o1 ̸= s2, o1 ̸= o2. For this case, these two clues apparently refer to different things, e.g.,
<Alan Turing, wasBornIn, United Kingdom> and <Google, isLocatedIn, USA>.

C2. s1 = s2 and o1 = o2. If p1 = p2, these two clues are the same. If p1 and p2 are different or irrelevant, e.g.,
p1 = wasBornIn, p2 = hasWebsite, these two clues refer to different things. However, if p1 contradicts p2,
they are inconsistent with each other.

C3. s1 = s2 but p1 ̸= p2 and o1 ̸= o2, e.g., <Alan Turing, wasBornIn, Maida Vale>, <Alan
Turing, livesIn, United Kingdom>.

C4. s1 = s2, p1 = p2, but o1 ̸= o2, e.g., <Alan Turing, wasBornIn, Maida Vale>, <Alan
Turing, wasBornIn, United Kingdom>.

C5. o1 = o2, but s1 ̸= s2. For this case, no matter what p1 and p2 are, these two clues refer to different things.

C6. o1 = s2. For this case, no matter what p1 and p2 are, they refer to different things. For example, <Alan
Turing, wasBornIn, United Kingdom>, <United Kingdom, dealsWith, USA>.

Among these six cases, we can see that the clue pair in C1, C5 and C6 refer to different things. Therefore,
there is no need to check the inconsistency between them. For C2, we only need to check the semantic
meaning of their predicates, i.e., whether p1 contradicts p2. For example, p1 = isFather and p2 = isSon,
they are inconsistent with each other. Otherwise, there is no inconsistency between them. We mainly focus
on C3 and C4 where the two clues may be inconsistent with each other even if each of them is true. For
example, either <Barack Obama, graduatedFrom, Harvard University> or <Barack Obama,
majorIn , Political Science> could be true. But putting them together, they cannot be both true,
since Barack Obama majored in law instead of Political Science when he studied at Harvard
University. In other words, they are mutually exclusive with each other and thus are inconsistent. However,
queries like <Alan Turing, wasBornIn, Maida Vale> and <Alan Turing, wasBornIn, United

24

Kingdom> are both true, because Maida Vale belongs to United Kingdom. Alternatively, we can say
that United Kingdom contains Maida Vale. We summarize that if (1) the subjects of two clues are the
same, and (2) their predicates are similar with each other or the same, they refer to the same thing. Furthermore, if
their objects are two uncorrelated entities, it is highly likely that these two clues are inconsistent with each other.

Based on the above observations, we take the following three steps for pairwise comparative reasoning. First,
given a pair of clues, we decide which of six cases it belongs to, by checking the subjects, predicates and objects
of these two clues. Second, if this pair of clues belongs to C3 or C4, we need to further decide whether they are
consistent with each other. In the following sections, we illustrate how to tackle this case.

4.2 Neural Network Based Pairwise Comparative Reasoning

Given two knowledge segments of a pair of clues which belong to C3 or C4, we treat each knowledge segment as
an attributed graph, and adopt some ideas from network alignment to facilitate comparative reasoning. The basic
idea is that if the two knowledge segments are consistent, most of their nodes must be able to align with or close
to each other in the embedding space. Otherwise, the embedding distance of the inconsistent nodes should be
large. Generally, the inconsistent checking problem is similar to anomaly detection or dissimilarity detection
problem in the embedding space.

When reasoning a pair of knowledge segments, we consider two kinds of information: structure information
and semantic information. We envision that both of them are important. For example, in Figure 1, Air
Force One and Helicopter have similar structure information because they have many common neighbors,
but their semantic meanings are very different, this may indicate a potential inconsistency between the two
knowledge segments. On the other hand, although Air Force One and Helicopter have different structure
information (when considering edge type), they also have different semantic information. This prompts that they
refer to the different things. Inspired by this observation, we propose a neural network model which considers
both the structure information and semantic information of knowledge segments to achieve pairwise comparative
reasoning.

To encode the structure similarity, we use random walk with restart (considering edge type) to encode the
knowledge segment structure information. The similar idea has been used by many other works, e.g. [34], [38].
Given a set of anchor nodes, random walk with restart will calculate a score for each node in the knowledge
segment w.r.t. each anchor node. If two nodes have the similar random walk with restart score vector, their
structure similarity should be high. To encode the semantic information of the knowledge segment, we borrow
some ideas from natural language processing. More specifically, we sample some paths from the knowledge
graph, and treat each path as a sentence, nodes in the knowledge graph can be treated as words in the sentence. If
two nodes occur in the same sentence, their semantic information should be similar.

4.2.1 Structure Embedding

Given two knowledge segments, the common nodes in these two knowledge segments can be treated as anchor
entities, structure embedding aims to embed the nodes in the knowledge segments to a high dimension space while
keeping their structure information. The key intuition is that, the set of anchor links L provides the landmarks
for all nodes in both networks. Relative positions based on anchor links can form a unified space for all nodes
regardless which network they belong to [38]. Therefore, we can use random walk with restart to measure the
relative position between nodes and anchor links. Let KS1 and KS2 be the two knowledge segments. Given an
anchor link l ∈ L (we use l1 and l2 to denote the linked entities in KS1 and KS2), the RWR score vector rl1 of
size n1 × 1 can be obtained

rl1 = (1− β)Ŵ1rl1 + βel1 (4)

where n1 is the number of nodes in KS1, Ŵ1 is the row normalized adjacency matrix of KS1, β is the restart
probability and el1 is one-hot vector with el1(l1) = 1 and all other entries are 0. We can solve the equation and

25

get the final expression of rl1 as:
rl1 = β(I − (1− β))Ŵ1

−1
el1 (5)

Note that if KS1 and KS2 are the same, they will have the same random walk with restart score matrices.
After we get the random walk with restart matrices, we then use a share neural network to learn the embedding

of these two knowledge segments. In this way, the structure information of each node can be kept in the embedding
space. The learned embedding for KS1 can be calculated as:

E1 = NeuralNetwork(RWR1) (6)

where RWR1 is the random walk with restart score matrix of KS1. RWR2 can be calculated in the same way.

4.2.2 Semantic Embedding

To captivate the semantic meaning of each node in the knowledge segment, we randomly sample some paths in the
background knowledge graph and treat each path as an utterance while each node as a word in the sentence. Then,
we use a popular language model Bert [5] to learn the semantic embedding of each node. If two nodes occur
at the same path, their semantic embedding should be close to each other, otherwise, their semantic embedding
should be far from each other.

We concatenate the node semantic embedding and structure embedding of two knowledge segments and use
graph neural network to learn the graph embedding of KS1 and KS2 respectively. Finally, we predict whether
they are consistent with each other according to the graph embedding. The architecture of the algorithm is shown
in Figure 2.

In charge
Command

Like

Name

Command

Command

In charge
Command

Like

Name

Command

Command

Neural
Network

Paths

RWR1

Bert

RWR2

Semantic
Embedding

Graph
Neural

Network

concatenate

concatenate

True
or
False

Figure 2: Neural network based pairwise comparative reasoning framework.

The pseudo code is given in Algorithm 1. GNN means graph neural network which is defined as follows

xlN(u) = AGGREGATE({Xl(v, :), forv ∈ N(u)}) (7)

Xl+1(u, :) = σ(CONCAT(Xl(u, :), xlN(u))) (8)

where AGGREGATE is the aggregation function, X is the input node embedding, l is the graph neural network
layer number, and (u, v) are nodes in the input graph. The classifier in Algorithm 1 can be any machine learning
model, e.g., SVM, logistic regression, decision tree and so on.

26

Algorithm 1 Neural Network Based Pairwise Comparative Reasoning

1: Input: Knowledge segment KS1 and knowledge segment KS2, pretrained embedding of all entities E in
the knowledge graph.

2: Training:
3: Calculate random walks with restart matrices RWR1 and RWR2 for KS1 and KS2, respectively.
4: E1 = NeuralNetwork(RWR1)
5: E2 = NeuralNetwork(RWR2)
6: Get all node embedding in KS1: N1 = E(KS1)
7: Get all node embedding in KS2: N2 = E(KS2)
8: Concatenate embedding C1 = (E1|N1)
9: Concatenate embedding C2 = (E2|N2)

10: Predict result: Classifier(GNN(C1), GNN(C2))

4.3 Graph Kernel Based Pairwise Comparative Reasoning

Different from neural network based pairwise comparative reasoning, graph kernel based pairwise comparative
reasoning aims to utilize graph kernel to find a set of key elements (nodes or edges or node attributes) in these two
knowledge segments and then make decision according to these elements and related information in the knowledge
graph. The idea is that if most of these key elements belong to the commonality of these two knowledge segments,
it is highly likely that they refer to the same thing. Otherwise, these two clues refer to different things. Third, if
they refer to the same thing, we further decide whether they conflict with each other. Here, the key idea is as
follows. We build two new query triples < o1, isTypeOf, o2 > and < o2, isTypeOf, o1 >. If one of them is
true, the original two triples are consistent with each other. Otherwise, they are inconsistent.

In order to find the key elements, we propose to use the influence function w.r.t. the knowledge segment
similarity [41]. The basic idea is that if we perturb a key element (e.g., change the attribute of a node or remove a
node/edge), it would have a significant impact on the overall similarity between these two knowledge segments.
Let KS1 and KS2 be the two knowledge segments. We can treat the knowledge segment as an attributed graph,
where different entities have different attributes. We use random walk graph kernel with node attribute to measure
the similarity between these two knowledge segments [41] [6].

Sim(KS1,KS2) = q′×(I − cN×A×)
−1N×p× (9)

where q′× and p× are the stopping probability distribution and the initial probability distribution of random walks
on the product matrix, respectively. N× is the combined node attribute matrix of the two knowledge segments
N× =

∑d
j=1N

j
1 ⊗N

j
2 where N j

i (i ∈ {1, 2}) is the diagonal matrix of the jth column of attribute matrix Ni. A×
is the Kronecker product of the adjacency matrices of knowledge segments A1 and A2. 0 < c < 1 is a parameter.

We propose to use the influence function Sim(KS1,KS2) w.r.t. knowledge segment elements ∂Sim(KS1,KS2)
∂e ,

where e represents an element of the knowledge segmentKS1 orKS2. The element with a high absolute influence
function value is treated as a key element, and it can be a node, an edge, or a node attribute. The influence function
of different elements can be computed according to the following lemma. Note that the influence function w.r.t.
elements in KS2 can be computed in a similar way.

Lemma 6: (Knowledge Segment Similarity Influence Function [41].) Given Sim(KS1,KS2) in Eq. (9). Let
Q = (I − cN×A×)

−1 and Sj,i is a single entry matrix defined in Table 4. We have that

(i) The influence of an edge A1(i, j) in KS1 can be calculated as

I(A1(i, j)) =
∂Sim(KS1,KS2)

∂A1(i, j)
= cq′×QN×[(S

i,j + Sj,i)⊗A2]QN×p× (10)

27

(ii) The influence of a node i in KS1 can be calculated as

I(N1(i)) =
∂Sim(KS1,KS2)

∂N1(i)
= cq′×QN×[

∑
j|A1(i,j)=1

(Si,j + Sj,i)⊗A2]QN×p× (11)

(iii) The influence of a node attribute j of node i in KS1 can be calculated as

I(N j
1 (i, i)) =

∂Sim(KS1,KS2)

∂N j
1 (i, i)

= q′×Q[Si,i ⊗N j
2](I + cA×QN×)p× (12)

For a given knowledge segment, we flag the top 50% of the elements (e.g., node attribute, node and edge)
with the highest absolute influence function values as key elements. We would like to check whether these key
elements belong to the commonality of these two knowledge segments. If most of them (e.g., 60% or more)
belong to the commonality of these two knowledge segments, we say the two query clues describe the same thing.
Otherwise, they refer to different things and thus we do not need to check the inconsistency between them.

If we determine that the query clues refer to the same thing, the next step is to decide whether they are
inconsistent with each other. That is, given query clues < s1, p1, o1 > and < s1, p2, o2 >, we need to decide
whether o1 belongs to o2 or o2 belongs to o1. To this end, we build two new queries < o1, isTypeOf, o2 > and
< o2, isTypeOf, o1 >. Then, we extract the knowledge segments for these two queries, and check whether
these two segments are true. If one of them is true, we say the original clues are consistent with each other,
otherwise they are inconsistent. After we extract the knowledge segments for < o1, isTypeOf, o2 > and < o2,
isTypeOf, o1 >, we treat each knowledge segment as a directed graph, and calculate how much information
can be transferred from the subject to the object. We define the transferred information amount as:

infTrans(o1, o2) = max
1≤j≤k

pathValue(j) (13)

where pathValue(j) is defined as the multiplication of the weights in the path. For an edge, its weight is the
predicate-predicate similarity Sim(isTypeOf, ei). If max{infTrans(o1, o2), infTrans(o2, o1)} is larger than a
threshold T , then we say o1 belongs to o2 or o2 belongs to o1. We set T = 0.700 in our experiment.

4.4 Graph Kernel Based Collective Comparative Reasoning

Different from pairwise comparative reasoning, collective comparative reasoning aims to find the commonality
and/or inconsistency inside a query graph which consists of a set of inter-connected edges/triples. To check the
inconsistency, one naive method is using the pairwise comparative reasoning method to check the inconsistency
for each pair of edges in the query graph. However, this method is neither computationally efficient nor sufficient.
For the former, if two clues (e.g., two claims from a news article) are weakly or not related with each other on the
query graph, we might not need to check the inconsistency between them at all. For the latter, in some subtle
situations, the semantic inconsistencies could only be identified when we collectively reason over multiple (more
than two) knowledge segments. For example, given the following three claims, including (1) Obama is refused
by Air Force One; (2) Obama is the president of the US; (3) The president of US is in front of a helicopter. Only
if we reason these three claims collectively, can we identify the semantic inconsistency among them.

Based on the above observation, we propose the following method to detect the collective inconsistency.
First, we find a set of key elements inside the semantic matching subgraph. Different from pair-wise

comparative reasoning, the importance/influence of an element for collective comparative reasoning is calculated
by the entire semantic matching subgraph. More specifically, we first transform the query graph and its semantic
matching subgraph (i.e., subgraph-specific knowledge segment) into two line graphs, which are defined as follows.

Definition 7: Line Graph [24]. For an arbitrary graph G = (V,E), the line graph L(G) = (V ′, E′) of G has
the following properties: (1) the node set of L(G) is the edge set of G (V ′ = E); (2) two nodes V ′

i , V ′
j in L(G)

are adjacent if and only if the corresponding edges ei, ej of G are incident on the same node in G.

28

Obama

Air Force OneHelicopter

President

refusedBy
is

inFront

Obama

Air Force OneHelicopter

President

KS1

KS2

KS3

𝐿𝑜𝑠𝑠 = ||𝐻1 − 𝐻2||𝐹
2

Line Graph

KS2

KS1 KS3

is

inFront refusedBy

L(Q) L(KS)

Q

Figure 3: Collective comparative reasoning workflow.

Figure 3 gives an example of the line graph. For the line graph L(Q), the edge weight is the predicate-predicate
similarity of the two nodes it connects. For the line graph L(KS), the edge weight is the knowledge segment
similarity by Eq. (9) of the two nodes it connects. The rationality of building these two line graphs is that if the
semantic matching subgraph is a good representation of the original query graph, the edge-edge similarity in
L(Q) would be similar to the knowledge segment similarity in L(KS).

To measure the importance of an element, we propose to use the influence function w.r.t. the distance
between L(Q) and L(KS). We assume that a key element, if perturbed, would have a great effect on the distance
Loss = ||H1 −H2||2F , where H1 is the weighted adjacency matrix of L(Q), and H2 is the weighted adjacency
matrix of L(KS). We use the influence function ∂Loss(H1,H2)

∂e , where e represents an element of the knowledge
segment graph and it could be a node, an edge, or a node attribute. Lemma 8 provides the details on how to
compute such influence functions.

Lemma 8: Given the loss function Loss = ||H1 −H2||2F . Let n, k denote two different nodes in L(Q), and
KSn, KSk denote their corresponding knowledge segments. Let hek,n denote the weight of edge between node
k and n, and hck,n denote the weight of edge between KSk and KSn. We have

(i) The influence of an edge An(i, j) in knowledge segment KSn can be calculated as
I(An(i, j)) =

∑
k∈N(n)−2(hek,n − hck,n)

∂sim(KSn,KSk)
∂An(i,j)

.

(ii) The influence of a node i in knowledge segment KSn can be calculated as
I(Nn(i)) =

∑
k∈N(n)−2(hek,n − hck,n)

∂sim(KSn,KSk)
∂Nn(i)

.

(iii) The influence of a node attribute j in knowledge segment KSn can be calculated as
I(N j

n(i, i)) =
∑

k∈N(n)−2(hek,n − hck,n)
∂sim(KSn,KSk)

∂Nj
n(i,i)

.

Proof: We rewrite the loss function as

Loss = ||H1 −H2||2F =
∑
i,j

(hei,j − hci,j)2

Take the derivative, together with Lemma 1, we have

I(An(i, j)) =
∑

k∈N(n)

−2(hek,n
− hck,n

)
∂sim(KSn,KSk)

∂An(i, j)

(Nn(i)) =
∑

k∈N(n)

−2(hek,n
− hck,n

)
∂sim(KSn,KSk)

∂Nn(i)

I(N l
n(i, i)) =

∑
k∈N(n)

−2(hek,n
− hck,n

)
∂sim(KSn,KSk)

∂N l
n(i, i)

(14)

29

which completes the proof.
Second, after we find all the key elements, we check the consistency of the semantic matching subgraph

according to these key elements. The steps are as follows. For each pair of knowledge segments of the semantic
matching subgraph, if their key elements overlapping rate is greater than a threshold (60%), we check the
consistency of this pair. Suppose the corresponding triples are < s1, p1, o1 > and < s2, p2, o2 >, respectively.
We check if < s1, isTypeOf, s2 > or < s2, isTypeOf, s1 > is true. If both of them are false, we skip this
pair of clues because it does not belong to C3 or C4. Otherwise, we check if < o1, isTypeOf, o2 > or < o2,
isTypeOf, o1 > is true. If both of them are false, we say this query graph has collective inconsistency. When
checking the truthfulness of triples (e.g., < s1, isTypeOf, s2 >, < s2, isTypeOf, s1 >, < o1, isTypeOf,
o2 > and < o2, isTypeOf, o1 >), we use the same method (i.e., transferred information amount in Eq. (13))
as in pairwise comparative reasoning.

5 Experimental Results

In this section, we present the experimental evaluations. All the experiments are designed to answer the following
two questions:

• Q1. Effectiveness. How effective are the proposed reasoning methods, including both pairwise and
collective comparative reasoning methods?

• Q2. Efficiency. How fast are the proposed methods?

Two data graphs are used in the experiments: Yago [30] 1 and Covid-19 2. Yago [30] is a widely used
knowledge graph which contains 12,430,705 triples, 4,295,825 entities and 39 predicates. The Covid-19 data
graph contains three types of entities which are Gene, Disease and Chemical. In our experiments, we use a
subset of the Covid-19 dataset which contains 55,434 core entities and 5,527,628 triples. We compare our method
with 4 baselines, including:

• TransE [1] embeds both the entities and relations in the knowledge graph to a high dimension embedding
space, and checks the consistency of a triple according to the embedding distance.

• Jaccard coefficient [14] is a link prediction algorithm which measures the truthfulness of the triple
according to the number of common neighbor nodes of the head entity and tail entity.

• Knowledge Linker [2], short for KL, extracts a path between the head entity and tail entity to decide
whether the input triple is correct.

• KGMiner [26] extracts a subgraph between the head entity and tail entity to predict the truthfulness of the
input clue.

All the experiments are conducted on a moderate desktop with an Intel Core-i7 3.00GHz CPU and 64GB
memory. The source code could be found at https://github.com/lihuiliullh/KompaRe. For
TransE [1] in the experiments, we set the embedding dimension to 64 and use a margin of one and a learning rate
of 0.01 for 1,200 epochs.

5.1 Predicate-Predicate Similarity Efficacy

We evaluate the proposed predicate-predicate similarity. Figure 4 presents two examples on Yago dataset. It
shows the top-10 most similar predicates with exports and livesIn, respectively. The font size in Figure 4

1It is publicly available at https://www.mpi-inf.mpg.de/de/departments/databases-and-information-systems/
research/yago-naga/yago/downloads. We use the core version.

2The dataset can be found at http://blender.cs.illinois.edu/covid19/.

30

(a) exports (b) livesIn

Figure 4: Top-10 most similar predicates in Yago.

is proportional to the predicate-predicate similarity value. The top similar predicates w.r.t. exports by our
method include imports, hasOfficialLanguage, dealsWith, all of which have a high similarity with
exports. They all provide specific semantic information about exports. Likewise, the top similar predicates
w.r.t. livesIn include wasBornIn, isCitizenOf, diedIn, all of which are closely related to livesIn.
These results showcase that the proposed TF-IDF based method can effectively measure the similarity between
different predicates.

Table 5 shows the predicate similarity between isTypeOf and other predicates.

Table 5: Predicate similarity of isTypeOf with others
predicate sim predicate sim predicate sim predicate sim

isCitizenOf 0.840 isLeaderOf 0.955 isAffiliatedTo 0.808 isPoliticianOf 0.917
livesIn 0.972 owns 0.945 exports 0.706 dealsWith 0.697

hasCapital 0.786 command 0.216 happenedIn 0.767 participatedIn 0.869
worksAt 0.752 isLocatedIn 0.870

5.2 Pair-wise Comparative Reasoning

Here, we evaluate the effectiveness of the proposed pair-wise comparative reasoning. Ten query sets are used in
the experiments. For each positive query set, it contains a set of queries which describe the true claim, while
for each negative query set, it contains a set of queries which describe the false claim. For example, in query
set “Birth Place", <Alan Turing, wasBornIn, Maida Vale> and <Alan Turing, wasBornIn,
United Kingdom> is a positive query pair, while <Alan Turing, wasBornIn, Maida Vale> and
<Alan Turing, wasBornIn, Canada> is an negative query pair. The positive queries are generated by
sampling some true claims in the knowledge graph. The negative queries are generated by substituting one subject

Table 6: Accuracy of pair-wise comparative reasoning.
Dataset

of
queries TransE Jaccard KL KGMiner Neural Network Based Graph Kernel Based

Family members positive 300 0.682 0.831 0.618 0.983 1.000 0.944
Family members negative 300 0.335 0.169 1.000 1.000 0.000 0.941
Graduated college positive 300 0.686 0.335 0.502 0.769 0.879 0.794
Graduated college negative 300 0.626 0.993 0.947 0.901 0.367 0.994

Live place positive 300 0.567 0.415 0.489 0.834 0.086 0.762
Live place negative 300 0.802 0.585 0.907 0.900 0.732 0.888
Birth place positive 300 0.590 0.435 0.537 0.698 0.656 0.800
Birth place negative 300 0.845 1.000 0.973 0.927 0.719 0.927
Work place positive 300 0.751 0.319 0.445 0.698 0.700 0.720
Work place negative 300 0.624 0.994 0.942 0.927 0.803 0.995

mean± std - 0.651 ± 0.424 0.608 ± 0.302 0.736 ± 0.221 0.864 ± 0.105 0.594 ± 0.333 0.877 ± 0.095

31

of the positive queries. The accuracy is defined as N
M whereN is the number of queries correctly classified by pair-

wise comparative reasoning and M is the total number of queries. When checking the consistency of a query pair
< s1, p1, o1 > and < s2, p2, o2 >, because none of the baseline methods is designed for pair-wise comparative
reasoning, we use them to check each triple in the pair, if any triple is classified as false, this query pair is treated
as false. Otherwise, we further check the truthness of < o1, isTypeOf, o2 > and < o2, isTypeOf, o1 >, if one
of them is classified as consistency, this query pair is treated as consistency. Table 6 gives the detailed results.

As we can see, Graph Kernel based method and KGMiner [26] have the highest accuracy most of the time.
But Graph Kernel based method has the highest average accuracy and the lowest variance compared with other
methods.

5.3 Neural Network Based Pair-wise Comparative Reasoning

We conduct more experiments in this section to test the effectiveness of Neural Network Based Pairwise
comparative reasoning. Six binary classifiers are used in the experiment. Table 7 shows the details of each
classifier and their performance on different query sets. As we can see, different methods have different
performances. Logistic Regression has the highest average accuracy and K-Nearest Neighbor has the highest
average recall.

Table 7: Accuracy, recall and precision of neural network based pair-wise comparative reasoning

Model
Dataset

Family members Graduated college Live place Birth place Work place mean± std

measurements Acc Prec Recall Acc Prec Recall Acc Prec Recall Acc Prec Recall Acc Prec Recall Acc Prec Recall
of queries 506 499 560 470 540 -

Logistic Regression 0.480 0.519 0.491 0.693 0.660 0.729 0.619 0.732 0.594 0.674 0.816 0.645 0.743 0.786 0.733 0.642±0.090 0.703±0.106 0.639±0.091
SVM 0.431 0.154 0.364 0.416 0.113 0.333 0.611 0.768 0.581 0.516 1.000 0.516 0.688 0.911 0.637 0.532±0.104 0.589±0.380 0.486±0.119

Decision Trees 0.422 0.519 0.443 0.713 0.623 0.786 0.619 0.696 0.600 0.611 0.694 0.607 0.716 0.750 0.712 0.616±0.107 0.656±0.080 0.629±0.116
Random Forest 0.314 0.462 0.364 0.624 0.528 0.683 0.673 0.714 0.656 0.684 0.673 0.702 0.706 0.661 0.740 0.600±0.146 0.608±0.096 0.629±0.135

Naive Bayes 0.461 0.615 0.478 0.624 0.830 0.603 0.522 0.839 0.511 0.632 0.878 0.597 0.725 0.911 0.671 0.593±0.092 0.815±0.104 0.572±0.069
K-Nearest Neighbor 0.392 0.500 0.419 0.683 0.774 0.672 0.646 0.589 0.660 0.695 0.673 0.717 0.761 0.821 0.742 0.636±0.127 0.672±0.118 0.642±0.115

Table 8 shows performance of the neural network based method on each positive and negative query dataset.
Based on the results in the table, we can conclude that the accuracy of the neural network based model is lower
than that of other models, e.g., KGMiner and Graph Kernel Based method.

Table 8: Accuracy of neural network based pair-wise comparative reasoning

Dataset
Model # of

queries Logistic Regression Support Vector Machines Decision Trees Random Forest Naive Bayes K-Nearest Neighbor

Family members positive 258 0.519 0.577 0.481 0.481 0.615 0.500
Family members negative 248 0.440 0.420 0.340 0.260 0.300 0.280
Graduated college positive 261 0.660 0.868 0.623 0.547 0.830 0.774
Graduated college negative 238 0.729 0.208 0.812 0.708 0.396 0.583

Live place positive 277 0.732 1.000 0.643 0.679 0.839 0.589
Live place negative 283 0.509 0.632 0.526 0.632 0.211 0.702
Birth place positive 244 0.816 1.000 0.653 0.653 0.878 0.673
Birth place negative 226 0.522 0.000 0.522 0.674 0.370 0.717
Work place positive 277 0.786 0.946 0.696 0.679 0.911 0.821
Work place negative 263 0.698 1.000 0.660 0.755 0.528 0.698

mean± std - 0.641 ± 0.126 0.665 ± 0.343 0.596 ± 0.125 0.607 ± 0.138 0.588 ± 0.250 0.634 ± 0.148

5.4 Collective Comparative Reasoning

We test collective comparative reasoning method on Yago dataset, using 6 query sets . Different from the
queries of pair-wise comparative reasoning which only contain two edges, each query of collective compar-
ative reasoning contains 3 edges. For example, in query set “live Place", <Barack Obama, livesIn,

32

Table 9: Accuracy of collective comparative reasoning.

Dataset # of
queries TransE Jaccard KL KGMiner Kompare

Birth place positive 300 0.542 0.418 0.389 0.678 0.795
Birth place negative 300 0.465 0.996 0.968 0.970 0.829
Live place positive 300 0.448 0.451 0.465 0.635 0.989
Live place negative 300 0.558 1.000 0.860 0.924 0.743

Graduated college positive 300 0.488 0.269 0.335 0.585 0.963
Graduated college negative 300 0.545 0.996 0.928 0.907 0.829

mean± std - 0.508 ± 0.045 0.688 ± 0.313 0.658 ± 0.265 0.783 ± 0.155 0.858 ± 0.089

Washington,D.C.>,<Barack Obama, is, United States Senate Barack Obama> and<United
States Senate Barack Obama, livesIn, United States> is a positive query triad, while<Barack
Obama, livesIn, Washington,D.C.>,<Barack Obama, is, United States Senate Barack
Obama> and <United States Senate Barack Obama, livesIn, Canada> is an negative query
triad. The definition of the accuracy is the same as the previous section. Following the setting of pair-wise reason-
ing, when checking the consistency of the query graph < s1, p1, o1 >, < s1, is, s2 > and < s2, p2, o2 >, we
use baseline methods to check the truthness of this query triad, if any edge is classified as false, this query triad is
treated as false. Otherwise, we further check the truthness of < o1, isTypeOf, o2 > and < o2, isTypeOf, o1 >,
if one of them is classified as true , this query pair is treated as consistency. Table 9 gives the detailed results. As
we can see, Jaccard [14] prefers to classify all queries as inconsistency and has the largest variance. TransE [1]
has the lowest variance, but its average accuracy is very low. KOMPARE has the highest accuracy most of the
time. It also has the highest average accuracy, and the second lowest variance.

Table 10: Accuracy of collective comparative reasoning for Covid-19.

Dataset # of queries TransE Jaccard KL KGMiner Kompare
Positive 36 0.667 0.611 1.000 0.694 1.000
Negative 36 0.528 0.361 0.722 0.553 0.863

Average accuracy - 0.598 ± 0.071 0.486 ± 0.126 0.861 ± 0.138 0.623 ± 0.071 0.932 ± 0.063

We further provide experimental results on Covid-19 dataset. We use queries which contain connections
between drugs and genes/chemicals related to covid-19.3 Among all these queries, we use queries which contain
less than 8 nodes, and treat them as positive queries. For each of the positive queries, we randomly select one
node inside the query and substitute it with a randomly selected entity in the data graph, and treat the new query
as the negative query. For all the baseline methods, we use them to check all the edges inside the query, if any
edge is classified as false, the whole query is treated as false. Table 10 shows the accuracy of different methods.
As we can see, KOMPARE has the highest accuracy on both the positive and negative datasets, it also has the
highest average accuracy and the lowest variance compared with other baseline methods.

5.5 Efficiency Results

The runtime of knowledge segment extraction depends on the size of the underlying knowledge graphs. Among
the two types of knowledge segments (edge-specific knowledge segment and subgraph-specific knowledge
segment), subgraph-specific knowledge segment is most time-consuming. Figure 5(a) shows that its runtime
scales sub-linearly w.r.t. the number of nodes in the knowledge graph. Different lines show the runtime w.r.t.
different query graph size. Figure 5(b) shows the runtime of comparative reasoning, where ‘Pair-wise’ refers to
the pairwise comparative reasoning, and the remaining bars are for collective comparative reasoning with 3, 4
and 5 edges in the query graphs respectively. Note that the runtime of comparative reasoning only depends on the

3The query graphs can be found at http://blender.cs.illinois.edu/covid19/visualization.html.

33

(a) Subgraph-specific KS extraction (b) Comparative reasoning

Figure 5: Runtime of KOMPARE

size of the the corresponding knowledge segments which typically have a few or a few tens of nodes. In other
words, the runtime of comparative reasoning is independent of the knowledge graph size.

6 Related Work

A - Knowledge Graph Search. Many efforts have been made for searching and browsing large knowledge
graphs. Wang et al. [36] proposed a Bayesian probability model combined with random walks to find the most
similar concepts for a given query entity. Wu et al. [29] discovered that the background knowledge graph can
be described by many small-sized patterns. They developed an effective mining algorithm to summarize the
large knowledge graph according to small-sized patterns. Yang et al. [39] found that due to the lack of insight
about the background knowledge graph, it is often hard for a user to precisely formulate a query. They developed
a user-friendly knowledge graph search engine to support query formation and transformation. Jayaram et al.
[10] proposed a knowledge graph query system called GQBE. Different from other graph query systems, GQBE
focuses on entity tuple query which consists of a list of entity tuples. Zhang et al. [40] developed a comprehensive
multi-modality knowledge extraction and hypothesis generation system which supports three types of queries,
including (1) class-based queries (2) zero-hop queries and (3) graph-queries.
B - Fact Checking on Knowledge Graph. In 2015, GL Ciampaglia et al. [3] show that the complexities of
human fact checking can be approximated quite well by finding the shortest path between concept nodes under
properly defined semantic proximity metrics on knowledge graphs. The authors evaluate tens of thousands of
claims on knowledge graphs extracted from Wikipedia. Many research works follow this direction with different
techniques. Baoxu et al. [27] model the fact checking problem as a link-prediction task in a knowledge graph,
and present a discriminative path-based method for fact checking in knowledge graphs. Shiralkar et al. [28]
adopts k-shortest paths approach to construct a knowledge stream (KS) between two entities as the background
knowledge for fact checking. Lin et al. [15] introduce ontological patterns in fact checking for semantic and
topological constraints. These constraints are represented as subgraph patterns which are used for query in the
knowledge graph. In order to obtain the ground truth of contextualized claim, Tchechmedjiev et al. release a large,
up-to-date and queryable corpus of structured information about claims and related metadata for fact checking
research, named ClaimsKG [32].
C - Knowledge Graph Reasoning. Generally speaking, there are two types of knowledge graph reasoning
methods, including (1) embedding based approaches and (2) multi-hop approaches. For the former, the main
idea is to learn a low dimensional vector for each entity and predicate in the embedding space, and use these
embedding vectors as the input of the reasoning tasks (e.g., [1], [31], [12], [35]). For the latter, the main

34

idea is to learn missing rules from a set of relational paths sampled from the knowledge graph (e.g., [13], [37],
[22]). Many effective reasoning methods have been developed for predicting the missing relation (i.e., link
prediction) or the missing entity (i.e., entity prediction). In link prediction, given the ‘subject’ and the ‘object’ of
a triple, it predicts the existence and/or the type of relation. For example, TransE [1] learns the low dimensional
embedding of both entities and predicates in the knowledge graph; TransR [16] learns the embedding of entities
and predicates in two separate spaces. The learned embedding (either by TransE or TransR) can be used for both
link predication and entity predication. In entity prediction, given the ‘subject’ and the ‘predicate’ of a triple, it
predicts the missing ‘object’. For example, GQEs [12] embeds the graph nodes in a low dimensional space, and
treats the logical operators as learned geometric operations.

In recent years, knowledge graph reasoning has demonstrated strong potential for computational fact checking.
Given a claim in the form of a triple of the knowledge graph, it reasons whether the claim is authentic or
falsified. For example, in [24], the authors focused on checking the truthfulness of a given triple/claim, by first
transforming the knowledge graph into a weighted directed graph, and then extracting a so-called knowledge
stream based on maximum flow algorithm. It is worth mentioning that the extracted knowledge stream can be
viewed as an edge-specific knowledge segment in KOMPARE. In [25], an alternative method was developed
to detect fake claims by learning the discriminative paths of specific predicates. Different from [24], this is a
supervised reasoning method since it requires different training datasets for different predicates. If the predicate
in the claim does not exist in the training data, which is likely to be the case for detecting falsified claims in
emerging news, the algorithm becomes inapplicable. As mentioned before, these methods belong to point-wise
reasoning. Therefore, they might fall short in detecting the semantic inconsistency between multiple claims which
can be solved by knowledge graph comparative reasoning.

7 Conclusions

In this paper, we present the problem definition and algorithms for knowledge graph comparative reasoning.
Comparative reasoning aims to complement and expand the existing point-wise reasoning over knowledge graphs
by inferring commonalities and inconsistencies of multiple pieces of clues. We propose several methods to
tackle comparative reasoning. At the heart of the proposed methods are a suite of core algorithms, including
predicate-predicate similarity and semantic subgraph matching for knowledge segment extraction; neural network
and influence function, commonality rate, transferred information amount for both pairwise reasoning and
collective reasoning. The experimental results demonstrate that the proposed methods (1) can effectively detect
semantic inconsistency, and (2) scales near linearly with respect to the knowledge graph size.

References

[1] B. Antoine, U. Nicolas, G. Alberto, W Jason, and Y. Oksana. Translating embeddings for modeling
multi-relational data. In NIPS ’13, NIPS ’13, pages 2787–2795.

[2] Giovanni Luca Ciampaglia, Prashant Shiralkar, and Rocha. Computational fact checking from knowledge
networks. 2015.

[3] Giovanni Luca Ciampaglia, Prashant Shiralkar, Luis M Rocha, Johan Bollen, Filippo Menczer, and Alessan-
dro Flammini. Computational fact checking from knowledge networks. PloS one, 10(6):e0128193, 2015.

[4] Limeng Cui, Suhang Wang, and Dongwon Lee. Same : Sentiment-aware multi-modal embedding for
detecting fake news. 2019.

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional
transformers for language understanding, 2018.

35

[6] Boxin Du, Lihui Liu, and Hanghang Tong. Sylvester tensor equation for multi-way association. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD ’21,
page 311–321, New York, NY, USA, 2021. Association for Computing Machinery.

[7] C. Faloutsos, K. McCurley, and A. Tomkins. Fast discovery of connection subgraphs. In KDD ’04, pages
118–127, New York, NY, USA, 2004. ACM.

[8] S. Freitas, N. Cao, Y. Xia, D. H. P. Chau, and H. Tong. Local partition in rich graphs. BigData ’19, pages
1001–1008, Dec 2018.

[9] C. Giovanni, S. Prashant, R. Luis, B. Johan, M. Filippo, and F. Alessandro. Computational fact checking
from knowledge networks. PloS one, 10, 01 2015.

[10] N. Jayaram, A. Khan, C. Li, X. Yan, and R. Elmasri. Querying knowledge graphs by example entity tuples.
27(10):2797–2811, Oct 2015.

[11] Y. Koren, S. North, and C. Volinsky. Measuring and extracting proximity in networks. KDD ’06, pages
245–255, New York, NY, USA, 2006. ACM.

[12] H. William L., B. Payal, Z. Marinka, J. Dan, and L. Jure. Embedding logical queries on knowledge graphs.
NIPS’18, page 2030–2041, Red Hook, NY, USA, 2018.

[13] Ni L, Tom M, and William W. C. Random walk inference and learning in a large scale knowledge base.
EMNLP ’11, USA, 2011.

[14] David Liben-Nowell and Jon Kleinberg. The link prediction problem for social networks. CIKM ’03.

[15] Peng Lin, Qi Song, and Yinghui Wu. Fact checking in knowledge graphs with ontological subgraph patterns.
Data Science and Engineering, 3(4):341–358, 2018.

[16] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu. Learning entity and relation embeddings for knowledge graph
completion. AAAI’15. AAAI Press, 2015.

[17] L. Liu, B. Du, and H. Tong. Gfinder: Approximate attributed subgraph matching. BigData ’19, Dec 2019.

[18] Lihui Liu, Boxin Du, Yi Ren Fung, Heng Ji, Jiejun Xu, and Hanghang Tong. Kompare: A knowledge graph
comparative reasoning system. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, KDD ’21, page 3308–3318, New York, NY, USA, 2021. Association for
Computing Machinery.

[19] Lihui Liu, Boxin Du, Heng Ji, and Hanghang Tong. A knowledge graph reasoning prototype. NeurIPS
(demo track), 2020.

[20] Lihui Liu, Boxin Du, Jiejun Xu, Yinglong Xia, and Hanghang Tong. Joint knowledge graph completion
and question answering. In Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD ’22, page 1098–1108, New York, NY, USA, 2022. Association for Computing
Machinery.

[21] Kai Nakamura, Sharon Levy, and William Yang Wang. r/fakeddit: A new multimodal benchmark dataset
for fine-grained fake news detection. CoRR, abs/1911.03854, 2019.

[22] D. Rajarshi, N. Arvind, B. David, and M. Andrew. Chains of reasoning over entities, relations, and text
using recurrent neural networks. ACL ’17, April 2017.

36

[23] Shane Roach, Connie Ni, Alexei Kopylov, Tsai-Ching Lu, Jiejun Xu, Si Zhang, Boxin Du, Dawei Zhou,
Jun Wu, Lihui Liu, Yuchen Yan, Jingrui He, and Hanghang Tong. Canon: Complex analytics of network
of networks for modeling adversarial activities. In 2020 IEEE International Conference on Big Data (Big
Data), pages 1634–1643, 2020.

[24] Prashant S, Alessandro F, Filippo M, and Giovanni C. Finding streams in knowledge graphs to support fact
checking. pages 859–864, 11 2017.

[25] B. Shi and T. Weninger. Discriminative predicate path mining for fact checking in knowledge graphs.
Know.-Based Syst., 104(C):123–133, July 2016.

[26] Baoxu Shi and Tim Weninger. Discriminative predicate path mining for fact checking in knowledge graphs.

[27] Baoxu Shi and Tim Weninger. Discriminative predicate path mining for fact checking in knowledge graphs.
Knowledge-based systems, 104:123–133, 2016.

[28] Prashant Shiralkar, Alessandro Flammini, Filippo Menczer, and Giovanni Luca Ciampaglia. Finding streams
in knowledge graphs to support fact checking. In 2017 IEEE International Conference on Data Mining
(ICDM), pages 859–864. IEEE, 2017.

[29] Q. Song, Y. Wu, P. Lin, L. X. Dong, and H. Sun. IEEE Transactions on Knowledge and Data Engineering,
30(10):1887–1900, Oct 2018.

[30] Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A core of semantic knowledge. WWW
’07. Association for Computing Machinery, 2007.

[31] Z. Sun, Z. Deng, J. Nie, and J. Tang. Rotate: Knowledge graph embedding by relational rotation in complex
space. ArXiv, abs/1902.10197, 2019.

[32] Andon Tchechmedjiev, Pavlos Fafalios, Katarina Boland, Malo Gasquet, Matthäus Zloch, Benjamin
Zapilko, Stefan Dietze, and Konstantin Todorov. Claimskg: a knowledge graph of fact-checked claims. In
International Semantic Web Conference, pages 309–324. Springer, 2019.

[33] Hanghang Tong and Christos Faloutsos. Center-piece subgraphs: Problem definition and fast solutions.
KDD ’06, pages 404–413, New York, NY, USA, 2006. ACM.

[34] Hanghang Tong, Christos Faloutsos, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart and
its applications. ICDM ’06, pages 613–622, Washington, DC, USA, 2006. IEEE Computer Society.

[35] William Yang Wang and William W. Cohen. Learning first-order logic embeddings via matrix factorization.
IJCAI’16, page 2132–2138. AAAI Press, 2016.

[36] Z. Wang, K. Zhao, H. Wang, X. Meng, and J. Wen. Query understanding through knowledge-based
conceptualization. IJCAI’15, pages 3264–3270. AAAI Press, 2015.

[37] W Xiong, T Hoang, and W Wang. Deeppath: A reinforcement learning method for knowledge graph
reasoning. In EMNLP, 2017.

[38] Yuchen Yan, Si Zhang, and Hanghang Tong. Bright: A bridging algorithm for network alignment. In
Proceedings of the Web Conference 2021, WWW ’21, page 3907–3917, New York, NY, USA, 2021.
Association for Computing Machinery.

[39] Shengqi Yang, Yinghui Wu, Huan Sun, and Xifeng Yan. Schemaless and structureless graph querying. Proc.
VLDB Endow., 7(7):565–576, March 2014.

37

[40] T. Zhang, G. Shi, L. Huang, and D. Lu and. GAIA - A multi-media multi-lingual knowledge extraction and
hypothesis generation system. TAC’ 18, 2018.

[41] Q. Zhou, L. Li, N. Cao, L. Ying, and H. Tong. adversarial attacks on multi-network mining: problem
definition and fast solutions. ICDM ’19, Dec 2019.

38

