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Abstract

In recent years, the explosive increase of information facilitates the massive knowledge graphs, which
in turn increase burden of people to understand and leverage the regularity behind these superficial
facts. Therefore, the metaknowledge, defined as the knowledge about knowledge, is proposed to identify
complex processes of knowledge production and consumption. Unfortunately, even though the current
correlation-based rule mining methods in knowledge graph distill the rule-formed metaknowledge,
they can not explain the processes of knowledge production. In this paper, we focus on capturing the
metaknowledge with causality which is generally regarded as one of the most promising techniques to
reveal the interactions between components in the complex system. To the best of our knowledge, this is
the first attempt to interpret the knowledge graph from the causal perspective.

For this purpose, we propose a causal metaknowledge method for link prediction, which achieves
entity-level link prediction by discovering concept-level topological causality. Specifically, we first
formalize causal metaknowledge as causal rule, following the form of logical rule. Then, we transform the
relational data into propositional data to learn the causal relationships between topological structures.
And an efficient algorithm for discovering local causal relationships is proposed using the d-seperation
criterion. Eventually, the causal rules generated based on the mined relationships are used for link
prediction. Both simulation-based and real data-based experiments demonstrate the effectiveness of the
proposed approach, especially under the Out-of-Distribution(OoD) settings.

1 Introduction

In the era of information explosion, knowledge graph (KG) is a powerful representation for integrating billions
of available relational facts, based on observational low-level knowledge in the world, to encapsulate the rich
relationships of entities [17, 45]. Although the massive knowledge can benefit various downstream applications,
e.g. query answering [42, 23, 4], recommendation systems [41, 40, 22], yet to better understand, exploit, and
complete these underlying knowledge, it is necessary to explore the intrinsic principle of the emergence of this
factual knowledge. For this purpose, the concept of meta-knowledge is proposed and defined as the knowledge
about knowledge [6].

Current rule mining methods in the KG literature attempt to mine meta-knowledge, in the form of association
rules, via correlation analysis represented by frequency analysis [9, 8, 27]. These association rules can be used
for downstream tasks such as knowledge graph completion, and question answering. However, association does
not imply causation [1]. Fortunato et al. points out that causality is necessary to identify the fundamental drivers
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Figure 1: Motivation illustration. Consider a scenario to learn rules for inferring the Treat relation between
compounds and diseases on a heart disease KG (top), and thereby discover novel drugs for treating nicotine
addiction on an addiction disease KG (bottom). On the heart disease KG, drugs that treat the same disease often
share the same side effects. The correlation-based approach establishes a strong spurious correlation between the
shared side-effect information and the treat relation. In contrast, the underlying cause of the treat shows
a weak association (Rule ①). Therefore, when the above rule is migrated to addiction disease KG (drugs that
treat the same basic kind of disease often do not have shared side effects), false prediction could be resulted (e.g.,
Brodalumab is more likely to be prescribed for nicotine addiction, instead of Bupropion).

of knowledge [7]. The correlation-based method may lead to spurious correlations between the body and head of
rule, which can not be generalized to new environments.

Here we take the KG-based drug repurposing task as an example (shown in Fig. 1). Given the heart disease
KG as training data, traditional rule mining methods may rely on two rules ① and ② to predict the Treat
relation. As heart disease drugs entail similar side effects, the confidence (weight) of Rule ②, calculated based on
correlation, is greater than that of Rule ① (0.7 versus 0.6). However, the localization of the drug to the target
protein produced by the disease gene, as indicated in Rule ①, is the recognized mechanism for physicians to
prescribe drugs for the disease [15]. This phenomenon, typical of spurious correlations, is due to the scarcity of
genetic information and the abundance of side-effect facts accompanying the data collection process. Therefore,
these weighted rules could produce false KG completion results as the environment shifts. Fig. 1(b) visualizes
such testing process where the learned rules from heart disease KG are used to answer queries from addiction
disease KG. Both nicotine withdrawal drug (Varenicline) and psoriasis drug (Brodalumab) are known to cause
the side effect suicidal tendencies. However, the available drug for nicotine withdrawal Bupropion (which binds
the gene that participates in nicotine) is not. With the mined rules in Fig. 1(a), physicians could falsely prescribe
Brodalumab (Path 2) as a new treatment for nicotine withdrawal, instead of Bupropion (Path 1). If we can learn
stable relationships (such as causality) between predicted features and predicted targets, such effect of spurious
correlations can be eliminated.

In this paper, we propose a method that learns rules from the causal perspective to ensure strong generalization
ability whilst retaining decent interpretability. Specifically, we are concerned with understanding how KG links
are generated, through causal discovery. There are two major challenges in this problem: 1) efficiency and 2)
proper metrics. For the former, the complex topological structures between massive entity pairs could induce
thousand-scale rule space with barely ten relations, posing challenges for both score-based and constraint-based
causal discovery approaches. The complexity of the constraint-based technique increases exponentially with the
number of nodes, whereas the score-based approach creates an NP-hard problem [19]. For the latter, rule-mining
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algorithms generally require specific metrics, such as support rate, as the weights for inference. Therefore, we
also need to design a metric to measure the strength of each causal relationship.

In this work, we first formulate causal meta-knowledge with the concept of causal rule, on which we further
introduce several constraints to reduce the search space. Then, we propose the CMLP (Causal Metaknowledge-
based Link Prediction) algorithm, which integrates efficient causal rule discovery approach and causation-based
link prediction method. Specifically, we first introduce the concept of rule-induced variable, which uses relation
paths to describe the topological structure of entities, and map the graphs into quantified samples with the
designed assignment function. Further, we observe that the whole causal structure is not necessary for specific
link prediction task, but only the part of the structure related to the predicted relation. Therefore, we design an
efficient method based on d-seperation to achieve local causal discovery. Meanwhile, the causal strength based
on conditional dependence can also be generated as the weights of learned causal rules. Finally, the predictions
can be ranked from weighted causal rules.
Contributions. Our main contributions can be summarized as follows: (i) This is the first work that aims at
improving link prediction in KG by causal inference to eliminate the effect of spurious correlation, as evidenced
in traditional methods. (ii) This work introduces CMLP that learns a link predictor based on discovering causal
meta-knowledge. (iii) CMLP outperforms other competitive baselines on link prediction tasks under Out-of-
Distribution (OoD) setting. Furthermore, we analyze the learned meta-knowledge for insights on the mechanism
of the applications.

2 Preliminaries and Problem Statement

2.1 Definitions and Notations

In this paper, we follow the definition of knowledge graph as in [17]:

Definition 2.1: A Knowledge Graph (KG) is defined as G = (E ,R,F), where E ,R and F are sets of entities,
relations and facts, respectively. Every fact is a triple (eh, R, et) ∈ F , where eh, et ∈ E and R ∈ R are head
entity, tail entity and the relation between entities, respectively. Without loss of generality, we simultaneously
represent a fact as R(eh, et).

First-order logic (FOL) offers a pivotal way to represent real-world knowledge for reasoning. Horn rules, as a
special and typical case of FOL rules, propose to represent a target relation by a body of conjunctive relations.

Definition 2.2: A Horn Rule, generally chain-like, is given as,

Rh(x, y)← Rb1(x, z1) ◦ · · · ◦Rbl(zl−1, y)

where, Rh(x, y) signifies the rule head (target relation) that we wishes to reason andRb1(x, z1)◦· · ·◦Rbl(zl−1, y)
is the rule body (relation path). For simplicity, we denote a Horn rule as Rh : Rb, where Rb = [Rb1 , · · · , Rbl ].
To reason Rh, the size of the rule space is |Bh|. Every closed path of such Horn rule is required to: 1) connect
(x, y) via the rule body, which is a sequence of relations Rb, and 2) ensure (x, y) are accessible directly via the
target relation Rh. Closed paths are also known as rule instances.

2.2 Problem Statement

The goal of this work is to learn the causal rule that is formalized as the horn rule. Specifically, the objective
of traditional logical rule learning is to assign a plausibility score S(Rh|Rb) to each rule in the discovered rule
space, which can be subsequently aggregated to answer queries about the KG. Currently, plausibility scores
are defined over closed paths (e.g., the PCA confidence for AMIE [10]), which are correlational observations.
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We have demonstrated that these scores are prone to spurious correlations and therefore result in inaccurate
predictions under OoD settings, in Sec. 1. Therefore the other aim is to give a plausibility score based on causal
strength.

In this paper, the causal rules are mined for link prediction in KG. We follow the commonly accepted problem
definition of link prediction in KG [32, 39]: given an observed KG G with missing facts, our goal is to predict the
correct entity for an given query (eh, Rh, ?) (or (?, Rh, et)).

3 Proposed Method: CMLP

In this section, we introduce the proposed approach CMLP which learns causal rules for KG link prediction.
CMLP first transforms the relational data into the propositional data to conduct statistical analysis (Sec. 3.1).
Then CMLP presents a local causality identification algorithm based on the d-seperation criterion to efficiently
mines interpretable causal rules (Sec. 3.2). Finally, a specific causation-based score is applied in predictor to
answer the queries with learned causal rules (Sec. 3.3). The pipeline of CMLP is illustrated in Fig. 2.

Figure 2: The framework of CMLP. Particularly, CFLP first transforms the relational data into propositional
data for better statistical analysis. Then it mines interpretable causal rules, which can be interpreted as a kind of
metaknowlege[6]. Finally, a plausibiliy score derived from the causality test is applied in predictor to rank the
answers of the given query.

Figure 3: The process of knowledge graph transformer
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3.1 Knowledge Graph Transformer

Traditional causal discovery algorithms are defined on propositional data, with well-defined variables and samples,
which do not exist in relational data like KGs. Therefore, we give the definition and scope of the variables we
study in the causal discovery phase by mapping the potential causes and queried relations into variables. Then we
give the practical approach for transforming KG into tabular data, whose horizontal axis are the variables we
defined. The process is shown schematically in Fig. 3

3.1.1 Causal variables in KG

The causal rule can be interpreted as a description of causal relationship between the body and the head. Naturally,
we formulate variables based on the elements of rules.

Definition 3.1: For entity pair (x, y), its Rule-induced Variable Xk = fG(x, y|Rb
k), where Rb

k corresponds
to the rule body in the k-th rule Rh : Rb

k(k ∈ {1, ..., |Bh|}). The assignment function fG(·|Rb) can be either
connectivity feature or path count for Rb in KG G.

The head of rule also induces a special variable Y = fG(x, y|Rh). In the real link prediction task, the queries
are normally on a specific relation, such as Treat in drug repurposing. Therefore, the causal rule mining
problem is to discovery the causal relationship between variables Xk = fG(x, y|Rb

k), k ∈ {1, ..., |Bh|} and
variable Y = fG(x, y|Rh). Then we introduce the practical approach that we transform the KG into tabular data
for causality analysis.

3.1.2 Transforming knowledge graph into propositional data

(1) Step-1: Searching candidate causes X . According to definition 2.2, any rule-induced variable X , which is
defined on entity pair(x, y) and seeks to help reasoning over Rh, is a valid candidate cause for Y = fG(x, y|Rh).
So we find all the candidate causes by searching all the paths between entity pairs (x, y), which have the relation
Rh between them. There are many well-studied path finding algorithms, which can search the paths under
different types of constraints, such as Dijkstra’s algorithm [18], A* search [5], best-first search [14], etc. In the
experiments, we adopt the best-first search algorithm. Since the number of candidate causes can be the power
level of the number of relation types, we require that the length of the path is no more than ℓ, where ℓ is the
hyper-parameters. In the experiments of this paper, we set ℓ as 3. (2) Step-2: generating samples. In this paper,
we use the connectivity as the assignment function to get quantitative samples.

Definition 3.2: the binary assignment function of rule-induced variable is as following:

fG(eh, et|Rb
k) = 1con(eh, et|Rb

k)

where 1con(eh, et|Rb
k) ∈ {0, 1} checks whether there exists a path instance of Rk

b between eh and et in KG G.

In this assignment function, we consider whether two entities can be connected via a relation path, instead of
the entities or number of the connection paths. There are two main reasons for this design: (1) We expect that
the mined causal relationship can be generalized to any dataset in this domain. Thus, if we want to distinguish
different entities which instantiate the meta structure, we need to build a multinomial model for all possible entities.
The multinomial would be infeasibly large. And our model can not be applied to any scenario which contain an
unseen entity. (2) this function can be seen as an aggregation function to summary the connection information
between entities. The aggregation function is very common in the causal relation model [25, 20, 21, 35]. With
the aggregation function, we can build a concise and expressive model. Since the only thing we need is whether
the entities are connected. Based on this assignment function, by sampling entity pairs in the training KG and
querying the corresponding variable values, we can obtain tabular data for causal analysis.
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3.2 Causal MetaKnowlege Discovery via d-seperation Criterion

The d-separation criteria [13] (see Definition 3.4) is a sufficient and necessary condition for the compatibility of a
probability distribution with a causal model in the form of a directed acyclic graph (DAG). It states that a joint
probability distribution of a set of random variables is compatible with the DAG (each node represents one of
the given variables and each arrow represents the possibility of causal influence) if and only if the distribution
satisfies a set of conditional independence relations encoded in the structure of the DAG. Therefore, d-separation
is widely used in the algorithms in discovering causal structure[12, 36, 11].

Definition 3.3: d-seperation. A path p is blocked by a set of nodes Z if and only if:
1.p contains a chain of nodes A→ B → C or a fork A← B → C such that the middle node B is in Z (i.e.,

B is conditioned on), or:
2. p contains a collider A→ B ← C such that the collision node B is not in Z, and no descendant of B is in

Z.
If Z blocks every path between two nodes X and Y , then X and Y are d-separated, conditional on Z, and

thus are independent conditional on Z.

Algorithm 1: Local causal metaknowledge discovery
Input: Y and {yi}, i = 1, . . . , N : variable and samples of queried variable (Ch, Ct).Mq ;

XCa = {Xk}, k = 1, . . . ,K and {{xi}k}, i = 1, . . . , N : variables and samples of candidate
causes;

Output: causes XC of Y
1 level d← 0;
2 while d <= |XCa| − 1 do
3 for each Xk ∈ XCa do
4 for each subset Z ∈ XCa\{Xk} and |Z| = d do
5 Test CI(Xk, Y |Z);
6 if CI(Xk, Y |Z) then
7 Test CI(Z, Y |Xk) (Reverse CI test.) ;
8 if not CI(Z, Y |Xk) then
9 Remove Xk from XCa;

10 Break;
11 end
12 end
13 end
14 end
15 d← d+ 1;
16 end
17 XC = XCa

In this work, we design an efficient causal metaknowledge discovery algorithm based on d-separation. With
d-separation, we can get the following conclusion: given any set of variables Z, where Z does not include
X , X is not independent of its parent node (i.e. direct cause). Based on this conclusion, we can obtain a
criterion for determining the direct cause of variable X . Furthermore, we design the following local causal
metaknowledge discovery algorithm (Algo. 1) for the queried variable Y = fG(x, y|Rh). We only mine the
direct cause of Y , instead of the entire causal structure of variable set XCa ∪ {Y }. Particularly, given a queried
variable Y = fG(x, y|Rh), for each candidate cause in XCa (denoted as variable Xk), the proposed algorithm
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Figure 4: An example of bidirectional causal relationship, which may lead wrong results.

Figure 5: An example of non-independent rule-induced variables, which are both the causes of queried relation.

decides whether Xj should be retained in candidate causes set XCa by testing the independence of Xk and Y
conditioning on a subset Z of XCa\{Xk}. The conditional independent(CI) tests are organised by levels (based
on the size d of the conditioning sets). At the first level (d = 0), all pairs of variables are tested conditioning
on the empty set. Some of the candidate causes would be removed and the algorithm only tests the remaining
candidate causes in the next level (d = 1). The size of the conditioning set, d, is progressively increased (by one)
at each new level until d is greater than |XCa| − 1. Each corresponding relation path of X ∈ XC construct a
valid rule to predict the relation Rh in Y .

It is noteworthy that we add the reverse CI test in Algo. 1 (line 7) to avoid the impact of redundant relations
in KGs. For example, Compound1 Resembles−→ Compound2 and Compound1 Binds−→ Gene1

Binds←− Compound2
express the similar message, which could lead the invalid independence test, as shown in Fig. 4. It will lead
both X1 and X2 are removed from the candidate cause set of queried variable Y , even though they have very
strong causal relationship with the drug treatment of diseases. Consequently, we use the reverse CI test to avoid
this issue. In particular, if Xj and Y are judged to be independent conditioning on Z , we will examine the
independence between Z and Y conditioning on Xj . When the result of the additional test is negative, Xj will be
removed from XCa. In this paper, we adopt SCI method [26] as the independent test method in the experiments,
which works well on limited samples and discrete variables.

3.3 Link Prediction based on Explainable Causal Metaknowledge

The approach for link prediction based on interpretable rules tends to generate corresponding weights in the
rule mining phase. By accumulating the weights of the rules satisfied by each predicted entity, a score of the
predicted entities can be generated, and then the results are ranked based on this score. Here we first introduce
how to generate rule weights under the causal model and then describe the approach for link prediction based on
generated weights.
Weights of rules based on conditional dependency. In Algo. 1, we discover the direct causes by the non-
independence relationship between the candidate meta structures and the queried meta structures. It is important
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to note that the meta structures of XC are not independent to each other. Fig. 5 gives an example for this case.
Specifically, X1 and X2 are both causes of Y . Since X1 is also a cause of X2, if we directly calculate the causal
strength between X2 and Y , it is inevitable that w2 will contain the causal effects that arise from X1 along the
path X1 → X2 → Y . Therefore, in order to better measure the importance of each causal rule and to avoid
double-counted in the calculation of each proposed entity’s score, we adopt the minimal conditional dependence
as a measure of the importance of causal rules:

wj = min({dependence(Xj , Y |Z)})
for any subset Z ∈ XCa\{Xj},

(44)

where wj is the rule weight of the meta structure in Xj . In this paper, we use the SCIf (X,Y |Z) in SCI
independence test [26] as the dependence score in Eq. 44, which can be get in the process of causal rules
discovery. The higher of SCIf (X,Y |Z), the stronger the dependency.
Score function of entity results. Because of the incompleteness nature of KGs, open world assumption
(OWA) [17] is often considered on real datasets. Under the OWA, the SUM function are usually adopted to
calculate the ranking score of the predicted entity eh in link prediction task (?, Rh, et):

Ssum
Rq

=
K∑
i=1

w̃iQi, . (45)

where K is the number of causal rules, w̃i is the normalized weight. Qi = 1 when the body of the i-th causal
rule holds for the entity pair (eh, et), otherwise Qi = 0. This approach focuses on the entities supported by
multiple rules and does not use the non-existent relations between entity pairs, since the unreliable negative
samples under OWA. In this paper, Eq. 45 is used in the link predictions on real data. For KG under closed world
assumption(CWA) [17], the negative facts are also reliable, therefore we design a new function to apply the rules
in the link prediction task. Particularly, given an query (?, Rh, et), the score of the triple (eh, Rh, et) is true can
be formulated as:

Savg
Rq

=
K∑
i

w̃i

(
QiȲXi=1 + (1−Qi)ȲXi=0

)
, (46)

where K is the number of causal rules for the queried relation, w̃i is the normalized weight for the i-th result
rule. ȲXi=1 denotes the proportion of the queried relation to be true when the body of the i-th causal rule is true
in the training data, and ȲXi=0 denotes the proportion of the queried relation to be true when the body of the
i-th causal rule is false. Qi = 1 when the body of the i-th causal rule holds for the entity pair (eh, et), otherwise
Qi = 0. The results will be ranked by SRq of each valid et. In this paper, Eq. 46 is used in the link predictions on
simulation data.

4 Experimental Study

4.1 Experimental Setup

In this section, we empirically evaluate the effectiveness and interpretability of the proposed CMLP on both
simulation and real-world datasets. For interpretability, we focus on whether the algorithm can uncover the causal
relationships inherent in the knowledge graph.

4.1.1 Baselines

To evaluate the interpretability of the algorithms, we select four rule-based methods that can conduct link
prediction and generate explainable rules. To make a fair comparison, the inference rules, obtained from different
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Table 20: Dataset statistics of all the experiments.

#Triplets #Relations #Entities
Simulation 6,095 5 1,590

Douban Movie Rate 28,356 12 3,007
Hetionet 174,941 20 32,056

algorithms, are used to conduct the link prediction task based on the same prediction equations. This approach
can also help us observe the impact of different rules on the link prediction task. For a complete evaluation of the
effectiveness of the proposed approach, we also compute the LP performance of TuckER[2], one representation-
based method which has the best overall performance among the representation-based methods across different
datasets[32]. All baselines are listed in the following:

1) AMIE+[8], an efficient top-down method to discover the interpretable rules.

2) AnyBURL[27], a bottom-up approach to mine the logical rule.

3) Neural-LP[44], an end-to-end differentiable model to learn the first-order logical rule.

4) RNNLogic[30], an EM-based algorithm to learn the rule generator and the reasoning predictor iteratively.

5) TuckER[2], a linear model based on Tucker decomposition of the binary tensor representation of knowledge
graph triples.

4.1.2 Datasets

To quantitatively evaluate the effectiveness of the algorithm in discovering causal knowledge, we construct a
simulation dataset owing to a lack of groundtruth of real datasets. Douban and Hetionet [15] are selected as
our real datasets on which we perform two link prediction tasks, movie rating prediction and drug repurposing,
respectively. Here we provide more details for these datasets, and their statistics are shown in Table 20.
Simulation dataset. We generate simulated KGs based on a toy causal model specified in Fig. 6, which includes
three concepts and five relations. In particular, we design the causal mechanisms in KG via a probabilistic model.
The root nodes (X1, X4) in the causal graph are generated via Bernoulli distributions, whose probability mass
function is fX(x) = px(1 − p)1−x. Moreover, the non-root nodes (X2, X3) are generated via the conditional
probability distributions, which are Bernoulli distributions, given the parent node (X1). To maintain a stable
causal mechanism, the parameters of conditional distributions are constant in training and testing, as shown in
Table 21. In the out-of-distribution paragraph, we will introduce the parameters of root nodes in training and
testing.

	C! 𝑅! 	C" 𝑅" 	C#

	C! 𝑅# 	C# 	C! 𝑅$ 	C#

	C! 𝑅% 	C#X!:

X": X#:

X$:

Figure 6: The causal graph of relation paths, based on which the simulated KGs are generated .

Douban movie rating. Douban is a famous Chinese website for movie reviews, where users can rate and
comment on any movie. The rating range is from 1 to 5. A higher rating means that users like movies, while a
lower rating means that users have negative feedback on movies. We collect the real-world data from Douban1

1https://www.douban.com/
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Table 21: The parameters of conditional distributions.

Conditions X2|X1 = 1 X2|X1 = 0 X3|X1 = 1 X3|X1 = 0

Parameters p=0.9 p=0.1 p=0.9 p=0.1

and construct a dataset (this dataset will be released), whose statistics are shown in Table 20. Commonly, a movie
with a score of 4 or 5 is identified as meeting the taste of users. So we transform the original 5-level rating to a
2-level rating with a threshold of 4. If the rating score is 4 or 5, the original relation Rate is replaced by HighRate
We conduct the link prediction task on the relation HighRate. Because the raw data is too large and the relations
between users and movies are very sparse, in this thesis, we first filter the 20 users who have made the most
ratings and take the rating history of these users as the set of rating facts for our study. The facts unrelated to the
rating are also included in our experimental data.
Hetionet[15] is a freely available knowledge database that integrates biomedical information from 29 prominent
bioinformatics resources. Recently, Hetionet was successfully applied to drug repurposing tasks in terms of the
link prediction task for relation Treats[15, 31].

Why do we choose those two real datasets instead of other commonly used datasets, such as WN18, FB15k?
In this paper, we focus on link prediction with the help of causal relationships between knowledge graph relations.
The core of causality lies in its asymmetry. The commonly used KGs for link prediction algorithms contain
many symmetrical relationships, e,g., hypernym and hyponym in WN18. These symmetrical relationships may
help with the link prediction task, but they go against the basic idea that causality is a one-way relationship. We,
therefore, chose datasets with specific application scenarios and rich causal semantics.

4.1.3 Metrics.

For link prediction, we employ the commonly used metrics mean reciprocal rank (MRR) and Hits@k [32, 2, 3].

MRR =
1

|Q|
∑
q∈Q

1

q (47)

Hit@K =
|{q ∈ Q : q ≤ K}|

|Q| (48)

where Q is the rank results, for each qi ∈ Q is the ranking of the desired results in the i-th query (?, Rh, et). In
the case of ties in the calculation of Q, we use the mean rank to avoid misleading results[32, 33]. Both MRR and
His@k are the higher, the better.
The interpretability of causal rules on the simulation dataset can be understood as the consistency between
the mined causal rules and the actual causal structure. Therefore, we evaluate baselines and our approach on
the simulation dataset using precision, recall, and structural Hamming distance (SHD) as the evaluation metrics,
which are commonly used evaluation metrics in causal structure discovery studies [46, 47].

Precision =
#TFR

#FR
;Recall =

#TFR

#ATR
(49)

Where #TFR is the number of right causal relationships discovered by an algorithm, #FR is the number of
causal relationships discovered by an algorithm, and #ATR is the number of all causal relationships. Both
precision and recall are the higher, the better. SHD calculates the difference between the learned graph and the
ground truth graph by the number of edge insertions, deletions, or flips required to transform one graph into
another. The lower the SHD, the better.
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4.1.4 Out-of-Distribution Link Prediction

Traditional machine learning methods are designed based on the assumption of independent and identically
distributed (I.I.D) data. This assumption means the training and test data come from the same distribution.
However, the distribution of test data may alter due to changes in the test environment; such tasks are referred
to as OoD tasks. Traditional algorithms perform poorly on generalization problems due to the violation of
I.I.D assumption. Causality is seen as a stable inference mechanism in many research works on generalization
problems. So, in this work, we provide an out-of-distribution generalization task for the knowledge link prediction
task for the first time. On the one hand, the effect of causal metaknowledge on this task can be measured, and
on the other, the performance of existing algorithms can be looked at. We also evaluate the performance of the
algorithms on I.I.D link prediction tasks.

In this paper, we design two OoD experimental scenarios.
(1) Simulation dataset: We evaluate the link prediction performance under I.I.D and OoD settings, where the
triples of root node X1 are generated in testing under the same and different parameters with training. In the
training and I.I.D testing datasets, pX1 = 0.5. In the OoD testing datasets, pX1 ∈ {0.2, 0.9}. For X4, pX4

maintains 0.9 in training and testing. The facts of the KGs are split into three parts:train, test info, and test. The
facts in train are used to learn the rule. The effectiveness of the learned rule is assessed via the link prediction
task on R3. The test info part includes facts of new entities (did not appear in train) on R1, R2, R4, R5, and test
part includes the queried facts on R3.
(2)Real datasets: It is impossible to explicitly change the data distribution since real data distribution is inac-
cessible for real datasets. Recent research[38, 43] has suggested that graph models are biased towards nodes
with larger degrees, which causes the bad performance of low-degree nodes in the test. Therefore we construct
the OoD datasets based on degree shift. Specifically, given a query task (?, Rh, et), we calculate the median of
degree2 of known entities et belonging to the triples (eh, Rh, et) in the training. Then we bin the test queries by
the degrees of the known entities et. The degree range in each bucket is decided based on the sample size balance.
The test queries in the bucket, which the training median falls in, can be treated as the I.I.D test samples. Others
are the OoD samples. The I.I.D bucket is labeled with ∗ in Table 23 and Table 24.

4.2 Performance of Link prediction task in Out-of-Distrition Settings

Results on simulations. For the simulation dataset, we construct a OoD setting named as covariance shift,
by changing the probability distribution of the root nodes in the test phase. Table 22 presents the methods in
performance and demonstrates the effectiveness of the proposed CMLP. In particular, CMLP outperforms the
baseline models under all metrics except the Hits@10 under I.I.D setting. This shows our method can give a
stable and high-quality result, especially in the OOD setting. Besides, compared with the baselines, the proposed
CMLP perform significantly better at the Hits@1 metric (at least 25% absolute improvements that the second
place under all settings), which suggests the our method are more suitable for scenarios with strict performance
requirements, and this feature may achieved by the removal of association-based rules.
Results for Douban movie rating. Since we filtered the users of the Douban data, and the discrepancies of the
degrees of experimental user nodes are close to each other. Therefore, in this experiment, to construct the OoD
scenario, we adopt the head prediction (? , HighRate, Movie), predicting the set of users who gave high ratings to
movies. Further, we bucketed the movie nodes in the test data according to their degree in the training data to
observe the performance of the algorithm under different node prevalence. The MRR and Hits@5 results shown
in Tab. 23 shows that the proposed CMLP get the best performance in the all OoD settings. Especially, at least
25.8% and 29.3 % relative improvements that the second place on the MRR and Hits@5, respectively. In the I.I.D
setting, CMLP gets the second place on both MRR and Hits@5, lower than the representation-based method

2In this paper, we use the term "degree" to stand for the sum of in and out degrees
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Table 22: The results of link prediction on simulation datasets.

Settings pX1 Method MRR Hits
@10 @3 @1

I.I.D 0.5

AMIE+ 0.87 98.99 94.95 78.79
AnyBURL 0.87 98.99 94.95 78.79
Neural-LP 0.80 98.99 92.42 66.16
RNNLogic 0.87 98.99 94.95 78.79
CMLP 0.94 98.48 97.98 90.91

OOD 0.2

AMIE+ 0.875 96.91 93.81 81.44
AnyBURL 0.875 96.91 93.81 81.44
Neural-LP 0.68 98.97 79.38 50.51
RNNLogic 0.875 96.91 93.81 81.44
CMLP 0.99 100 100 99.97

OOD 0.9

AMIE+ 0.91 100 96.34 85.67
AnyBURL 0.91 100 96.34 85.67
Neural-LP 0.88 100 96.95 79.57
RNNLogic 0.91 100 96.34 85.67
CMLP 0.99 100 99.70 99.09

TuckER. These results illustrate that for movie rating datasets, the rules learned by our method can capture more
general user preferences and give relatively accurate rating predictions for movies that are in different popularity.
Results for drug repurposing on Hetionet. Consistent with the traditional setup of drug redirection, on Hetionet,
we also use head predition (?, Treat, Disease), which is giving a Disease to predict new drugs. We also observe
the performance of the algorithm under this task by bucketing for Disease node degrees. Tab. 24 reports the
MRR and Hits@5 on this dataset, and we can find that: our CMLP performs significantly better than other
baselines on low-degree diseases (0-17), while AMIE+ and AnyBURL get better results on low-degree diseases
(17-100). These results indicate that our method can give more accurate drug discovery results for diseases with
relatively low information. And for diseases with richer information, the correlation-based inference rules give
more accurate drug prediction.

4.3 Quality and Interpretability of Causal Rules.

As stated in Sec. 1, the mined rules play a key role in our algorithm, and an important advantage of these rules is
that they are well interpretable. In this section, we will evaluate the quality and interpretability of rules mined by
CMLP .
Quality of causal rules from simulations. The ground-truth causal graph of KGSs shown in Fig 6, and Table 25
shows the accuracy of estimated rules of different methods. In particular, CMLP accurately discovers two causal
rules in Fig 6 without any redundant rules. In contrast, correlation-based methods report some non-causal rules.
Interpretability of causal rules Moreover, for the simulation dataset, we analyze all methods’ results, whose
heads areR3 andR5, and the results are shown in Table 26 (We omit results ofR4, sinceR3 andR4 are symmetric
in the causal graph). The rules follow the causal mechanism are in bold. There is only one causal rule for R3,
which is R3(C1, C3)← R1(C1, C2), R2(C2, C3). AMIE+, AnyBURL, RNNLogic and CMLP find this causal
rule. Besides this causal rule, the results of AMIE+, RNNLogic and AnyBURL also include other rules, such as
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Table 23: MRR (left) and Hits@5 (right) for Douban movie rating. The * marks columns that contain the I.I.D
results. Other columns contain OoD results.

Methods Degree Range
0-21* 21-31 31-39 39-60

AMIE+ 0.120 0.205 0.261 0.395
AnyBURL 0.125 0.182 0.231 0.373
Neural-LP 0.078 0.097 0.126 0.217
RNNLogic 0.072 0.086 0.097 0.161

TuckER 0.287 0.186 0.186 0.149
CMLP 0.251 0.343 0.392 0.497

Methods Degree Range
0-21* 21-31 31-39 39-60

AMIE+ 13.7 30.7 39.4 68.3
AnyBURL 15.1 26.0 33.2 64.6
Neural-LP 0.1 0.6 3.4 60.0
RNNLogic 1.6 4.7 7.2 13.5

TuckER 50.3 31.9 28.2 21.5
CMLP 40.9 60.0 68.1 88.3

Table 24: MRR(left) and Hits@5(right) for drug repurposing on Hetionet. The * marks columns that contain the
I.I.D results. Other columns contain OoD results.

Methods Degree Range
0-8* 8-17 17-31 31-100

AMIE+ 0.103 0.085 0.132 0.065
AnyBURL 0.116 0.189 0.090 0.188
Neural-LP 0.027 0.014 0.009 0.009
RNNLogic 0.07 0.021 0.029 0.012

TuckER 0.044 0.022 0.083 0.015
CMLP 0.248 0.208 0.095 0.093

Methods Degree Range
0-8* 8-17 17-31 31-100

AMIE+ 13.2 11.3 22.5 13.2
AnyBURL 15.8 25.0 9.6 23.7
Neural-LP 5.3 0 0 0
RNNLogic 7.9 0 3.2 0

TuckER 3.1 5.9 10.7 3.2
CMLP 26.31 25.0 16.1 13.1
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Table 25: Experimental results on simulation data with pX1 = 0.5, based on the metrics (precision, recall and
SHD), which are commonly used to evaluate the estimated causal graph.

Method Precision ↑ Recall ↑ SHD ↓
Neural-LP 0 0 10

AMIE+ 0.22 1.0 7
RNNLogic 0.22 1.0 7
AnyBURL 0.25 1.0 6

CMLP 1.0 1.0 0

Table 26: All rules whose head are R3 and R5, obtained by each algorithm learned on simulated dataset.
The strikethroughs indicate the wrong results (there is no entities satisfying the rule). The rules consistent
with the generation process are in bold. The orange text denotes the weight of each rule with the form max-
normalization(original weight)
.

Method Rules of R3 with pX1
= 0.5 Rules of R3 with pX1

= 0.9 Rules of R5

AMIE+
1.00 (0.908) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (0.900) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (0.898) R5(C1, C3)← R1(C1, C2), R2(C2, C3)
0.91 (0.829) R3(C1, C3)← R4(C1, C3) 0.99 (0.890) R3(C1, C3)← R4(C1, C3) 0.99 (0.895) R5(C1, C3)← R3(C1, C3)
0.55 (0.500) R3(C1, C3)← R5(C1, C3) 0.91 (0.820) R3(C1, C3)← R5(C1, C3) 0.99 (0.894) R5(C1, C3)← R4(C1, C3)

AnyBURL
1.00 (0.896) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (0.898) R3(C1, C3)← R4(C1, C3) 1.00 (0.907) R5(C1, C3)← R1(C1, C2), R2(C2, C3)
0.92 (0.823) R3(C1, C3)← R4(C1, C3) 0.99 (0.893) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 0.99 (0.902) R5(C1, C3)← R3(C1, C3)
0.56 (0.501) R3(C1, C3)← R5(C1, C3) 0.91 (0.821) R3(C1, C3)← R5(C1, C3) 0.99 (0.897) R5(C1, C3)← R4(C1, C3)

Neural-LP

1.00 (0.318) R3(C1, C3)← R4(C1, C2), R4(C2, C3) 1.00 (0.757) R3(C1, C3)← R1(C1, C2), R1(C2, C3) 1.00 (0.125) R5(C1, C3)← R4(C1, C2), R3(C2, C3)
0.99 (0.316) R3(C1, C3)← R4(C1, C2), R5(C2, C3) 0.17 (0.128) R3(C1, C3)← R1(C1, C3) 0.78 (0.097) R5(C1, C3)← R3(C1, C2), R3(C2, C3)
0.31 (0.100) R3(C1, C3)← R5(C1, C2), R4(C2, C3) 0.04 (0.056) R3(C1, C3)← R5(C2, C3), R1(C1, C2)
0.31 (0.099) R3(C1, C3)← R5(C1, C2), R5(C2, C3) 0.05 (0.035) R3(C1, C3)← R4(C2, C1), R1(C3, C2)
0.23 (0.073) R3(C1, C3)← R4(C1, C3) 0.03 (0.025) R3(C1,C3)← R1(C1,C2),R2(C2,C3)
0.09 (0.028) R3(C1, C3)← R4(C1, C2), R4(C2, C3)
0.07 (0.023) R3(C1, C3)← R5(C1, C3)

RNNLogic
1.00 (0.076) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (0.071 ) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (0.220) R5(C1, C3)← R3(C1, C3)
0.58 (0.044) R3(C1, C3)← R4(C1, C3) 0.49 (0.035) R3(C1, C3)← R4(C1, C3) 0.28 (0.060) R5(C1, C3)← R4(C1, C3)
0.13 (0.010) R3(C1, C3)← R5(C1, C3) 0.14 (0.010) R3(C1, C3)← R5(C1, C3) 0.20 (0.045) R5(C1, C3)← R1(C1, C2), R2(C2, C3)

CMLP 1.00 (122.797) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (20.061) R3(C1,C3)← R1(C1,C2),R2(C2,C3) -

R3(C1, C3)← R4(C1, C3) and R3(C1, C3)← R5(C1, C3). Especially, for those three methods, note that the
weights of R3(C1, C3)← R4(C1, C3) are very close to the weights of R3(C1, C3)← R1(C1, C2), R2(C2, C3).
It means the algorithms think these two rules have the similar interpretability for the head relation R3. With the
change of root node X1’s distribution(from pX1 = 0.5 to pX1 = 0.9), AnyBURL even report the higher weight
for the rule R3(C1, C3)← R5(C1, C3). According to the generation mechanism, the existence of R3 between
entities ei and ej is independent with whether there is R4 and R5 between ei and ej . AMIE+, AnyBURL and
RNNLogic still return these association rules with high weights, because they only consider whether R3 and
R4 co-occur frequently, but not the reason of the co-occurrence. The end-to-end completion-oriented method,
Neural-LP, also return some wrong results, such as the top 1 rule R3(C1, C3)← R4(C1, C2), R4(C2, C3), which
can not be satisfied by any entities in KG. The results in [34] show the same phenomenon. The intermediate
results of the completion-oriented method is incomprehensible sometimes.

Furthermore, We sort the rules generated by each algorithm based on their assigned weights and show the five
top rules from Douban and Hetionet in Tab. 27 and Tab. 28, respectively. The results in Tab. 27 suggests that the
ratings for the target movie are highly related to other movies which share the same staff, such as writer, actors,
director, etc. According to the rating results, CMLP finds a strong causal relationship between the rating of the
movie and its editor than other pairs. The top rules generated by AMIE+ and AnyBURL focus on other shared
staffs, but the shared staff has different roles in the target movie and the movie in path. Those rules of AMIE+
and AnyBURL are hard to be satisfied for most queries. It is worth noting that RNNlogic report the ‘fan’ rules
will impact the users’ rating, but CMLP excludes this kind of rules. Our results suggest the working ability of the
movie’s stuff (e.g. actor or writer) should be the root cause of the users’ rate, instead of the followers of the stuff.
From the rules from Hetionet, we can see the learned rules are broadly divided into two classes, those in which
the target drug and disease are connected by therapeutic information about the similar disease and drug, and those
in which the target drug and disease are connected by commonly associated genes. Further, we find that the rules
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Table 27: Top 5 Rules to infer HighRate(User, Movie) given by the methods. The strikethroughs indicate the
wrong results (there is no entities satisfying the rule).

Method Top rules to infer HighRate(User, Movie)

AMIE+

1.00 (0.565) HighRate(User,Movie)← HighRate(User,Movie1), Writer(Person,Movie1),Director(Person,Movie)
0.98 (0.556) HighRate(User,Movie)← HighRate(User,Movie1), Director(Person,Movie1), Writer(Person,Movie)
0.87 (0.489) HighRate(User,Movie)← HighRate(User,Movie1), Writer(Person,Movie1), Actress(Person,Movie)
0.74 (0.417) HighRate(User,Movie)← HighRate(User,Movie1), Director(Person,Movie1), Actor(Person,Movie)
0.72 (0.405) HighRate(User,Movie)← HighRate(User,Movie1), Actress(Person,Movie1), Writer(Person,Movie)

AnyBURL

1.00 (0.400) HighRate(User,Movie)← HighRate(User,Movie1), Composer(Person,Movie1), Actor(Person,Movie)
0.99(0.397) HighRate(User,Movie)← HighRate(User,Movie1), Producer(Person,Movie1), Director(Person,Movie)
0.97 (0.386) HighRate(User,Movie)← HighRate(User,Movie1), Director(Person,Movie1), Actress(Person,Movie)
0.89 (0.355) HighRate(User,Movie)← HighRate(User,Movie1), Writer(Person,Movie1), Actress(Person,Movie)
0.85 (0.340) HighRate(User,Movie)← HighRate(User,Movie1), Editor(Person,Movie1), Editor(Person,Movie)

Neural-LP 1.00 (0.120) HighRate(User,Movie)← HighRate(User,Movie1), HighRate(User1,Movie1), HighRate(User1,Movie)
0.28 (0.034) HighRate(User,Movie)← HighRate(User,Movie1), MovieType(Movie1,Type), MovieType(Movie,Type)

RNNLogic

1.00 (0.011) HighRate(User,Movie)← Fan(User,Person),Editor(Person,Movie)
0.45 (0.005) HighRate(User,Movie)← Fan(User,Person),Actor(Person,Movie)
0.36 (0.004) HighRate(User,Movie)← Fan(User,Person),Director(Person,Movie)
0.36 (0.004) HighRate(User,Movie)← Fan(User,Person),Writer(Person,Movie)
0.36 (0.004) HighRate(User,Movie)← Fan(User,Person),Composer(Person,Movie)

CMLP

1.00 (0.034) HighRate(User,Movie)← HighRate(User,Movie1), Editor(Person,Movie1), Editor(Person,Movie)
0.12 (0.004) HighRate(User,Movie1)← HighRate(User,Movie1),Cinematographer(Person,Movie),Cinematographer(Person,Movie)
0.06 (0.002) HighRate(User,Movie1)← HighRate(User,Movie1),Writer(Person,Movie),Writer(Person,Movie)
0.06 (0.002) HighRate(User,Movie1)← HighRate(User,Movie1),Actress(Person,Movie),Actress(Person,Movie)
0.03 (0.001) HighRate(User,Movie1)← HighRate(User,Movie1),Director(Person,Movie),Actor(Person,Movie)

Table 28: Top 5 Rules to infer Treats(Compound, Disease) given by the methods. For brevity, we use ‘C’ and ‘D’
for compound and disease, respectively.

Method Top rules to infer Treats(Compound, Disease)

AMIE+

1.00 (0.393) Treats(C, D)← Resembles(C,C1), Treats(C1, D)
0.82 (0.322) Treats(C, D)← Resembles(C1,C),Treats(C1, D)
0.42 (0.167) Treats(C, D)← Downregulates(C,Gene1), Associates(D,Gene1)
0.38 (0.151) Treats(C, D)← Downregulates(C,Gene1), Upregulates(D,Gene1)
0.37 (0.144) Treats(C, D)← Binds(C,Gene1), Upregulates(D,Gene1)

AnyBURL

1.00 (0.319) Treats(C, D)← Includes(PharmacologicClass1,C),Includes(PharmacologicClass1,C1),Treats(C1, D)
0.60 (0.192) Treats(C, D)← Resembles(C1,C),Treats(C1, D)
0.52 (0.166) Treats(C, D)← Resembles(C1,C),Resembles(C1,C2),Treats(C2, D)
0.31 (0.098) Treats(C, D)← Resembles(C1,C),Resembles(C2,C1),Treats(C2, D)
0.24 (0.077) Treats(C, D)← Treats(C, D1), Resembles(D1,D)

Neural-LP 1.00 (0.659) Treats(C, D)← Treats(C, D1), Treats(C1, D1),Treats(C1, D)

RNNLogic 1.00 (0.00007) Treats(C, D)← Resembles(C, C1),Treats(C1, D)
1.00 (0.00007) Treats(C, D)← Resembles(C, C1), Resembles(C1, C2),Treats(C2, D)

CMLP

1.00 (269.00)) Treats(C, D)← Treats(C, D1),Resembles(D1, D2),Resembles(D, D2)
0.85 (229.32)) Treats(C, D)← Includes(PharmacologicClass1, C),Includes(PharmacologicClass1, C1),Treats(C1, D)
0.83 (224.37)) Treats(C, D)← Treats(C, D1),Resembles(D2, D1),Resembles(D2, D)
0.58 (155.18)) Treats(C, D)← Treats(C, D1),Treats(C1, D1),Treats(C1, D)
0.10 (26.52)) Treats(C, D)← Treats(C, D1), Resembles(D2,D1), Resembles(D,D1)

mined by AnyBURL also contain rules for reasoning through shared side effects.

5 Related Work

In this section, we first review the related studies in causal discovery for propositional domains and relational
domains. Then we discuss and clarify the distinction between the proposed approach and the most relevant rule
mining methods for relational data. We list the relevant research areas and our differences in the Tab. 29

Table 29: Comparison of our work and related work.

Association Causality
Propositional Traditional machine learning Traditioanal causal model

relational
Rule mining(e.g.logical rule),
Graph representation learning

Relational causal model(with attribute),
Our(without attribute)

Causal Discovery from Propositional Data. Rubin causal models [16] and structural causal models (SCMs) [29]
are the two dominated frameworks for causal discovery from propositional data. Particularly, the former analyzes
the causal effect between treatment and effect with partial structural information, while the later employs Bayesian

116



networks to identify causal structure. Our situation resembles causal discovery in SCM because we are primarily
concerned with unearthing causal relationships from KG. Furthermore, there are two kinds of causal discovery
algorithms, constraint-based and score-based [37], in SCMs. Contrary to the score-based approaches, which are
based on the global score, the constraint-based approaches can employ the local conditional independence to
determine the causal relationship between specific variables, which is critical when only partial causal relationship
is interested. In addition, the constraint-based methods are non-parametric, which means that they do not depend
on the specific functions to connect variables. Based on above advantages, we follow the constrained-based
design to develop our method.
Relational Causal Model. To our best knowledge, the relational causal model [25, 20, 21, 35] is the only
framework designed to extract causal information from relational data. The input of a relational causal model is
a relational database containing entity and relation tables. Each entity table contains all entities corresponding
to the same concept, and each relation table contains all facts corresponding to the same relationship between
two entities. Consequently, a relational database is comparable to a KG. Relational causal model finds causal
relationship between related entity attributes. For example, for the database with two relations: Develop(Employee,
Product) and Funds(Company, Product), the relational causal relationship will give the results like [Employee,
Develops, Products, Fundsby, Company].budgets → [Employee].Success. We can see that relational causal
models emphasize relational models of attributes with a known entity-level connection graph [24], while our
research focuses on generative process of the connection, which is the preceding step in the entire KG generation
process.
Rule Mining from KG. Inductively knowledge reasoning involves generalising patterns from a given set of
observed facts and then generating novel but potentially imprecise predictions. In addition to the incomprehensible
techniques based on embedding, rule mining methods, which benefit from intuitive interpretation of the findings
of link prediction, have maintained the popularity for decades. The rule mining studies in KG can be divided into
two categories according to the main objectives: metrics-oriented and completion-oriented. Metrics-oriented
methods [9, 8, 28] usually use predefined co-occurrence metrics, confidence and support, to find rules satisfying
the given thresholds of the metrics, based on a top-down fashion. Recently, AnyBURL [27] designs a bottom-up
technique for rule learning, which requires few computational resources. The other line of research is completion-
oriented. Different from the predefined metrics-based methods, these studies are mainly based on end-to-end
learning and target on the link completion task. The explainable rules are mainly the intermediate results, which
are obtained via analyzing the parameters of the model. The trained models are used to predict the link directly.
Neural-LP [44] adopts an attention mechanism to select a variable-length sequence as the body of rules for which
confidence scores are learnt from the attention vectors. DRUM [34] uses bidirectional recurrent neural networks
to learn the relations of sequences, which are the body of rules, and their confidence scores are estimated via the
recurrent neural network. RNNLogic [30] utilizes logic rules as a latent variable and trains both a rule generator
and a reasoning predictor with logic rules.

Our work can be seen as one of solutions for rule mining. Different from the past the association-based rule
mining methods, our work aims to discover deeper relationship (i.e. causation) via a more rigorous statistical
inference system. To the best of our knowledge, this is the fist attempt to study rule mining problem under causal
perspective, as far as we know.

6 Conclusion and Future work

In this work, we propose a method, CMLP, for entity-level link prediction based on the causal relationships be-
tween topologies at the concept level. This method constructs complex connectivity between entities and predicts
causal relationships between links at the conceptual level, eliminating spurious correlation that may be learned
by traditional association-based methods. Extensive experiments have shown that the proposed CMLP achieves
leading performance in a variety of OOD experimental settings. Note that previous representation learning based
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models (generally learning from correlations) are hard to generalize to OOD setting, and our model demonstrates
that causal-based learning is a promising solution for this setting.

Since the causal model itself is the method which modes the process of data generation, the mined causal rule
can be used to understand the physical mechanism of knowledge graph generation. It opens up new possibilities
for research in fields such as pharmaceutical economics. Besides, although this paper propose a rule-based model
which can works under OOD setting, how to improve the generalization ability of the representation-based models
is still a open problem and deserved further investigation.
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