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Letter from the Editor-in-Chief

The last time the Data Engineering Bulletin published a special issue on the topic of Knowledge Bases was more
than six years ago. In the September 2016 issue, we asked leading researchers in this field for their thoughts on
the present and future of Knowledge Bases.

At the time, there were two major focuses in the Knowledge Base field: data harvesting and heterogeneous
data management. The primary concern for data harvesting was how to automatically build large, high-quality
knowledge bases from Internet sources. The most difficult challenge in heterogeneous data management was
determining the best way to model the data in a knowledge graph that allows applications to easily access
knowledge.

It is clear that these two challenges are still pressing today. Building knowledge graphs remains a task with
a low ROI because the universe of knowledge is too vast, and many methods are as impractical as boiling the
ocean. Even though information extraction techniques have matured with the progress of machine learning in
text processing, we still struggle to capture the tail facts, or facts mentioned only once or twice in the corpus.
Furthermore, the issue of heterogeneous data management continues to stymie applications’ ability to leverage
knowledge graphs.

Nonetheless, much progress has been made in this area since our September 2016 issue. There has been a
strong pull from applications due to their increasing needs for information and knowledge, and simutaneously a
strong push from technology, fueled by the great process in machine learning, particularly in natural language
processing.

The Data Engineering Bulletin will devote several issues to review the field of Knowledge Bases. This latest
issue, curated by Yangqiu Song, shares a glimpse of the knowledge base landscape today. We are witnessing a
shift of focus and methodology, with representation, data quality, and reasoning taking precedence. The first paper
in the issue, for example, focuses on data incompleteness, which is a critical problem for large-scale knowledge
graphs. Given the limitations of knowledge harvesting, the approach of combining facts and ML-powered
estimations for every information need is promising. The second paper addresses another recurring issue of
knowledge graphs: data inconsistency. It allows users to compare different outcomes of reasoning as the result of
the inconsistency.

Haixun Wang
Instacart
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Letter from the Special Issue Editor

Knowledge graphs, which were originally branded and popularized by Google in 2012, have attracted a lot of
attention in both academia and industry. A knowledge graph is generally a graph-structured knowledge base
that can leverage many graph processing and storage tools to perform knowledge representation and reasoning.
Recently, machine learning, especially deep learning, has been widely used in many problems, including
knowledge graph representation and reasoning. Thus, after more than ten years the term knowledge graph has
been used, there are many new developments that are based on machine learning. First, machine learning models,
particularly, graph representation learning, can be used to learn the representations of knowledge graph entities
and relations. With the new representations, many reasoning tasks such as complex knowledge graph query, rule
induction, knowledge base completion, and knowledge base population can be built based on learning models.
Machine learning models can generalize better on knowledge graphs, where open-world assumption usually
applies. Second, many new knowledge graph construction methods are based on machine learning. Information
extraction and the recent “language model as a knowledge base” are all much improved with the development of
scalable deep learning. With strong machine learning models, much less annotated data are required to construct
many domain-specific knowledge graphs. Thus, many new types of knowledge graphs are recently developed. In
this issue, we included several papers on learning and reasoning on knowledge graphs and applications.

The first paper Logical Queries on Knowledge Graphs: Emerging Interface of Incomplete Relational Data
and the second paper Knowledge Graph Comparative Reasoning for Fact Checking: Problem Definition and
Algorithms discussed the recent development of machine learning-based reasoning on knowledge graphs and
its generalization ability to tackle the open world assumption problem of existing knowledge graphs. The
following paper Harnessing Knowledge and Reasoning for Human-Like Natural Language Generation: A
Brief Review surveyed the idea “language model as a knowledge base” which leverages the power of natural
language generation to acquire knowledge for knowledge graph construction. Then the following three papers
College-Related Question Answering based on Knowledge Graph, College-Related Question Answering based
on Knowledge Graph, and Implicit Sentiment Analysis of Chinese Texts based on Contextual Information and
Knowledge Enhancement studied applications of knowledge representation learning, knowledge-based question
answering, and knowledge enhanced natural language processing problems. Finally, the last paper Distilling
Causal Metaknowledge from Knowledge Graphs discussed how to distill causal metaknowledge from existing
knowledge graphs, which is a very interesting and promising new direction of knowledge graph-related research.

I would like to thank all the authors for their contributions to make this issue an interesting discussion about
present and future research directions related to knowledge graph representation learning and reasoning.

Yangqiu Song
The Hong Kong University of Science and Technology
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Logical Queries on Knowledge Graphs:
Emerging Interface of Incomplete Relational Data

Zihao Wang† Hang Yin‡ Yangqiu Song†

† Department of CSE, HKUST, Hong Kong, China {zwanggc,yqsong}@cse.ust.hk
‡ Tsinghua University, Beijing, China h-yin20@mails.tsinghua.edu.cn

Abstract

As a graph abstraction of real-world relational data, knowledge graphs contain large amounts of
factual knowledge but suffer from incompleteness. Such incompleteness, also known as the open-world
assumption, prevents logical queries from being answered through the query-answering paradigms for
relational databases. In this paper, we discuss how learning-based models bridge incomplete relational
data and logical queries from the perspective of rigorous formal logic. Existing works are structured as a
three-party game among knowledge graphs, logical queries, and learning-based models. Compared to
the well-established tale between databases and queries in the database theory, current achievements are
still preliminary. Our work pointed out several possible directions for future work.

1 Introduction

The knowledge graph is perhaps one of the simplest representations of relational knowledge [8, 56, 38]. A
knowledge graph contains a large number of triples, where each triple (h, r, t) contains a head entity h, a tail
entity t, and the relation r in between. Such a simple format enables factual knowledge to be adapted to answer
real-world questions [49, 62, 46, 40, 32].

Under the view of data engineering, a knowledge graph is no more than a (relational) database [1]. It is
natural to expect first-order queries, a fundamental type of relational database queries that have been well-
understood theoretically [30] and efficiently solved practically [29], can also be answered on knowledge graphs.
However, applying the existing query-answering algorithms designed for (relational) databases can not address
logical queries on knowledge graphs. The major obstacle is that large-scale knowledge graphs are inherently
incomplete. Modern large-scale knowledge graphs are constructed by crowd-sourcing [56] or even by automatic
information extraction pipelines [11]. Given an observed knowledge graph, the non-existence of a triple does
not imply that such a triple is not part of the underlying knowledge graph. This issue is acknowledged as the
open-world assumption [31]. Therefore, the actual answers to logical queries are not guaranteed by running
existing query-answering algorithms on knowledge graphs.

The issue of missing knowledge founds its partial solution with learning-based models. Models that learn
from the existing observed triples can predict the missing triples in the underlying knowledge graph. The
research topic focusing on the prediction of missing triples with learned embeddings is known as knowledge

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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graph representation or knowledge base completion [25, 45]. Then, the logical queries can be addressed by
combining the query-answering algorithms and the learning-based models [42, 28, 16]. The participation of
learning-based models brings unique strengths and weaknesses to logical query answering, especially compared
to traditional query answering algorithms for relational databases [42]. For traditional databases, query-answering
algorithms are discussed from the data perspective and the query perspective. The complexity of such algorithms
is characterized by the data complexity (the complexity grows with the size of the database) and the query
complexity (the complexity grows with the size of the query), respectively. When answering logical queries with
learning-based models, it is essential to understand how learning-based models interact with knowledge graphs
(model-data interaction) and logical queries (model-query interaction), besides how to design, train, and infer
such models.

In this paper, we review recent advancements in logical query answering on knowledge graphs. Our
introduction begins with how to define the problems and construct datasets and then to learning-based query
answering methods. Our discussion is organized from three perspectives: knowledge graphs (data) perspective,
logical query perspective, and model perspective. Section 2 introduces the logical query answering tasks on
knowledge graphs in the rigorous language of model theory. All existing datasets and benchmarks are discussed
in Section 3 based on the rigorous definitions. Section 4 discusses the learning-based methods for knowledge
graph logical query answering. Existing approaches are categorized by their interaction with the knowledge graph
(data perspective) and the logical queries (query perspective). Section 5 discusses the limitation of the existing
work and several possible future directions.

2 Preliminaries for Logical Queries

Logical queries are formally defined by L-formula on an L-structure, which are central concepts in model
theory [36]. Specifically, L-structure rigorously justifies the concept of knowledge graphs while L-formula
formally defines the scope of queries. Formal definitions provide a framework to investigate the data and the
query aspects of the knowledge graph logical query answering tasks.

The minimal and informal description of knowledge graphs is a set of triples {(hi, ri, ti)} that encapsulates
the real-world knowledge, where hi, ti ∈ E are the head and tail entities and ri ∈ R is the connected relation.
Formally speaking, a knowledge graph is an LKG-structure defined by a language LKG for knowledge graphs.
The concept of language and structure, which concerns syntax and semantics of first-order logic respectively, is
defined in Definition 1 and Definition 2.

Definition 1 (Language): A language L is a triple (E ,R,F) where E is the set of constant symbols,R is the
set of predicate symbols, and F is the set of function symbols. For each r ∈ R and f ∈ F , associated integers nr
and nf indicate the number of inputs for R and F , respectively.

All (classic) knowledge graphs can be described by a language LKG by letting (1)R be the set of binary relations
(nr = 2), (2) the constant set E is finite and contains all entities, and (3) F = ∅. E andR are finite sets without
further classification.

Definition 2 (L-structure): An L-structureM for the language L is a pair (M, I),where M is a non-empty set
called the universe ofM and I is an interpretation function that: (i) For each c ∈ E , I(C) ∈ M ; (ii) For each
r ∈ R, I(r) ⊂ Mnr , where nr is the size of relations; (iii) For each f ∈ F , a function I(f) : Mnf 7→ M ,
where nf is the number of inputs in f .

A knowledge graph KG induces an LKG-structure by letting M = E (with ∀e ∈ E , I(e) = e), so that each
relation I(r) is a subset of M2. The open world assumption of knowledge graphs can then be formally stated in
Definition 3.
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Definition 3 (Open world assumption): For a given language LKG of knowledge graph, there is an underlying
LKG-structure KGu, and one (or more) observed LKG-structure (s) KGo, such that for each relation r ∈ R, the
relation set of KGo and KGu satisfies IKGo(r) ⊆ IKGu(r) ⊆M2.

Then, it is ready to define the logical queries with formal concepts, including L-terms and L-formulae. The
current discussion focuses on first-order logic.

Definition 4 (L-term): L-terms be the smallest set of T such that: (i) e ∈ T for each constant symbol e ∈ E ;
(ii) Any variable vi ∈ T for 1, 2, ... ; (iii) if t1, t2, ..., tnf

∈ T and f ∈ F , then f(t1, ..., tnf
) ∈ T .

Definition 5 (Atomic L-formula): ϕ is an atomic L-formula if ϕ is r(t1, ..., tnr), where r ∈ R is a relation
symbol and t· are L-terms. Given L-structureM , we sayM |= r(r1, ..., rnr) is True if and only if the tuple
(t1, ..., tnr) ∈ I(r).

Definition 6 (L-formula): The set of L-formula is the smallest set Φ containing all atomic formulae such that:
(i) if ϕ ∈ Φ, then ¬ϕ ∈ Φ; (ii) if ϕ, ψ ∈ Φ, then (ϕ ∧ ψ) ∈ Φ and (ϕ ∨ ψ) ∈ Φ; (iii) if ϕ ∈ Φ and vi is any
variable, then ∃viϕ ∈ Φ and ∀viϕ ∈ Φ.

We say a variable v is free if there are no associated quantifiers. Otherwise, it is bounded. We use ϕ(v)
indicates the L-formula ϕ contains a free variable v. An L-formula without free variables is called an L-sentence.
Logical queries are L-formulae and can be evaluated given a knowledge graph KG. As studied in the database
literature [55], we discuss boolean queries, set-valued queries, and aggregate queries.
A boolean query is an LKG-sentence s. Given the LKG-structureM, its answer is the boolean value indicating
whetherM |= s or not.
A set-valued query is an LKG-formula ϕ with exactly one free variable v. Given the L-modelM, its answer set
is {e : e ∈ E ,M |= ϕ(v = e)}.
An aggregate query looks for the aggregation statistics of the answer set of a set-valued query, such as counting,
summation, and so on.

3 Logical Query Answering Datasets and Evaluations

Based on the formal concepts given in Section 2, we are ready to formally justify existing datasets from the
knowledge graphs (the data perspective) that are queried and the scope of logical queries (the query perspective)
to be answered. Instead of going through all existing datasets, we discuss the underlying knowledge graphs and
logical queries.

3.1 Knowledge Graphs

Table 1 shows the knowledge graphs investigated in existing datasets. Existing evaluation includes knowledge
graphs of different scales (from 103 to 109) and various properties. Notably, the knowledge graphs with
hierarchical relation [37, 5] contain the prior and more complicated structures on entities and relations, respectively,
which could be leveraged to improve the performance of query answering method. Inductive logical query
answering [19] also considers an inductive KG setting [51], which is more challenging under the open-world
assumption.

3.2 Logical Queries

The scope of queries that can be answered is not rigorously justified in the existing works. Though some works
claim they are addressing the first-order queries [43] or logical queries in general [33], their definitions are still a
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Table 1: Summation of open source knowledge graphs used in the existing datasets. KGs are sorted by the number
of entities.

Knowledge graph # Entities # Relations # Total edges Comment Datasets

FB15k-237 [9] 14,505 237 310,079 - [42, 43, 19, 23, 58]
FB15k [53] 14,951 1,345 592,213 - [42, 43, 58]
DBPedia [5] 34,575 3 240,942 Hierarchical KG [14]
WN18RR [37] 40,903 11 103,509 Hierarchical KG [24]
NELL955 [59] 63,361 200 142,804 - [42, 43, 23, 58]
DRKG [64] 97,238 107 5,874,271 - [13]
FB400k [50, 8] 409,829 918 2,151,671 - [41]
ogbl-wikikg2 [22] 2,500,604 535 17,137,181 - [41, 19]
Freebase [8] 86,054,151 14,824 338,586,276 - [41]

Table 2: Formal definitions of three typical query families. Compared to the first-order logic formula defined
formally with Definition 6, three query families are defined using a subset of connectives or quantifiers (indicated
by ✓).

Query Family ∧ ∨ ¬ ∃ ∀

Conjunctive Query (CQ) ✓ ✗ ✗ ✓ ✗

Existential Positive First Order (EPFO) ✓ ✓ ✗ ✓ ✗

Existential First Order (EFO) ✓ ✓ ✓ ✓ ✗

strict subset of the first-order queries defined in Definition 6. Table 2 summarizes the formal definitions for three
typical query families. The scopes of three query families are sorted in increasing order, i.e., CQ ⊆ EPFO ⊆
EFO. The universal quantifier ∀ is not widely discussed because its semantics is not usually interpretable over the
knowledge graphs. This is the same order for query families that learning-based query answering methods tried
to solve.

However, additional assumptions are made so that queries are more suitable to be answered by learning-based
methods. Common assumptions include that (1) the query is assumed to be acyclic and (2) only one free variable
in the logical formula. The first assumption skips the queries that may involve hard constraint satisfaction
problems and the second assumption restricts the space complexity of search within O(|E|). These assumptions
are not necessary for all learning-based models. For example, BiQE [28] accepts conjunctive queries with multiple
free variables, and CQD [4] answers general EPFO queries without any additional assumptions. Most existing
datasets are usually constructed as companions to evaluate the proposed methods, especially query embedding
methods with the operator tree representation discussed in Section 4.2.1. Such methods assume the answers with
respect to the only free variable can be computed by executing learnable set operators. The execution order of set
operators is decided by compiling the query formula into an operator tree. Thus, popular datasets [42, 43, 58] for
EPFO and EFO queries also accept implicit assumptions: (1) the only free variable v is assumed to be the root of
the set operator tree; (2) all leaf nodes must be constant entity symbols rather than existential variables.

We see that these assumptions are not related to the logic but only to make the queries easier to solve by a
special class of learning-based methods. There are no serious empirical evaluations for queries without such
assumptions.
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Figure 1: Paradigms for logical query answering on knowledge graphs. The solid line indicates the query
answering procedures, and the dashed lines indicate the procedures to obtain the model.

3.3 Evaluation Metrics

The query families are categorized by the formulation of logical formulae. Moreover, for each family, it is also
able to construct three types of queries. Here we list popular evaluating metrics.

• For boolean query, this becomes a classification problem, and thus standard classification metrics can be
applied, like ROC AUC score [43, 21].

• For set-valued query, standard metrics include Mean Reciprocal Rank (MRR) [42], Adjusted Mean Rank
Index (AMRI) [2], Average percentile rank (APR) [21], and Hits at K (H@K) [42].

• For aggregate query, counting is the only problem that has been considered. Spearman’s rank correlation
coefficient [43] and Pearson’s correlation coefficient [35] have been proposed when the model is incapable
of predicting the precise number. Otherwise, Mean Absolute Error (MAE) is used [35].

4 Learning-Based Methods

Traditional database query answering algorithms are executed over the raw data to find the answers, see Figure 5(b).
This paradigm fails in the cases of knowledge graph queries, where the underlying data is not observed. Current
knowledge graph logical query answering methods address the open-world assumption with learning-based
methods, see the blue boxes in Figure 1(b) and 1(c). In this paper, we categorize the learning-based methods into
two categories by how they process the queries. The first category is Continuous Query Decomposition (CQD)
and the second is Query Embedding (QE). We see that learning-based models are essential for both the CQD
method and the QE method. The participation of the learning-based models adds an intermediate layer between
incomplete knowledge graphs and logical queries.

The key to understanding learning-based methods is not only how to define the model but also how models
interact with the knowledge graph data and logical queries. The model-query and model-data interaction jointly
define the scope of queries that can be answered by each method. Specifically, the model-data interaction refers to
how to obtain the model from data, including both training data and algorithms, and the model-query interaction
refers to how learning-based models are combined with query answering algorithms. The model-data and
model-query interaction are indicated by the dashed arrows and the arrows in Figure 1(b) and 1(c), respectively.

The rest of this section presents the details of these two types of methods. Table 3 compares these two types
from three aspects, including training data (model-data interaction), query answering algorithms (model-query
interaction), and queries that can be solved. The most distinct difference between CQD and QE is how they
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Table 3: Comparison between CQD and QE methods with their training data, query answering algorithms, and
solvable queries. † indicates that the actual solvable queries may not be the formally defined logical query family.

Methods Training Data Query Answering Algorithms Solvable Queries

Continuous Query Decomposition (CQD) KG triples Model + Optimization EPFO

Query Embedding (QE)
QA samples Operator Tree + Model EFO-1 †

QA samples Query Graph + Model EFO-1 †

QA samples Sequence + Model EPFO †

treat the model as part of the query answering algorithms. Continuous query decomposition estimates the
answer embedding by solving an optimization problem with continuous objective induced from the original
logical formula with logical t-norms [20]. This objective, computed by the result of the model inference, will
be evaluated multiple times during the optimization process. Therefore, the model will be inferred multiple
times. This formulation is denoted as Model + Optimization in Table 3 where the term Model is placed before
Optimization. In contrast, query embedding methods first compile the logical queries into various representations
such as operator trees, query graphs, or sequences. Then, the answer embedding, or the embedding of logical
query, is estimated by simple forward inferring the model only once. This formulation is denoted as X + Model,
where the term Model is placed after X indicating one of the operator trees, query graphs, or sequences. As
natural consequences of such distinct differences in query answering algorithms, CQD and QE require different
types of training data to obtain the model and can solve different types of queries. Moreover, the solvable query
families for QE methods differ when the queries are compiled into different representations. We note that the
solvable queries are confirmed in existing works, and they can be of course extended to broader classes.

The Disjunctive Normal Form (DNF) [36] of the logical queries is of particular interest. This is because (1)
all first-order queries can be converted to DNF, and (2) The answer set of DNF existential queries can be regarded
as the union of the answer sets of its containing conjunctive clauses. For example, EPFO queries can be answered
by compositing the solutions of conjunctive queries. Similarly, general existential logical queries can be answered
once the queries with conjunction and negation can be well answered.

4.1 Continuous Query Decomposition (CQD)

The model used in CQD [4] method is no more than a neural link predictor, which is the key part of knowledge
graph representaiton [65, 25]. Specifically, CQD leverages the pretrained ComplEx embedding [54] and achieves
state-of-the-art performances in EPFO queries on dataset [42]. The training of the neural link predictor is
not related to the logical queries but only knowledge graphs themselves. Recent survey [25] summarizes the
construction of neural link predictors and how to train neural link predictors well is discussed in [45].

CQD uses neural link predictors to solve EPFO queries with a search algorithm. It considers the EPFO query
ϕ(v) in the following DNF form.

ϕ(v) = ∃x1, ..., xn, (r11 ∧ · · · ∧ r1k1) ∨ · · · ∨ (rl1 ∧ · · · ∧ rlkl), (1)

where rij is the atomic formula (without negation) and v is the only free variables associated to one or more rij.
Once the neural link predictor is obtained, each atomic formula r(h, t) can be evaluated with its probability

p(h, r, t) of being true. Let pij be the probability of ij-th triple, ⊤ and ⊥ be the t-norm and t-conorm [20], we
rewrite the EPFO query in Equation (1) into the optimization problem:

max
v,x1,...,xn

(p11⊤ · · ·⊤p1k1)⊥ · · ·⊥(pl1⊤ · · ·⊤plkl). (2)

The objective in Problem (2) is continuous since p, ⊤, and ⊥ is continuous. Embedding of variables v, x1, ..., xn
will be optimized over the continuous embedding space with gradient-based optimization or searched on the
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Natural Language: Which cities are located on rivers that flow through Germany and France?
Logical Query: 𝜙 𝑣 = ∃𝑥	𝐻𝑎𝑠𝑅𝑖𝑣𝑒𝑟(𝐺𝑒𝑟𝑚𝑎𝑛𝑦, 𝑥) ∧ 𝐻𝑎𝑠𝑅𝑖𝑣𝑒𝑟 𝐹𝑟𝑎𝑛𝑐𝑒, 𝑥 ∧ 𝑃𝑎𝑠𝑠𝑒𝑠𝐶𝑖𝑡𝑦(𝑥, 𝑣)

France

Germany

𝑖 𝑝

(a) Operator Tree

𝑝

𝑝

(b) Query Graph

HasRiver

HasRiver

Intersection

PassesCity

[mask]
[mask]

France

Germany

HasRiver

HasRiver PassesCity

[mask] PassesCity HasRiver France [mask] PassesCity HasRiver Germany
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Figure 2: Three ways to represent logical query in the query embedding methods. The example is taken from [28].
We see the logical query is converted into three formats, including (a) operator tree [58], where each node is a set
operator; (b) query graph [34], where the nodes are terms and predicates; (c) sequences [28], where a logical
query is transformed as the concatenation of several multi-hop queries with a special positional encoding.

discrete set E with beam-search. Therefore, complex structures of logical queries are handled by solving the
optimization problem with the compositional objective function. CQD is also applicable to EPFO queries with
multiple free variables in principle. However, this is not empirically justified because of the lack of corresponding
datasets. The drawback of CQD is also apparent: CQD eventually estimates the embedding of variables, which
remains a significant gap in answering aggregate queries.

4.2 Query Embedding (QE)

In contrast to CQD, query embedding methods use explicit representations of the query structures. Direct
inference of the learning-based model over specific query representation estimates the embedding of the target
variable, i.e., the query embedding. Then the answers can be retrieved according to the query embedding. The
general advantages and disadvantages of QE methods are also clear. On the one hand, models are inferred only
once to obtain the answers. On the other hand, specific representation restricts the scope of solvable queries. In the
current stage, there is no dominant representation of the queries. Figure 2 summarizes popular choices including
operator trees [58], query graphs [34], and sequences [28]. Then we categorize different query embedding
methods by their query representations and discuss each type from four perspectives: query representation, model
design, training, and query answering algorithms.

4.2.1 Logical Queries as Operator Trees

Operator trees materialize the procedure of searching for answers as the execution of set operators, including set
projection, intersection, union, and complement (with respect to a universe). Each entity itself is regarded as the
simplest singleton, a set with only one element. The set projection is converted from relations by conducting a
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Skolemization [36] process of a logical formula. Other set operations such as intersection, union, and difference
or negation are naturally induced by logical operators. Only a subset of first-order formulae can be converted into
the operator trees because such a representation of logical queries imposes additional assumptions to Definition 6,
as discussed in [58]. Meanwhile, the choice of set operators is not identical. For example, the set complement
can be replaced by the set difference [33], and the set union can be replaced by intersection and vice versa with
the set complement, according to De Morgan’s laws. The learning-based model for operation tree representation
is designed to simulate the sets in the continuous embedding spaces and the set simulations with differentiable
computations (usually with neural networks). Then we discuss the spaces used to represent sets and the modeling
of the set operations.
Geometric Region Embeddings. Sets, as a collection of discrete objects for logical query answering, are
naturally related to the geometrical region of some spaces. Compared to complex variable embeddings as vectors
in CQD, embedding sets as geometric regions provides a straightforward estimation of the size of the answer
set. The chosen forms of geometric regions are usually simple to be parameterized, such as the boxes used by
Query2Box [42] and NewLook [33], sector cones two-dimensional spaces used by ConE [67], and hyperboloid
used by HypE [14]. The set projection is usually modeled by neural networks that map the parameterized regions
to new ones. Intersection and union operators in NewLook are modeled by some variants of deep set network [63]
to merge multiple regions into one. Notably, the design of ConE [67] allows a closed-form set complement with
sector cones, while NewLook [33] models the set difference between boxes with neural networks. How to handle
negation operation using hyperboloid is not yet discussed.
Probabilistic Distribution Embeddings. Another thread of work models sets with the probabilistic distributions.
Parameterized probabilistic distribution families include Beta distribution in BetaE [43], Gaussian distribution in
PERM [13], and Gamma distribution in GammaE [61]. Probabilistic distributions are more sophisticated than
geometrical regions in set representation because the techniques to construct new probabilistic distributions can
be applied to model set operators. For example, a mixture of probabilistic distributions can be used to construct
the union operation [13, 61]. Also, altering one parameter to its reciprocal is straightforward to represent the
set complement for some family of distributions [43, 61]. Meanwhile, the normalized product of the Probability
Distribution Functions (PDF) of Gamma distribution is also Gamma distribution. This fact enables GammaE to
simplify the design of the intersection operator. Well-defined distances and divergences between distributions
are powerful tools for defining the distances between the answer sets, such as Mahalanobis distance [13] and
KL-divergence [43, 61]. Following the intuition of probabilistic distributions, LinE [24] considers the histogram
as the unnormalized discretization of arbitrary PDF, and Query2Particles [6] handles a set of empirical samples
(particles) from an arbitrary PDF. Such designs sacrifice parts of the closed-form properties but enlarge the family
of underlying distributions with non-parametric representations.
Fuzzy Vector Embeddings. Fuzzy vector space [27] brings supreme advantages in modeling the set operations.
Set intersection, union, and negation can be precisely modeled with fuzzy logical t-norms and t-conorms [20]
by embedding sets as fuzzy vectors [35, 12], i.e., vectors in [0, 1]d where d is the dimension. The one thing left
is to model the set projections with neural networks. FuzzQE [12] models the set projection by relational base
decomposition [47] and LogicE [35] uses simple multi-layer perceptron. In addition, LogicE [35] models the
lower and the upper bounds of the fuzzy logic truth value, which quantifies the uncertainty of each embedding to
answer the aggregate query.

In contrast to various designs for embedding spaces, MLPMix [3] just embedded queries as the vectors in
the Euclidean space. Such a simple embedding space does not guarantee any set properties, so it requires more
advanced neural networks [52] to model set operators. Notably, MLPMix still has strong performance with simple
embedding space compared to its predecessors. This might suggest that even the simplest Euclidean space is
large enough. The overall performance results from the trade-off between set embeddings and set operations.

Neural symbolic methods also shed light on another way to improve performances. “Neural” indicates
methods answering queries in low-dimensional embedding spaces and neural networks, while “symbolic” indicates
referring to the original symbolic knowledge graphs. GNN-QE [68] estimates the probabilities of all entities given
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the set projection with graph neural network, NBFNet [69] over the observed knowledge graph. ENeSy [60]
ensembles the neural model prediction and symbolic model prediction at each set projection, where the symbolic
part is conducted by the TensorLog [15]. These methods show outstanding performances compared to the neural
query embedding methods. However, scalability is always an issue since the intermediate states will unavoidably
grow with the size of the underlying knowledge graph.

While various models for operator trees were proposed, the method to train the model is almost the same
as the first proposed to train Query2box [42]. Let D(e, q) be the distance function between the entity e and the
query embedding q, the objective function is

ℓθ(a, q) = − log σ(γ −D(a, q))− 1

k

k∑
i=1

log σ(D(vi, q)− γ), (3)

where σ = 1
1+e−x is the sigmoid function, γ is the margin, a is an arbitrary answer, and vi are k negative sampled

answers.

4.2.2 Logical Queries as Query Graphs

Query graph presentation represents the terms and predicates in to graphs [16, 34, 57]. Query graph representation
does not assume the acyclicity as operator tree representation. Therefore it represents a larger set of logical
queries. However, existing query graphs are not related to the disjunction. The disjunction can be handled by
converting existing queries to DNF queries, whose answer set is the combination of all conjunctive queries that
can be addressed in the query graphs. More specifically, a conjunctive query is represented by two kinds of query
graphs: (1) heterogenuous information networks (HIN) [48] where relations and entities are all nodes [34]; (2)
constraint graphs where nodes are terms and edges are atomic formulas [4, 57]. This representation is connected
to the constraint programming [44].

The learning-based models for query graphs are basically Graph Neural Networks (GNN). For constraint
graph representation, MPQE [16] applies message passing networks on EPFO queries and LMPNN [57] employs
the pretrained knowledge graph embeddings to answer queries with negation. kgTransformer [34] uses graph
transformers whose multi-layer perceptrons are upgraded by a Mixture of Experts (MoE) architecture. Besides
the negative sampling objectives shown in Equation (3), kgTransformer proposed to first pretrain the model on
sampled subgraphs and then finetune the model with the negative sampling loss on query answering data.

4.2.3 Logical Queries as Sequences

The last type of representation is to represent the queries in sequences. BiQE [28], see Figure 2 (c), proposes
to convert the query graph to multiple paths from the answer node to the anchor entity nodes. Compared to the
query graphs, the sequence representation even neglects the existential variables, only the anchor entity and the
relations on its path to the answer node remain. Relative positional embeddings are also used to describe the
distance from each token to the answer node. This representation also focuses on conjunctive queries, which do
not contain disjunction and negation. Queries with disjunctions can be handled by combining conjunctive queries
in the DNF. However, it is still not known how to handle the negation operation.

Once the sequence is defined, the sequence can be put into the transformer models. The output embedding of
the [mask] token is aggregated to obtain the answer. Unlike the query graph representation that enforces the
query structures explicitly, transformers could learn implicit logical structures via the self-attention mechanism.

5 Future Directions

Research about knowledge graphs logical query answering, though rapidly developed in recent years, is still
limited compared to the well-established study about query answering on the relational database. For example,
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the query types that can be answered by the model are strict fragments of first-order queries. In this section,
we discuss what is left in current research compared to logical query answering on incomplete relational data,
which is the ultimate goal of this line of research. Formal definitions from model theory in Section 2 picture the
gap between existing works and the ambitious goal. we summarize the limitations and discuss possible future
directions from the data, query, and model perspectives.

5.1 Towards General Relational Data

A relational language L can describe general relational data. However, the language LKG for knowledge graphs
is defined with three additional assumptions, see Section 2. By rethinking three assumptions about LKG and the
open world assumption, we could extend the existing data model of knowledge graphs.
KG with Relations of nr > 2. Knowledge graphs with n-ary relations [66] relax the first assumption that
nr = 2,∀R ∈ R by accepting the relations whose 2 ≤ nr ≤ n. Thus, each element of the knowledge graph now
is an n+ 1 triple list that contains n entities and one relation. The concept of n-ary relation is also related to the
hyper-relation [18, 2] and the knowledge graph is extended from the directed graphs to hypergraphs.
KG with Attributes. Attributes expand the constant set E from all entities to entities with attribute values, thus
relaxing the second assumption. Typical attributes include entity types [5, 23], triple timestamps [26, 46], and
triple probabilities [11]. Additional attributes can be described in the n-ary relations. For example, the timestamp
t associated with a triple (s, p, o) can be described with 4-triples (s, p, o, t). New attributes bring new predicates,
enlarge the universe set, and enrich the query semantics. Two timestamps can be compared by “before”, “equal”,
and “after”, and can be composed to a time interval, which also introduces new predicates such as “during”.
The triple probabilities, as discussed in probabilistic databases [55], enable the estimation of the probabilities
for boolean queries, the probability for each answer entity for set-valued queries, and the total probability for
aggregate queries.
KG with Functions. Introducing attributes also makes it possible to define functions between attribute values.
Taking the timestamp attribute as an example, new timestamps can be computed by a time movement function with
a timestamp and a time interval as inputs. These features are rigorously defined in pure symbolic systems [17]. It
is worth discussing how to combine them with learning-based methods.
More Challenging Open World Assumption. In the inductive setting, the entity set E is divided into an observed
set Ero and an inempty inductive set Eri with respect to the relation r ∈ R, that is Ero∩Eri = ∅, Ero∪Eri = E ,∀r ∈ R.
Under such a setting, the open world assumption in Definition 3 is rewritten as IKGo(r) ⊆ Ero × Ero ⊆ IKGu(r) ⊆
E × E . This setting makes it very hard to estimate the relations over E × E − Ero × Ero .

5.2 Towards First Order Queries and Beyond

The semantics of the logic queries lacks serious discussion. There is no standard dataset and benchmark for
first-order queries with cycles, multiple free variables, or universal quantifiers even for the simplest LKG language.
Moreover, it is also worth discussing first-order queries over general relational data such as KGs with attributes
and attribute functions. It is also worthwhile to expand the first-order logic to fixed-point or monadic second-order
logic [30].

5.3 Towards Versatile Learning-based Models

Existing methods are incapable of addressing more and more challenging queries and complex data discussed
above. It is essential to investigate the graph or sequence-based query embedding models to solve various queries.
Given the combinatorial natures of the query answering problems, new opportunities could be found with neural
combinatorial solvers [7]. Meanwhile, large language models, as a proven effective way to encapsulate world
knowledge [39, 10], could be considered as another approach to modeling the relational data.
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6 Conclusion

Big data and world knowledge are usually uncertain and dynamic. Logical queries over knowledge graphs are
essential ways to understand the world as a simplified data model through the lens of logic and reasoning. In this
paper, we structure the existing knowledge graph logical query answering tasks and methods as a three-party
game between data, query, and models. With the rigorous concepts from finite model theory [36, 30], our work
portrays a detailed landscape of the achievements and limitations of existing work. Our discussion shows that
there are various gaps between current research to the ambitious goal in terms of data, queries, and models. We
hope our paper can be a practical guide for traveling in the uncertain and dynamic data world.
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Abstract

Knowledge graphs are ubiquitous data structure which have been used in many applications. Knowl-
edge graph reasoning aims to discover or infer knowledge based on existing information in the knowledge
graph. However, most of the existing works belong to point-wise approaches, which perform reasoning
w.r.t. a single piece of clue. Comparative reasoning over knowledge graph focuses on inferring common-
ality and inconsistency with respect to multiple pieces of clues which is a new research direction and can
be applied to many applications. In this paper, we formally give the definition of comparative reasoning
and propose several different methods to tackle comparative reasoning in both pairwise and collective
cases. The idea of the proposed methods is that we find a knowledge segment from the knowledge graph
to best represent the semantic meaning of the given claim, and reasons according to it. We perform
extensive empirical evaluations on real-world datasets to demonstrate that the proposed methods have
good performances.

1 Introduction

Knowledge graphs are ubiquitous data structure which are used to store really world entities (e.g., Alan
Turing) and their relations (Alan Turing, wasBornIn, United Kingdom). Since the debut in 2012,
several widely used knowledge graphs have been proposed, which include Yago, Wikidata, Freebase and so on.
Knowledge graph reasoning which aims to discover/explain existing knowledge or infer new knowledge from
existing information in the knowledge graph has emerged as an important research direction over the last few
years [20].

Despite the great achievement in both academia and industry, most of the existing works on knowledge graph
reasoning belong to the point-wise approaches, which perform reasoning w.r.t. a single piece of clue (e.g., a triple
[1], a multi-hop query [20], a complex query graph [17]). For example in fact checking, given a claim (e.g.,
represented as a triple of the knowledge graph), it decides whether the claim is authentic or falsified [26, 2].
However, comparative reasoning ( [18, 19]) is rarely studied. Different from point-wise reasoning (or reasoning
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over knowledge graph). Comparative reasoning over knowledge graph [18] focuses on inferring commonality
and/or inconsistency with respect to multiple pieces of clues (e.g., multiple claims about a news article), which
is a new research direction over knowledge graphs and can be widely applied to other applications, e.g., fact
checking.

Comparative reasoning has many unique advantages compared with point-wise (single claim) fact checking.
This is because in many real-world situations, e.g., multimodal fake news detection [21], single claim fact
checking alone is insufficient, while comparative reasoning offers a more complete picture w.r.t. the input
clues, which in turn helps the users discover the subtle patterns (e.g., inconsistency) that would be invisible by
point-wise approaches. When we verify the two claims/triples at the same time, the result may be inconsistent
even though each claim/triple itself is consistent if we evaluate it individually. Figure 1 gives an example to
illustrate the power of comparative reasoning. Suppose there is a multi-modal news article and we wish to verify
its truthfulness. To this end, two query graphs are extracted from the given news, respectively. One query graph
contains all the information from the text, and the other contains the information from the image. If we perform
point-wise reasoning to check each of these two query graphs separately, both seem to be true. However, if we
perform reasoning w.r.t. both query graphs simultaneously, and by comparison, we could discover the subtle
inconsistency between them (i.e., the different air plane types, the difference in maximum flying distances). In
addition, comparative reasoning can also be used in knowledge graph expansion, integration and completion
[18].

In this paper, we address the problem of comparative reasoning. We mainly focus on two problems: pairwise
comparative reasoning and collective comparative reasoning. To be specific, we address two key challenges
as follows. We leverage graph neural network and graph kernel to reveal the commonality and inconsistency
among input clues according to the information in the background knowledge graph. We propose several different
algorithms and demonstrate their effectiveness. A common building block of comparative reasoning is knowledge
segment, which is a small connection subgraph of a given clue (e.g., a triple or part of it) to summarize its
semantic context. Based on that, we present core algorithms to enable both pairwise reasoning and collective
reasoning. The key idea is to use the structure and semantic information in knowledge segments to help discover
vague contradictions.

The main contributions of the paper are

• Problem Definition. We introduce comparative reasoning over knowledge graphs, which complements
and expands the existing point-wise reasoning capabilities.

• Algorithms. We propose a family of comparative reasoning algorithms which can solve both pairwise
comparative reasoning and collective comparative reasoning.

• Empirical Evaluations. We perform extensive empirical evaluations to demonstrate the efficacy of our
proposed methods.

The rest of the paper is organized as follows. Section 2 introduces notations used in this paper and gives
the problem definition. Section 3 introduces how to extract the knowledge segment from the knowledge graph.
Section 4 proposes different methods to solve comparative reasoning problem. The experiment results are
presented in Section 5, and the related work is reviewed in Section 6. Finally, the paper is concluded in Section
7.

2 Problem Definition

In this section, we first introduce the symbols that will be used throughout the paper, then we introduce other
important concepts and formally define the comparative reasoning problem.
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Figure 1: An illustrative example of using comparative reasoning for semantic inconsistency detection. Source of
the image at the top-left: [4]. The example is borrowed from [18].

Table 4: Notations and definitions

Symbols Definition Symbols Definition
G={V G, EG, LG} a knowledge graph vi the ith entity/node in knowledge graph

ri the ith relation/edge in knowledge graph ei the ith given by the user
Q={V Q, EQ, LQ} an attributed query graph KSi knowledge segment i

Ai adjacency matrix of KSi A× kronecker product of A1 and A2

N l diagonal matrix of the lth node attribute N× combined node attribute matrix
Ni attribute matrix of KSi, the j th row Si,j single entry matrix Si,j(i, j) = 1 and zeros elsewhere

denotes the attribute vector of node j in KSi

Table 4 gives the main notations used throughout this paper. A knowledge graph can be denoted as
G = (V,R,E) where V = {v1, v2, ..., vn} is the set of nodes/entities, R = {r1, r2, ..., rm} is the set of relations
and E is the set of triples. Each triple in the knowledge graph can be denoted as (h, r, t) where h ∈ V is the
head (i.e., subject) of the triple, t ∈ V is the tail (i.e., object) of the triple and r ∈ R is the edge (i.e., relation,
predicate) of the triple which connects the head h to the tail t.

Given multiple pieces of clues, the goal of comparative reasoning is to infer commonality and/or inconsistency
among them. If the given information is a pair of clues, we call it pairwise comparative reasoning or pairwise
fact checking. The goal is to deduce whether these two clues are coherent or not. If the given information is a
connected query graph, the goal is to detect whether there is inconsistency inside the given graph. The problem is
called collective comparative reasoning or collective fact checking. Different from traditional point-wise reasoning
methods, comparative reasoning can unveil some subtle patterns which point-wise approaches may overlook.
Take knowledge graph based fact checking as an example, considering two claims/triples: (Barack Obama,
graduatedFrom, Harvard University) and (Barack Obama, majorIn, Political Science).
Even each clue/claim is true, but if we check them together at the same time, we can see that they cannot be both
true. This is because Barack Obama majored in law instead of Political Science when he studied at
Harvard University. So, we might fail to detect the inconsistency between them without appropriately
examining different clues/claims together.
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To facilitate comparative reasoning, how to utilize the background information in knowledge graph is an
important problem. If we can find a subgraph in the knowledge graph which can best express the semantic
meaning of each input clue, the hidden conflicts can be easier to detect. Ideally, this subgraph should contain all
the meaningful/important entities and relations in the knowledge graph which are related to the given clue. We
call this subgraph knowledge segment, which is formally defined as follows.

Definition 1: Knowledge Segment (KS for short) is a connection subgraph of the knowledge graph that best
describes the semantic context of a piece of given clue (i.e., a node, a triple or a query graph).

Figure 1 gives an example of knowledge segment. Given two clues which are two query graphs extracted
from the text and image respective, their corresponding knowledge segments are shown in the bottom of the
Figure. As we can see, expressing the given clues with knowledge segments can help us detect the inconsistency
without difficulty.

Given the knowledge segments of multiple pieces of clues, comparative reasoning aims to infer the common-
ality and inconsistency among these knowledge segments to make decision. For pairwise case, the commonality
refers to the common elements of these two knowledge segments. The inconsistency includes any elements
that are contradicts with each other. Assuming the two given clues are two edges/triples: EQ

1 =< s1, p1, o1 >

and EQ
2 =< s2, p2, o2 > where s1, o1, s2, o2 ∈ V and p1, p2 ∈ E. We denote their corresponding knowledge

segments as KS1 for EQ
1 and KS2 for EQ

2 , respectively. The commonality and inconsistency between these two
knowledge segments are defined as follows.

Definition 2: Commonality. Given two triples (EQ
1 andEQ

2 ) and their knowledge segments (KS1 andKS2), the
commonality of these two triples refers to the shared nodes and edges between EQ

1 and EQ
2 , as well as the shared

nodes and edges between KS1 and KS2: ((V KS1 ∩ V KS2) ∪ (V Q1 ∩ V Q2), (EKS1 ∩EKS2) ∪ (EQ1 ∩EQ2)).

Definition 3: Inconsistency. Given two knowledge segments KS1 and KS2, the inconsistency between these
two knowledge segments refers to any element (node, node attribute or edge) in KS1 and KS2 that contradicts
with each other.

Different from pairwise comparative reasoning, collective comparative reasoning aims to find the common-
ality and/or inconsistency inside a query graph which consists of a set of inter-connected edges/triples. The
corresponding definition is given below.

Definition 4: Collective Commonality. For each edge EQ
i in a query graph Q, let KSi be its knowledge

segment. The collective commonality between any triple pair in the query graph is the intersection of their
knowledge segments.

Definition 5: Collective Inconsistency. For each edge EQ
i in a query graph Q, let KSi be its knowledge

segment. The collective inconsistency refers to any elements (node or edge or node attribute) in these knowledge
segments that contradict with each other.

Given the above notation and information, the problem of comparative reasoning is formal defined as:

Problem Definition 1: Pairwise Comparative Reasoning:
Given: (1) A knowledge graph G, (2) two triples EQ

1 and EQ
2 ;

Output: A binary decision regarding the consistency of EQ
1 and EQ

2 .

Problem Definition 2: Collective Comparative Reasoning:
Given: (1) A knowledge graph G, (2) a query graph Q;
Output: A binary decision regarding the consistency of Q.
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3 Knowledge Segment Extraction

In this section, we introduce how to extra knowledge segment to best express the semantic meaning of a given
claim. We first introduce how to transform the knowledge graph into a relation specified weighted graph, then
introduce how to extract Edge-specific Knowledge Segment and Subgraph-specific Knowledge Segment from it.

Generally speaking, given a clue (e.g., a triple or a query graph) from the user, the goal of knowledge segment
extraction is to extra a subgraph which can best express the semantic meaning of the given clue. Many existing
methods have been proposed to extract a concise subgraph from the source node of the querying edge to its target
node in weighted or unweighted graphs. For example, multi-hop method [9], minimum cost maximum flow
method [24], K-simple shortest paths based method [8] or connection subgraph [7], [11], [23] extraction
methods.

However, these methods do not directly apply to knowledge graphs because the edges (i.e., predicates) of a
knowledge graph have specific semantic meanings (e.g., types, relations). To address this issue, we seek to convert
the knowledge graph to a weighted graph by designing a predicate-predicate similarity measure for knowledge
segment extraction.

3.1 Predicate-Predicate Similarity

In order to transform the knowledge graph into weighted graph, We propose to use a TF-IDF based method to
measure the similarity between different predicates, and transfer the knowledge graph into a weighted graph
whose edge weight represents the similarity between the edge predicate and query predicate. The key idea behind
TF-IDF based method is that we can treat each triple in the knowledge graph and its adjacent neighboring triples
as a document, and use a TF-IDF like weighting strategy to calculate the predicate similarity. For example,
predicate receiveDegreeFrom may have neighbor predicates major and graduateFrom. These predicates
should have high similarity with each other.

To be specific, we use the knowledge graph to build a co-occurrence matrix of predicates, and calculate their
similarity by a TF-IDF like weighting strategy as follows. Let i, j denote two different predicates. We define the
TF between two predicates as TF(i, j) = log(1 +C(i, j)w(j)), where C(i, j) is the co-occurrence of predicate i
and j. The IDF is defined as IDF(j) = log |M |

|{i:C(i,j)>0}| , where M is the number of predicates in the knowledge
graph. Then, we build a TF-IDF weighted co-occurrence matrix U as U(i, j) = TF(i, j)× IDF (j). Finally, the
similarity of two predicates is defined as Sim(i, j) = Cosine(Ui, Uj), where Ui and Uj are the ith row and jth

row of U , respectively.
For the predicate-predicate similarity, suppose we want to calculate the similarity between major and study.

Both major and study have only one adjacent neighboring predicate graduate. This means that for any
predicate i ̸= graduate, U(major, i) = U(study, i) = 0. Since E(graduate) = 0, we have w(graduate) =
2σ(∞) − 1 = 1. We have TF(major, graduate) = TF(study, graduate) = log(1 + 1 × 1) = 1, and
U(major, graduate) = U(study, graduate) = IDF (graduate) = log 8

4 = 1. If we compare the two
vectors, Umajor and Ustudy, we find that they are the same. Therefore, we have that Sim(major, study) = 1.

3.2 Edge-specific Knowledge Segment

Edge-specific knowledge segment extraction aims at finding a knowledge segment to best characterize the
semantic context of the given edge (i.e., a triple). Several connection subgraph extraction methods exist for a
weighted graph, e.g., [33] uses a random walk with restart based method to find an approximate subgraph; [11]
uses maximal network flow to find a subgraph and [8] aims to find a denser local graph partitions. In this paper,
after transforming the knowledge graph into a weighted graph, we find k-simple shortest paths [11] from the
subject to the object of the given query edge as its knowledge segment.
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3.3 Subgraph-specific Knowledge Segment

Following the idea of edge-specific knowledge segment extraction, we extract a knowledge segment for
each edge in the given subgraph and we call the graph which contains all the edge-specific knowledge segments
subgraph-specific knowledge segment. In other words, a subgraph-specific knowledge segment consists of
multiple inter-linked edge-specific knowledge segments (i.e., one edge-specific knowledge segment for each edge
of the input query subgraph).

The subgraph-specific knowledge segment provides richer semantics, including both the semantics for each
edge of the query graph and the semantics for the relationship between different edges of the input query graph.

4 Comparative Reasoning

In this section, we introduce the technical details behind comparative reasoning. We first introduce on what
condition we need to exert pairwise reasoning for two pieces of clues (e.g., two edges/triples), and then introduce
two methods which focus on pairwise reasoning. Finally, we present the collective comparative reasoning. The
main idea behind these functions is that we use a knowledge segment to express the semantic meaning of each
query triple, and check the inconsistency according to information in the knowledge segments.

4.1 Pairwise Comparative Reasoning Condition

Given a pair of clues < s1, p1, o1 > and < s2, p2, o2 >, we can divide it into the following six cases, including

C1. s1 ̸= s2, s1 ̸= o2, o1 ̸= s2, o1 ̸= o2. For this case, these two clues apparently refer to different things, e.g.,
<Alan Turing, wasBornIn, United Kingdom> and <Google, isLocatedIn, USA>.

C2. s1 = s2 and o1 = o2. If p1 = p2, these two clues are the same. If p1 and p2 are different or irrelevant, e.g.,
p1 = wasBornIn, p2 = hasWebsite, these two clues refer to different things. However, if p1 contradicts p2,
they are inconsistent with each other.

C3. s1 = s2 but p1 ̸= p2 and o1 ̸= o2, e.g., <Alan Turing, wasBornIn, Maida Vale>, <Alan
Turing, livesIn, United Kingdom>.

C4. s1 = s2, p1 = p2, but o1 ̸= o2, e.g., <Alan Turing, wasBornIn, Maida Vale>, <Alan
Turing, wasBornIn, United Kingdom>.

C5. o1 = o2, but s1 ̸= s2. For this case, no matter what p1 and p2 are, these two clues refer to different things.

C6. o1 = s2. For this case, no matter what p1 and p2 are, they refer to different things. For example, <Alan
Turing, wasBornIn, United Kingdom>, <United Kingdom, dealsWith, USA>.

Among these six cases, we can see that the clue pair in C1, C5 and C6 refer to different things. Therefore,
there is no need to check the inconsistency between them. For C2, we only need to check the semantic
meaning of their predicates, i.e., whether p1 contradicts p2. For example, p1 = isFather and p2 = isSon,
they are inconsistent with each other. Otherwise, there is no inconsistency between them. We mainly focus
on C3 and C4 where the two clues may be inconsistent with each other even if each of them is true. For
example, either <Barack Obama, graduatedFrom, Harvard University> or <Barack Obama,
majorIn , Political Science> could be true. But putting them together, they cannot be both true,
since Barack Obama majored in law instead of Political Science when he studied at Harvard
University. In other words, they are mutually exclusive with each other and thus are inconsistent. However,
queries like <Alan Turing, wasBornIn, Maida Vale> and <Alan Turing, wasBornIn, United
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Kingdom> are both true, because Maida Vale belongs to United Kingdom. Alternatively, we can say
that United Kingdom contains Maida Vale. We summarize that if (1) the subjects of two clues are the
same, and (2) their predicates are similar with each other or the same, they refer to the same thing. Furthermore, if
their objects are two uncorrelated entities, it is highly likely that these two clues are inconsistent with each other.

Based on the above observations, we take the following three steps for pairwise comparative reasoning. First,
given a pair of clues, we decide which of six cases it belongs to, by checking the subjects, predicates and objects
of these two clues. Second, if this pair of clues belongs to C3 or C4, we need to further decide whether they are
consistent with each other. In the following sections, we illustrate how to tackle this case.

4.2 Neural Network Based Pairwise Comparative Reasoning

Given two knowledge segments of a pair of clues which belong to C3 or C4, we treat each knowledge segment as
an attributed graph, and adopt some ideas from network alignment to facilitate comparative reasoning. The basic
idea is that if the two knowledge segments are consistent, most of their nodes must be able to align with or close
to each other in the embedding space. Otherwise, the embedding distance of the inconsistent nodes should be
large. Generally, the inconsistent checking problem is similar to anomaly detection or dissimilarity detection
problem in the embedding space.

When reasoning a pair of knowledge segments, we consider two kinds of information: structure information
and semantic information. We envision that both of them are important. For example, in Figure 1, Air
Force One and Helicopter have similar structure information because they have many common neighbors,
but their semantic meanings are very different, this may indicate a potential inconsistency between the two
knowledge segments. On the other hand, although Air Force One and Helicopter have different structure
information (when considering edge type), they also have different semantic information. This prompts that they
refer to the different things. Inspired by this observation, we propose a neural network model which considers
both the structure information and semantic information of knowledge segments to achieve pairwise comparative
reasoning.

To encode the structure similarity, we use random walk with restart (considering edge type) to encode the
knowledge segment structure information. The similar idea has been used by many other works, e.g. [34], [38].
Given a set of anchor nodes, random walk with restart will calculate a score for each node in the knowledge
segment w.r.t. each anchor node. If two nodes have the similar random walk with restart score vector, their
structure similarity should be high. To encode the semantic information of the knowledge segment, we borrow
some ideas from natural language processing. More specifically, we sample some paths from the knowledge
graph, and treat each path as a sentence, nodes in the knowledge graph can be treated as words in the sentence. If
two nodes occur in the same sentence, their semantic information should be similar.

4.2.1 Structure Embedding

Given two knowledge segments, the common nodes in these two knowledge segments can be treated as anchor
entities, structure embedding aims to embed the nodes in the knowledge segments to a high dimension space while
keeping their structure information. The key intuition is that, the set of anchor links L provides the landmarks
for all nodes in both networks. Relative positions based on anchor links can form a unified space for all nodes
regardless which network they belong to [38]. Therefore, we can use random walk with restart to measure the
relative position between nodes and anchor links. Let KS1 and KS2 be the two knowledge segments. Given an
anchor link l ∈ L (we use l1 and l2 to denote the linked entities in KS1 and KS2), the RWR score vector rl1 of
size n1 × 1 can be obtained

rl1 = (1− β)Ŵ1rl1 + βel1 (4)

where n1 is the number of nodes in KS1, Ŵ1 is the row normalized adjacency matrix of KS1, β is the restart
probability and el1 is one-hot vector with el1(l1) = 1 and all other entries are 0. We can solve the equation and
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get the final expression of rl1 as:
rl1 = β(I − (1− β))Ŵ1

−1
el1 (5)

Note that if KS1 and KS2 are the same, they will have the same random walk with restart score matrices.
After we get the random walk with restart matrices, we then use a share neural network to learn the embedding

of these two knowledge segments. In this way, the structure information of each node can be kept in the embedding
space. The learned embedding for KS1 can be calculated as:

E1 = NeuralNetwork(RWR1) (6)

where RWR1 is the random walk with restart score matrix of KS1. RWR2 can be calculated in the same way.

4.2.2 Semantic Embedding

To captivate the semantic meaning of each node in the knowledge segment, we randomly sample some paths in the
background knowledge graph and treat each path as an utterance while each node as a word in the sentence. Then,
we use a popular language model Bert [5] to learn the semantic embedding of each node. If two nodes occur
at the same path, their semantic embedding should be close to each other, otherwise, their semantic embedding
should be far from each other.

We concatenate the node semantic embedding and structure embedding of two knowledge segments and use
graph neural network to learn the graph embedding of KS1 and KS2 respectively. Finally, we predict whether
they are consistent with each other according to the graph embedding. The architecture of the algorithm is shown
in Figure 2.
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Figure 2: Neural network based pairwise comparative reasoning framework.

The pseudo code is given in Algorithm 1. GNN means graph neural network which is defined as follows

xlN(u) = AGGREGATE({Xl(v, :), forv ∈ N(u)}) (7)

Xl+1(u, :) = σ(CONCAT(Xl(u, :), xlN(u))) (8)

where AGGREGATE is the aggregation function, X is the input node embedding, l is the graph neural network
layer number, and (u, v) are nodes in the input graph. The classifier in Algorithm 1 can be any machine learning
model, e.g., SVM, logistic regression, decision tree and so on.
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Algorithm 1 Neural Network Based Pairwise Comparative Reasoning

1: Input: Knowledge segment KS1 and knowledge segment KS2, pretrained embedding of all entities E in
the knowledge graph.

2: Training:
3: Calculate random walks with restart matrices RWR1 and RWR2 for KS1 and KS2, respectively.
4: E1 = NeuralNetwork(RWR1)
5: E2 = NeuralNetwork(RWR2)
6: Get all node embedding in KS1: N1 = E(KS1)
7: Get all node embedding in KS2: N2 = E(KS2)
8: Concatenate embedding C1 = (E1|N1)
9: Concatenate embedding C2 = (E2|N2)

10: Predict result: Classifier(GNN(C1), GNN(C2))

4.3 Graph Kernel Based Pairwise Comparative Reasoning

Different from neural network based pairwise comparative reasoning, graph kernel based pairwise comparative
reasoning aims to utilize graph kernel to find a set of key elements (nodes or edges or node attributes) in these two
knowledge segments and then make decision according to these elements and related information in the knowledge
graph. The idea is that if most of these key elements belong to the commonality of these two knowledge segments,
it is highly likely that they refer to the same thing. Otherwise, these two clues refer to different things. Third, if
they refer to the same thing, we further decide whether they conflict with each other. Here, the key idea is as
follows. We build two new query triples < o1, isTypeOf, o2 > and < o2, isTypeOf, o1 >. If one of them is
true, the original two triples are consistent with each other. Otherwise, they are inconsistent.

In order to find the key elements, we propose to use the influence function w.r.t. the knowledge segment
similarity [41]. The basic idea is that if we perturb a key element (e.g., change the attribute of a node or remove a
node/edge), it would have a significant impact on the overall similarity between these two knowledge segments.
Let KS1 and KS2 be the two knowledge segments. We can treat the knowledge segment as an attributed graph,
where different entities have different attributes. We use random walk graph kernel with node attribute to measure
the similarity between these two knowledge segments [41] [6].

Sim(KS1,KS2) = q′×(I − cN×A×)
−1N×p× (9)

where q′× and p× are the stopping probability distribution and the initial probability distribution of random walks
on the product matrix, respectively. N× is the combined node attribute matrix of the two knowledge segments
N× =

∑d
j=1N

j
1 ⊗N

j
2 where N j

i (i ∈ {1, 2}) is the diagonal matrix of the jth column of attribute matrix Ni. A×
is the Kronecker product of the adjacency matrices of knowledge segments A1 and A2. 0 < c < 1 is a parameter.

We propose to use the influence function Sim(KS1,KS2) w.r.t. knowledge segment elements ∂Sim(KS1,KS2)
∂e ,

where e represents an element of the knowledge segmentKS1 orKS2. The element with a high absolute influence
function value is treated as a key element, and it can be a node, an edge, or a node attribute. The influence function
of different elements can be computed according to the following lemma. Note that the influence function w.r.t.
elements in KS2 can be computed in a similar way.

Lemma 6: (Knowledge Segment Similarity Influence Function [41].) Given Sim(KS1,KS2) in Eq. (9). Let
Q = (I − cN×A×)

−1 and Sj,i is a single entry matrix defined in Table 4. We have that

(i) The influence of an edge A1(i, j) in KS1 can be calculated as

I(A1(i, j)) =
∂Sim(KS1,KS2)

∂A1(i, j)
= cq′×QN×[(S

i,j + Sj,i)⊗A2]QN×p× (10)
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(ii) The influence of a node i in KS1 can be calculated as

I(N1(i)) =
∂Sim(KS1,KS2)

∂N1(i)
= cq′×QN×[

∑
j|A1(i,j)=1

(Si,j + Sj,i)⊗A2]QN×p× (11)

(iii) The influence of a node attribute j of node i in KS1 can be calculated as

I(N j
1 (i, i)) =

∂Sim(KS1,KS2)

∂N j
1 (i, i)

= q′×Q[Si,i ⊗N j
2 ](I + cA×QN×)p× (12)

For a given knowledge segment, we flag the top 50% of the elements (e.g., node attribute, node and edge)
with the highest absolute influence function values as key elements. We would like to check whether these key
elements belong to the commonality of these two knowledge segments. If most of them (e.g., 60% or more)
belong to the commonality of these two knowledge segments, we say the two query clues describe the same thing.
Otherwise, they refer to different things and thus we do not need to check the inconsistency between them.

If we determine that the query clues refer to the same thing, the next step is to decide whether they are
inconsistent with each other. That is, given query clues < s1, p1, o1 > and < s1, p2, o2 >, we need to decide
whether o1 belongs to o2 or o2 belongs to o1. To this end, we build two new queries < o1, isTypeOf, o2 > and
< o2, isTypeOf, o1 >. Then, we extract the knowledge segments for these two queries, and check whether
these two segments are true. If one of them is true, we say the original clues are consistent with each other,
otherwise they are inconsistent. After we extract the knowledge segments for < o1, isTypeOf, o2 > and < o2,
isTypeOf, o1 >, we treat each knowledge segment as a directed graph, and calculate how much information
can be transferred from the subject to the object. We define the transferred information amount as:

infTrans(o1, o2) = max
1≤j≤k

pathValue(j) (13)

where pathValue(j) is defined as the multiplication of the weights in the path. For an edge, its weight is the
predicate-predicate similarity Sim(isTypeOf, ei). If max{infTrans(o1, o2), infTrans(o2, o1)} is larger than a
threshold T , then we say o1 belongs to o2 or o2 belongs to o1. We set T = 0.700 in our experiment.

4.4 Graph Kernel Based Collective Comparative Reasoning

Different from pairwise comparative reasoning, collective comparative reasoning aims to find the commonality
and/or inconsistency inside a query graph which consists of a set of inter-connected edges/triples. To check the
inconsistency, one naive method is using the pairwise comparative reasoning method to check the inconsistency
for each pair of edges in the query graph. However, this method is neither computationally efficient nor sufficient.
For the former, if two clues (e.g., two claims from a news article) are weakly or not related with each other on the
query graph, we might not need to check the inconsistency between them at all. For the latter, in some subtle
situations, the semantic inconsistencies could only be identified when we collectively reason over multiple (more
than two) knowledge segments. For example, given the following three claims, including (1) Obama is refused
by Air Force One; (2) Obama is the president of the US; (3) The president of US is in front of a helicopter. Only
if we reason these three claims collectively, can we identify the semantic inconsistency among them.

Based on the above observation, we propose the following method to detect the collective inconsistency.
First, we find a set of key elements inside the semantic matching subgraph. Different from pair-wise

comparative reasoning, the importance/influence of an element for collective comparative reasoning is calculated
by the entire semantic matching subgraph. More specifically, we first transform the query graph and its semantic
matching subgraph (i.e., subgraph-specific knowledge segment) into two line graphs, which are defined as follows.

Definition 7: Line Graph [24]. For an arbitrary graph G = (V,E), the line graph L(G) = (V ′, E′) of G has
the following properties: (1) the node set of L(G) is the edge set of G (V ′ = E); (2) two nodes V ′

i , V ′
j in L(G)

are adjacent if and only if the corresponding edges ei, ej of G are incident on the same node in G.
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Figure 3: Collective comparative reasoning workflow.

Figure 3 gives an example of the line graph. For the line graph L(Q), the edge weight is the predicate-predicate
similarity of the two nodes it connects. For the line graph L(KS), the edge weight is the knowledge segment
similarity by Eq. (9) of the two nodes it connects. The rationality of building these two line graphs is that if the
semantic matching subgraph is a good representation of the original query graph, the edge-edge similarity in
L(Q) would be similar to the knowledge segment similarity in L(KS).

To measure the importance of an element, we propose to use the influence function w.r.t. the distance
between L(Q) and L(KS). We assume that a key element, if perturbed, would have a great effect on the distance
Loss = ||H1 −H2||2F , where H1 is the weighted adjacency matrix of L(Q), and H2 is the weighted adjacency
matrix of L(KS). We use the influence function ∂Loss(H1,H2)

∂e , where e represents an element of the knowledge
segment graph and it could be a node, an edge, or a node attribute. Lemma 8 provides the details on how to
compute such influence functions.

Lemma 8: Given the loss function Loss = ||H1 −H2||2F . Let n, k denote two different nodes in L(Q), and
KSn, KSk denote their corresponding knowledge segments. Let hek,n denote the weight of edge between node
k and n, and hck,n denote the weight of edge between KSk and KSn. We have

(i) The influence of an edge An(i, j) in knowledge segment KSn can be calculated as
I(An(i, j)) =

∑
k∈N(n)−2(hek,n − hck,n)

∂sim(KSn,KSk)
∂An(i,j)

.

(ii) The influence of a node i in knowledge segment KSn can be calculated as
I(Nn(i)) =

∑
k∈N(n)−2(hek,n − hck,n)

∂sim(KSn,KSk)
∂Nn(i)

.

(iii) The influence of a node attribute j in knowledge segment KSn can be calculated as
I(N j

n(i, i)) =
∑

k∈N(n)−2(hek,n − hck,n)
∂sim(KSn,KSk)

∂Nj
n(i,i)

.

Proof: We rewrite the loss function as

Loss = ||H1 −H2||2F =
∑
i,j

(hei,j − hci,j )2

Take the derivative, together with Lemma 1, we have

I(An(i, j)) =
∑

k∈N(n)

−2(hek,n
− hck,n

)
∂sim(KSn,KSk)

∂An(i, j)

(Nn(i)) =
∑

k∈N(n)

−2(hek,n
− hck,n

)
∂sim(KSn,KSk)

∂Nn(i)

I(N l
n(i, i)) =

∑
k∈N(n)

−2(hek,n
− hck,n

)
∂sim(KSn,KSk)

∂N l
n(i, i)

(14)
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which completes the proof.
Second, after we find all the key elements, we check the consistency of the semantic matching subgraph

according to these key elements. The steps are as follows. For each pair of knowledge segments of the semantic
matching subgraph, if their key elements overlapping rate is greater than a threshold (60%), we check the
consistency of this pair. Suppose the corresponding triples are < s1, p1, o1 > and < s2, p2, o2 >, respectively.
We check if < s1, isTypeOf, s2 > or < s2, isTypeOf, s1 > is true. If both of them are false, we skip this
pair of clues because it does not belong to C3 or C4. Otherwise, we check if < o1, isTypeOf, o2 > or < o2,
isTypeOf, o1 > is true. If both of them are false, we say this query graph has collective inconsistency. When
checking the truthfulness of triples (e.g., < s1, isTypeOf, s2 >, < s2, isTypeOf, s1 >, < o1, isTypeOf,
o2 > and < o2, isTypeOf, o1 >), we use the same method (i.e., transferred information amount in Eq. (13))
as in pairwise comparative reasoning.

5 Experimental Results

In this section, we present the experimental evaluations. All the experiments are designed to answer the following
two questions:

• Q1. Effectiveness. How effective are the proposed reasoning methods, including both pairwise and
collective comparative reasoning methods?

• Q2. Efficiency. How fast are the proposed methods?

Two data graphs are used in the experiments: Yago [30] 1 and Covid-19 2. Yago [30] is a widely used
knowledge graph which contains 12,430,705 triples, 4,295,825 entities and 39 predicates. The Covid-19 data
graph contains three types of entities which are Gene, Disease and Chemical. In our experiments, we use a
subset of the Covid-19 dataset which contains 55,434 core entities and 5,527,628 triples. We compare our method
with 4 baselines, including:

• TransE [1] embeds both the entities and relations in the knowledge graph to a high dimension embedding
space, and checks the consistency of a triple according to the embedding distance.

• Jaccard coefficient [14] is a link prediction algorithm which measures the truthfulness of the triple
according to the number of common neighbor nodes of the head entity and tail entity.

• Knowledge Linker [2], short for KL, extracts a path between the head entity and tail entity to decide
whether the input triple is correct.

• KGMiner [26] extracts a subgraph between the head entity and tail entity to predict the truthfulness of the
input clue.

All the experiments are conducted on a moderate desktop with an Intel Core-i7 3.00GHz CPU and 64GB
memory. The source code could be found at https://github.com/lihuiliullh/KompaRe. For
TransE [1] in the experiments, we set the embedding dimension to 64 and use a margin of one and a learning rate
of 0.01 for 1,200 epochs.

5.1 Predicate-Predicate Similarity Efficacy

We evaluate the proposed predicate-predicate similarity. Figure 4 presents two examples on Yago dataset. It
shows the top-10 most similar predicates with exports and livesIn, respectively. The font size in Figure 4

1It is publicly available at https://www.mpi-inf.mpg.de/de/departments/databases-and-information-systems/
research/yago-naga/yago/downloads. We use the core version.

2The dataset can be found at http://blender.cs.illinois.edu/covid19/.
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(a) exports (b) livesIn

Figure 4: Top-10 most similar predicates in Yago.

is proportional to the predicate-predicate similarity value. The top similar predicates w.r.t. exports by our
method include imports, hasOfficialLanguage, dealsWith, all of which have a high similarity with
exports. They all provide specific semantic information about exports. Likewise, the top similar predicates
w.r.t. livesIn include wasBornIn, isCitizenOf, diedIn, all of which are closely related to livesIn.
These results showcase that the proposed TF-IDF based method can effectively measure the similarity between
different predicates.

Table 5 shows the predicate similarity between isTypeOf and other predicates.

Table 5: Predicate similarity of isTypeOf with others
predicate sim predicate sim predicate sim predicate sim

isCitizenOf 0.840 isLeaderOf 0.955 isAffiliatedTo 0.808 isPoliticianOf 0.917
livesIn 0.972 owns 0.945 exports 0.706 dealsWith 0.697

hasCapital 0.786 command 0.216 happenedIn 0.767 participatedIn 0.869
worksAt 0.752 isLocatedIn 0.870

5.2 Pair-wise Comparative Reasoning

Here, we evaluate the effectiveness of the proposed pair-wise comparative reasoning. Ten query sets are used in
the experiments. For each positive query set, it contains a set of queries which describe the true claim, while
for each negative query set, it contains a set of queries which describe the false claim. For example, in query
set “Birth Place", <Alan Turing, wasBornIn, Maida Vale> and <Alan Turing, wasBornIn,
United Kingdom> is a positive query pair, while <Alan Turing, wasBornIn, Maida Vale> and
<Alan Turing, wasBornIn, Canada> is an negative query pair. The positive queries are generated by
sampling some true claims in the knowledge graph. The negative queries are generated by substituting one subject

Table 6: Accuracy of pair-wise comparative reasoning.
Dataset

# of
queries TransE Jaccard KL KGMiner Neural Network Based Graph Kernel Based

Family members positive 300 0.682 0.831 0.618 0.983 1.000 0.944
Family members negative 300 0.335 0.169 1.000 1.000 0.000 0.941
Graduated college positive 300 0.686 0.335 0.502 0.769 0.879 0.794
Graduated college negative 300 0.626 0.993 0.947 0.901 0.367 0.994

Live place positive 300 0.567 0.415 0.489 0.834 0.086 0.762
Live place negative 300 0.802 0.585 0.907 0.900 0.732 0.888
Birth place positive 300 0.590 0.435 0.537 0.698 0.656 0.800
Birth place negative 300 0.845 1.000 0.973 0.927 0.719 0.927
Work place positive 300 0.751 0.319 0.445 0.698 0.700 0.720
Work place negative 300 0.624 0.994 0.942 0.927 0.803 0.995

mean± std - 0.651 ± 0.424 0.608 ± 0.302 0.736 ± 0.221 0.864 ± 0.105 0.594 ± 0.333 0.877 ± 0.095
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of the positive queries. The accuracy is defined as N
M whereN is the number of queries correctly classified by pair-

wise comparative reasoning and M is the total number of queries. When checking the consistency of a query pair
< s1, p1, o1 > and < s2, p2, o2 >, because none of the baseline methods is designed for pair-wise comparative
reasoning, we use them to check each triple in the pair, if any triple is classified as false, this query pair is treated
as false. Otherwise, we further check the truthness of < o1, isTypeOf, o2 > and < o2, isTypeOf, o1 >, if one
of them is classified as consistency, this query pair is treated as consistency. Table 6 gives the detailed results.

As we can see, Graph Kernel based method and KGMiner [26] have the highest accuracy most of the time.
But Graph Kernel based method has the highest average accuracy and the lowest variance compared with other
methods.

5.3 Neural Network Based Pair-wise Comparative Reasoning

We conduct more experiments in this section to test the effectiveness of Neural Network Based Pairwise
comparative reasoning. Six binary classifiers are used in the experiment. Table 7 shows the details of each
classifier and their performance on different query sets. As we can see, different methods have different
performances. Logistic Regression has the highest average accuracy and K-Nearest Neighbor has the highest
average recall.

Table 7: Accuracy, recall and precision of neural network based pair-wise comparative reasoning

Model
Dataset

Family members Graduated college Live place Birth place Work place mean± std

measurements Acc Prec Recall Acc Prec Recall Acc Prec Recall Acc Prec Recall Acc Prec Recall Acc Prec Recall
# of queries 506 499 560 470 540 -

Logistic Regression 0.480 0.519 0.491 0.693 0.660 0.729 0.619 0.732 0.594 0.674 0.816 0.645 0.743 0.786 0.733 0.642±0.090 0.703±0.106 0.639±0.091
SVM 0.431 0.154 0.364 0.416 0.113 0.333 0.611 0.768 0.581 0.516 1.000 0.516 0.688 0.911 0.637 0.532±0.104 0.589±0.380 0.486±0.119

Decision Trees 0.422 0.519 0.443 0.713 0.623 0.786 0.619 0.696 0.600 0.611 0.694 0.607 0.716 0.750 0.712 0.616±0.107 0.656±0.080 0.629±0.116
Random Forest 0.314 0.462 0.364 0.624 0.528 0.683 0.673 0.714 0.656 0.684 0.673 0.702 0.706 0.661 0.740 0.600±0.146 0.608±0.096 0.629±0.135

Naive Bayes 0.461 0.615 0.478 0.624 0.830 0.603 0.522 0.839 0.511 0.632 0.878 0.597 0.725 0.911 0.671 0.593±0.092 0.815±0.104 0.572±0.069
K-Nearest Neighbor 0.392 0.500 0.419 0.683 0.774 0.672 0.646 0.589 0.660 0.695 0.673 0.717 0.761 0.821 0.742 0.636±0.127 0.672±0.118 0.642±0.115

Table 8 shows performance of the neural network based method on each positive and negative query dataset.
Based on the results in the table, we can conclude that the accuracy of the neural network based model is lower
than that of other models, e.g., KGMiner and Graph Kernel Based method.

Table 8: Accuracy of neural network based pair-wise comparative reasoning

Dataset
Model # of

queries Logistic Regression Support Vector Machines Decision Trees Random Forest Naive Bayes K-Nearest Neighbor

Family members positive 258 0.519 0.577 0.481 0.481 0.615 0.500
Family members negative 248 0.440 0.420 0.340 0.260 0.300 0.280
Graduated college positive 261 0.660 0.868 0.623 0.547 0.830 0.774
Graduated college negative 238 0.729 0.208 0.812 0.708 0.396 0.583

Live place positive 277 0.732 1.000 0.643 0.679 0.839 0.589
Live place negative 283 0.509 0.632 0.526 0.632 0.211 0.702
Birth place positive 244 0.816 1.000 0.653 0.653 0.878 0.673
Birth place negative 226 0.522 0.000 0.522 0.674 0.370 0.717
Work place positive 277 0.786 0.946 0.696 0.679 0.911 0.821
Work place negative 263 0.698 1.000 0.660 0.755 0.528 0.698

mean± std - 0.641 ± 0.126 0.665 ± 0.343 0.596 ± 0.125 0.607 ± 0.138 0.588 ± 0.250 0.634 ± 0.148

5.4 Collective Comparative Reasoning

We test collective comparative reasoning method on Yago dataset, using 6 query sets . Different from the
queries of pair-wise comparative reasoning which only contain two edges, each query of collective compar-
ative reasoning contains 3 edges. For example, in query set “live Place", <Barack Obama, livesIn,
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Table 9: Accuracy of collective comparative reasoning.

Dataset # of
queries TransE Jaccard KL KGMiner Kompare

Birth place positive 300 0.542 0.418 0.389 0.678 0.795
Birth place negative 300 0.465 0.996 0.968 0.970 0.829
Live place positive 300 0.448 0.451 0.465 0.635 0.989
Live place negative 300 0.558 1.000 0.860 0.924 0.743

Graduated college positive 300 0.488 0.269 0.335 0.585 0.963
Graduated college negative 300 0.545 0.996 0.928 0.907 0.829

mean± std - 0.508 ± 0.045 0.688 ± 0.313 0.658 ± 0.265 0.783 ± 0.155 0.858 ± 0.089

Washington,D.C.>,<Barack Obama, is, United States Senate Barack Obama> and<United
States Senate Barack Obama, livesIn, United States> is a positive query triad, while<Barack
Obama, livesIn, Washington,D.C.>,<Barack Obama, is, United States Senate Barack
Obama> and <United States Senate Barack Obama, livesIn, Canada> is an negative query
triad. The definition of the accuracy is the same as the previous section. Following the setting of pair-wise reason-
ing, when checking the consistency of the query graph < s1, p1, o1 >, < s1, is, s2 > and < s2, p2, o2 >, we
use baseline methods to check the truthness of this query triad, if any edge is classified as false, this query triad is
treated as false. Otherwise, we further check the truthness of < o1, isTypeOf, o2 > and < o2, isTypeOf, o1 >,
if one of them is classified as true , this query pair is treated as consistency. Table 9 gives the detailed results. As
we can see, Jaccard [14] prefers to classify all queries as inconsistency and has the largest variance. TransE [1]
has the lowest variance, but its average accuracy is very low. KOMPARE has the highest accuracy most of the
time. It also has the highest average accuracy, and the second lowest variance.

Table 10: Accuracy of collective comparative reasoning for Covid-19.

Dataset # of queries TransE Jaccard KL KGMiner Kompare
Positive 36 0.667 0.611 1.000 0.694 1.000
Negative 36 0.528 0.361 0.722 0.553 0.863

Average accuracy - 0.598 ± 0.071 0.486 ± 0.126 0.861 ± 0.138 0.623 ± 0.071 0.932 ± 0.063

We further provide experimental results on Covid-19 dataset. We use queries which contain connections
between drugs and genes/chemicals related to covid-19.3 Among all these queries, we use queries which contain
less than 8 nodes, and treat them as positive queries. For each of the positive queries, we randomly select one
node inside the query and substitute it with a randomly selected entity in the data graph, and treat the new query
as the negative query. For all the baseline methods, we use them to check all the edges inside the query, if any
edge is classified as false, the whole query is treated as false. Table 10 shows the accuracy of different methods.
As we can see, KOMPARE has the highest accuracy on both the positive and negative datasets, it also has the
highest average accuracy and the lowest variance compared with other baseline methods.

5.5 Efficiency Results

The runtime of knowledge segment extraction depends on the size of the underlying knowledge graphs. Among
the two types of knowledge segments (edge-specific knowledge segment and subgraph-specific knowledge
segment), subgraph-specific knowledge segment is most time-consuming. Figure 5(a) shows that its runtime
scales sub-linearly w.r.t. the number of nodes in the knowledge graph. Different lines show the runtime w.r.t.
different query graph size. Figure 5(b) shows the runtime of comparative reasoning, where ‘Pair-wise’ refers to
the pairwise comparative reasoning, and the remaining bars are for collective comparative reasoning with 3, 4
and 5 edges in the query graphs respectively. Note that the runtime of comparative reasoning only depends on the

3The query graphs can be found at http://blender.cs.illinois.edu/covid19/visualization.html.
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(a) Subgraph-specific KS extraction (b) Comparative reasoning

Figure 5: Runtime of KOMPARE

size of the the corresponding knowledge segments which typically have a few or a few tens of nodes. In other
words, the runtime of comparative reasoning is independent of the knowledge graph size.

6 Related Work

A - Knowledge Graph Search. Many efforts have been made for searching and browsing large knowledge
graphs. Wang et al. [36] proposed a Bayesian probability model combined with random walks to find the most
similar concepts for a given query entity. Wu et al. [29] discovered that the background knowledge graph can
be described by many small-sized patterns. They developed an effective mining algorithm to summarize the
large knowledge graph according to small-sized patterns. Yang et al. [39] found that due to the lack of insight
about the background knowledge graph, it is often hard for a user to precisely formulate a query. They developed
a user-friendly knowledge graph search engine to support query formation and transformation. Jayaram et al.
[10] proposed a knowledge graph query system called GQBE. Different from other graph query systems, GQBE
focuses on entity tuple query which consists of a list of entity tuples. Zhang et al. [40] developed a comprehensive
multi-modality knowledge extraction and hypothesis generation system which supports three types of queries,
including (1) class-based queries (2) zero-hop queries and (3) graph-queries.
B - Fact Checking on Knowledge Graph. In 2015, GL Ciampaglia et al. [3] show that the complexities of
human fact checking can be approximated quite well by finding the shortest path between concept nodes under
properly defined semantic proximity metrics on knowledge graphs. The authors evaluate tens of thousands of
claims on knowledge graphs extracted from Wikipedia. Many research works follow this direction with different
techniques. Baoxu et al. [27] model the fact checking problem as a link-prediction task in a knowledge graph,
and present a discriminative path-based method for fact checking in knowledge graphs. Shiralkar et al. [28]
adopts k-shortest paths approach to construct a knowledge stream (KS) between two entities as the background
knowledge for fact checking. Lin et al. [15] introduce ontological patterns in fact checking for semantic and
topological constraints. These constraints are represented as subgraph patterns which are used for query in the
knowledge graph. In order to obtain the ground truth of contextualized claim, Tchechmedjiev et al. release a large,
up-to-date and queryable corpus of structured information about claims and related metadata for fact checking
research, named ClaimsKG [32].
C - Knowledge Graph Reasoning. Generally speaking, there are two types of knowledge graph reasoning
methods, including (1) embedding based approaches and (2) multi-hop approaches. For the former, the main
idea is to learn a low dimensional vector for each entity and predicate in the embedding space, and use these
embedding vectors as the input of the reasoning tasks (e.g., [1], [31], [12], [35]). For the latter, the main
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idea is to learn missing rules from a set of relational paths sampled from the knowledge graph (e.g., [13], [37],
[22]). Many effective reasoning methods have been developed for predicting the missing relation (i.e., link
prediction) or the missing entity (i.e., entity prediction). In link prediction, given the ‘subject’ and the ‘object’ of
a triple, it predicts the existence and/or the type of relation. For example, TransE [1] learns the low dimensional
embedding of both entities and predicates in the knowledge graph; TransR [16] learns the embedding of entities
and predicates in two separate spaces. The learned embedding (either by TransE or TransR) can be used for both
link predication and entity predication. In entity prediction, given the ‘subject’ and the ‘predicate’ of a triple, it
predicts the missing ‘object’. For example, GQEs [12] embeds the graph nodes in a low dimensional space, and
treats the logical operators as learned geometric operations.

In recent years, knowledge graph reasoning has demonstrated strong potential for computational fact checking.
Given a claim in the form of a triple of the knowledge graph, it reasons whether the claim is authentic or
falsified. For example, in [24], the authors focused on checking the truthfulness of a given triple/claim, by first
transforming the knowledge graph into a weighted directed graph, and then extracting a so-called knowledge
stream based on maximum flow algorithm. It is worth mentioning that the extracted knowledge stream can be
viewed as an edge-specific knowledge segment in KOMPARE. In [25], an alternative method was developed
to detect fake claims by learning the discriminative paths of specific predicates. Different from [24], this is a
supervised reasoning method since it requires different training datasets for different predicates. If the predicate
in the claim does not exist in the training data, which is likely to be the case for detecting falsified claims in
emerging news, the algorithm becomes inapplicable. As mentioned before, these methods belong to point-wise
reasoning. Therefore, they might fall short in detecting the semantic inconsistency between multiple claims which
can be solved by knowledge graph comparative reasoning.

7 Conclusions

In this paper, we present the problem definition and algorithms for knowledge graph comparative reasoning.
Comparative reasoning aims to complement and expand the existing point-wise reasoning over knowledge graphs
by inferring commonalities and inconsistencies of multiple pieces of clues. We propose several methods to
tackle comparative reasoning. At the heart of the proposed methods are a suite of core algorithms, including
predicate-predicate similarity and semantic subgraph matching for knowledge segment extraction; neural network
and influence function, commonality rate, transferred information amount for both pairwise reasoning and
collective reasoning. The experimental results demonstrate that the proposed methods (1) can effectively detect
semantic inconsistency, and (2) scales near linearly with respect to the knowledge graph size.
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Abstract

The rapid development and application of natural language generation (NLG) techniques has revolution-
ized the field of automatic text production. However, these techniques are still limited in their ability to
produce human-like text that is truly reasonable and informative. In this paper, we explore the importance
of NLG being guided by knowledge, in order to convey human-like reasoning through language generation.
We propose ten goals for intelligent NLG systems to pursue, and briefly review the achievement of NLG
techniques guided by knowledge and reasoning. We also conclude by envisioning future directions and
challenges in the pursuit of these goals.

1 Introduction

Language, as the vehicle of thought [128], is one of the most fundamental means for humans to reason and
communicate with each other. Hence, the technology of natural language generation (NLG) has always been
one of the main focuses throughout the history of AI research [126]. In the age of modern deep learning,
NLG techniques have been widely deployed in real-life applications, including machine translation [130], news
reporter [134], dialogue systems [115], automatic report generation [40], etc. Beyond that, NLG models also
serve as a rather universal workhorse in other types of NLP tasks, such as structured prediction [85].

The achievement so far for NLG research has enabled the wide application of NLG techniques, but the
dangers beneath them are still far from being resolved. The foundation of NLG models has shifted over the
years, from rule-based models [62, 81] to statistical models [27], and now at pre-trained language models
(PLMs) [92, 34, 93, 64, 11]. However, rule-based models are too rigid to generate natural language. Statistical
models based on neural networks and training datasets suffer from limitations such as reporting bias, exposure
bias, generalization issue, etc. Recent years, PLMs have shown their excellent capabilities of understanding
and generating natural language. However, the research on PLMs does not necessarily solve the fundamental
problems NLG, as the alleviation of these problems comes from exposing the models on much more data
with self-supervised training. Moreover, multiple problems still occur, including model explainability [72],
hallucination [95, 132], ethical risks [117, 148], logical inconsistency [60, 36], etc.

Towards these challenges, the research community has formulated an important perspective with symbolic
knowledge, covering rules [55], commonsense knowledge [109], world knowledge [2, 120], etc. Since symbolic
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Figure 1: The taxonomy of the goals in NLG.

knowledge can be used to describe complicated concepts and their connections, it would be easier for the models
to comprehend the textual world. Therefore, symbolic knowledge brings significant opportunities towards NLG
models in these respects: 1) symbolic knowledge provides rich background materials for NLG models to generate
from; 2) symbolic knowledge serves as regularization to NLG models for expressing constraints and desired
properties related to a given task; and 3) the formal rules and structures that symbolic knowledge established can
be used to improve the reasoning ability of NLG models.

In this paper, we stress the importance and necessity of NLG techniques to be guided by knowledge, so
that human-like reasoning can be conveyed through language generation. To this end, we propose ten goals
for intelligent NLG systems to pursue (§ 2), Next, we briefly review the achievement of NLG techniques with
knowledge (§ 3), picturing the mutual enhancement of guiding NLG with knowledge and acquiring knowledge
with NLG. Then, we summarize how to make rational usage of knowledge to approach human-level reasoning
with NLG techniques (§ 4), showing reasoning-guided NLG and how NLG can be used to chain up reasoning.
Finally, we conclude this paper and envision future directions and challenges in the pursuit of these goals (§ 5).

2 Holy Grails in NLG

To begin with, we list ten most-desired goals (with room for more) for machine-generated text, in order to build
an AI system that can freely interact and communicate with humans with language. We categorize these goals
into three classes based on the linguistic quality of generated text, conveying semantic information with generated
text and the interaction with humans, as shown in Figure 1. These goals are still quite challenging for modern
NLG methods. While the research about most of them is still in its infancy, some of these goals have been
moderately explored by the community. Since symbolic knowledge offers control of the process and outcome of
generated text, many of research endeavors prove that symbolic knowledge plays an important role in steering
NLG techniques towards these goals.

Diverse Given a source input, an ideal NLG model needs to be able to generate multiple and diverse outputs,
where each of them needs to be equally valid. For example Diversified NLG is a practical goal, especially in the
context of real-life applications such as dialogue generation [129], machine translation [101], headline or query
generation in e-commerce [102] and text paraphrasing [103]. Advanced NLG models should be able to generate
diverse but informative text from the large sentence space, especially involving diverse but relevant background
knowledge in the context.
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Figurative The generative text should be figurative to build up emotional significance to the readers. Figurative
text typically includes idioms, sarcasm, simile, metaphor, etc. All of them are great ingredients in interesting and
creative writing tasks such as story generation or narratives. For example, the sentence that “he is drowning in a
sea of grief” expresses strong negative emotions to the reader, where grief, with the metaphor of a sea, vividly
overwhelms him. To master the ability to write figurative text is non-trivial, and recent studies show that even
strong modern language models still struggle at this objective [47, 70, 22]. Nevertheless, research shows that
such a problem can be alleviated with knowledge-enhanced models, which enrich the context and constituents of
figurative text with acquired knowledge [18].

Descriptive Advanced NLG techniques need to be descriptive, that is, vivid and colorful as if something
is being experienced by the readers. Descriptive texts are rather common in books and novels, fascinated by
image-like texts. For example, to describe the sunset: “the sunset filled the entire sky with the deep color of rubies,
setting the clouds ablaze.”1 It is worth noting that, unlike previous desired properties that interact mostly with
textual data, a system needs to integrate multi-modal knowledge and reasoning (e.g., image, video, etc.) to be
descriptive with visual-specific features [138, 105, 106]. However, the exact definition of descriptiveness in the
context of the machine-generated text as well as its automatic evaluation are still great challenges.

Faithful The generated text should be faithful to the input so that it correctly conveys and extends the input
information without semantic violation. Otherwise, the credibility of an NLG system could be undermined when
hallucinated texts are generated, which could be dangerous sometimes. There is a growing interest in enhancing
and evaluating the (intrinsic or extrinsic) faithfulness of generated text in text summarization [17, 80, 63], dialogue
systems [49], text simplification [33], etc. However, hallucinated texts are not always non-factual, because they
may be faithful towards world knowledge [14]. Therefore, an NLG system should be faithful and can be verified
by world knowledge [116, 20], except for applications such as fictional story generation.

Logical Logical reasoning is an essential part of human thinking and language; therefore, the generated text
needs to be logically consistent and self-contained. Different from faithfulness which focuses on information
consistency, logical consistency poses a challenge over the discourse of produced language of an NLG system [5,
25, 104, 107, 87]. However, the training objectives of current prevailing language modeling (e.g., masked
language modeling and causal language modeling) prioritize recovering given text, which does not guarantee the
logical reasoning ability to be effectively captured by models.

Knowledgeable An NLG model needs to be knowledgeable to generate text that is rich in knowledge [139].
When engaging in a conversation, current NLG models are known to be dependent on plain but safe responses.
A knowledgeable NLG system, in contrast, should be able to actively initiate responses grounded with the
background knowledge that is either retrieved [65] or inherent [75] in the system itself. Also, it is worth exploring
whether current NLG models are using knowledge of their own or just relying on statistical patterns learned from
(pre-)training [13].

Explainable An NLG system should be explainable for the trust of human users. Since language is the
most natural tool for communication, the reasoning and decisions of a model should be explanatory through
generated language [96]. Existing work usually focuses on generating natural language explanations [127] as a
task, while how to develop universal explanation generators [137] is still challenging. More importantly, unlike
natural language understanding models (NLU) [97, 100, 111], the explainability of NLG systems is severely
underexplored.

1https://rescuewriting.org/featured/writing-descriptive-text/.
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Controllable Controllable NLG aims to generate with desired attributes by users, which greatly broadens its
applications. Current commonly used attributes focus on discriminative attributes such as sentiment and style,
lexical constraints, and various properties of language such as lengths or complexity [50, 141, 37]. Moreover,
there are still many interesting open questions for building an ideal NLG system, for example, more diverse
applications of controlling factors, satisfying multiple types of constrained attributes (perhaps a mixture of them),
and being controlled in a few-shot or even zero-shot manner. It is worth noting that recent studies in large
language models [11] shed some light on these research problems.

Fair The generated text should be fair and contain no bias whatsoever. Methods to mitigate biases have been
proposed w.r.t. gender, race, nationality, age, disability, religion, etc. [71, 131, 45]. Since text generation models
have been widely applied in the age of the Internet, their outstanding performance could blind service providers
so as to omit the negative social impacts that an unfair NLG system causes. However, since modern NLG systems
are usually pre-trained on colossal unannotated corpus [92, 93, 64, 11], the biases within them are still rather
difficult to eliminate.

Efficient An NLG system should be efficient to be deployed on high-demanding scenarios such as mobile
devices or online industrial applications. Recent work on non-autoregressive generation (NAG) [41, 133], which
generates tokens in parallel, has shown promising potential in efficiency. This enables NAG to achieve over 10×
speedup over the autoregressive counterpart (AG) that generates in a left-to-right manner [27]. However, NAG is
still haunted by the multi-modality problem [145], its generality to tasks other than machine translation [89], and
interaction with external knowledge [140].

3 Knowledge in Language Generation

In this section, we briefly review some representative work in knowledge-guided NLG algorithms and knowledge
acquisition with NLG models, where NLG systems also show unique advantages in the latter. Figure 2 shows the
relation between knowledge-guided NLG (§ 3.1) and knowledge acquisition with NLG (§ 3.2), where the two are
mutually beneficial to each other.

3.1 Knowledge-guided NLG: Tricks of the Trade

NLG systems can be guided by multiple sources and types of knowledge to be logical, diverse, faithful, con-
trollable, etc. In the following text, we list the knowledge sources that are commonly used, and showcase the
common tricks of current knowledge-guided NLG algorithms, presenting a brief but as comprehensive review as
possible.
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Knowledge Sources According to Yu et al. [139], knowledge sources used in NLG systems can be categorized
into internal and external knowledge, where: 1) internal knowledge is created within the given text, e.g., keywords,
topics, linguistic features, etc., and 2) external knowledge exists outside the input of the NLG system, e.g.,
knowledge bases/graphs, grounded unstructured text. We add that knowledge mined from the corpus is also
important to guide NLG systems, such as concepts, rules, and patterns [21]. Notably, NLG systems form an
interesting dual learning loop where knowledge can be acquired by NLG systems (§ 3.2) and used in NLG
systems [110, 16]. Next, we will detail some common practices of NLG models that involve knowledge.

Knowledge Incorporation in Model Architectures Modifying model architectures to incorporate knowledge
is one of the most commonly used approaches in knowledge-guided NLG [136, 139]. Typical methods include
using attention mechanism [3] (and its variants, e.g., copying mechanism, [42]) to attend additional knowledge
sources, encoding knowledge with specific encoders (e.g., graph neural networks, [61]), adding specific layers in
the neural network for knowledge storage (e.g., adapter layers, [44]), etc. In this line of work, a model trains to
utilize the encoded knowledge for better NLG. However, such methods usually require the design of an ad hoc
model architecture, which does not generalize well to new tasks, especially in the age of large PLMs [11].

Learning with Knowledge The most common method of knowledge-guided NLG is through supervised
learning, where the guidance of knowledge can be well integrated into generation [139]. A simple way to do this
is to append the acquired knowledge to the input as an additional context. This has been shown to be effective,
especially when knowledge acquisition (e.g., retrieval) is jointly trained with generation [46, 65]. Another way is
to guide learning objectives with knowledge. Studies in this direction are carried out by designing knowledge
into one of the training targets [16] or pre-training [43], or by introducing additional knowledge-related objective
functions to regularize training [51]. Also, reward design in a reinforcement learning (RL) framework is a
flexible way of integrating knowledge into training objectives for NLG models. For an example of improving
the consistency between source and target, [67] injects the entailment knowledge into NLG with an entailment
model, and [53] designs a semantic cloze reward for faithful summarization.

Knowledge-Constrained Decoding Finally, we would like to emphasize knowledge incorporation during
decoding. Knowledge injection through model architecture modification and new learning objectives, despite
being effective, requires (re-)training. This usually causes inconvenience for deployment, especially with large
PLMs. For this reason, constraining text decoding in inference time with knowledge has become a promising
research topic [141, 37]. In this line of work, we briefly introduce the three most exemplary knowledge constraint
types in NLG systems: 1) lexical knowledge constraints, such as keywords that must appear in the text, 2)
discriminative constraints, such as the desired attributes of the generated text, and 3) structured knowledge
constraints, such as the world knowledge that the generated text must be consistent with.

Imposing lexical constraints is challenging for NLG systems because the prevailing ones usually generate in
an autoregressive manner, which is difficult to know when and where to keep the constraints. Popular solutions to
this problem mainly focus on adding constraints during beam search [48, 88, 76] at the cost of computational
complexity. Recent work [112, 135] also explores iterative lexically constrained decoding for non-autoregressive
models, achieving significant speedups.

Discriminative constraints usually involve prior attribute models to control the generated text in terms of
attributes such as topics (sport, finance, medical), sentiments (positive, negative), etc. Exemplary work is PPLM
[30], which controls the attribute of generated text without changing the parameters of the backbone PLM (e.g.,
GPT-2, [92]). During sampling, PPLMs back-propagates the gradient from the attribute model to the hidden
states of the PLM so that the generation can be steered by the attribute model. Under such a framework, it is
easy to guide generation with prior knowledge. It is worth noting that work on text sampling is also a great
framework to effectively incorporate the above-mentioned two types of constraints. In this framework, the desired
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properties are designed as objective functions, guiding the sampling process, which is usually instantiated with
Markov chain Monte Carlo methods [82, 143, 91]. Similar to PPLM, such methods ensure the generated text is
constrained to the desired objectives without training.

Recent studies have also started to pay attention to the hallucination problem of NLG systems (represented by
PLMs) from the perspective of constrained decoding with structured knowledge constraints, such as knowledge
graphs. For example, [73] retrieves from knowledge graphs related to neighboring entities within source input.
They are used to modify and constrain the distributions over the vocabulary during sampling, where tokens within
knowledge graphs are rewarded. In this way, the generated text would be rich in semantic knowledge and faithful
to world knowledge, making it an interesting and effective solution to the hallucination problem that is common
in NLG.

3.2 Knowledge Acquisition with NLG

Knowledge acquisition based on NLG systems aims to generate knowledge from the input text. Compared with
other paradigms of knowledge acquisition, automatic and generalizability to unseen knowledge are one of the
most desired features of generative methods. In the following text, we first discuss current knowledge acquisition
paradigms and show the advantages of generative methods in certain scenarios.

Paradigms of Knowledge Acquisition The knowledge acquisition methods can be divided into three categories:
1) crowd-sourcing, 2) extractive and 3) generative methods. The crowd-sourcing methods [83] invite some experts
to label the knowledge in the corpus, which can acquire accurate knowledge but only have a small size due to costly
annotation. The extractive methods [147] adopt language models to extract the knowledge explicitly mentioned
in the input text automatically but ignore some symbolic and neural commonsense knowledge. Compared with
them, generative knowledge acquisition methods enjoy the advantages of the ability to generate explicit and
implicit knowledge, which we will soon discuss.

Meta Knowledge Generation Meta knowledge is knowledge about knowledge [31]. As a fundamental
conceptual instrument in knowledge-based domains, meta-knowledge can greatly improve the performance of
downstream tasks, such as text classification [23], question answering [38] and story generation [19]. However,
meta-knowledge is hardly explicitly mentioned in the corpus, and thus it is difficult to directly extract meta-
knowledge from the text. Alternatively, since NLG systems can generate information never mentioned in the text
and has a strong generalization ability of unseen knowledge, recent work proposes to adopt generative methods to
acquire meta knowledge, such as concepts [21, 66] and rules [24].

Generative Knowledge Retrieval Information retrieval aims to retrieve meaningful information from large
Knowledge Bases (KB) given a textual input. Compared to extractive methods, generative information re-
trieval [15, 32, 98] can directly capture the relation between context and target information and reduce the
memory footprint without negative data down-sampling.

Generative Knowledge Extraction Information extraction aims to obtain information from semi-structured
and unstructured text, which suffers heterogeneous structures and domain-specific schemas [79]. The generative
information extraction can end-to-end generate targeted structures directly. For example, [54] adopts autoregres-
sive models to achieve the extraction of end-to-end relations. [78] proposes a sequence-to-structure generation
method to directly extract events from the text. [52] formulates entity-based extraction as a template generation
task to allow the generative framework to effectively capture cross-entity dependencies.
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Knowledge Generation NLG models can also be used for the completion of knowledge bases, including
commonsense knowledge graphs and rules. Instead of extracting semi-structured and unstructured text into
knowledge, some work [9, 55] feeds large-scale language models with a massive corpus to obtain knowledge
models, which can adapt their learned representations to knowledge generation and automatically construct KBs.
Furthermore, the parameters of PLMs are shown to store vast amounts of linguistic knowledge [114]. A line of
work further regards PLMs as knowledge bases and distills semantic knowledge from these models [86, 1].

4 Reasoning in Language Generation

We echo the argument that good reasoning should be right for the right reasons. Therefore, it is also crucial for an
NLG model to make rational usage of knowledge to approach human-like reasoning skills. This section signifies
the importance of reasoning in NLG, where we sketch two lines of research: 1) reasoning-guided NLG methods
(§ 4.1) and 2) NLG for the purpose of reasoning (§ 4.2).

4.1 Reasoning-guided NLG

In contrast to general knowledge-guided NLG, reasoning-guided NLG systems make more rational and explainable
usage of the knowledge (in wide forms). Since reasoning is highly correlated with knowledge (§ 3), we will
discuss reasoning-guided NLG by highlighting the topics of graph reasoning and generative reasoning tasks in
the following paragraphs.

Graph Reasoning Graph reasoning is one of the most commonly used techniques to guide NLP systems towards
more multihop, controllable, and explainable reasoning. Therefore, we extend what has been discussed in § 3.1 in
this paragraph for introducing graph reasoning-guided NLG. Graph reasoning implementations are usually built
on retrieved subgraphs of external knowledge graphs [74] or internal graphs parsed from the input [121]. Most of
them adopt graph embeddings [8] and graph neural networks [61, 119] to propagate information throughout the
graph. These properties of graphs enable the multi-hop reasoning ability of NLG models for long-range text [57]
and generating emerging concepts or topics guided by the graph [122, 142]. Due to the symbolic structure of
graphs, heuristics and prior knowledge can be easily incorporated into graph construction, e.g., building graphs
with various parsing tools [39] such as semantic role labeling or dependency parsing or guiding graph propagation
with more information, such as popularity knowledge [102]. Also, such methods are explainable and easy to
debug, since the weights on the graph nodes and edges greatly facilitate post hoc manual examination.

Reasoning Tasks One of the most direct ways to enable NLG models to reason is to design various reasoning
tasks. During the solving of these tasks, researchers can develop and test their models w.r.t. corresponding
reasoning skills, which makes it an important direction to guide AI models. Over the years, the community
has accumulated many datasets of tasks that test various facets of machine reasoning in the form of text
generation. Most of them are built from the point of view of human cognition, including tasks about logical
reasoning [29], abductive reasoning [6], counterfactual reasoning [90], generative commonsense reasoning [69],
social reasoning [99], physical reasoning [7], temporal reasoning [144], etc. 2 Not limited to these tasks, datasets
on explanation generation [127] are also good sources to evaluate and improve the reasoning ability of NLG
systems, including the explanations for natural language inference [12] commonsense reasoning [94], analogical
reasoning [22], causal reasoning [35], multimodal reasoning [68], etc.

2Note that some of these reasoning tasks [99, 7, 144] take the form of question answering but can be solved in a generative manner [58].
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4.2 Reasoning by NLG

Human language is a good vehicle for reasoning. Thus, the generation of language naturally resembles the way
humans think and reason. With the success of PLMs, there is a growing interest in the AI community to use NLG
models to generate a chain of reasoning for problem-solving.

Generative Reasoning Generative reasoning aims to generate intermediate reasons with NLG models for better
problem solving. Such intermediate reasons take many forms, including deduction and abduction reasons [113],
explanations [56], or decomposed subtasks of a complex one [59]. Some work [108, 4] even show that expanding
the context of the input by generating more information would also help solve reasoning tasks. Moreover, [27]
finds that transformer-based PLMs are effective soft reasoners on a toy deduction dataset, which consists of
collections of text verbalized from artificial if-then rules and facts. Other studies [10, 5] corroborate this discovery
and show that training generative models with artificial textual data that verbalize rule-based reasoning helps
downstream logical reasoning tasks. We remark that generative reasoning provides a new perspective of breaking
the black-box prediction of neural networks, which demonstrates the potential of achieving reasoning with NLG
systems.

Reasoning with Large Language Models Entering the era of large language models (LLMs) such as GPT-
3 [11, 84] and PaLM [26], there is a recent growing interest in exploring few-/zero-shot reasoning skills of these
LLMs Since fine-tuning such tremendous language models is hardly possible, current work adopts prompt-based
in-context learning methods [11, 77] to achieve few-/zero-shot learning with LLMs, where instructions and
examples are demonstrated within the input prompts.

Similar to the above discussion of generative reasoning, this line of work aims to guide the language models
to explicitly generate the intermediate thinking steps (or reasons) during reasoning. A representative work
among them is the Chain-of-Thought prompting [125], where the intermediate thinking process is verbalized
and integrated into the demonstrations. In this way, complex reasoning can be decomposed into multiple steps
reflected by language, which is analogous to how humans solve complex tasks. Such methods achieve much
better performance on a variety of reasoning tasks compared with normal prompting and even surpass fine-tuned
methods in some cases. Moreover, the prompting strategy can be further refined [123, 146, 28], leading to
generally better results. LLMs prompted with and asked to generate step-by-step reasoning chains also exhibit
certain quantitative reasoning abilities such as solving math word problems [125], where the LLMs are not
specifically trained on such tasks. However, reasoning abilities for LLMs are shown to be emergent [125, 124],
i.e., effective only for really large language models (over 100 billion parameters). How to enable smaller language
models with few-shot reasoning skills is still an open question.

5 Conclusion

In this work, we envision the ten most desired goals of an intelligent natural language generation system. In pursuit
of these goals, the guidance of knowledge and reasoning plays a significant role in modern NLG models. We
have revisited the achievements with knowledge in NLG w.r.t. knowledge-guided NLG and generative knowledge
acquisition. We particularly highlight knowledge-constrained decoding for its wide application potential, where
knowledge constraints can be incorporated into NLG models (especially large-scale ones) in a plug-and-play
manner. We have also discussed current work on reasoning in NLG, which essentially makes rational usage
of knowledge and datasets for various reasoning tasks. Moreover, NLG can verbalize intermediate thinking
processes to facilitate complex reasoning, enabling few-/zero-shot reasoning abilities for large language models.
However, current research is still far from realizing these goals, which we outline for future research. We hope
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that this survey report can provide newcomers with a good entry point into the exciting area of knowledge-guided
and reasoning-intensive NLG.
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[120] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Communications
of the ACM, 57(10):78–85, 2014.

[121] Danqing Wang, Pengfei Liu, Yining Zheng, Xipeng Qiu, and Xuanjing Huang. Heterogeneous graph
neural networks for extractive document summarization. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 6209–6219, Online, July 2020. Association for
Computational Linguistics.

[122] Qingyun Wang, Lifu Huang, Zhiying Jiang, Kevin Knight, Heng Ji, Mohit Bansal, and Yi Luan. PaperRobot:
Incremental draft generation of scientific ideas. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages 1980–1991, Florence, Italy, July 2019. Association for
Computational Linguistics.

[123] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, and Denny Zhou. Self-consistency improves
chain of thought reasoning in language models. arXiv preprint arXiv:2203.11171, 2022.

[124] Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol Vinyals, Percy
Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models. Transactions on
Machine Learning Research, 2022. Survey Certification.

[125] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V
Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language models. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural Information
Processing Systems, 2022.

[126] Joseph Weizenbaum. Eliza—a computer program for the study of natural language communication between
man and machine. Communications of the ACM, 9(1):36–45, 1966.

[127] Sarah Wiegreffe and Ana Marasovic. Teach me to explain: A review of datasets for explainable natural
language processing. In J. Vanschoren and S. Yeung, editors, Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks, volume 1, 2021.

57



[128] Ludwig Wittgenstein. The blue and brown books, volume 34. Blackwell Oxford, 1958.

[129] Sixing Wu, Ying Li, Dawei Zhang, Yang Zhou, and Zhonghai Wu. Diverse and informative dialogue genera-
tion with context-specific commonsense knowledge awareness. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 5811–5820, Online, July 2020. Association for
Computational Linguistics.

[130] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[131] Mengzhou Xia, Anjalie Field, and Yulia Tsvetkov. Demoting racial bias in hate speech detection. In
Proceedings of the Eighth International Workshop on Natural Language Processing for Social Media,
pages 7–14, Online, July 2020. Association for Computational Linguistics.

[132] Yijun Xiao and William Yang Wang. On hallucination and predictive uncertainty in conditional lan-
guage generation. In Proceedings of the 16th Conference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages 2734–2744, Online, April 2021. Association for
Computational Linguistics.

[133] Yisheng Xiao, Lijun Wu, Junliang Guo, Juntao Li, Min Zhang, Tao Qin, and Tie-yan Liu. A survey on non-
autoregressive generation for neural machine translation and beyond. arXiv preprint arXiv:2204.09269,
2022.

[134] Runxin Xu, Jun Cao, Mingxuan Wang, Jiaze Chen, Hao Zhou, Ying Zeng, Yuping Wang, Li Chen, Xiang
Yin, Xijin Zhang, Songcheng Jiang, Yuxuan Wang, and Lei Li. Xiaomingbot: A Multilingual Robot News
Reporter. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics:
System Demonstrations, pages 1–8, Online, July 2020. Association for Computational Linguistics.

[135] Weijia Xu and Marine Carpuat. EDITOR: An Edit-Based Transformer with Repositioning for Neural
Machine Translation with Soft Lexical Constraints. Transactions of the Association for Computational
Linguistics, 9:311–328, 03 2021.

[136] Jian Yang, Gang Xiao, Yulong Shen, Wei Jiang, Xinyu Hu, Ying Zhang, and Jinghui Peng. A survey of
knowledge enhanced pre-trained models. arXiv preprint arXiv:2110.00269, 2021.

[137] Xi Ye and Greg Durrett. The unreliability of explanations in few-shot in-context learning. arXiv preprint
arXiv:2205.03401, 2022.

[138] Xuwang Yin and Vicente Ordonez. Obj2Text: Generating visually descriptive language from object
layouts. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing,
pages 177–187, Copenhagen, Denmark, September 2017. Association for Computational Linguistics.

[139] Wenhao Yu, Chenguang Zhu, Zaitang Li, Zhiting Hu, Qingyun Wang, Heng Ji, and Meng Jiang. A survey
of knowledge-enhanced text generation. ACM Computing Surveys (CSUR), 2022.

[140] Chun Zeng, Jiangjie Chen, Tianyi Zhuang, Rui Xu, Hao Yang, Qin Ying, Shimin Tao, and Yanghua
Xiao. Neighbors are not strangers: Improving non-autoregressive translation under low-frequency lexical
constraints. In Proceedings of the 2022 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, pages 5777–5790, Seattle, United States,
July 2022. Association for Computational Linguistics.

58



[141] Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou, and Dawei Song. A survey of controllable text
generation using transformer-based pre-trained language models. arXiv preprint arXiv:2201.05337, 2022.

[142] Houyu Zhang, Zhenghao Liu, Chenyan Xiong, and Zhiyuan Liu. Grounded conversation generation
as guided traverses in commonsense knowledge graphs. In Proceedings of the 58th Annual Meeting
of the Association for Computational Linguistics, pages 2031–2043, Online, July 2020. Association for
Computational Linguistics.

[143] Maosen Zhang, Nan Jiang, Lei Li, and Yexiang Xue. Language generation via combinatorial constraint sat-
isfaction: A tree search enhanced Monte-Carlo approach. In Findings of the Association for Computational
Linguistics: EMNLP 2020, pages 1286–1298, Online, November 2020. Association for Computational
Linguistics.

[144] Ben Zhou, Daniel Khashabi, Qiang Ning, and Dan Roth. “going on a vacation” takes longer than “going
for a walk”: A study of temporal commonsense understanding. In Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on
Natural Language Processing (EMNLP-IJCNLP), pages 3363–3369, Hong Kong, China, November 2019.
Association for Computational Linguistics.

[145] Chunting Zhou, Jiatao Gu, and Graham Neubig. Understanding knowledge distillation in non-
autoregressive machine translation. In International Conference on Learning Representations, 2020.

[146] Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. Least-to-most prompting enables complex reasoning in large
language models. arXiv preprint arXiv:2205.10625, 2022.

[147] Shaowen Zhou, Bowen Yu, Aixin Sun, Cheng Long, Jingyang Li, and Jian Sun. A survey on neural open
information extraction: Current status and future directions. arXiv preprint arXiv:2205.11725, 2022.

[148] Caleb Ziems, Jane Yu, Yi-Chia Wang, Alon Halevy, and Diyi Yang. The moral integrity corpus: A
benchmark for ethical dialogue systems. In Proceedings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers), pages 3755–3773, Dublin, Ireland, May 2022.
Association for Computational Linguistics.

59



College-Related Question Answering based on Knowledge Graph

Cheng Peng, Hao Jiang, Junnan Dong, Xiao Huang
Department of Computing, The Hong Kong Polytechnic University

Abstract

An effective conversational agent can facilitate student advising. Many question-answering (QA) systems
have been developed, but college-related QA has yet to be explored. It is a challenging task since questions
from college students are domain-specific, while related training data is not available. The topics of the
college-related questions are diverse, including the university, the department, undergraduate/graduate
programs, and course content. To bridge this gap, we propose an effective question-answering framework
for The Hong Kong Polytechnic University and Computer Science. It integrates a rule-based module,
a knowledge-graph-based module, and a content-based module. The rule-based module can answer
simple questions actually based on pre-defined rules. Then, we manually construct a college-related
knowledge graph (KG) from related websites, Wikipedia, and textbooks. We embed the KG and employ
the entity/relation representations to predict the answers. Moreover, we utilize a pre-trained language
model to answer difficult questions based on college-related corpora. We evaluate the proposed QA
framework by employing fourteen postgraduate students. The results show that it can answer most
real-world questions.

1 INTRODUCTION

Knowledge Graphs (KGs) are an effective graph data structure modeling relational information. They consist of
real-world entities and each entity’s relations, corresponding to the nodes and edges in KG respectively [1, 2].
In KGs, each edge with its head entity and tail entity constitutes a triple (fact), i.e., (head entity, predicate, tail
entity) or (h, p, t). To facilitate downstream tasks like Question Answering (QA) with abundant knowledge in
KGs, Question Answering over Knowledge Graph (KGQA) is proposed [3, 4]. The main problem setting of
KGQA is to translate the inputted natural language question into structured queries, and return the entities or
predicates from KG as the answer. For example, given the question “How tall is YAO Ming?”, the KGQA will
translate this question to the query “(YAO Ming, Height, ?)”, and return the answer by identifying this query’s
corresponding fact in KG “(YAO Ming, Height, 2.29m)”.

This paper adopts a knowledge graph on special domains as the knowledge source for answers. Unlike other
traditional KGQAs, which employ public large-scale KG databases including Freebase [5], DBpedia [9], and
YAGO [10], this paper mainly targets to provide QA service to college students, answering the questions related to
Hong Kong Polytechnic University (PolyU) and Computer-Science (CS), while triple facts for these two college-
related domains are not included in the existing public knowledge graphs. To construct the corresponding domain
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knowledge graph, we are required to collect domain information for the Hong Kong Polytechnic University and
Computer-Science domains from Wikipedia, textbooks, and related websites.

However, some collected entities/predicates may have names different from those stored in KG, so translating
natural language questions into KG queries needs to identify many different expressions in natural language
questions [6, 7]. To solve this problem, we apply knowledge graph embedding [7, 8], which can learn a vector
representation for each entity and predicate in the knowledge graph. Similar entities or predicates will have
similar vectors. Although this way is good at matching similar entities, when there are misspelled words on
entities extracted from questions, the performance is affected significantly. Hence, to make the Knowledge
Embedding based Knowledge Graph Question Answering (KEQA) more powerful, we also design an entity
matching algorithm to help KEQA to correct those wrong words.

What’s more, as the domains of inputted questions are always unbounded while any KG is far from completion
[11], for example, an unseen question’s entity/predicate not involved in KG, it means that KGQA could not answer
all the questions. To alleviate this problem, we add a content-based Question Answering (content-based QA)
component to the whole QA framework, which consists of an advanced model standing for bidirectional encoder
representations from transformers, just like the BERT [12]. By finetuning, the pre-trained model can search for
answers from the collected text materials. Although we have extracted some triples from those materials, there
is still much remaining knowledge. Adding them to the framework can expand the answerable range, but the
processing speed of content-based QA is relatively slow, so it is only used as an alternative scheme. In addition,
considering answering some simple questions immediately rather than using time-consuming machine learning
models, the whole QA framework also includes a rule-based Question Answering (rule-based QA) component to
improve the user experience and reduce the workload of the KGQA component.

In summary, rather than just relying on the advanced KGQA, the whole QA framework includes three different
kinds of QA components. We design the rules for switching each QA component in our framework, which
can make good use of every QA component. Eventually, we have a powerful QA framework in college-related
domains. Our main contributions are presented as follows.

• We deliver a QA framework for college-related questions, including three different kinds of QA components,
which make the whole QA framework powerful.

• We define the rules to switch each QA component in the whole QA framework.

• A domain knowledge graph is constructed which covers the PolyU and Computer-Science domains.

• We achieve performance improvement of the traditional KGQA by adding knowledge graph embedding
and entity matching algorithm.

2 METHODOLOGY

The whole QA framework in this paper has three components: rule-based Question Answering (rule-based QA),
Question Answering over Knowledge Graph (KGQA), and content-based Question Answering (content-based
QA).

2.1 Overall Architecture of the Proposed Framework

The whole QA framework is mainly relying on the KGQA. After constructing more than 15000 Hong Kong
Polytechnic University (PolyU) and Computer-Science (CS) related triples, this huge PolyU and CS knowledge
graph could cover most of the user’s questions in these two domains. Especially with the improvement of
knowledge graph embedding [7, 8] and entity matching algorithm, the KGQA component can deal with those
questions with different expressions in entities or predicates.
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Figure 1: The architecture of the proposed question answering framework.

However, KGQA still faces two challenges: (i) time-consuming for KG reasoning and (ii) knowledge-agnostic
to those questions that KG does not cover.

As KGQA employs language models (three language models in this paper’s KGQA component) to process
questions, it is relatively time-consuming. For those questions with simple grammatical structure and the same
expression of entity in the knowledge graph, there is no necessity to use KGQA models. For example, given the
question “Where is library?”, assuming that “library” is an entity as same as the “library” entity expression in the
knowledge graph, it is empirically a question about locations, so the query in KG will be “(Library, Location, ?)”.
To answer these one-hop questions without using language models, the rule-based QA component is proposed.
By matching manually-created regular expressions, the rule-based QA component could answer a lot of questions
without using language models, which is much quicker than the KGQA component.

For those triples that the knowledge graph doesn’t cover, KGQA could not answer the questions related to
them. For instance, KGQA could not answer the question “What’s the use of loss function?” if there is not a
triple like “(Loss Function, Use, xxx)” in the knowledge graph. Though we collect many documents about PolyU
and CS, there is still much knowledge that we do not extract from the textbooks. Introducing a content-based QA
component could facilitate QA by making full use of text material in the database. After adding the content-based
QA component, the QA framework could answer more questions than that only based on KG.

The overall architecture of our proposed QA system is illustrated in Figure 1. The rule-based QA component
is added before the KGQA component. It will try to answer the question first without using time-consuming
language models. The content-based QA component is added after the KGQA component, for answering those
questions that KGQA is not able to answer but answerable in the textbook database.

The basic switching rules for each QA component are as follows. Initially, the inputted question will be
delivered to the rule-based QA component to check whether there is any regular expression rule matched. If
the question could not find the corresponding regular expression rule, it will be sent to the KGQA component.
If KGQA could not answer the question (two cases: KGQA could not find the corresponding head entity in
the knowledge graph; the distance between the predicted triple embedding representation and its nearest triple
in candidates is larger than the pre-defined distance threshold), the question will be sent to content-based QA
component. If the question could not be answered by content-based QA (the output score is lower than the
pre-defined score threshold), it means that the whole QA framework is unable to answer this question.

2.2 Construction of College-related Knowledge Graph

The methods of constructing PolyU and CS related knowledge graphs in this paper are shown as follows. (i)
Manually browsing or using python crawler technology to collect knowledge on the official websites, such as
Hong Kong Polytechnic University (PolyU) main page. After equipping with the knowledge, we transform the
knowledge into triples like “(VA Student Canteen, Location, G/F, Shaw Amenities Building (Core VA))”. (ii)
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Using Wikipedia (a Python library)1 to access and parse data from Wikipedia. Similar to the first method, we
transform the knowledge to a triple format [1, 2]. (iii) Manually collecting some textbooks and using a pre-trained
reading comprehension model [13] to search the corresponding tail entity that we want. For example, we use the
reading comprehension model to search for the answer of “Who is the inventor of JAVA?” from JAVA textbook. If
the returned text is “James Gosling”, which is a correct answer, we will transform it to a triple “(JAVA, inventor,
James Gosling)”.

Based on the above three methods, there are more than 15,000 PolyU and CS related triples constructed in
total, which can answer a huge range of Hong Kong Polytechnic University and Computer-Science questions.

2.3 Rule-based Question Answering

The first question answering component in this paper is the rule-based Question Answering (rule-based QA)
component. This kind of approach is one of the initial methods used by traditional QA systems [24], which uses
different kinds of rules, e.g., semantic rules and keywords, to understand the intentions of inputted questions.
Furthermore, it is also used to assist other types of QAs, especially KGQA. For example, Z. Jiang et al. built
a medical lexicon to classify and query questions in KGQA through rule-based matching methods and string-
matching algorithms [25].

Similarly, the rule-based QA component in our paper extracts entities and predicates from questions based on
the string matching algorithms. By matching the questions with pre-defined regular expressions, we could get the
head entities and predicates in questions without using any time-consuming models.

However, due to the limitations of labor-consuming rule mining, we merely use the rule-based component to
process two types of questions. The first one is simple and common questions, such as “Where is library?”, which
is used for increasing the whole QA framework processing speed. When the component receives a question, it
will initially check whether the question contains pre-defined question words in the rule dictionary for the first
classification which aims to recognize the general intention. In the example above, the question will trigger the
“Where” rule for locations. Then, according to the recognized intention, the question will be allocated to the
special rule dictionary for the second classification in which we design many keywords for regex matching. If the
question matches any regular expression, the corresponding predicate will be determined. Consequently, all the
entities related to the predicate in our database will be identified. Finally, based on Levenshtein Distance, we
calculate the distance between the head entity candidates and the text except for pre-defined rule keywords in
question. The closest head entity candidate will be regarded as the final head entity result. The tail entity obtained
by the head entity and predicate in the knowledge database is the final answer to the question. The second type is
questions that need some simple operations after detecting predicates and head entities rather than just returning
the tail entity as the answer, such as the summation in “How many elective courses in MSc. IT?”. Under such
circumstances, the predicate and head entity detection is the same as that for the first type. The only difference is
that processing the second question type requires additional operation after head entity and predicate recognition.
For different operations, we formulate different rules in the rule-based QA component, such as counting the
number of tail entities. For the example question, after recognizing “Elective Courses” as the predicate and “IT
MSc” as the head entity, calculating the number of tail entities in the triple pattern “(IT MSc, Elective Courses,
?)” is necessary for obtaining the final answer. Therefore, we set the rule that after recognizing the intention of
“Number” and the predicate of “Elective Courses”, the rule-based QA component needs to calculate the number
of elective courses.

2.4 Question Answering based on Knowledge Graph Embedding

In our framework, in order to better identify the head entity and predicate by recognizing different expressions of
entity/predicate in natural language questions [6, 7] correctly, the knowledge graph embedding [7, 8] is applied to

1https://pypi.org/project/wikipedia/

63

https://pypi.org/project/wikipedia/


the KGQA component, which can learn a vector representation for each predicate and entity in knowledge graph
and keep the original relations simultaneously. What’s more, because there is a large number of triples in the
knowledge graph, it’s very expensive and noisy to compare the predicted triple with all the triples in KG database.
Therefore, we introduce a head entity detection model which could effectively prioritize the candidate triples. For
example, given the question “Where is VA canteen?”, the detected head entity is “VA canteen”. The candidate
triples to be compared will only be the ones with the head entity “VA canteen”. The main idea of the KGQA
component based on knowledge graph embedding in this paper is illustrated in Figure 2.

Figure 2: The workflow of the KGQA component.

Table 11: The notations in KGQA component and corresponding definitions.

Notations Definitions
G this framework’s knowledge graph
Q the questions in training set

(h, p, t) a triple (fact) in G, (head entity, predicate, tail entity)
d dimension of entity/predicate embedding representation

eh ∈R1∗d head entity embedding representation vector
ep ∈ R1∗d predicate embedding representation vector
et ∈ R1∗d tail entity embedding representation vector
êh ∈R1∗d predicted head entity embedding representation vector
êp ∈ R1∗d predicted predicate embedding representation vector
êt ∈ R1∗d predicted tail entity embedding representation vector

HED Head Entity Detection model
HEDentity detected head entity token in HED
HEDnon detected non head entity token in HED

To better describe the workflow of KGQA, we summarize the significant notations in Table 11. The question
answering process of the KGQA component is mainly five steps: (i) Input the question into the Head Entity
Detection (HED) model to get HEDentity and HEDnon. (ii) Generate the candidate-triple set from the KG
database by the detected head entity name HEDentity. (iii) Input the question into the predicate representation
model to get êp. (iv) Input the question into the head entity representation model to get êh. (v) For all triples in
the candidate triple set, calculate each one’s distance to the predicted triple (êh, êp, êt), and return the nearest
candidate triple as the answer.

There are two cases in which the KGQA component is not able to answer the questions. Firstly, in the
above (ii) step, KGQA may not find the corresponding head entity in the knowledge graph. Secondly, in the
above (v) step, the distance between the predicted triple (êh, êp, êt) and its nearest triple in candidates may be
larger than the pre-defined distance threshold. If one of the above cases happens, the question will be sent to the
content-based QA component.
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2.4.1 Head Entity Detection Model

In the first step of the KGQA component, there is a Head Entity Detection (HED) model which aims to find target
tokens (words) in the question for the head entity, so that the candidate triples will be the triples with the same or
similar detected head entity names, rather than all triples in KG. The predicted representation of head entity êh
from the representation model is used for dealing with ambiguity.

We adopt the long short-term memory (LSTM) [14] structure, which is a bidirectional recurrent neural
network to facilitate a concise KGQA module. Figure 3(a) shows the architecture of HED model.

Given a question with length L, the HED model will use a pre-trained model (GloVe [15]) to map it to an
L-length sequence of word embedding vectors xj (for j = 1, . . . , L). Then, there is the bidirectional LSTM
[14] structure to generate hj . After the LSTM structure, a fully connected layer and a softmax function are
applied to hj , generating the final vector vj ∈R(2∗1) for each token in this L-length sentence. The two values
in vj represent the probabilities that the jth token belongs to the entity name token and non-entity name token
respectively. If the probability of the entity name token is higher, it will be classified as HEDentity. To sum up,
HED model can classify each token in question whether it is a token in the head entity, and finally connect one
or several tokens as the head entity name. We denote these tokens as HEDentity, and the remaining tokens in
question as HEDnon.

To train the Head Entity Detection (HED) model, this paper uses the questions in training set Q as training
data input and tags their head entity names as the training data output. For instance, the training question “Where
is VA canteen” is tagged as “O O I I” in which “O” stands for HEDnon, and “I” means HEDentity. After
training, the HED model can identify which tokens in question are HEDentity.

Figure 3: Architectures of head entity detection model and predicate/head entity representation model.

2.4.2 Knowledge Graph Embedding

Knowledge graph embedding [7, 8] could represent each predicate and entity in the knowledge graph as a
vector, while the triple’s original structure and relation in the knowledge graph are well-preserved in those
embedding vectors. The reason why this paper uses knowledge embedding is that it can disambiguate those
inputted questions’ head entity name or predicate name which is different from the corresponding entity name or
predicate name in the knowledge graph database. The traditional KGQA is hard to deal with this issue while
Knowledge Embedding based Knowledge Graph Question Answering (KEQA) could potentially improve the
question answering accuracy in this case.

There are many different kinds of knowledge graph embedding algorithms [7, 8], and the basic ideas of most
knowledge graph embedding algorithms [11, 16, 17] are similar. For each triple (h, p, t) in knowledge graph
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G, denoting its knowledge graph embedding representation as (eh, ep, et), which are three vectors for h, p, t
respectively. The knowledge graph embedding algorithm will initialize eh, ep and et randomly [11, 16] (or use
word embedding model to initialize [18, 19]). In addition, each knowledge graph embedding algorithm has a
unique function f (·), which could represent the tail entity vector by head entity vector and predicate vector in the
same triple (et ≈ f (eh, ep)). Finally, the embedding algorithm’s target is to minimize the distance between et
and f (eh, ep) for all the triples in the knowledge graph G by training, while the training step is using both positive
and negative samples in KG. Each knowledge graph embedding algorithm is mainly different in the function f (·).

In this paper, TransE [16], a typical knowledge graph embedding method is picked, which defines the
“et ≈ eh + ep” relation (function f (·)) for each triple (eh, ep, et) in KG. We apply TransE to initialize the values
of eh, ep and et randomly at the first stage, and then minimize the overall distance between et and f (eh, ep)
by training. After training, we obtain the embedding vectors of the head entity and predicate in one specific
triple, which are eh and ep; then, we can calculate the representation vector of the tail entity (et) in this triple
automatically, which is eh + ep.

2.4.3 Predicate and Head Entity Representation Models

The target of predicate and head entity representation models is outputting the predicate representation vector êp
and head entity representation vector êh in the knowledge graph embedding space by the given question. The
input of the representation model is a natural language question, and the output is a vector.

For the representation model, to keep neural network architecture simple, similar to the previous HED model,
the representation model mainly consists of a bidirectional long short-term memory (LSTM) structure [14]. The
part difference with the HED model is that the representation model’s output (head entity/predicate representation
vector) is related to every token in question, so an attention layer is added, which could take the order and the
importance of all words into consideration.

The predicate and head entity representation models’ architecture is shown in Figure 3(b). The workflow
before the attention layer (given a question with length L) is similar to that of the HED model. After the
attention layer and concatenation, each token will generate a vector rj (for j = 1, . . . , L). Finally, the predicted
predicate/head entity representation vector is computed by the mean of all rj , which is êp/êh = 1

L

∑L
j=1 r

⊤
j .

To train the predicate and head entity representation models, we need to label each question’s corresponding
predicate/head entity representation vector ep/eh. After training, the predicted output vector êp/êh of inputted
question will be close to this question’s real predicate/head entity knowledge graph embedding representation
vector ep/eh.

2.4.4 Joint Search on Embedding Spaces

After obtaining the candidate triples from the HED model as well as predicted predicate representation êp and
predicted head entity representation êh from corresponding representation models, the next step of the KGQA
component is to find the triple from all the candidates which best matches the predicted êp and êh.

Let C be the set of candidate triples generated from the HED model. In order to calculate the distance
between each candidate triple (h, p, t) and the predicted triple representation vector (êh, êp, êt), this framework
makes full use of the relation et ≈ f (eh, ep) = (eh + ep) in TransE [16], which means that the predicted tail
entity representation êt could be computed by predicted predicate representation êp and predicted head entity
representation êh. Thus, a direct way to compute the distance between the predicted triple vector and each triple
embedding representation vector (eh, ep, et) in candidate triples is achieved by the sum distance of êh and eh,
êp and ep, êt and et. Moreover, as the real final-selected head entity name in C is likely to be the same as
HEDentity, and the predicate name is also likely to be mentioned in the other text of the question (HEDnon)
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[20], the joint distance metric is proposed as follows.

minimize
(h,p,t)∈C

∥ep − êp∥2+β1 ∥eh − êh∥2+β2 ∥et − (êh + êp) ∥2−β3 sim
[
h,HEDentity

]
−β4 sim [p,HEDnon] .

(15)
The first three terms are to calculate the distance between one candidate triple (h, p, t) and the predicted triple

representation vector (êh, êp, êt) while using l2 norm to measure the distance in embedding space. The final two
terms are to check whether the head entity name (h) and predicate name (p) in candidate triple are mentioned in
the question. Function sim() is used to calculate the string similarity. β1, β2, β3, and β4 are pre-defined weights
[20].

2.4.5 Entity Detection Improvement

According to the workflow of the KGQA component, it’s clear that generating the candidate triples by the detected
head entity is important. After inputting the question into the head entity detection (HED) model, the HED model
will judge which tokens in question constitute the head entity. However, there are three possible problems in this
part, including the detected head entity containing some other tokens besides the correct head entity name, the
detected head entity only being a part of the correct head entity name, and the detected head entity having some
misspelled words. Any of these situations could cause entity matching to fail. If the detected head entity could
not match any head entity in the knowledge graph, there will be no candidate triples. Correspondingly, the joint
search in embedding spaces cannot play its role. Therefore, it is necessary to deal with the above three cases by
entity detection improvement based on some string-matching algorithms.

For the first case, the detected head entity may include some unrelated tokens besides the original head entity
name. For example, the detected head entity is “the department of computing in PolyU” while the head entity
name stored in KG is “department of computing”. In this case, we use N-Gram [21] algorithm to extract 1-gram,
2-gram to n-gram from each fragment in detected entity words, which will form a set of n-gram. Then, the
framework will use the n-gram set to find head entities in the KG dataset, generating a set of detected head entity
candidates. The remaining issues are detected head entity that is merely a part of the head entity name in KG or
includes misspelled words. For instance, the correct head entity name in KG is “department of computing”, while
the detected head entity is “computing department” (a part of the correct head entity) or “depart of computing”
(misspelled words). In the circumstances, the KGQA component is difficult to accurately generate the candidate
triples from these two kinds of detected head entities. To match these two kinds of “wrong-input” head entity
names in question, a string-matching algorithm named Monge and Elkan (Mon-Elk) based on Levenshtein [22] is
added. It is a hybrid string-matching algorithm at character and token levels, which will calculate the similarity
between each token in different sentences. The formula is shown in Eq. (16). A and B are the strings that we
want to calculate how similar they are, and Ai, Bj are the tokens in A and B respectively.

match(A,B) =
1

|A|

|A|∑
i=1

|B|
max
j=1

match (Ai, Bj) . (16)

Following prevailing studies [23], n-gram combined with set-matching methods is the best matching algorithm
for the matching problem. However, the experiment is done on data with no typing errors. Compared with the
best method, the second best one, Mon-Elk based on Levenshtein, is more suitable for our applications, because
Levenshtein edit distance can better determine the extent of spelling errors. After calculating the Mon-Elk
similarity between the detected head entity and each entity in KG, the knowledge embedding based KGQA
component will select those entities with a similarity larger than the pre-defined similarity threshold as head entity
candidates and use them to generate the candidate triples.
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2.5 Content-based Question Answering

The final component of our framework is content-based question answering (content-based QA). All the documents
in this part are crawled by us from textbooks or through Wikipedia API. If this component is not able to provide
the answer, the whole QA framework will return “no answer” as the final reply to users. In this part, we divide
the content-based question answering component into two aspects, document retrieval and content reader. The
general workflow of content-based QA is illustrated in Figure 4. In this paper, we deploy the content-based
question answering component through an open end-to-end framework, haystack2.

Figure 4: The workflow of content-based question answering component.

2.5.1 Document Retrieval

Generally, dense retrievers perform better than sparse methods, like TF-IDF and BM25, but dense approaches
are computationally more expensive, especially during indexing [27]. Therefore, to make our framework more
simplified and low computational complexity, we only perform the retrieval through a simple method, Term
Frequency-Inverse Document Frequency (TF-IDF) which is a commonly used baseline for information retrieval.
There are two main ideas of TF-IDF. Firstly, the more words the two documents overlap, the more relevant they
are. In addition, the fewer documents a word is contained in, the more important the word is.

When the component receives a question, all the documents will be calculated TF-IDF score with it and
sorted from largest to smallest according to the score. The top n documents will be prioritized as document
candidates in which the content reader searches for answers. In our framework, we value the top two as the
document candidates.

2.5.2 Content Reader

After retrieving the documents, the content reader takes a question and a set of candidate documents as inputs and
returns an answer by selecting a text span within the documents. For selecting the reader model in this part, we
choose an easy-to-deploy and powerful model – RoBERTa [26].

As it is expensive to manually annotate the span of documents and valid texts to train the content reader,
we apply the pre-trained RoBERTa model by Deepset3 on SQuAD2.0 dataset which includes both answerable
and unanswerable questions. Compared with the model trained on SQuAD1.0/1.1 dataset, there is an additional
binary classifier to automatically identify whether a question can be answered or not. The span predictor and
classifier are trained jointly [26]. To fine-tune the model for our tasks, we create some question-answer pairs in
our documents.

In terms of the process of the content-based QA component, the model takes a question and a set of candidate
documents obtained by the document retrieval as input, returning a set of answers with a predicted score and
no-answer score of the query. In our framework, we set 0 as the threshold of the no-answer score. If the no-answer
score is higher than or equal to 0, it means that the question can be answered. In this case, the content-based
QA component will return the result with the highest predicted score as the final answer. On the contrary,

2https://github.com/deepset-ai/haystack
3https://huggingface.co/deepset/roberta-base-squad2/
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if the no-answer score is lower than the threshold, the question will be considered unanswerable. Since the
content-based question answering module is the final part of our framework, when the query is considered
unanswerable, the QA framework will return a no-answer signal to users directly.

3 EXPERIMENTS

After implementing the whole QA framework which includes three different QA components mentioned above,
we design a website and embed the QA service interface for front-end users. After the users log in, they could
talk with the chatbot for answers.

To evaluate the effectiveness of this proposed QA framework, we invite 14 students in the department of
computing at PolyU and collect a total of 730 questions related to PolyU or Computer-Science. Since we regulate
those testers to ask questions about PolyU and Computer-Science but do not limit the candidate concepts (entity
names) and relations they could ask, there are some unbounded questions that our QA framework is not able
to answer (no corresponding knowledge graph or text material in the database). Among all the 730 inputted
questions, there are 638 valid questions. The term “valid” means that the knowledge graph database or text corpus
in this paper is enough to deal with this specific question. So, for all these 14 students, our QA framework is
possible to answer 87.4% of all testers’ questions. It means that this framework’s database is capable to satisfy
most general college students’ needs.

Table 12: The accuracy of our question answering framework.

QA Framework Accuracy
PolyU domain 87.1%

CS domain 80.6%
PolyU & CS domain 83.6%

Table 2 shows the accuracy of the whole QA framework in this paper. For all those 638 valid questions, the
QA framework could correctly answer 534 questions, which is up to 83.6%. In addition, we also calculate the
accuracies in PolyU and Computer-Science domains respectively: For questions related to Computer-Science
domain, the accuracy is lower than the PolyU domain, which is mainly because the Computer-Science domain
questions are more complex and multifaceted. They are more suitable to be processed by content-based QA
component. For PolyU related questions, the KGQA component is sufficient to answer most of them, and we
achieve relatively satisfying performance.

Although our proposed framework obtains good accuracy for answering college-related questions, there are
still a lot of unbounded questions (12.6%). In other words, if we include all the unbounded questions, the overall
accuracy is 73.1% (calculated by Eq. (17), Nvalid means the number of all valid questions in testing questions
and Nall means the number of all testing questions), which is far from perfect.

Overall Accuracy =
Nvalid

Nall
∗ QA Framework Accuracy. (17)

To keep improving the overall accuracy, the direct way is constructing more knowledge graphs or collecting
more text materials to make this framework more powerful.

69



4 CONCLUSIONS AND FUTURE WORK

In this paper, our target is to design a QA framework that can answer the questions related to Hong Kong
Polytechnic University (PolyU) and Computer-Science (CS). Inspired by the KGQA that allows users access
knowledge in some public knowledge graph databases, we construct the PolyU and CS related knowledge graph
with more than 15000 triples to facilitate knowledge reasoning. In order to handle the ambiguity of different
expressions, misspelled words, and partial names in questions, this paper improves the KGQA component by
using knowledge graph embedding and off-the-shelf string-matching algorithms like the Mon-Elk matching
algorithm and N-Gram. The KGQA component in this paper could have a better performance than the traditional
simple KGQA.

In addition to KGQA, a rule-based QA component and content-based QA component are proposed to enhance
the whole framework. Rule-based QA could answer some simple questions based on logical rules, while content-
based QA is able to answer some unbounded questions that the knowledge graph doesn’t cover but can be
answered from rich texts.

After defining the rules for switching each QA component in the whole framework, we could make full use
of each QA component and propose a powerful QA framework for answering college-related questions.

In future work, except for constructing more knowledge graphs and collecting more text materials, we will
try to keep improving this QA framework through the following aspects. (i) We will apply more cutting-edge
multi-hop knowledge graph reasoning algorithms for complex question answering. (ii) The continual learning
ability for a conversational chatbot will be one of our main focuses to improve the usability of the framework.
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1 Abstract

The implicit sentiment analysis task makes the traditional explicit sentiment analysis methods no longer applicable
due to the obscure and ambiguous expression of the sentiment text it focuses on and the lack of sentiment cue words
containing obvious sentiment tendencies. In this paper, we propose a sentiment analysis method incorporating
contextual information and external common sense knowledge for implicit sentiment analysis. We first propose a
retrieval method to extract valid sentiment triples from a knowledge base and build an adaptive fusion of external
common sense knowledge embedding layers to extend the semantic information of implicit sentiment expressions.
Multipolar orthogonal attention mechanism is then used to learn embedding representations for implicit sentiment
expressions, and an attention layer that incorporates context is introduced to mine and combine valid information
in the context. Finally, the common sense knowledge information provided by the external knowledge base
is fused with the contextual representation and the semantic information of the sentiment expression itself to
achieve an effective extension of the implicit sentiment sentence representation and to perform sentiment label
prediction. Experimental results on the SMP2019-ECISA dataset show that the method outperforms existing
state-of-the-art methods and can fully exploit contextual information and external common sense knowledge to
effectively improve the analysis of implicit sentiment expressions.

2 Introduction

As one of the most popular research topics in the field of natural language processing, sentiment analysis
tasks have been widely researched and applied in various fields such as academic research and product review
mining, social opinion analysis, content-based recommendation, and so on. People’s experience and sentimental
expression of objective things are often subjective and diverse, either by giving direct subjective statements of
opinions, or by using facts or rhetorical hints to ideas, that is, by using sentences that do not contain obvious
sentimental cues can also express a subjective sentiment. In connection with real life, people actually use a lot of
implicit expressions to convey their feelings. There are examples as shown in the Fig 1 .

Both of the above examples do not contain obvious sentimental cues, but they invariably convey the speaker’s
sentimental disposition. Sentiment expressed implicitly rather than using words with sentimental colors are called

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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Figure 1: Sentences with different contexts or based on external common sense knowledge can express different
sentiments. Expressions carrying positive (smiling face) or negative (crying face) sentiments are highlighted in
color.

“implicit sentiment"[18]. For the task of text sentiment analysis in natural language processing, sentiment texts
can be classified into explicit sentiment analysis and implicit sentiment analysis according to whether they contain
obvious sentiment words in their expressions[15]. Statistical analysis of related studies[8, 5, 12] shows that
implicit sentiment sentences are more common in Chinese, accounting for about 20% to 30% of all sentences with
sentiment tendencies. Explicit sentiment sentences contain explicit sentiment vocabulary with strong semantic
feature information, which can help sentiment analysis models accurately predict the sentiment tendency in
sentences, and therefore many research results have emerged in the field of explicit sentiment analysis. On the
contrary, implicit sentiment expressions do not have such characteristics, and the expressions are more obscure.
For the current task of Chinese implicit sentiment analysis, there are two main critical problems faced:

Chinese implicit sentiment analysis requires the introduction of contextual information. Example (a) is an
instance of the same expression expressing different sentimental tendencies in different contexts. The speaker
conveys two opposite sentimental tendencies, negative (B1) and positive (B2), through the similar emotional
expression “One day is totally not enough" according to the content received above. Thus, implicit sentiment
analysis suffers from the problem that the sentiment expression itself does not provide enough information, and
contextual information needs to be introduced.

Chinese implicit sentiment analysis lacks the support of external knowledge. Example (b) is a declarative
sentence using metaphorical rhetoric. Although it does not contain any sentimental cues such as “anxious", etc.,
it effectively conveys the sentiment that the speaker has been waiting for a long time and is somewhat dissatisfied.
Therefore, combined with human understanding of implicit sentimental expression, it is necessary to introduce an
understanding of external common sense knowledge to support the discernment of implicit sentimental tendencies.

In order to address typical problems in Chinese implicit sentiment analysis tasks like those two listed above,
we propose a sentiment analysis method in this paper that integrates contextual information and external common
sense knowledge for implicit sentiment analysis.

The main contributions of this paper can be summarized as follows:

1. We propose a retrieval method to extract valid sentiment triads from a knowledge base and build an adaptive
fusion of external common sense knowledge embedding layers to extend the semantic information of
implicit sentiment expressions. Such improvements significantly facilitate the mining of implicit sentiment
expressions hidden in ambiguous language fragments without sentiment words as clues.
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2. Multipolar orthogonal attention mechanism is used to learn embedding representations for implicit senti-
ment expressions, and an attention layer that incorporates context is introduced to mine and combine valid
information in the context. This effectively retains the differences between attention representations and
thus contributes to distinguishing subtle differences between sentiment polarities.

3. The common sense knowledge information provided by the external knowledge base is fused with the
contextual representation and the semantic information of the sentiment expression itself to achieve
an effective extension of the implicit sentiment sentence representation and to perform sentiment label
prediction. The experimental results show that our model obtains more satisfactory performance than the
baseline models.

3 Related Work

Research related to implicit sentiment analysis is not fully developed compared to the field of explicit sentiment
analysis[7, 15]. For implicit sentiment, it can be divided into factual implicit sentiment and rhetorical implicit
sentiment. Rhetorical implicit sentiment can be subdivided into metaphorical or simile, rhetorical question, and
ironic [12]. Early research on implicit sentiment analysis focused on the task of identifying metaphors [10], and
as early as last century, Wilks et al. summarized metaphor, a common linguistic phenomenon, into a series of
linguistic rules from the traditional cognitive and linguistic perspectives, through which metaphorical expressions
and contexts, with the connections between them, are expressed. Building on this theory, Mason et al. [16]
proposed a CorMet mapping of “source domain-target domain" that can be identified by a specific domain, based
on the linguistic feature that words can express different meanings in different domains. The CorMet model,
which identifies between specific domains, was proposed. Later, Lakoff [25] studied the process of metaphorical
expression in depth and defined it as a conceptual mapping from the source domain to the target domain in terms
of cognition, common sense, etc. In an earlier period, sentiment lexicon based methods played an important role
in the field of sentiment analysis, but for implicit sentiment, the method could not be used directly for simple
matching due to the lack of obvious sentiment words in the text variety. Shutova et al.[23] addressed this problem
to some extent by using clustering to obtain the abstract metaphors embedded in words; based on this work, the
researchers went further to study the distribution of metaphorical concepts by combining weakly supervised and
unsupervised approaches [22], and after experimentally testing several hierarchical clustering methods under
specific constraints, a metaphorical pattern recognition algorithm was proposed, which achieved good results
on a multilingual test set. Zhang et al.[33] used sufficient collation and induction of sentiment texts to find that
some phrases and special collocations, although without obvious sentiment cues, can implicitly express some
implicit sentiment tendencies when they are expressed in sentences through metaphor or irony, and proposed a
method to identify nouns with implicit sentiment domain features. Balahur et al.[1], on the other hand, focused
on identifying the emotional tendency of the target with the help of contexts that do not contain emotion words,
proposed an implicit sentiment analysis method based on common sense knowledge, and constructed an EmotiNet
common sense knowledge base with relevant sentiment concepts; in subsequent work [2], the authors continued
to improve their modeling method based on this common sense knowledge base and found that the sentiment
of the target sentence could be discriminated from the context where all sentiments were implicitly expressed,
and the experimental results showed that the method could effectively improve the effect of sentiment analysis.
Zhao et al.[35] took an alternative approach by introducing pseudo-contextual information into implicit sentiment
analysis, and obtained the best results at that time in comparison experiments. Tong et al. [26] developed a
theory-based discriminant system to analyze the relevance of ambiguous expressions to influence the euphemism
of implicit affective utterances. As deep learning methods are widely used in the field of sentiment analysis, many
scholars have also started to use deep learning for implicit sentiment analysis tasks. Pulkit et al.[17] investigated
recognition algorithms oriented to sarcastic expressions by using deep learning models. Qian et al.[19] applied
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the idea of hierarchical classification to the task of identifying hate speech, and the method can effectively classify
thirteen classes of hate speech categories.

In China, more and more scholars have started to focus on research targeting Chinese implicit sentiment
analysis tasks in recent years. Liao et al.[13] first deconstructed the target text using syntactic analysis methods
and proposed a representation learning framework based on tree convolution; immediately afterwards, the
researchers in their paper [10, 12] provided a review of the work on Chinese implicit sentiment analysis, focusing
on the characteristics of factual implicit sentiment; and based on word-level sentiment goals, sentence-level
implicit sentiment expressions, and chapter-level contextual explicit sentiment tendencies, a multi-level semantic
fusion representation learning approach was proposed for language modeling of factual implicit sentiment on
two manually labeled factual implicit sentiment datasets. Experiments were conducted to verify that contextual
information plays an important role in implicit sentiment recognition. Wei et al. [30] proposed a multi-polar
orthogonal attention model MPOA by comparing the differences between affective tendency features in social
media texts, which also introduced a BERT pre-trained language model to represent the texts, and the experimental
results showed that the model can effectively bridge the differences between words and affective tendency polarity
corresponding to attention. Zhao et al.[34] proposed a hybrid neural network model based on CNN-BiLSTM-
Attention, which extracts text features by CNN, obtains contextual information by Bi-LSTM. In addition, the
model enables the extraction of semantic and structural features from the word and sentence levels respectively,
and highlights emotional information features that contribute more to emotional expressions by using the attention
mechanism, and this hybrid model has improved the effectiveness of Chinese emotional utterance analysis. Zuo
et al. [36] proposed a context-specific heterogeneous graph convolution model (CsHGCN) , which introduces
the idea of heterogeneous graphs into implicit sentiment analysis tasks and builds a contextual representation
framework through graph convolutional neural networks, with improved results compared to network approaches
such as tree graph convolution and tree long and short-term memory networks. Yang et al. [31] proposed an
implicit sentiment analysis model based on graph attention neural network, by constructing a heterogeneous graph
of text and word correspondences, aggregating semantic information using graph convolutional networks, and
calculating the contribution of words with to the sentiment expression of the text using an attention mechanism,
thus allowing the model to focus on words that are more important for sentiment polarity. Chen et al.[6] proposed
a parallel hybrid model of bidirectional long-short time neural network and context-aware tree recurrent neural
network (CA-TRNN) for the problem of inaccurate feature information extraction in Chinese implicit sentiment
analysis and gradient explosion or gradient disappearance for chapter-level text information extraction by existing
serialization models, which effectively improved the accuracy of classification results with small time cost and
better application capability. In addition to digging deeper into the semantic information in Chinese implicit
sentiment texts, the recognition of implicit sentiment usually requires the introduction of external sentiment
features and sentiment knowledge. Wang et al. [28] fused three levels of semantic information in sentiment
expressions, and proposed a method based on hierarchical knowledge enhancement to alleviate the problem of
“weak features" in Chinese implicit sentiment expressions, while introducing a multi-pooling approach to model
the “multiple confusion weak features" problem. The accuracy of the model has been effectively improved, and
the F1 score is 5.9% higher than the previous best model.

From the above review of existing research, it is clear that, in contrast to the task of explicit sentiment analysis,
research on implicit sentiment analysis is still immature, remains in the exploratory stage and faces a large number
of problems and challenges.

4 Methodology

4.1 Problem Setup

The definition of implicit sentiment in different research work [18, 20, 28] are slightly different. This paper
integrates the expressions of the definitions, and defines implicit sentiment as: “a fragment of language that does
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not directly contain obvious sentiment cues but expresses subjective sentiment", where “fragment of language"
includes words, phrases and sentences, and does not include a paragraph composed of several sentences. On
this basis, this paper defines implicit sentiment analysis task as the task of “sentiment analysis of Chinese
implicit sentiment utterances that do not contain obvious sentiment words", and further abstracts it into a
triple classification task, which classifies the possible sentiment tendencies of the sentences to be analyzed into
‘Positive’, ‘Neutral’, ‘Negative’.

The implicit sentiment analysis task is defined formally as follows: for any implicit sentiment sentence
s = {w1, w2, . . . , wN} and its context input to the model, output the model’s prediction Pt of sentence s , and
the Eq. 18 defines the Chinese implicit sentiment sentence classification task.

f(s)→ Pt = {pt0 , pt1 , pt2} (18)

where N is the number of words contained in a given sentiment sentence, wn is the nth word in the sentence,
n ∈ N ; pt is the probability that the implicit sentiment sentence s belongs to a category, pt0 denotes the probability
that the implicit sentiment sentence is neutral, pt1 denotes the probability that the implicit sentiment sentence is
positive, pt2 denotes the probability that the implicit sentiment sentence is negative.

4.2 Knowledge Graph And Knowledge Retrieval

Due to the lack of explicit sentiment words in implicit sentiment sentences, continuing to dig deeper into the
semantic information latent in the text itself does not provide more adequate sentiment clues. At this point, it is
possible to associate the process of solving the problem with the human brain, which is to draw on rich external
background knowledge. Specifically, additional knowledge information can be introduced from the existing
common sense knowledge graphs as sentiment cues for implicit sentiment analysis.

ConceptNet 1 is a comprehensive commonsense knowledge graph, which is essentially a large semantic
network describing concepts such as words and phrases that people use and the commonsense relationships
between them, covering spatial, physical, social, temporal, and psychological aspects of everyday life. ATOMIC
[21] is an event-centric knowledge graph. Recently, based on ATOMIC, Li et al. [9] proposed a Chinese
Commonsense Conversation Knowledge Graph (C3KG), which incorporates both social commonsense knowledge
and dialog flow information, and is an important complement to Chinese common sense knowledge sources.

However, it is inefficient and unwise to retrieve sentiment knowledge triples directly in these huge knowledge
bases which are oriented to almost all domains. Therefore, in this paper, a three-step triple extraction method is
designed to extract valuable knowledge triples for the target implicit sentiment sentences.

Knowledge triples extraction based on rules The latest ConceptNet 5.5 includes a total of 34 different kinds
of relations, and C3KG is divided into four main relationship patterns. The number of knowledge triples varies
greatly across relationship types. After analyzing the knowledge triples in the Chinese part of ConceptNet5, we
found that the top 5 types of relationships account for more than 60% of all relationships, including “Synonym",
“RelatedTo", “Causes", “ExternalURL", and “MotivatedByGoal”. By observing the specific triple examples in
ConceptNet5, it was obtained that the relations with the highest number of relations “Synonym", “RelatedTo"
and others such as “AtLocation” have almost the same semantics between their corresponding head entity and
tail entity or do not effectively provide additional sentiment cues, which leads to such relations being useless for
sentiment analysis tasks. Instead, the model performance is greatly degraded by the large number of irrelevant
knowledge retrieval processes and the introduction of redundant knowledge. Similarly, for C3KG, it is observed
that “Emotion Cause Flow”, among the four relational models, has the greatest potential for implicit sentiment
analysis tasks, while the other three relational models, “emotion Intention Flow”, “event flow”, and “concept
flow”, can only extend semantic information at the factual level, but do not introduce sentiment cues well.

1https://conceptnet.io/
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Therefore, for the knowledge triple tk = (h, r, t) ∈ T (where h and t represent the head entity and tail entity,
respectively, and r denotes the relationship between two entities), the knowledge triples with these relationship
types are firstly eliminated from the common knowledge base, which means only the triples with r ∈ R are
retained, and R denotes the set of valid relationships only after filtering.

Furthermore, in order to be able to introduce additional sentiment cues from the external knowledge graph
efficiently, it is agreed that only one of the two, head entity h and tail entity t, exists in the target implicit sentiment
sentence s ∈ C. With the above two rule constraints, it is possible to filter out those knowledge triples that
introduce knowledge into the target implicit sentiment sentence.

Knowledge triples extraction based on sentiment dictionary matching After the rule-based knowledge
triples extraction, in order to further extract the knowledge triples valuable for the implicit sentiment analysis
task from the knowledge graph, explicit sentiment clues need to be introduced. For the knowledge triple
tk = (h, r, t) ∈ T , h ∈ s or t ∈ s, the entity not in the target implicit sentiment sentence is matched using
the sentiment dictionary d, which is the concatenation of the three mainstream Chinese sentiment dictionaries.
Knowledge triples without explicit sentiment cue words were subsequently eliminated. After such matching and
filtering, those sentiment knowledge triples with only one entity as an explicit sentiment word were selected to
ensure that additional sentiment information could be introduced into the target implicit sentiment expression
sentences.

Knowledge triples extraction based on event matching The sentiment knowledge triplets filtered by the
above two filtering methods match the content of the target sentence at the character level. In order to be able to
draw more fully on the relationship between events and sentiments embedded in the knowledge base, it is also
necessary to extract sentiment events in the target sentences.

Sentiment expressions contain many colloquial expressions and complex sentence structures. In order to
effectively extract sentiment events from the target implicit sentiment sentences, we adopt the same method for
event extraction as that worked in the literature, and achieve effective extraction of sentiment events from the target
implicit sentiment sentences through the methods and steps of Pre-processing, Verb-driven, Adjective-driven, and
Recursive Applying. For example, for the implicit sentiment expression “Probably got a cold and stay up late, it is
still some pain”, the sentiment event “somebody gets cold” can be extracted, which corresponds to the C3KG and
can be associated to the sentiment triple (personX gets cold, xAttr, Uncomfortable), and “Uncomfortable”
is a negative sentiment tendency in the sentiment dictionary, thus introducing explicit sentiment cues.

Finally, since ConceptNet and C3KG are multilingual general knowledge base, although it contains some
knowledge triples in Chinese, it is still more based on entity relationship pairs in English or other languages. For
this reason, the knowledge in those knowledge bases are translated into Chinese as well as aligned and merged
with the Chinese part through online translation. The merged knowledge graph is finally used as the main source
of external knowledge in this paper.

4.3 Sentiment Analysis Incorporating Contextual Information And External Common Sense
Knowledge

This method adaptively fuses knowledge from external common sense knowledge graphs by designing knowledge
retrieval mechanisms in this paper in the process of learning textual representations. By doing so, a process
similar to that of the human brain in understanding implicit emotional expressions is simulated, i.e., drawing
on one’s own experience or common sense to distinguish sentiment tendencies, allowing the model to achieve a
deeper understanding of the text beyond the literal semantic information.

The above model network framework diagram is shown in Fig 2 . The model consists of four layers: input
layer, adaptive knowledge fusion layer, multipolar attention layer fusing contextual contexts, and output layer.
The structure of each layer is described in detail in the following.
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Figure 2: Framework of the model

Input layer For the input of the pre-trained model, the implicit sentiment text needs to be encoded first.
For the original corpus input, each word or phrase xi in the sentence is hard-coded into the corresponding
vector representation by one-hot encoding representation. The pretrained model uses Transformer as its feature
extractor, and also needs to encode the word-by-word position information in the text to obtain the word position
representation vector. Finally, the above vector representations are combined and input to the pretrained model to
obtain the continuous word embeddings w⃗t ∈ Rde encoded with contextual information, which are used as input
information for the next layer.

Adaptive knowledge fusion layer In order to better fuse the extracted sentiment knowledge triples with
the target implicit sentiment sentence information, a knowledge fusion strategy is needed. For each target
implicit sentiment sentence s, more than one sentiment knowledge triple may be extracted, i.e., the set of triplets
G = {g1, g2, . . . , gn} can be obtained. The set of knowledge triplets G extracted from it is regarded as a
knowledge graph Gi =

{
gi1, g

i
2, . . . , g

i
n

}
. Using the TranR model [14] for each knowledge triple gij = (hj , rj , tj)

in Gi, we obtain the knowledge embedding representation gi
j = (hj , rj , tj). The head entity h is designated

as the entity in the target implicit sentiment sentence, and the tail entity t is the entity in the external sentiment
knowledge graph. Using the representations of all head and tail entities learned in the knowledge graph Gi in the
knowledge subgraphs, their weights are calculated adaptively by the attention mechanism, and the embedded
representations of the knowledge subgraphs are learned by this to represent the sentiment cues introduced for the
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target implicit sentiment sentence, calculated as shown in the Equ. (19).

Gi =

n∑
j=1

(softmax(W tvtj
tTj W

T
tkW hhj√
d

) +W rrj) (19)

where W h,W tk,W tv,W r ∈ Rl×m are the parameter matrices of head entities, tail entities and relations.
hj , tj , rj ∈ Rm.

The knowledge graph embedding representation Gi obtained by learning represents the additional external
common knowledge introduced, and if the target sentiment sentence cannot be matched to any sentiment
knowledge triplet, Gi is treated as a zero vector. The word embedding wi obtained in the “input layer" is fused
with Gi to achieve the introduction of external common sense knowledge, and finally the result ei = wi ⊕Gi is
input to the next layer.

Multipolar attention layer fusing contextual contexts This layer models the fusion of implicit sentiment
expressions and contextual information using multipolar attention mechanisms to extend the information in
implicit sentiment expressions.

As for the text implicit sentiment classification task, the output of the current moment is not only related to the
state before the current moment, but may also related to the state after the current moment. In this layer, the input
of the upper layer network first passes through a bi-directional long and short-term memory network (Bi-LSTM),
Bi-LSTM is composed of an LSTM with forward processing sequences and an LSTM with reverse processing
sequences, considering both forward and backward sequences, making full use of contextual information and
allowing deep feature extraction of the contextual information inside the input sentence.

As mentioned in the literature [30], the difference between attention weights for specific polarities is an
important feature of the Chinese implicit sentiment analysis task. Therefore, multi-polar attention mechanisms
are introduced in this layer to incorporate sentiment polarity labeling information into the implicit sentiment
representation. Specifically, polarity-specific queries are introduced by using attention mechanisms with different
polarities in order to make the attention mechanism more focused on the differences between different sentiment
polarities.The calculation formula are shown in Eq. (20), Eq. (21), Eq. (22).

vq =
T∑
i=1

αq
i ti (20)

αq
i =

exp (eqi )∑T
k=1 exp

(
eqk
) (21)

eqi = qWmi (22)

where vq represents the embedding representation of sentences under sentiment polarity q. T is the length of
the target implicit sentiment sentence.αi is the normalized weight of the word or character wi computed from the
Bi-LSTM output ti. e

q
i is the attention score of wi. The matrix W is then used to query the weight matrix of

q and hi in the bilinear function. q ∈ Q =
{
qpos, qneg, qneu

}
correspond to polarity-specific query embedding

representations of positive, negative and neutral sentiment polarity, respectively. The same sentiment dictionary
as in the knowledge triad extraction process above is used here to initialize the polarity query embedding
representation, which is computed by averaging the embeddings of sentiment words with the same sentiment
polarity in the sentiment dictionary, as shown in Eq. (23):

q =
1

N

N∑
i=1

wq
i (23)
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wq
i is a pre-trained embedding representation of the word or character wi whose sentiment polarity belongs

to q, q ∈ Q =
{
qpos , qneg , qneu

}
.

The implicit sentiment sentence representations with weights under the three sentiment polarities are spliced
to obtain a new representation of the implicit sentiment expression v = vqpos ⊕ vqneg ⊕ vqneu .

The context representation is considered as a whole, and the implicit sentiment sentence representation qc

transformed by the fully connected layer is used as the query vector to assign weights to each word in C in order
to achieve the extraction of key features in the contextual information of the target implicit sentiment expression
by the model through the attention mechanism.

vc =

TC∑
i=1

αc
jti (24)

αc
j =

exp
(
ecj

)
∑m

k=1 exp
(
eck
) , (25)

ecj = qcW chc
j (26)

qc = tanh(Wv + b) (27)

Finally, by splicing the implicit sentiment sentence representation v with the contextual representation vc, the
implicit sentiment sentence representation vout, which incorporates the contextual information, is obtained as the
output of this layer, and it is fed into the output layer for the final probability calculation, as shown in Equ. (28):

vout = v ⊕ vc (28)

Output layer In the output layer, an implicit sentiment sentence representation vout incorporating contextual
information is projected into the sentiment polarity category space using a fully connected network. Then, the
scores of each category are normalized to an approximate probability value ŷ by the calculation of the Eq. (29).

ŷ = softmax
(
W out v

T + bout
)

(29)

where W out and bout are the weight matrix and bias, respectively.

5 Experimental Setup

In this section, we present the details of the datasets used, the methods, and the implementation details of our
models.

5.1 Dataset

In the field of Chinese implicit sentiment analysis research, the most widely used public dataset is the dataset
used in the SMP2019 Chinese Implicit Sentiment Analysis Review (SMP-ECISA 2019) provided by Shanxi
University 2. The corpus of this dataset is collected from social media such as microblogs, travel websites, and
product e-commerce, and a large-scale sentiment dictionary is used to filter the collected data, remove sentiment
expression sentences with explicit sentiment words, and use the remaining text data as the Chinese implicit
sentiment analysis dataset. The main domains/topics covered in this dataset include but are not limited to: Spring

2https://www.biendata.xyz/competition/ smpecisa2019/data/
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Table 13: SMP-ECISA 2019 Dataset

articles labeled sentences neutral positive negative
Training set 12,664 1,4774 6,989 3,828 3,957

Validation set 4,391 5,143 2,553 1,232 1,358
Test set 6,380 / / / /

After merging 17,055 19,917 9,542 5,060 5,315

Festival Gala, Haze, LeTV, National Exam, Travel, Dragon Boat Festival, etc. The classification of sentiment
labels in the dataset is divided into 3 types: negative, neutral and positive, corresponding to the numerical labels
1, 2 and 0. Tab. 13 shows the detailed statistics of the dataset.

In order to evaluate and compare existing methods and our method more fairly, we combined the training
and validation sets to obtain 17,055 articles with a total of 19,917 labeled data, and re-divided the training set,
validation set, and test set in the ratio of 8:1:1, and evaluated them using ten-fold cross-validation, and took the
best result as the final result of the model.

5.2 Evaluation Metrics

To more reasonably and reliably measure the effectiveness of the method proposed in this paper, the F1 scores of
the three emotional polarities and the macro-average F1 scores are calculated as indicators in this paper, as shown
in the Eq. (30), Eq. (31).

F1i =
2 ∗ Pi ∗Ri

Pi +Ri
, (30)

F1 −macro =
1

N

N∑
i=1

F1i, (31)

i ∈ { positive, negative, neutral } is one of the three sentiment polarities, and Pi and Ri are the accuracy and
recall corresponding to the sentiment polarity i.

5.3 Implementation Details

Due to the limitation of the training hardware equipment, we can not train all the corpus at the same time, so
the complete training set needs to be divided into many training batches. Based on a careful observation of
the dataset, it was found that the corpus data in the dataset varied in length, which led to the internal setting of
the model for the input length that may affect the final results of the model. Taking into account the hardware
resources of the training environment, we chose 128 as the maximum length of input sentences, with each batch
size of 16, and trained 5 epochs in total. For each single item in the BiLSTM, each has a hidden layer unit that
needs to be learned by setting different sizes that will change the model’s ability to capture features, and we set
them all to 128. Additionally, the learning rate was set to 5e-5 and the dropout rate was 0.4.

5.4 Baseline Methods

Because of the limited research on the implicit sentiment analysis task of Chinese text, in this section, in addition
to selecting some of the latest implicit sentiment analysis models according to the settings in the literature [11],
some representative models with good results in traditional explicit sentiment analysis tasks[32] are selected as
baselines for comparison experiments. The baseline experiments are described in detail as follows.
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Bi-LSTM+multi-attention The combination of Bi-LSTM combined with attention mechanism has been proven
to be an effective model in many tasks related to sentiment analysis. The multi-headed attention mechanism can
capture more of the differences between multiple attentions to some extent and enhance the effect even further.

Bi-LSTM+MPOA Jiyao et al. [30] proposed an orthogonal multi-attention mechanism and fused it with
Bi-LSTM to improve the traditional multi-attention mechanism by using orthogonal attention with specific
sentiment polarity.

CMPOA The model that Wang et al. [29] proposed integrates contextual information into the basic MPOA to
compensate for the lack of information in the implicit sentiment sentence itself.

CsHGCN Zuo et al. [36] proposed a heterogeneous graph convolutional network model to represent the implicit
sentiment sentences. The entire context is treated as a heterogeneous graph at the document level and deep
domain features are captured by graph convolution.

Tree-LSTM+KG Syntactic structure information is important for modeling implicit sentiment sentences. The
syntactic structure tree of the input sentence is obtained using LTP [4], and then a Tree-LSTM [24] based model
is constructed to fuse the syntactic structure to the embedding of the sentence.

6 Results And Analysis

6.1 Comparison with Baselines

Experiment results are reported in Table. 14, and by observing and analyzing the results it can be found that:
From the overall view of each metric, the method proposed in this paper has the best results on all metrics,

indicating that our method can effectively improve the effectiveness of the implicit sentiment analysis task.
Specifically, in our experiments, we compare the model proposed in this paper with models that have been
effective in traditional explicit sentiment analysis tasks and with existing implicit sentiment analysis models, and
our model obtained the best results.

Our model has a large improvement in the implicit sentiment analysis task compared to the traditional
explicit sentiment analysis model, which indicates that the traditional explicit sentiment analysis approach has
some shortcomings in the implicit sentiment analysis task. Further, from the results of the model without
the introduction of common sense knowledge information, it can be found that the introduction of additional
external common sense knowledge has a 4% improvement in the F1 −macro metric for the implicit sentiment
analysis task, which indicates that the introduction of the triplet of common sense knowledge can provide critical
sentiment information and can effectively compensate for the lack of information caused by the absence of explicit
sentiment words. On the other hand, the result analysis of the model without introducing contextual information
illustrates that for the target implicit sentiment expression, fusion with contextual information can extend the
sentiment semantic information of implicit sentiment sentences from another aspect to enhance the implicit
sentiment analysis. The above results and analysis show that effective extension of the implicit sentiment sentence
representation can be achieved by fusing the common sense knowledge information provided by the external
knowledge base with the contextual representation and the semantic information of the sentiment expression
itself.

Meanwhile, the common sense knowledge fusion method proposed in this paper can effectively improve the
interpretability of the model. Traditional methods, such as BiLSTM+MPOA, usually interpret the prediction
results based on the attention weights of words in the sentence only. However, in implicit sentiment analysis
tasks, words with higher attention weights are usually also neutral or objective words. The reason for the model
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Table 14: Performance of Chinese implicit sentiment analysis

Methods PLM Fneu Fpos Fneg F1-macro
SDT-CNN 0.735 0.701 0.697 0.711
TextCNN 0.734 0.724 0.712 0.723
CsHGCN 0.848 0.670 0.775 0.764
BiLSTM + Att 0.800 0.630 0.747 0.726
BiLSTM + Mult-Att 0.810 0.634 0.749 0.730

CMPOA
random 0.800 0.568 0.702 0.690
BERT 0.784 0.585 0.712 0.694
ERNIE 0.816 0.662 0.761 0.746

TreeLSTM+KG
random 0.750 0.560 0.692 0.667
BERT 0.764 0.581 0.725 0.690
ERNIE 0.805 0.650 0.779 0.745

BiLSTM+MPOA
random 0.764 0.569 0.691 0.675
BERT 0.808 0.684 0.669 0.720
ERNIE 0.834 0.690 0.791 0.775

LSTM+Att+KG
random 0.759 0.558 0.690 0.669
BERT 0.771 0.593 0.732 0.699
ERNIE 0.802 0.643 0.781 0.742

BiLSTM+MPOA+KG
random 0.773 0.554 0.692 0.673
BERT 0.792 0.593 0.710 0.699
ERNIE 0.819 0.655 0.749 0.741

Ours
random 0.789 0.571 0.702 0.687
BERT 0.803 0.582 0.716 0.699
ERNIE 0.849 0.690 0.799 0.778

prediction can be demonstrated by introducing external common sense knowledge. Take the sentence “I got
a good grade in this exam" as an example, the positive sentiment predicted by the model can be explained
by the sentiment triple (getting a good grade, causes, praise), which makes the prediction more intuitive
and convincing. In summary, the experimental results show that the method in this paper has improved the
performance of Chinese implicit sentiment analysis and has shown the ability to interpret the results to a certain
extent.

Table 15: Performance of Chinese implicit sentiment analysis The ablations of different components are reported
separately in this table, where the model without additional explicit introduction of external common sense
knowledge is denoted as ‘-KG’, ‘-MPA’ indicates that no multipolar orthogonal attention mechanism is used in
the process of sentiment representation and knowledge incorporation, and ‘-Context’ indicates that no additional
contextual information of additional sentiment representation is introduced.

Methods Fneu Fpos Fneg F1-macro
Ours 0.849 0.690 0.799 0.778
-KG 0.816 0.662 0.761 0.746
-MPA 0.827 0.674 0.782 0.761
-Context 0.819 0.655 0.749 0.741
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6.2 Ablation Study

Tab. 15 shows the results of the metrics after removing each component from our model separately. The results of
the three ablation experiments show that each component of the proposed method in this paper contributes to the
model to some extent.

Specifically, removing the introduction of external knowledge has the greatest impact on the model’s
effectivenes; without the use of external common sense knowledge (‘-KG’), we observe a more dramatic
decrease in performance compared to all other components, with a decrease of nearly 4.1% in F1 −macro,
demonstrating the effectiveness and importance of introducing additional common sense knowledge for the
implicit sentiment analysis task, which can effectively complement the implicit sentiment expression sentiment
cues that are missing due to the absence of explicit sentiment vocabulary. The next most effective effect of
removing the introduction of contextual information on the model, with an overall performance decrease of
3.4% when focusing only on the semantic information of the implicit sentiment expression itself (-Context’),
which indicates that contextual information is also more significant for understanding the implicit sentiment
expression and can be used when the implicit sentiment expression. This indicates that contextual information
is also important for understanding implicit sentiment expressions, and can offer effective sentiment semantic
information when the implicit sentiment expressions cannot provide sufficient sentiment features by their own
information. Finally, the multi-polar attention mechanism has the least effect on the model, and the addition of
MPA mechanism improves the model by about 2.1%, which also indicates that the MPA mechanism is somewhat
helpful, but not as effective as the above two components.

In summary, the various components used in the model proposed in this paper are all instrumental for the
implicit sentiment analysis task.

7 Conclusion

In this paper, we propose a sentiment analysis method incorporating contextual information and external common
sense knowledge for implicit sentiment analysis. We first propose a retrieval method to extract valid sentiment
triads from a knowledge base and build an adaptive fusion of external common sense knowledge embedding layers
to extend the semantic information of implicit sentiment expressions. Multi-polar attention mechanism is then
used to learn embedding representations for implicit sentiment expressions, and an attention layer that incorporates
context is introduced to mine and combine valid information in the context. Finally, the common sense knowledge
information provided by the external knowledge base is fused with the contextual representation and the semantic
information of the sentiment expression itself to achieve an effective extension of the implicit sentiment sentence
representation and to perform sentiment label prediction. Experimental results on the SMP2019-ECISA dataset
show that the method outperforms existing state-of-the-art methods and can fully exploit contextual information
and external common sense knowledge to effectively improve the analysis of implicit sentiment expressions.
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Abstract

With the rapid development of social media, the data generated from interaction, which is an action
collaboratively done by several objects under a certain condition, have grown exponentially. It triggers
an urgent need to cluster interaction data for implicit patterns benefiting downstream tasks. Although
clustering methods have been extensively studied for a long time, they mainly focus on node/object cluster-
ing, which breaks the intrinsic collaborative associations among the involved objects and conditions, thus
limiting clustering performance of interaction data. To tackle this issue, we propose a novel Hypergraph
CLustering network for Interaction Data (HyCLID), which not only clusters whole interactions rather
than individual objects in interactions, but also exploits correlation among attributes of objects and
conditions. Specifically, we first construct an attributed hypergraph to model interactions. Then, we
propose a novel rethinking-based hypergraph neural network to learn the representation of interactions,
which employs a novel attentive routing-based rethinking mechanism to capture the correlations among
multiple object attributes and condition attributes. Furthermore, a novel adaptive mini-batch method is
designed for the large scale of interaction data. Experimental results demonstrate the effectiveness of our
methods for clustering the interactions and the practical value of the discovered interaction patterns.

1 Introduction

With the rapid development of social media, the volume of interaction data1 has grown exponentially to an
overwhelming scale [13, 30]. Generally, an interaction is an action collaboratively done by several objects under
a certain condition [30]. For example, as illustrated in Figure 1, “a user ordered a cup of latte at Starbucks in the
afternoon” in food delivery systems, and “two researchers collaborated to publish a paper in WSDM in 2022” in
academic networks, etc. In detail, Interaction 1 involves a condition about period and three objects including
a user, a merchant and a product, each of which carries several attributes, which indicates the characteristic of
interaction data is that the interaction involves multiple objects and the rich correlations among the attributes
of objects and conditions. As interaction data play an increasingly important role in daily life, analyzing them
becomes a priority.

Copyright 2022 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1The term interaction data is similar to the term relational data, which focuses on the data that there are pair-wise relations between
objects, while we introduce the term interaction data in this paper for distinction to focus on the relations among multiple objects.
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Type: Item
Favor: Coffee

Size: M

Type: Merchant
Brand: Starbucks

Tag: Internet celebrity

Period:
Afternoon

condition

Interaction 1: a user ordered a cup of 
latte at Starbucks in the afternoon

Type: User
Age: 15

Occupation: Student

Type: Author
Occupation: Professor

Degree: Doctor

Type: Conference
Field: Data Mining

Type: Paper
Keywords: Rec.

Year: 2021

condition

Interaction 2: two researchers collaborated 
to publish a paper in KDD in 2021

Type: Author
Degree: Doctor

Figure 1: Examples of interactions from Meituan Waimai2 and academic networks.

As a fundamental task in data mining, clustering on interaction data can discover the underlying patterns
beneficial to downstream tasks. For instance, in the above example, the user preference can be found by clustering
his interactions, enabling the platform to provide better recommendation services. Traditional clustering focuses
on object features, such as K-means [6, 32], etc. Besides, graph-based clustering, which treats objects as nodes in
a graph and leverages structural information of objects for clustering the objects, has also been widely explored,
e.g., spectral clustering [16]. Recently, some researchers pay attention to attributed graph clustering, which jointly
considers node attributes and graph structure [28]. A noticeable trend is the wide adoption of deep learning
in clustering [15]. For example, Graph Neural Network (GNN) based clustering methods [1, 21, 18, 29] can
effectively learn object representations for clustering via message passing mechanism. However, we argue that
existing methods could not fully cope with the interaction data in the real world. Specifically, in interaction data,
multiple objects as well as interaction conditions collaboratively form an indivisible semantic unit. Nonetheless,
these methods focus on clustering individual nodes/objects, which breaks the intrinsic collaborative associations
among the involved objects and conditions, thus limiting their ability to discover the underlying interaction
patterns. Take Interaction 1 in Figure 1 as an example, if we ignore the associations among user, merchant and
product, one may discover a one-sided pattern that “this user loves coffee”. This pattern will possibly lead to an
inappropriate recommendation of high-end coffee to this student far beyond his consumption level.

Therefore, we propose to cluster interactions instead of objects, where each interaction is regarded as a basic
unit to be clustered. Nevertheless, this is not a trivial task due to the following reasons: (1) How to effectively
model interaction data involving multiple objects? As mentioned before, an interaction is an indivisible semantic
unit. Nevertheless, a majority of existing solutions employ graph structure to model the relations between
objects, which will break the collaborative association among multiple objects into several pairwise sub-relations.
Hence they are insufficient to model interaction data in the real world. (2) How to capture the correlations
among the attributes of objects and conditions? The occurrence of an interaction is mainly owing to the
complex correlation among rich attributes of its involved objects and conditions. For instance, Interaction 1 in
Figure 1 is mainly derived by the correlation among “student, Internet celebrity, coffee, afternoon” (marked
in red). Since this correlation is among multiple attributes, capturing them is a combinatorial optimization
problem. To avoid combinatorial explosion, some recent methods [19, 24] adopt self-attentive layers to capture
the pairwise correlations between two features, called second-order features. Then, the higher-order features
can be approximated by stacking multiple self-attentive layers with residual connections. However, the errors in
the bottom layers will inevitably propagate to the following layers. Even worse, such error propagation will be
enlarged as the number of layers increases, thus possibly leading to the omissions of some potential high-order
features. (3) How to handle the large scale of interaction data during clustering? The scale of interaction data in
real applications is always large, thus requiring clustering in a batch fashion. Nonetheless, the data distributions

2Meituan Waimai is a food delivery platform. https://waimai.meituan.com
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of different batches are usually not the same, which probably causes data imbalance so that the clustering error
may largely fluctuate or even increase [26]. Unfortunately, existing methods [23, 21] cannot automatically make
adaptive adjustments for different batches, thereby leading to sub-optimal clustering performance.

To tackle the aforementioned issues, we propose a novel Hypergraph CLustering network for Interaction
Data (HyCLID). Specifically, to model interactions that involve multiple objects and conditions, we construct
an attributed hypergraph for interactions. As the hyperedges can connect an arbitrary number of objects, we
model each interaction as a hyperedge connecting several nodes that represent its involved objects. Then, we
propose a novel rethinking-based hypergraph neural network to capture the complex correlations (high-order
features) among object attributes and conditions for embedding the interactions (hyperedges). Besides, to avoid
omissions of potential high-order features, we design a novel attentive routing-based rethinking mechanism
to review the capturing process and correct the errors in the bottom layers. Finally, we propose an adaptive
mini-batch clustering method based on the learned interaction representations to perform deep clustering on
large-scale interaction data, which employs an adaptive batch standardization to remove the impact of different
data distributions of different batches. The main contributions are summarized as follows:

• We propose a hypergraph clustering network for interaction data, namely HyCLID. With interactions
modeled as an attributed hypergraph, HyCLID designs a novel rethinking-based hypergraph neural network
to learn the representation of interactions.

• Besides, we propose an adaptive mini-batch clustering method in the face of the large scale of the
interaction data, which performs deep clustering in a mini-batch fashion based on the learned interaction
representations.

• Experiments show that HyCLID significantly outperforms state-of-the-art methods across public and
industrial datasets for clustering interactions. Furthermore, experiments on recommendation demonstrate
the practical value of the cluster patterns discovered by our method in industrial applications.

2 Related Work

In this section, we first introduce the related clustering methods, and then discuss the hypergraph approaches for
interaction data.

Clustering, as one of the fundamental tasks of data mining, is widely used for interaction data analysis.
Traditional clustering studies are feature-based. They can target a certain type of interacting objects, and encode
them as vectors based on their features [7] followed by traditional clustering methods such as K-means [6].
Besides, graph-based clustering is also a representative kind of clustering method, which treats objects as nodes
in a graph and leverages structural information of objects for clustering the objects, e.g., spectral clustering [16].
Recently, attributed graph clustering has attracted a mass of attention, which further considers the attributes of
nodes [28]. A noticeable trend is the wide adoption of deep learning in clustering [15]. For example, Graph
Neural Network (GNN) [12, 11] based clustering methods can effectively learn representations based on the
graph structure and node attributes for clustering [1, 21, 2, 18, 29]. However, modeling the interaction data using
the graph structure, which can only model the pairwise relations, will inevitably lose some information since an
interaction usually involves more than two objects [27].

Hypergraphs, as generalizations of graphs, can model complex and extensive information and be more suitable
for interaction data [33, 25, 20, 8]. How to develop hypergraph structure based solutions for interaction data
attracts increasing attention. [34] puts forward the concept of learning with hypergraphs, which can be used in
clustering, classification, and embedding and achieves performance beyond the ordinary graphs. Hypergraph
neural networks (HGNN) proposed in [3], which are similar to the GCNs in graphs [12], extend the convolution
operation to the process of hypergraph learning. [35] proposes an unsupervised method to conduct both subspace
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Figure 2: Illustration of HyCLID (object attributes and interaction conditions are omitted for easy to understand).

learning and feature selection, but its complex optimization details do not make it perform better than the above
graph methods for clustering tasks. A recent study thereby proposes an end-to-end clustering method based on
hypergraph neural network [8]. However, these methods only target the individual node/object, which breaks the
intrinsic collaborative associations among the involved objects and conditions. The related works for clustering
the interactions still are little exploration.

3 Methodology

First of all, we present an overview of the proposed HyCLID. The basic idea is that, as illustrated in Figure 2,
with modeling interactions via attributed hypergraph, we propose a novel rethinking-based hypergraph neural
network to learn the representations of interactions for clustering. Specifically, to model the interactions that
involve multiple objects and conditions, we construct an attributed hypergraph, where each interaction is modeled
as a hyperedge connecting several nodes that represent its involved objects. Besides, the attributes of objects and
conditions are introduced as node features and hyperedge features, respectively. Then, a novel rethinking-based
hypergraph neural network is proposed to aggregate node and hyperedge features to obtain interaction and object
representations. During feature aggregation, we design a novel attentive routing-based rethinking mechanism,
which can capture high-order features and then rethink to check for omissions and errors. Finally, in the face
of the large scale of the interaction data, we develop an adaptive mini-batched clustering method to cluster in
a mini-batch fashion based on the learned interaction representations. Moreover, it employs an adaptive batch
standardization to remove the impact of different data distributions of different batches.

3.1 Interaction Modeling via Hypergraph

As mentioned above, an interaction usually involves multiple attributed objects and the corresponding interaction
conditions such as temporal-spatial contexts, etc. We formalize the interactions as follows.

Definition 1: Interaction. An interaction is an action collaboratively done by several objects under a certain
condition. Formally, given the set of objects V , object attributes AV , and interaction conditions AE , an interaction
is defined as e =< Ve, AV

e , A
E
e >, including all involved objects Ve = {v1, · · · , vne |vi ∈ V} with their attributes

AV
e = {a1, · · · , ane |ai ⊂ AV}, and interaction conditions AE

e ⊂ AE .

Take Interaction 1 in Figure 1 as an example, “a fifteen-year-old student ordered a middle-size latte at the
Internet celebrity store Starbucks in the afternoon”. In this example, the interaction order involves the objects
including a user (with occupation attribute student and age attribute fifteen), a merchant (with attribute Starbucks
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and Internet celebrity) and an item coffee (with attribute latte and middle-size). Besides, this interaction has a
condition afternoon. In order to avoid the association breaking in traditional graph modeling, which splits the
collaborative association among multiple objects into several pairwise sub-relations, we model the interactions as
an attributed hypergraph.

In detail, each of the interactions is modeled as a hyperedge connecting several nodes that represent its
involved objects. Moreover, object attributes are the features of corresponding nodes, and condition attributes
are the features of the hyperedges. For example, as illustrated in left of Figure 2, for an interaction e1 involving
5 objects v1, v2, v3, v8, v9, we build a hyperedge to connect them. Besides, we attach their object attributes
ai(i = 1, 2, 3, 8, 9) to the node features. Then the condition attributes ĂE

e1 , such as temporal-spatial contexts,
are attached to the hyperedge features, since they should be seen as the attributes of interactions rather than
any object. Therefore, such a hyperedge and its connecting nodes together with their features can represent an
instance of interactions. The constructed attributed hypergraph is formalized as follows.

Definition 2: Attributed Hypergraph for Interactions. The hypergraph for interactions is an attributed
hypergraph G = (V, E ,XV ,XE), where the node set V represents the set of all involved objects, the hyperedge
set E represents all the interactions, XV and XE represent the feature matrices of nodes and hyperedges,
respectively.

The i-th row of XV ∈ R|V|×FV represents the feature indicators to the attributes ai ⊂ AV of object vi ∈ V .
Similarly, the j-th row of XE ∈ R|E|×FE represents the feature indicators to the condition attributes AE

ej ⊂ A
E

of interaction ej ∈ E . FV and FE are the max value across the attribute number of each object and condition,
respectively.

Based on the above modeling, the clustering task of interactions in this paper can be formalized as the
clustering on hyperedges E in the constructed attributed hypergraph, which is different from other clustering
methods that mainly concern about clustering of objects V in interactions [8].

3.2 Rethinking-based Hypergraph Neural Network

To learn the representation of interactions, we propose a novel rethinking-based hypergraph neural network,
where an attentive routing-based rethinking mechanism is designed to capture high-order features and avoid
omissions. It can automatically identify the correlations of features and form some meaningful combinations of
high-order features. Then, it rethinks the identification process several times to prevent omissions and correct
errors. Consequently, the network can learn effective representation of interactions.

3.2.1 Input Layer.

In order to facilitate capturing high-order features, following [19], we initial the representations of each feature
from hyperedges or nodes as vectors, thus the representations of hyperedges and nodes are formed as feature
matrices. Formally, the initial d-dimensional representations of hyperedge ei ∈ E and node nj ∈ N are
e
(0)
i ∈ RFE×d and v

(0)
j ∈ RFV ×d, where each row of the feature matrix denotes a specific attribute of the

node/hyperedge.

3.2.2 Layer-wise Aggregation.

For the hypergraph G, the incidence matrix is defined as H ∈ R|V|×|E| with entries h(v, e) = 1 if v ∈ e and
0 otherwise. Denote the diagonal matrices of the edge degrees, the node degrees and the pre-defined weights
of hyperedges (default is 1) as De, Dv and W , respectively. The spectral hypergraph convolution for node
embedding [3, 8] is formulated as

Y = D−1/2
v HWD−1

e H⊤D−1/2
v XV Θ, (32)
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where Θ is the trainable filter parameters and XV is the input node embeddings. It can be seen that in this
hypergraph convolution formula, neither can the features of the hyperedge be exploited, nor can the representation
of the hyperedges (interactions) be obtained.

To solve these problems, we analyze this formula intuitively and find that this form can be also understood
as the following information flow: The node embeddings are first aggregated into hyperedge embeddings by
multiplying matrix H⊤. Then the hyperedge information is passed back to the nodes, achieved by multiplying
H . We can formalize these two information aggregation processes as a two-stage aggregation rule from layer l to
layer l + 1 as follows.

e
(l+1)
i = aggr(e(l)i , {v

(l)
j | vj ∈ ei}), (33)

v
(l+1)
j = aggr(v(l)

j , {e
(l+1)
i | vj ∈ ei}). (34)

For the aggregation function aggr(·), we first concatenate all its inputs into an whole feature matrix X =

concat(e(l)i , {v
(l)
j |vj ∈ ei}) or X = concat(v(l)

j , {e
(l+1)
i |

vj ∈ ei}), then we propose the following module to capture the high-order features based on X before obtaining
the node/hyperedge embeddings. Please note that the size of X is not fixed. The number of its rows depends
on the number and size of the concatenated feature matrices of hyperedges and nodes. For example, the size of
the whole feature matrix for Eq. 33 is (FE + |ei| · FV )× d. Denoting the calculation of this module as function
ARR(·) for short, the aggregation function can be formalized as aggr(·) = ARR(concat(·)).

3.2.3 Attentive Routing-based Rethinking Mechanism

As introduced before, the interactions often arise from the intrinsic correlations among several related attributes.
Motivated by previous studies [19, 24], the correlations among p attributes are formalized as a p-order features.
As shown in Figure 3, we adopt the framework of multiple self-attentive layers to capture high-order features.
Furthermore, in order to prevent omissions of potential high-order features, we need to review the capturing
process to check for omissions and errors. Consequently, we introduce a routing mechanism and modify the
self-attentive layers to rethink and readjust the captured high-order features. The details are introduced as follows.

Rethinking-based Self-attention(p-1)×

'̂(")

)

Rethinking-based Fusion

*	iteration

'̂("$%)

'̂("$%)

rethinking
vector

!!(#)

Figure 3: Illustration of the attentive routing-based
rethinking mechanism.

Following [19, 24], we adopt the framework of self-
attention to learn high-order features due to its superiority
for saving computational and storage. However, it needs
further improvement to support rethinking. Specifically, we
introduce a rethinking vector ẑ, the attention score between
feature xm and xk, i.e., the m-th and k-th rows of the input
feature matrix X , is calculated as,

φ(ẑ;xm, xk) = sum (ẑ ⊙WQxm ⊙WKxk) , (35)

where ⊙ represents element-wise product, i.e., Hadamard
product. WQ and WK denote the transformations for Query
vector and Key vector in attention. Then the group of second-
order features related to feature xm can be combined to-
gether through the framework of self-attention as follows.

αm,k = exp (φ(ẑ;xm, xk)) /
∑

j=1
exp (φ(ẑ;xm, xj)), (36)

x(2)m = xm +
∑

k=1
αm,k(WVek), (37)
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where WV denotes the transformation for Value vector in attention. Next, a higher-order feature x(p)m related to
xm can be captured by stacking p− 1 layers of such self-attention with residue connections. Eventually, the final
combination ẑ(1) of feature of order p can be obtained by attentive fusion of x(p)m ,m = 1, 2, · · · ,

ẑ(1) =
∑

m
SoftMax

(
(ẑ ⊙ x(p)

m )⊤ · a
)
· x(p)

m , (38)

where a is the vector of attention parameters.
Furthermore, to prevent omissions of potential high-order features, we introduce a routing mechanism to

rethink and readjust the above capturing process. Specifically, we update the rethinking vector by the new
obtained ẑ(1), and repeat the above procedure several times until routing-by-agreement, which is called attentive
routing-based rethinking mechanism. Therefore, each repetition of the above process, i.e., each iteration of the
routing mechanism, refines the captured high-level features. Initially, let ẑ = meanm(WVxm).

The output high-order feature after repeating r times is denoted as ẑ(r), which is the output vector of this
module. Formally, given an input feature matrix X , we have ARR(X) = ẑ(r). Then, the Eq. (33) can be rewritten
by e

(l+1)
i = ARR(X), where X is obtained by concatenating the embedding matrices of a target hyperedge and

its connecting nodes.

3.2.4 Interaction & Object Embedding.

Since each layer of propagation represents a specific order2 of relations, we sum the embeddings from each layer
as the final representation both for hyperedges (interactions) and nodes (objects). Formally, we have ei =

∑L
l e

(l)
i

and vj =
∑L

l v
(l)
j , where L denotes the number of aggregation layers.

3.3 Adaptive Mini-batch Clustering

For clustering in a mini-batch fashion, the different data distributions of batches may lead to clustering errors [26],
thus making clustering difficult to discover the implicit patterns of interaction data. Therefore, enlightened by
existing deep clustering methods [23], we propose an adaptive mini-batch clustering method, which first removes
the impact of different data distributions via an adaptive batch standardization and then performs deep clustering
on interactions.

Specifically, after the above modules, we have obtained the representations of interactions. Enlightened by
Clustering Assignment Hardening [23], we take Student’s t-distribution as a kernel to measure the similarity
between points and centroids. Then the soft assignment matrix Q is formulated as follows:

qij =
(1 + ∥zi − µj∥2/ν)−

ν+1
2∑

j′(1 + ∥zi − µj′∥2/ν)
− ν+1

2

, (39)

where zi is the embedding of the ith interaction, µj is the jth cluster centroid, and ν is the degrees of freedom of
the Student’s t-distribution, e.g. ν = 1.

Due to the randomness of batch generating process, the assignment distribution Q can be very unstable. It
severely limits the robustness of clustering, which in turn brings difficulties to discovering patterns in interaction
data. To tackle this issue, we first square the Q distribution to speed up training and then batch standardize it to
obtain Q̂, which removes the influence of batch quality on the clustering performance. Formally,

q̂iu = (q2iu − µu) / (
√
σ2u + ϵ) , (40)

where µu =
1

m

∑
i
q2iu and σ2u =

1

m

∑
i

(
q2iu − µu

)2
. (41)

2Please note that the order of relations is the path length between neighbors and the target node, while the order of features is the
number of features combined into high-order feature.
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Table 16: Statistics of datasets.

Dataset # Nodes # Hyperedges # Attributes # Categories Graph Density

ACM Paper 4,025 Author 7,167 Field 60 4,025 1,902 3 ∼ 10−4

IMDB Movie 4,661 Director 5,841 Actor 2,270 4,661 1,256 3 ∼ 10−4

MT-S User 19,623 POI 6,489 Item 17,564 20,000 901 5 ∼ 10−5

MT-L User 991,914 POI 17,120 Item 389,292 2,000,000 901 5 ∼ 10−6

Note that this standardization operation makes Q̂ appear negative numbers. It means that we can just erase the
low-probability cluster assignment via ReLU function, which contributes to to reduce the difficulty of clustering
training and improve performance. Furthermore, we introduce two batch adaptive trainable parameters γ, β to
enhance its adaptive ability as follows.

piu =
ReLU(γuq̂iu + βu)∑
s ReLU(γsq̂is + βs)

, s.t.
∑

u
γu = 1, (42)

where γ represents the relative stability between different clusters (small value means that the samples of one
cluster are prone to be modified to another cluster during training), and β defines the aforementioned low-
probability cluster assignment. Consequently, the adaptive target distribution P = [piu] forces assignments to
have stricter probabilities (closer to 0 or 1). Meanwhile, we not only preserve the stability of the Q distribution
by Q̂, but also increase its adaptive capacity. Finally, KL-divergence is applied to let the raw assignments Q
approach the target distribution P . which can be minimized for the aforementioned Q and P via neural network
training. It emphasizes data points assigned with batch-adaptive high confidence.

3.4 Model Training

We apply an auto-encoder structure for self-supervised training of our HyCLID. Specifically, we reconstruct the
incidence matrix H of the constructed hypergraph for interactions with a contrastive loss:

Lae =
1

2

∑
i,j

yijd
2
ij + (1− yij)max(0,m− dij)2, where dij = ∥ei − vj∥. (43)

yij denotes the existence of a relationship between hyperedge i and node j, and m is the margin hyper-parameter,
e.g., m = 1.

Finally, we jointly optimize the auto-encoder structure and deep clustering so that the total objective function
is defined as L = Lc + γLae, where γ ⩾ 0 is a coefficient that controls the balance in between.

4 Experiments

4.1 Experimental Setup

4.1.1 Datasets

Our proposed HyCLID is evaluated on the following four datasets, and the statistics of these datasets are shown
in Table 16.

• ACM. The ACM dataset3 contains three types of nodes: paper, author and field. We treat a publishing as an
interaction, and hence build a hypergraph where each hyperedge connects a paper and all its corresponding
authors and fields. Considering there are no labels on the hyperedges, we treat the category of the published
paper as the clustering ground truth since each paper has a one-to-one correspondence to a hyperedge.

3https://data.dgl.ai/dataset/ACM.mat
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• IMDB. The IMDB dataset [31] contains three types of nodes: movie, actors and directors. Similarly, we
treat each movie as an interaction and construct a hypergraph where each hyperedge connects a movie, its
actors and directors. The category of the movie is regarded as the clustering ground truth.

• MT-L and MT-S. We also build two real-world datasets from the food delivery industry, i.e., Meituan
Waimai platform. One contains millions of orders of user purchases of foods in Beijing District within
30 days, denoting as MT-L. Each purchase order is treated as an interaction and is tagged with one of
5 purchase scenes. We construct an attributed hypergraph where each hyperedge represents an order,
connecting a user node, a restaurant node and several item nodes. The features of nodes are their attributes
(e.g., user profiles for user node), while the features of hyperedges (orders) are the interaction conditions,
i.e., temporal-spatial contexts, since these attributes do not belong to a single node. Most baseline methods
cannot support data of such scale, so we extracted a smaller dataset from it, denoted as MT-S.

4.1.2 Evaluation Metrics

Following [8], we adopt three popular metrics to assess the quality of the clustering results: clustering accuracy
(ACC), normalized mutual information (NMI) and adjusted Rand index (ARI). For all the experiments, we repeat
them 10 times and report the averaged results and standard deviations.

4.1.3 Baselines

We compare our proposed method HyCLID with the following three groups of methods. Traditional Methods:
K-means [6], node2vec [4] and HERec [17]. Attributed Graph-based Methods: SDCN [1], HAN [22], HGT [9]
and AdaGAE [14]. Hypergraph-based Methods: HGNN [3] and AHGAE [8]. Note that for the methods
considering graph structure, for ACM and IMDB datasets, we directly use the widely applied graph structure [9].
For the MT-S dataset, we transfer the hypergraph into a graph, i.e., we introduce a summary node to replace
each of hyperedges and link the summary nodes with the corresponding nodes that are originally connected by
hyperedges. For metapath-based methods, i.e., HERec and HAN, we select all the possible symmetric length-2
meta-paths.

4.1.4 Implementation Detail

We implement the proposed method based on Tensorflow4. For our method, we set the dimension of attribute
embeddings as d = 64 for the public datasets ACM and IMDB for fair comparison and d = 16 for MT-S/L for
saving memory. For simplicity, we set the number of aggregation layers L = 1, the layer number of rethinking-
based self-attention p = 1 and the rethinking iterations r = 2. For all baselines, we set their hidden dimensions
as 64 and set the number of layers as their suggested value (usually equal to 2). For model training, we simply
set γ = 1, and apply Adam [10] to optimize with the learning rate as 0.005 for ACM and IMDB and 0.001 for
MT-S/L. The batch size is set 2048. All the experiments are performed in NVIDIA Tesla P40 Cluster. To facilitate
related research, we will release our implementation to the public once the paper gets accepted.

4.2 Analysis of Clustering Results

Table 17 shows the clustering results on the three small-scale datasets. We have the following observations:
As shown, for each metric, our proposed HyCLID achieves the best results significantly. In particular,

compared with the best results of the baselines, our approach achieves a significant improvement of 6.3% on
ACC, 17.9% on NMI, 15.9% on ARI averagely. The reason is that HyCLID successfully makes full use of all the
information in interactions, including node attributes, hyperedge attributes and hyper-relations. In detail, attributed

4https://www.tensorflow.org/
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Table 17: Clustering results on datasets ACM, IMDB and MT-S (mean±std in percent). The best and second best
results are bold and underlined, respectively. Symbol “-” represents unavailable results due to out-of-memory.

Method
ACM IMDB MT-S

ACC NMI ARI ACC NMI ARI ACC NMI ARI

K-means 63.59 ± 0.27 36.89 ± 0.37 28.91 ± 0.42 37.01 ± 0.10 0.88 ± 0.06 1.43 ± 0.05 54.95 ± 8.08 56.36 ± 6.69 50.08 ± 7.83
node2vec 65.25 ± 0.33 38.49 ± 0.12 31.23 ± 0.88 47.87 ± 0.33 5.55 ± 0.53 5.89 ± 0.64 45.09 ± 6.70 23.19 ± 5.60 18.65 ± 7.78
HERec 51.41 ± 1.82 20.05 ± 1.37 20.82 ± 1.50 46.45 ± 0.62 5.32 ± 0.79 5.68 ± 0.69 39.76 ± 9.72 20.57 ± 2.04 18.32 ± 3.11

SDCN 67.79 ± 0.87 41.77 ± 0.80 37.69 ± 0.60 43.87 ± 0.35 3.37 ± 0.19 2.77 ± 0.21 73.56 ± 9.27 66.34 ± 8.02 62.80 ± 7.83
HAN 69.33 ± 0.38 44.17 ± 0.58 38.94 ± 0.36 42.43 ± 0.32 2.90 ± 0.37 2.89 ± 0.29 55.71 ± 5.96 54.09 ± 6.41 48.34 ± 8.25
HGT 75.31 ± 1.17 46.98 ± 2.28 43.06 ± 1.63 48.07 ± 0.02 5.62 ± 0.06 5.23 ± 0.05 55.22 ± 8.13 57.38 ± 7.62 51.11 ± 9.27
AdaGAE 78.32 ± 3.76 50.94 ± 3.12 54.03 ± 4.09 47.12 ± 3.17 5.07 ± 1.86 4.58 ± 1.73 - - -

HGNN 66.35 ± 2.29 31.17 ± 4.05 27.72 ± 5.32 44.11 ± 0.11 2.05 ± 0.01 1.31 ± 0.04 80.75 ± 4.32 76.70 ± 5.83 68.46 ± 3.91
AHGAE 75.76 ± 1.83 46.53 ± 2.98 41.28 ± 3.64 40.05 ± 1.54 1.73 ± 1.35 1.58 ± 1.07 84.66 ± 8.01 79.16 ± 8.98 71.53 ± 9.23

HyCLID 83.63 ± 1.23 57.29 ± 0.76 58.45 ± 1.91 50.28 ± 0.39 7.43 ± 0.63 7.13 ± 1.02 91.05 ± 8.61 86.30 ± 6.24 84.70 ± 9.44
Impr. (%) 6.78 12.46 8.18 4.60 32.20 21.05 7.55 9.02 18.41

graph-based methods can generally achieve better performance than traditional methods, especially heterogeneous
GNN-based end-to-end methods (HGT), which confirms the important role of object attributes and structures
among objects in the interaction data. Unexpectedly, hypergraph-based methods (HGNN, AHGAE) have not
achieved competitive performance on these two datasets, while our method HyCLID successfully performs the
best. We hold that this is because these hypergraph-based methods cannot capture high-order correlations (as our
rethinking-based self-attention) nor be adaptive during clustering, which makes their hypergraph neural networks
fail to fully utilize the information in the interaction data. Conversely, the hypergraph-based baselines achieve
outstanding performance on the MT-S dataset. It suggests the necessity of attributed hypergraph modeling for
real-world interaction data, which involves multiple attributed objects and a certain interaction condition. Besides,
the fact that our HyCLID further performs better confirms again the effectiveness of our proposed attentive
routing-based rethinking mechanism to capture high-order features and the adaptive mini-batch clustering for
training.

Table 18: Clustering results on dataset MT-L.

Method ACC NMI ARI

Mini-batch K-means 45.82 ± 3.75 24.48 ± 2.32 18.30 ± 3.88
HyCLID 48.60 ± 3.98 28.68 ± 4.92 24.50 ± 5.95

Moreover, we also conduct a compari-
son on the MT-L dataset. Since most base-
lines cannot support running on such a
large-scale dataset, we only employ mini-
batch K-Means for comparison. As shown
in Table 18, our proposed HyCLID con-
sistently performs better than the baseline,
which demonstrates the effectiveness of our
proposed HyCLID for large-scale data.

4.3 Ablation Study

In this subsection, for simplicity, we compare our HyCLID with 3 variants on the datasets ACM, IMDB and MT-S
to validate the design of each module. Specifically, -HF is a variant that removes the part to capture high-order
features (i.e., set p = 0) based on the complete model. The variant -RT represents that the module attentive
routing mechanism for rethinking is removed, i.e., the vanilla self-attention is adopted for replacement. -AD
denotes that the adaptive mini-batch clustering is further removed and replaced by traditional deep clustering, i.e.,
clustering assignment hardening [23].

As reported in Figure 4, the clustering performance always decreases with the removal of each module.
This phenomenon demonstrates the effectiveness of each of the proposed modules. In detail, compare the best
performance achieved by our whole model, -HF performs worse, which verifies the existence of the correlations
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Figure 4: Clustering results of different variants.

among multiple attributes from the involved objects and conditions and confirms the effectiveness of our rethinking
based self-attention to capture these correlations. Next, the fact that -RT performs more poorly shows the necessity
of our rethinking module for avoiding the omissions of some potential high-orders. Furthermore, when the
adaptive mini-batch clustering is further substituted by the traditional clustering assignment hardening [23],
-AD performs the worst. On the one hand, it shows that problems such as data imbalance make the clustering
significantly worse, and on the other hand, it demonstrates that our proposed adaptive module can alleviate this
problem very well.

4.4 Case Study for Rethinking Mechanism
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Figure 5: Heat map visualization for attentive routing-
based rethinking mechanism. The rows/columns rep-
resent four selected attributes from an interaction case
belonging to category “afternoon tea” of dataset MT-S,
i.e., lower consumption level, student, coffee, afternoon,
respectively.

In this subsection, we dissect how our attentive routing-
based rethinking mechanism works. As shown in Fig-
ure 5, the heat maps visualize the attention weights
of rethinking-based fusion (top) and rethinking-based
self-attention (bottom) under two iterations of rethink-
ing (three pairs of heat maps from left to right represent
r = 0, 1, 2, respectively).

A phenomenon can be observed that, the self-
attention assigns relatively high weights to the second-
order feature between coffee and afternoon, while the
fusion attention also assigns high weights to coffee and
afternoon. Then, the weights are further growing with
the iterations of rethinking. On the contrary, the high
weight, assigned to the second-order feature between
lower consumption level and afternoon, is gradually
reduced. It validates the effectiveness of our attentive
routing-based rethinking mechanism. In detail, it not
only encourages the important features or higher-order features through iterative rethinking, but also corrects the
overestimated ones.

4.5 Offline Experiment on Recommendation

In this subsection, we conduct an offline experiment on recommendation to show the applied usage and practical
value of our method for food delivery industrial applications, i.e., Meituan Waimai platform. Specifically, we
divide the MT-L dataset into training/test subsets, i.e., the orders of the first 27 days are for training while
those of the last 3 days are for testing. Then we train our model on the training subset of MT-L and then infer
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the clustering assignments on the test subset. Finally, these learned and inferred clustering assignments are
introduced into context-aware recommendation models, e.g., DeepFM [5] and AutoInt [19], as contexts for CTR
prediction, where the dataset partition is the same as above. For comparisons, “-vanilla” represents that no
clustering assignments are introduced, and “+HyCLID” represents that our HyCLID is adopted for assignments.

Table 19: Top-3 recommendation performance.

Method HR Recall Precision NDCG
DeepFM-vanilla 0.5268 0.4950 0.1849 0.4135
DeepFM+HyCLID 0.5386 0.5056 0.1868 0.4186
AutoInt-vanilla 0.5120 0.4811 0.1786 0.4021
AutoInt+HyCLID 0.5465 0.5142 0.1906 0.4236

We report the results on several met-
rics (including HR, Recall, Precision and
NDCG) in Table 19. As we can see, for
both DeepFM and AutoInt, “+HyCLID”
outperforms “-vanilla”, indicating that the
clustering results of interactions are con-
ducive for downstream applications and
demonstrates the necessity of our attributed
hypergraph modeling of interactions and
the effectiveness of our proposed hypergraph clustering network for clustering interactions.

5 Conclusion

In this paper, we propose a novel clustering task on interaction data to discover more comprehensive cluster
patterns, where the interactions are regarded as basic units to be clustered instead of objects. To this end, we
propose a novel Hypergraph CLustering network for Interaction Data, namely HyCLID. Specifically, we propose
to model the interactions via attributed hypergraph, and then propose a novel rethinking-based hypergraph neural
network to learn the representation of interactions. It designs a novel attentive routing-based rethinking mechanism
to capture the correlations among multiple attributes of objects and conditions involved in interactions. Besides,
we develop an adaptive mini-batch clustering method to deal with the large scale of interaction data, which can
further make adaptive adjustments for different data distributions of batches. Extensive experiments verify the
effectiveness of our HyCLID on both public datasets and real industrial datasets. Moreover, offline experiments
on recommendation show the practical value of our discovered cluster patterns for industrial applications.
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Distilling Causal Metaknowledge from Knowledge Graphs

Yuan Meng, Yancheng Dong, Shixuan Liu, Chaohao Yuan, Yue He, Jian Pei, Peng Cui

Abstract

In recent years, the explosive increase of information facilitates the massive knowledge graphs, which
in turn increase burden of people to understand and leverage the regularity behind these superficial
facts. Therefore, the metaknowledge, defined as the knowledge about knowledge, is proposed to identify
complex processes of knowledge production and consumption. Unfortunately, even though the current
correlation-based rule mining methods in knowledge graph distill the rule-formed metaknowledge,
they can not explain the processes of knowledge production. In this paper, we focus on capturing the
metaknowledge with causality which is generally regarded as one of the most promising techniques to
reveal the interactions between components in the complex system. To the best of our knowledge, this is
the first attempt to interpret the knowledge graph from the causal perspective.

For this purpose, we propose a causal metaknowledge method for link prediction, which achieves
entity-level link prediction by discovering concept-level topological causality. Specifically, we first
formalize causal metaknowledge as causal rule, following the form of logical rule. Then, we transform the
relational data into propositional data to learn the causal relationships between topological structures.
And an efficient algorithm for discovering local causal relationships is proposed using the d-seperation
criterion. Eventually, the causal rules generated based on the mined relationships are used for link
prediction. Both simulation-based and real data-based experiments demonstrate the effectiveness of the
proposed approach, especially under the Out-of-Distribution(OoD) settings.

1 Introduction

In the era of information explosion, knowledge graph (KG) is a powerful representation for integrating billions
of available relational facts, based on observational low-level knowledge in the world, to encapsulate the rich
relationships of entities [17, 45]. Although the massive knowledge can benefit various downstream applications,
e.g. query answering [42, 23, 4], recommendation systems [41, 40, 22], yet to better understand, exploit, and
complete these underlying knowledge, it is necessary to explore the intrinsic principle of the emergence of this
factual knowledge. For this purpose, the concept of meta-knowledge is proposed and defined as the knowledge
about knowledge [6].

Current rule mining methods in the KG literature attempt to mine meta-knowledge, in the form of association
rules, via correlation analysis represented by frequency analysis [9, 8, 27]. These association rules can be used
for downstream tasks such as knowledge graph completion, and question answering. However, association does
not imply causation [1]. Fortunato et al. points out that causality is necessary to identify the fundamental drivers
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Figure 1: Motivation illustration. Consider a scenario to learn rules for inferring the Treat relation between
compounds and diseases on a heart disease KG (top), and thereby discover novel drugs for treating nicotine
addiction on an addiction disease KG (bottom). On the heart disease KG, drugs that treat the same disease often
share the same side effects. The correlation-based approach establishes a strong spurious correlation between the
shared side-effect information and the treat relation. In contrast, the underlying cause of the treat shows
a weak association (Rule ①). Therefore, when the above rule is migrated to addiction disease KG (drugs that
treat the same basic kind of disease often do not have shared side effects), false prediction could be resulted (e.g.,
Brodalumab is more likely to be prescribed for nicotine addiction, instead of Bupropion).

of knowledge [7]. The correlation-based method may lead to spurious correlations between the body and head of
rule, which can not be generalized to new environments.

Here we take the KG-based drug repurposing task as an example (shown in Fig. 1). Given the heart disease
KG as training data, traditional rule mining methods may rely on two rules ① and ② to predict the Treat
relation. As heart disease drugs entail similar side effects, the confidence (weight) of Rule ②, calculated based on
correlation, is greater than that of Rule ① (0.7 versus 0.6). However, the localization of the drug to the target
protein produced by the disease gene, as indicated in Rule ①, is the recognized mechanism for physicians to
prescribe drugs for the disease [15]. This phenomenon, typical of spurious correlations, is due to the scarcity of
genetic information and the abundance of side-effect facts accompanying the data collection process. Therefore,
these weighted rules could produce false KG completion results as the environment shifts. Fig. 1(b) visualizes
such testing process where the learned rules from heart disease KG are used to answer queries from addiction
disease KG. Both nicotine withdrawal drug (Varenicline) and psoriasis drug (Brodalumab) are known to cause
the side effect suicidal tendencies. However, the available drug for nicotine withdrawal Bupropion (which binds
the gene that participates in nicotine) is not. With the mined rules in Fig. 1(a), physicians could falsely prescribe
Brodalumab (Path 2) as a new treatment for nicotine withdrawal, instead of Bupropion (Path 1). If we can learn
stable relationships (such as causality) between predicted features and predicted targets, such effect of spurious
correlations can be eliminated.

In this paper, we propose a method that learns rules from the causal perspective to ensure strong generalization
ability whilst retaining decent interpretability. Specifically, we are concerned with understanding how KG links
are generated, through causal discovery. There are two major challenges in this problem: 1) efficiency and 2)
proper metrics. For the former, the complex topological structures between massive entity pairs could induce
thousand-scale rule space with barely ten relations, posing challenges for both score-based and constraint-based
causal discovery approaches. The complexity of the constraint-based technique increases exponentially with the
number of nodes, whereas the score-based approach creates an NP-hard problem [19]. For the latter, rule-mining
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algorithms generally require specific metrics, such as support rate, as the weights for inference. Therefore, we
also need to design a metric to measure the strength of each causal relationship.

In this work, we first formulate causal meta-knowledge with the concept of causal rule, on which we further
introduce several constraints to reduce the search space. Then, we propose the CMLP (Causal Metaknowledge-
based Link Prediction) algorithm, which integrates efficient causal rule discovery approach and causation-based
link prediction method. Specifically, we first introduce the concept of rule-induced variable, which uses relation
paths to describe the topological structure of entities, and map the graphs into quantified samples with the
designed assignment function. Further, we observe that the whole causal structure is not necessary for specific
link prediction task, but only the part of the structure related to the predicted relation. Therefore, we design an
efficient method based on d-seperation to achieve local causal discovery. Meanwhile, the causal strength based
on conditional dependence can also be generated as the weights of learned causal rules. Finally, the predictions
can be ranked from weighted causal rules.
Contributions. Our main contributions can be summarized as follows: (i) This is the first work that aims at
improving link prediction in KG by causal inference to eliminate the effect of spurious correlation, as evidenced
in traditional methods. (ii) This work introduces CMLP that learns a link predictor based on discovering causal
meta-knowledge. (iii) CMLP outperforms other competitive baselines on link prediction tasks under Out-of-
Distribution (OoD) setting. Furthermore, we analyze the learned meta-knowledge for insights on the mechanism
of the applications.

2 Preliminaries and Problem Statement

2.1 Definitions and Notations

In this paper, we follow the definition of knowledge graph as in [17]:

Definition 2.1: A Knowledge Graph (KG) is defined as G = (E ,R,F), where E ,R and F are sets of entities,
relations and facts, respectively. Every fact is a triple (eh, R, et) ∈ F , where eh, et ∈ E and R ∈ R are head
entity, tail entity and the relation between entities, respectively. Without loss of generality, we simultaneously
represent a fact as R(eh, et).

First-order logic (FOL) offers a pivotal way to represent real-world knowledge for reasoning. Horn rules, as a
special and typical case of FOL rules, propose to represent a target relation by a body of conjunctive relations.

Definition 2.2: A Horn Rule, generally chain-like, is given as,

Rh(x, y)← Rb1(x, z1) ◦ · · · ◦Rbl(zl−1, y)

where, Rh(x, y) signifies the rule head (target relation) that we wishes to reason andRb1(x, z1)◦· · ·◦Rbl(zl−1, y)
is the rule body (relation path). For simplicity, we denote a Horn rule as Rh : Rb, where Rb = [Rb1 , · · · , Rbl ].
To reason Rh, the size of the rule space is |Bh|. Every closed path of such Horn rule is required to: 1) connect
(x, y) via the rule body, which is a sequence of relations Rb, and 2) ensure (x, y) are accessible directly via the
target relation Rh. Closed paths are also known as rule instances.

2.2 Problem Statement

The goal of this work is to learn the causal rule that is formalized as the horn rule. Specifically, the objective
of traditional logical rule learning is to assign a plausibility score S(Rh|Rb) to each rule in the discovered rule
space, which can be subsequently aggregated to answer queries about the KG. Currently, plausibility scores
are defined over closed paths (e.g., the PCA confidence for AMIE [10]), which are correlational observations.
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We have demonstrated that these scores are prone to spurious correlations and therefore result in inaccurate
predictions under OoD settings, in Sec. 1. Therefore the other aim is to give a plausibility score based on causal
strength.

In this paper, the causal rules are mined for link prediction in KG. We follow the commonly accepted problem
definition of link prediction in KG [32, 39]: given an observed KG G with missing facts, our goal is to predict the
correct entity for an given query (eh, Rh, ?) (or (?, Rh, et)).

3 Proposed Method: CMLP

In this section, we introduce the proposed approach CMLP which learns causal rules for KG link prediction.
CMLP first transforms the relational data into the propositional data to conduct statistical analysis (Sec. 3.1).
Then CMLP presents a local causality identification algorithm based on the d-seperation criterion to efficiently
mines interpretable causal rules (Sec. 3.2). Finally, a specific causation-based score is applied in predictor to
answer the queries with learned causal rules (Sec. 3.3). The pipeline of CMLP is illustrated in Fig. 2.

Figure 2: The framework of CMLP. Particularly, CFLP first transforms the relational data into propositional
data for better statistical analysis. Then it mines interpretable causal rules, which can be interpreted as a kind of
metaknowlege[6]. Finally, a plausibiliy score derived from the causality test is applied in predictor to rank the
answers of the given query.

Figure 3: The process of knowledge graph transformer
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3.1 Knowledge Graph Transformer

Traditional causal discovery algorithms are defined on propositional data, with well-defined variables and samples,
which do not exist in relational data like KGs. Therefore, we give the definition and scope of the variables we
study in the causal discovery phase by mapping the potential causes and queried relations into variables. Then we
give the practical approach for transforming KG into tabular data, whose horizontal axis are the variables we
defined. The process is shown schematically in Fig. 3

3.1.1 Causal variables in KG

The causal rule can be interpreted as a description of causal relationship between the body and the head. Naturally,
we formulate variables based on the elements of rules.

Definition 3.1: For entity pair (x, y), its Rule-induced Variable Xk = fG(x, y|Rb
k), where Rb

k corresponds
to the rule body in the k-th rule Rh : Rb

k(k ∈ {1, ..., |Bh|}). The assignment function fG(·|Rb) can be either
connectivity feature or path count for Rb in KG G.

The head of rule also induces a special variable Y = fG(x, y|Rh). In the real link prediction task, the queries
are normally on a specific relation, such as Treat in drug repurposing. Therefore, the causal rule mining
problem is to discovery the causal relationship between variables Xk = fG(x, y|Rb

k), k ∈ {1, ..., |Bh|} and
variable Y = fG(x, y|Rh). Then we introduce the practical approach that we transform the KG into tabular data
for causality analysis.

3.1.2 Transforming knowledge graph into propositional data

(1) Step-1: Searching candidate causes X . According to definition 2.2, any rule-induced variable X , which is
defined on entity pair(x, y) and seeks to help reasoning over Rh, is a valid candidate cause for Y = fG(x, y|Rh).
So we find all the candidate causes by searching all the paths between entity pairs (x, y), which have the relation
Rh between them. There are many well-studied path finding algorithms, which can search the paths under
different types of constraints, such as Dijkstra’s algorithm [18], A* search [5], best-first search [14], etc. In the
experiments, we adopt the best-first search algorithm. Since the number of candidate causes can be the power
level of the number of relation types, we require that the length of the path is no more than ℓ, where ℓ is the
hyper-parameters. In the experiments of this paper, we set ℓ as 3. (2) Step-2: generating samples. In this paper,
we use the connectivity as the assignment function to get quantitative samples.

Definition 3.2: the binary assignment function of rule-induced variable is as following:

fG(eh, et|Rb
k) = 1con(eh, et|Rb

k)

where 1con(eh, et|Rb
k) ∈ {0, 1} checks whether there exists a path instance of Rk

b between eh and et in KG G.

In this assignment function, we consider whether two entities can be connected via a relation path, instead of
the entities or number of the connection paths. There are two main reasons for this design: (1) We expect that
the mined causal relationship can be generalized to any dataset in this domain. Thus, if we want to distinguish
different entities which instantiate the meta structure, we need to build a multinomial model for all possible entities.
The multinomial would be infeasibly large. And our model can not be applied to any scenario which contain an
unseen entity. (2) this function can be seen as an aggregation function to summary the connection information
between entities. The aggregation function is very common in the causal relation model [25, 20, 21, 35]. With
the aggregation function, we can build a concise and expressive model. Since the only thing we need is whether
the entities are connected. Based on this assignment function, by sampling entity pairs in the training KG and
querying the corresponding variable values, we can obtain tabular data for causal analysis.
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3.2 Causal MetaKnowlege Discovery via d-seperation Criterion

The d-separation criteria [13] (see Definition 3.4) is a sufficient and necessary condition for the compatibility of a
probability distribution with a causal model in the form of a directed acyclic graph (DAG). It states that a joint
probability distribution of a set of random variables is compatible with the DAG (each node represents one of
the given variables and each arrow represents the possibility of causal influence) if and only if the distribution
satisfies a set of conditional independence relations encoded in the structure of the DAG. Therefore, d-separation
is widely used in the algorithms in discovering causal structure[12, 36, 11].

Definition 3.3: d-seperation. A path p is blocked by a set of nodes Z if and only if:
1.p contains a chain of nodes A→ B → C or a fork A← B → C such that the middle node B is in Z (i.e.,

B is conditioned on), or:
2. p contains a collider A→ B ← C such that the collision node B is not in Z, and no descendant of B is in

Z.
If Z blocks every path between two nodes X and Y , then X and Y are d-separated, conditional on Z, and

thus are independent conditional on Z.

Algorithm 1: Local causal metaknowledge discovery
Input: Y and {yi}, i = 1, . . . , N : variable and samples of queried variable (Ch, Ct).Mq ;

XCa = {Xk}, k = 1, . . . ,K and {{xi}k}, i = 1, . . . , N : variables and samples of candidate
causes;

Output: causes XC of Y
1 level d← 0;
2 while d <= |XCa| − 1 do
3 for each Xk ∈ XCa do
4 for each subset Z ∈ XCa\{Xk} and |Z| = d do
5 Test CI(Xk, Y |Z);
6 if CI(Xk, Y |Z) then
7 Test CI(Z, Y |Xk) (Reverse CI test.) ;
8 if not CI(Z, Y |Xk) then
9 Remove Xk from XCa;

10 Break;
11 end
12 end
13 end
14 end
15 d← d+ 1;
16 end
17 XC = XCa

In this work, we design an efficient causal metaknowledge discovery algorithm based on d-separation. With
d-separation, we can get the following conclusion: given any set of variables Z, where Z does not include
X , X is not independent of its parent node (i.e. direct cause). Based on this conclusion, we can obtain a
criterion for determining the direct cause of variable X . Furthermore, we design the following local causal
metaknowledge discovery algorithm (Algo. 1) for the queried variable Y = fG(x, y|Rh). We only mine the
direct cause of Y , instead of the entire causal structure of variable set XCa ∪ {Y }. Particularly, given a queried
variable Y = fG(x, y|Rh), for each candidate cause in XCa (denoted as variable Xk), the proposed algorithm
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Figure 4: An example of bidirectional causal relationship, which may lead wrong results.

Figure 5: An example of non-independent rule-induced variables, which are both the causes of queried relation.

decides whether Xj should be retained in candidate causes set XCa by testing the independence of Xk and Y
conditioning on a subset Z of XCa\{Xk}. The conditional independent(CI) tests are organised by levels (based
on the size d of the conditioning sets). At the first level (d = 0), all pairs of variables are tested conditioning
on the empty set. Some of the candidate causes would be removed and the algorithm only tests the remaining
candidate causes in the next level (d = 1). The size of the conditioning set, d, is progressively increased (by one)
at each new level until d is greater than |XCa| − 1. Each corresponding relation path of X ∈ XC construct a
valid rule to predict the relation Rh in Y .

It is noteworthy that we add the reverse CI test in Algo. 1 (line 7) to avoid the impact of redundant relations
in KGs. For example, Compound1 Resembles−→ Compound2 and Compound1 Binds−→ Gene1

Binds←− Compound2
express the similar message, which could lead the invalid independence test, as shown in Fig. 4. It will lead
both X1 and X2 are removed from the candidate cause set of queried variable Y , even though they have very
strong causal relationship with the drug treatment of diseases. Consequently, we use the reverse CI test to avoid
this issue. In particular, if Xj and Y are judged to be independent conditioning on Z , we will examine the
independence between Z and Y conditioning on Xj . When the result of the additional test is negative, Xj will be
removed from XCa. In this paper, we adopt SCI method [26] as the independent test method in the experiments,
which works well on limited samples and discrete variables.

3.3 Link Prediction based on Explainable Causal Metaknowledge

The approach for link prediction based on interpretable rules tends to generate corresponding weights in the
rule mining phase. By accumulating the weights of the rules satisfied by each predicted entity, a score of the
predicted entities can be generated, and then the results are ranked based on this score. Here we first introduce
how to generate rule weights under the causal model and then describe the approach for link prediction based on
generated weights.
Weights of rules based on conditional dependency. In Algo. 1, we discover the direct causes by the non-
independence relationship between the candidate meta structures and the queried meta structures. It is important
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to note that the meta structures of XC are not independent to each other. Fig. 5 gives an example for this case.
Specifically, X1 and X2 are both causes of Y . Since X1 is also a cause of X2, if we directly calculate the causal
strength between X2 and Y , it is inevitable that w2 will contain the causal effects that arise from X1 along the
path X1 → X2 → Y . Therefore, in order to better measure the importance of each causal rule and to avoid
double-counted in the calculation of each proposed entity’s score, we adopt the minimal conditional dependence
as a measure of the importance of causal rules:

wj = min({dependence(Xj , Y |Z)})
for any subset Z ∈ XCa\{Xj},

(44)

where wj is the rule weight of the meta structure in Xj . In this paper, we use the SCIf (X,Y |Z) in SCI
independence test [26] as the dependence score in Eq. 44, which can be get in the process of causal rules
discovery. The higher of SCIf (X,Y |Z), the stronger the dependency.
Score function of entity results. Because of the incompleteness nature of KGs, open world assumption
(OWA) [17] is often considered on real datasets. Under the OWA, the SUM function are usually adopted to
calculate the ranking score of the predicted entity eh in link prediction task (?, Rh, et):

Ssum
Rq

=
K∑
i=1

w̃iQi, . (45)

where K is the number of causal rules, w̃i is the normalized weight. Qi = 1 when the body of the i-th causal
rule holds for the entity pair (eh, et), otherwise Qi = 0. This approach focuses on the entities supported by
multiple rules and does not use the non-existent relations between entity pairs, since the unreliable negative
samples under OWA. In this paper, Eq. 45 is used in the link predictions on real data. For KG under closed world
assumption(CWA) [17], the negative facts are also reliable, therefore we design a new function to apply the rules
in the link prediction task. Particularly, given an query (?, Rh, et), the score of the triple (eh, Rh, et) is true can
be formulated as:

Savg
Rq

=
K∑
i

w̃i

(
QiȲXi=1 + (1−Qi)ȲXi=0

)
, (46)

where K is the number of causal rules for the queried relation, w̃i is the normalized weight for the i-th result
rule. ȲXi=1 denotes the proportion of the queried relation to be true when the body of the i-th causal rule is true
in the training data, and ȲXi=0 denotes the proportion of the queried relation to be true when the body of the
i-th causal rule is false. Qi = 1 when the body of the i-th causal rule holds for the entity pair (eh, et), otherwise
Qi = 0. The results will be ranked by SRq of each valid et. In this paper, Eq. 46 is used in the link predictions on
simulation data.

4 Experimental Study

4.1 Experimental Setup

In this section, we empirically evaluate the effectiveness and interpretability of the proposed CMLP on both
simulation and real-world datasets. For interpretability, we focus on whether the algorithm can uncover the causal
relationships inherent in the knowledge graph.

4.1.1 Baselines

To evaluate the interpretability of the algorithms, we select four rule-based methods that can conduct link
prediction and generate explainable rules. To make a fair comparison, the inference rules, obtained from different
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Table 20: Dataset statistics of all the experiments.

#Triplets #Relations #Entities
Simulation 6,095 5 1,590

Douban Movie Rate 28,356 12 3,007
Hetionet 174,941 20 32,056

algorithms, are used to conduct the link prediction task based on the same prediction equations. This approach
can also help us observe the impact of different rules on the link prediction task. For a complete evaluation of the
effectiveness of the proposed approach, we also compute the LP performance of TuckER[2], one representation-
based method which has the best overall performance among the representation-based methods across different
datasets[32]. All baselines are listed in the following:

1) AMIE+[8], an efficient top-down method to discover the interpretable rules.

2) AnyBURL[27], a bottom-up approach to mine the logical rule.

3) Neural-LP[44], an end-to-end differentiable model to learn the first-order logical rule.

4) RNNLogic[30], an EM-based algorithm to learn the rule generator and the reasoning predictor iteratively.

5) TuckER[2], a linear model based on Tucker decomposition of the binary tensor representation of knowledge
graph triples.

4.1.2 Datasets

To quantitatively evaluate the effectiveness of the algorithm in discovering causal knowledge, we construct a
simulation dataset owing to a lack of groundtruth of real datasets. Douban and Hetionet [15] are selected as
our real datasets on which we perform two link prediction tasks, movie rating prediction and drug repurposing,
respectively. Here we provide more details for these datasets, and their statistics are shown in Table 20.
Simulation dataset. We generate simulated KGs based on a toy causal model specified in Fig. 6, which includes
three concepts and five relations. In particular, we design the causal mechanisms in KG via a probabilistic model.
The root nodes (X1, X4) in the causal graph are generated via Bernoulli distributions, whose probability mass
function is fX(x) = px(1 − p)1−x. Moreover, the non-root nodes (X2, X3) are generated via the conditional
probability distributions, which are Bernoulli distributions, given the parent node (X1). To maintain a stable
causal mechanism, the parameters of conditional distributions are constant in training and testing, as shown in
Table 21. In the out-of-distribution paragraph, we will introduce the parameters of root nodes in training and
testing.

	C! 𝑅! 	C" 𝑅" 	C#

	C! 𝑅# 	C# 	C! 𝑅$ 	C#

	C! 𝑅% 	C#X!:

X": X#:

X$:

Figure 6: The causal graph of relation paths, based on which the simulated KGs are generated .

Douban movie rating. Douban is a famous Chinese website for movie reviews, where users can rate and
comment on any movie. The rating range is from 1 to 5. A higher rating means that users like movies, while a
lower rating means that users have negative feedback on movies. We collect the real-world data from Douban1

1https://www.douban.com/
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Table 21: The parameters of conditional distributions.

Conditions X2|X1 = 1 X2|X1 = 0 X3|X1 = 1 X3|X1 = 0

Parameters p=0.9 p=0.1 p=0.9 p=0.1

and construct a dataset (this dataset will be released), whose statistics are shown in Table 20. Commonly, a movie
with a score of 4 or 5 is identified as meeting the taste of users. So we transform the original 5-level rating to a
2-level rating with a threshold of 4. If the rating score is 4 or 5, the original relation Rate is replaced by HighRate
We conduct the link prediction task on the relation HighRate. Because the raw data is too large and the relations
between users and movies are very sparse, in this thesis, we first filter the 20 users who have made the most
ratings and take the rating history of these users as the set of rating facts for our study. The facts unrelated to the
rating are also included in our experimental data.
Hetionet[15] is a freely available knowledge database that integrates biomedical information from 29 prominent
bioinformatics resources. Recently, Hetionet was successfully applied to drug repurposing tasks in terms of the
link prediction task for relation Treats[15, 31].

Why do we choose those two real datasets instead of other commonly used datasets, such as WN18, FB15k?
In this paper, we focus on link prediction with the help of causal relationships between knowledge graph relations.
The core of causality lies in its asymmetry. The commonly used KGs for link prediction algorithms contain
many symmetrical relationships, e,g., hypernym and hyponym in WN18. These symmetrical relationships may
help with the link prediction task, but they go against the basic idea that causality is a one-way relationship. We,
therefore, chose datasets with specific application scenarios and rich causal semantics.

4.1.3 Metrics.

For link prediction, we employ the commonly used metrics mean reciprocal rank (MRR) and Hits@k [32, 2, 3].

MRR =
1

|Q|
∑
q∈Q

1

q (47)

Hit@K =
|{q ∈ Q : q ≤ K}|

|Q| (48)

where Q is the rank results, for each qi ∈ Q is the ranking of the desired results in the i-th query (?, Rh, et). In
the case of ties in the calculation of Q, we use the mean rank to avoid misleading results[32, 33]. Both MRR and
His@k are the higher, the better.
The interpretability of causal rules on the simulation dataset can be understood as the consistency between
the mined causal rules and the actual causal structure. Therefore, we evaluate baselines and our approach on
the simulation dataset using precision, recall, and structural Hamming distance (SHD) as the evaluation metrics,
which are commonly used evaluation metrics in causal structure discovery studies [46, 47].

Precision =
#TFR

#FR
;Recall =

#TFR

#ATR
(49)

Where #TFR is the number of right causal relationships discovered by an algorithm, #FR is the number of
causal relationships discovered by an algorithm, and #ATR is the number of all causal relationships. Both
precision and recall are the higher, the better. SHD calculates the difference between the learned graph and the
ground truth graph by the number of edge insertions, deletions, or flips required to transform one graph into
another. The lower the SHD, the better.
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4.1.4 Out-of-Distribution Link Prediction

Traditional machine learning methods are designed based on the assumption of independent and identically
distributed (I.I.D) data. This assumption means the training and test data come from the same distribution.
However, the distribution of test data may alter due to changes in the test environment; such tasks are referred
to as OoD tasks. Traditional algorithms perform poorly on generalization problems due to the violation of
I.I.D assumption. Causality is seen as a stable inference mechanism in many research works on generalization
problems. So, in this work, we provide an out-of-distribution generalization task for the knowledge link prediction
task for the first time. On the one hand, the effect of causal metaknowledge on this task can be measured, and
on the other, the performance of existing algorithms can be looked at. We also evaluate the performance of the
algorithms on I.I.D link prediction tasks.

In this paper, we design two OoD experimental scenarios.
(1) Simulation dataset: We evaluate the link prediction performance under I.I.D and OoD settings, where the
triples of root node X1 are generated in testing under the same and different parameters with training. In the
training and I.I.D testing datasets, pX1 = 0.5. In the OoD testing datasets, pX1 ∈ {0.2, 0.9}. For X4, pX4

maintains 0.9 in training and testing. The facts of the KGs are split into three parts:train, test info, and test. The
facts in train are used to learn the rule. The effectiveness of the learned rule is assessed via the link prediction
task on R3. The test info part includes facts of new entities (did not appear in train) on R1, R2, R4, R5, and test
part includes the queried facts on R3.
(2)Real datasets: It is impossible to explicitly change the data distribution since real data distribution is inac-
cessible for real datasets. Recent research[38, 43] has suggested that graph models are biased towards nodes
with larger degrees, which causes the bad performance of low-degree nodes in the test. Therefore we construct
the OoD datasets based on degree shift. Specifically, given a query task (?, Rh, et), we calculate the median of
degree2 of known entities et belonging to the triples (eh, Rh, et) in the training. Then we bin the test queries by
the degrees of the known entities et. The degree range in each bucket is decided based on the sample size balance.
The test queries in the bucket, which the training median falls in, can be treated as the I.I.D test samples. Others
are the OoD samples. The I.I.D bucket is labeled with ∗ in Table 23 and Table 24.

4.2 Performance of Link prediction task in Out-of-Distrition Settings

Results on simulations. For the simulation dataset, we construct a OoD setting named as covariance shift,
by changing the probability distribution of the root nodes in the test phase. Table 22 presents the methods in
performance and demonstrates the effectiveness of the proposed CMLP. In particular, CMLP outperforms the
baseline models under all metrics except the Hits@10 under I.I.D setting. This shows our method can give a
stable and high-quality result, especially in the OOD setting. Besides, compared with the baselines, the proposed
CMLP perform significantly better at the Hits@1 metric (at least 25% absolute improvements that the second
place under all settings), which suggests the our method are more suitable for scenarios with strict performance
requirements, and this feature may achieved by the removal of association-based rules.
Results for Douban movie rating. Since we filtered the users of the Douban data, and the discrepancies of the
degrees of experimental user nodes are close to each other. Therefore, in this experiment, to construct the OoD
scenario, we adopt the head prediction (? , HighRate, Movie), predicting the set of users who gave high ratings to
movies. Further, we bucketed the movie nodes in the test data according to their degree in the training data to
observe the performance of the algorithm under different node prevalence. The MRR and Hits@5 results shown
in Tab. 23 shows that the proposed CMLP get the best performance in the all OoD settings. Especially, at least
25.8% and 29.3 % relative improvements that the second place on the MRR and Hits@5, respectively. In the I.I.D
setting, CMLP gets the second place on both MRR and Hits@5, lower than the representation-based method

2In this paper, we use the term "degree" to stand for the sum of in and out degrees
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Table 22: The results of link prediction on simulation datasets.

Settings pX1 Method MRR Hits
@10 @3 @1

I.I.D 0.5

AMIE+ 0.87 98.99 94.95 78.79
AnyBURL 0.87 98.99 94.95 78.79
Neural-LP 0.80 98.99 92.42 66.16
RNNLogic 0.87 98.99 94.95 78.79
CMLP 0.94 98.48 97.98 90.91

OOD 0.2

AMIE+ 0.875 96.91 93.81 81.44
AnyBURL 0.875 96.91 93.81 81.44
Neural-LP 0.68 98.97 79.38 50.51
RNNLogic 0.875 96.91 93.81 81.44
CMLP 0.99 100 100 99.97

OOD 0.9

AMIE+ 0.91 100 96.34 85.67
AnyBURL 0.91 100 96.34 85.67
Neural-LP 0.88 100 96.95 79.57
RNNLogic 0.91 100 96.34 85.67
CMLP 0.99 100 99.70 99.09

TuckER. These results illustrate that for movie rating datasets, the rules learned by our method can capture more
general user preferences and give relatively accurate rating predictions for movies that are in different popularity.
Results for drug repurposing on Hetionet. Consistent with the traditional setup of drug redirection, on Hetionet,
we also use head predition (?, Treat, Disease), which is giving a Disease to predict new drugs. We also observe
the performance of the algorithm under this task by bucketing for Disease node degrees. Tab. 24 reports the
MRR and Hits@5 on this dataset, and we can find that: our CMLP performs significantly better than other
baselines on low-degree diseases (0-17), while AMIE+ and AnyBURL get better results on low-degree diseases
(17-100). These results indicate that our method can give more accurate drug discovery results for diseases with
relatively low information. And for diseases with richer information, the correlation-based inference rules give
more accurate drug prediction.

4.3 Quality and Interpretability of Causal Rules.

As stated in Sec. 1, the mined rules play a key role in our algorithm, and an important advantage of these rules is
that they are well interpretable. In this section, we will evaluate the quality and interpretability of rules mined by
CMLP .
Quality of causal rules from simulations. The ground-truth causal graph of KGSs shown in Fig 6, and Table 25
shows the accuracy of estimated rules of different methods. In particular, CMLP accurately discovers two causal
rules in Fig 6 without any redundant rules. In contrast, correlation-based methods report some non-causal rules.
Interpretability of causal rules Moreover, for the simulation dataset, we analyze all methods’ results, whose
heads areR3 andR5, and the results are shown in Table 26 (We omit results ofR4, sinceR3 andR4 are symmetric
in the causal graph). The rules follow the causal mechanism are in bold. There is only one causal rule for R3,
which is R3(C1, C3)← R1(C1, C2), R2(C2, C3). AMIE+, AnyBURL, RNNLogic and CMLP find this causal
rule. Besides this causal rule, the results of AMIE+, RNNLogic and AnyBURL also include other rules, such as

113



Table 23: MRR (left) and Hits@5 (right) for Douban movie rating. The * marks columns that contain the I.I.D
results. Other columns contain OoD results.

Methods Degree Range
0-21* 21-31 31-39 39-60

AMIE+ 0.120 0.205 0.261 0.395
AnyBURL 0.125 0.182 0.231 0.373
Neural-LP 0.078 0.097 0.126 0.217
RNNLogic 0.072 0.086 0.097 0.161

TuckER 0.287 0.186 0.186 0.149
CMLP 0.251 0.343 0.392 0.497

Methods Degree Range
0-21* 21-31 31-39 39-60

AMIE+ 13.7 30.7 39.4 68.3
AnyBURL 15.1 26.0 33.2 64.6
Neural-LP 0.1 0.6 3.4 60.0
RNNLogic 1.6 4.7 7.2 13.5

TuckER 50.3 31.9 28.2 21.5
CMLP 40.9 60.0 68.1 88.3

Table 24: MRR(left) and Hits@5(right) for drug repurposing on Hetionet. The * marks columns that contain the
I.I.D results. Other columns contain OoD results.

Methods Degree Range
0-8* 8-17 17-31 31-100

AMIE+ 0.103 0.085 0.132 0.065
AnyBURL 0.116 0.189 0.090 0.188
Neural-LP 0.027 0.014 0.009 0.009
RNNLogic 0.07 0.021 0.029 0.012

TuckER 0.044 0.022 0.083 0.015
CMLP 0.248 0.208 0.095 0.093

Methods Degree Range
0-8* 8-17 17-31 31-100

AMIE+ 13.2 11.3 22.5 13.2
AnyBURL 15.8 25.0 9.6 23.7
Neural-LP 5.3 0 0 0
RNNLogic 7.9 0 3.2 0

TuckER 3.1 5.9 10.7 3.2
CMLP 26.31 25.0 16.1 13.1
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Table 25: Experimental results on simulation data with pX1 = 0.5, based on the metrics (precision, recall and
SHD), which are commonly used to evaluate the estimated causal graph.

Method Precision ↑ Recall ↑ SHD ↓
Neural-LP 0 0 10

AMIE+ 0.22 1.0 7
RNNLogic 0.22 1.0 7
AnyBURL 0.25 1.0 6

CMLP 1.0 1.0 0

Table 26: All rules whose head are R3 and R5, obtained by each algorithm learned on simulated dataset.
The strikethroughs indicate the wrong results (there is no entities satisfying the rule). The rules consistent
with the generation process are in bold. The orange text denotes the weight of each rule with the form max-
normalization(original weight)
.

Method Rules of R3 with pX1
= 0.5 Rules of R3 with pX1

= 0.9 Rules of R5

AMIE+
1.00 (0.908) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (0.900) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (0.898) R5(C1, C3)← R1(C1, C2), R2(C2, C3)
0.91 (0.829) R3(C1, C3)← R4(C1, C3) 0.99 (0.890) R3(C1, C3)← R4(C1, C3) 0.99 (0.895) R5(C1, C3)← R3(C1, C3)
0.55 (0.500) R3(C1, C3)← R5(C1, C3) 0.91 (0.820) R3(C1, C3)← R5(C1, C3) 0.99 (0.894) R5(C1, C3)← R4(C1, C3)

AnyBURL
1.00 (0.896) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (0.898) R3(C1, C3)← R4(C1, C3) 1.00 (0.907) R5(C1, C3)← R1(C1, C2), R2(C2, C3)
0.92 (0.823) R3(C1, C3)← R4(C1, C3) 0.99 (0.893) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 0.99 (0.902) R5(C1, C3)← R3(C1, C3)
0.56 (0.501) R3(C1, C3)← R5(C1, C3) 0.91 (0.821) R3(C1, C3)← R5(C1, C3) 0.99 (0.897) R5(C1, C3)← R4(C1, C3)

Neural-LP

1.00 (0.318) R3(C1, C3)← R4(C1, C2), R4(C2, C3) 1.00 (0.757) R3(C1, C3)← R1(C1, C2), R1(C2, C3) 1.00 (0.125) R5(C1, C3)← R4(C1, C2), R3(C2, C3)
0.99 (0.316) R3(C1, C3)← R4(C1, C2), R5(C2, C3) 0.17 (0.128) R3(C1, C3)← R1(C1, C3) 0.78 (0.097) R5(C1, C3)← R3(C1, C2), R3(C2, C3)
0.31 (0.100) R3(C1, C3)← R5(C1, C2), R4(C2, C3) 0.04 (0.056) R3(C1, C3)← R5(C2, C3), R1(C1, C2)
0.31 (0.099) R3(C1, C3)← R5(C1, C2), R5(C2, C3) 0.05 (0.035) R3(C1, C3)← R4(C2, C1), R1(C3, C2)
0.23 (0.073) R3(C1, C3)← R4(C1, C3) 0.03 (0.025) R3(C1,C3)← R1(C1,C2),R2(C2,C3)
0.09 (0.028) R3(C1, C3)← R4(C1, C2), R4(C2, C3)
0.07 (0.023) R3(C1, C3)← R5(C1, C3)

RNNLogic
1.00 (0.076) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (0.071 ) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (0.220) R5(C1, C3)← R3(C1, C3)
0.58 (0.044) R3(C1, C3)← R4(C1, C3) 0.49 (0.035) R3(C1, C3)← R4(C1, C3) 0.28 (0.060) R5(C1, C3)← R4(C1, C3)
0.13 (0.010) R3(C1, C3)← R5(C1, C3) 0.14 (0.010) R3(C1, C3)← R5(C1, C3) 0.20 (0.045) R5(C1, C3)← R1(C1, C2), R2(C2, C3)

CMLP 1.00 (122.797) R3(C1,C3)← R1(C1,C2),R2(C2,C3) 1.00 (20.061) R3(C1,C3)← R1(C1,C2),R2(C2,C3) -

R3(C1, C3)← R4(C1, C3) and R3(C1, C3)← R5(C1, C3). Especially, for those three methods, note that the
weights of R3(C1, C3)← R4(C1, C3) are very close to the weights of R3(C1, C3)← R1(C1, C2), R2(C2, C3).
It means the algorithms think these two rules have the similar interpretability for the head relation R3. With the
change of root node X1’s distribution(from pX1 = 0.5 to pX1 = 0.9), AnyBURL even report the higher weight
for the rule R3(C1, C3)← R5(C1, C3). According to the generation mechanism, the existence of R3 between
entities ei and ej is independent with whether there is R4 and R5 between ei and ej . AMIE+, AnyBURL and
RNNLogic still return these association rules with high weights, because they only consider whether R3 and
R4 co-occur frequently, but not the reason of the co-occurrence. The end-to-end completion-oriented method,
Neural-LP, also return some wrong results, such as the top 1 rule R3(C1, C3)← R4(C1, C2), R4(C2, C3), which
can not be satisfied by any entities in KG. The results in [34] show the same phenomenon. The intermediate
results of the completion-oriented method is incomprehensible sometimes.

Furthermore, We sort the rules generated by each algorithm based on their assigned weights and show the five
top rules from Douban and Hetionet in Tab. 27 and Tab. 28, respectively. The results in Tab. 27 suggests that the
ratings for the target movie are highly related to other movies which share the same staff, such as writer, actors,
director, etc. According to the rating results, CMLP finds a strong causal relationship between the rating of the
movie and its editor than other pairs. The top rules generated by AMIE+ and AnyBURL focus on other shared
staffs, but the shared staff has different roles in the target movie and the movie in path. Those rules of AMIE+
and AnyBURL are hard to be satisfied for most queries. It is worth noting that RNNlogic report the ‘fan’ rules
will impact the users’ rating, but CMLP excludes this kind of rules. Our results suggest the working ability of the
movie’s stuff (e.g. actor or writer) should be the root cause of the users’ rate, instead of the followers of the stuff.
From the rules from Hetionet, we can see the learned rules are broadly divided into two classes, those in which
the target drug and disease are connected by therapeutic information about the similar disease and drug, and those
in which the target drug and disease are connected by commonly associated genes. Further, we find that the rules
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Table 27: Top 5 Rules to infer HighRate(User, Movie) given by the methods. The strikethroughs indicate the
wrong results (there is no entities satisfying the rule).

Method Top rules to infer HighRate(User, Movie)

AMIE+

1.00 (0.565) HighRate(User,Movie)← HighRate(User,Movie1), Writer(Person,Movie1),Director(Person,Movie)
0.98 (0.556) HighRate(User,Movie)← HighRate(User,Movie1), Director(Person,Movie1), Writer(Person,Movie)
0.87 (0.489) HighRate(User,Movie)← HighRate(User,Movie1), Writer(Person,Movie1), Actress(Person,Movie)
0.74 (0.417) HighRate(User,Movie)← HighRate(User,Movie1), Director(Person,Movie1), Actor(Person,Movie)
0.72 (0.405) HighRate(User,Movie)← HighRate(User,Movie1), Actress(Person,Movie1), Writer(Person,Movie)

AnyBURL

1.00 (0.400) HighRate(User,Movie)← HighRate(User,Movie1), Composer(Person,Movie1), Actor(Person,Movie)
0.99(0.397) HighRate(User,Movie)← HighRate(User,Movie1), Producer(Person,Movie1), Director(Person,Movie)
0.97 (0.386) HighRate(User,Movie)← HighRate(User,Movie1), Director(Person,Movie1), Actress(Person,Movie)
0.89 (0.355) HighRate(User,Movie)← HighRate(User,Movie1), Writer(Person,Movie1), Actress(Person,Movie)
0.85 (0.340) HighRate(User,Movie)← HighRate(User,Movie1), Editor(Person,Movie1), Editor(Person,Movie)

Neural-LP 1.00 (0.120) HighRate(User,Movie)← HighRate(User,Movie1), HighRate(User1,Movie1), HighRate(User1,Movie)
0.28 (0.034) HighRate(User,Movie)← HighRate(User,Movie1), MovieType(Movie1,Type), MovieType(Movie,Type)

RNNLogic

1.00 (0.011) HighRate(User,Movie)← Fan(User,Person),Editor(Person,Movie)
0.45 (0.005) HighRate(User,Movie)← Fan(User,Person),Actor(Person,Movie)
0.36 (0.004) HighRate(User,Movie)← Fan(User,Person),Director(Person,Movie)
0.36 (0.004) HighRate(User,Movie)← Fan(User,Person),Writer(Person,Movie)
0.36 (0.004) HighRate(User,Movie)← Fan(User,Person),Composer(Person,Movie)

CMLP

1.00 (0.034) HighRate(User,Movie)← HighRate(User,Movie1), Editor(Person,Movie1), Editor(Person,Movie)
0.12 (0.004) HighRate(User,Movie1)← HighRate(User,Movie1),Cinematographer(Person,Movie),Cinematographer(Person,Movie)
0.06 (0.002) HighRate(User,Movie1)← HighRate(User,Movie1),Writer(Person,Movie),Writer(Person,Movie)
0.06 (0.002) HighRate(User,Movie1)← HighRate(User,Movie1),Actress(Person,Movie),Actress(Person,Movie)
0.03 (0.001) HighRate(User,Movie1)← HighRate(User,Movie1),Director(Person,Movie),Actor(Person,Movie)

Table 28: Top 5 Rules to infer Treats(Compound, Disease) given by the methods. For brevity, we use ‘C’ and ‘D’
for compound and disease, respectively.

Method Top rules to infer Treats(Compound, Disease)

AMIE+

1.00 (0.393) Treats(C, D)← Resembles(C,C1), Treats(C1, D)
0.82 (0.322) Treats(C, D)← Resembles(C1,C),Treats(C1, D)
0.42 (0.167) Treats(C, D)← Downregulates(C,Gene1), Associates(D,Gene1)
0.38 (0.151) Treats(C, D)← Downregulates(C,Gene1), Upregulates(D,Gene1)
0.37 (0.144) Treats(C, D)← Binds(C,Gene1), Upregulates(D,Gene1)

AnyBURL

1.00 (0.319) Treats(C, D)← Includes(PharmacologicClass1,C),Includes(PharmacologicClass1,C1),Treats(C1, D)
0.60 (0.192) Treats(C, D)← Resembles(C1,C),Treats(C1, D)
0.52 (0.166) Treats(C, D)← Resembles(C1,C),Resembles(C1,C2),Treats(C2, D)
0.31 (0.098) Treats(C, D)← Resembles(C1,C),Resembles(C2,C1),Treats(C2, D)
0.24 (0.077) Treats(C, D)← Treats(C, D1), Resembles(D1,D)

Neural-LP 1.00 (0.659) Treats(C, D)← Treats(C, D1), Treats(C1, D1),Treats(C1, D)

RNNLogic 1.00 (0.00007) Treats(C, D)← Resembles(C, C1),Treats(C1, D)
1.00 (0.00007) Treats(C, D)← Resembles(C, C1), Resembles(C1, C2),Treats(C2, D)

CMLP

1.00 (269.00)) Treats(C, D)← Treats(C, D1),Resembles(D1, D2),Resembles(D, D2)
0.85 (229.32)) Treats(C, D)← Includes(PharmacologicClass1, C),Includes(PharmacologicClass1, C1),Treats(C1, D)
0.83 (224.37)) Treats(C, D)← Treats(C, D1),Resembles(D2, D1),Resembles(D2, D)
0.58 (155.18)) Treats(C, D)← Treats(C, D1),Treats(C1, D1),Treats(C1, D)
0.10 (26.52)) Treats(C, D)← Treats(C, D1), Resembles(D2,D1), Resembles(D,D1)

mined by AnyBURL also contain rules for reasoning through shared side effects.

5 Related Work

In this section, we first review the related studies in causal discovery for propositional domains and relational
domains. Then we discuss and clarify the distinction between the proposed approach and the most relevant rule
mining methods for relational data. We list the relevant research areas and our differences in the Tab. 29

Table 29: Comparison of our work and related work.

Association Causality
Propositional Traditional machine learning Traditioanal causal model

relational
Rule mining(e.g.logical rule),
Graph representation learning

Relational causal model(with attribute),
Our(without attribute)

Causal Discovery from Propositional Data. Rubin causal models [16] and structural causal models (SCMs) [29]
are the two dominated frameworks for causal discovery from propositional data. Particularly, the former analyzes
the causal effect between treatment and effect with partial structural information, while the later employs Bayesian
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networks to identify causal structure. Our situation resembles causal discovery in SCM because we are primarily
concerned with unearthing causal relationships from KG. Furthermore, there are two kinds of causal discovery
algorithms, constraint-based and score-based [37], in SCMs. Contrary to the score-based approaches, which are
based on the global score, the constraint-based approaches can employ the local conditional independence to
determine the causal relationship between specific variables, which is critical when only partial causal relationship
is interested. In addition, the constraint-based methods are non-parametric, which means that they do not depend
on the specific functions to connect variables. Based on above advantages, we follow the constrained-based
design to develop our method.
Relational Causal Model. To our best knowledge, the relational causal model [25, 20, 21, 35] is the only
framework designed to extract causal information from relational data. The input of a relational causal model is
a relational database containing entity and relation tables. Each entity table contains all entities corresponding
to the same concept, and each relation table contains all facts corresponding to the same relationship between
two entities. Consequently, a relational database is comparable to a KG. Relational causal model finds causal
relationship between related entity attributes. For example, for the database with two relations: Develop(Employee,
Product) and Funds(Company, Product), the relational causal relationship will give the results like [Employee,
Develops, Products, Fundsby, Company].budgets → [Employee].Success. We can see that relational causal
models emphasize relational models of attributes with a known entity-level connection graph [24], while our
research focuses on generative process of the connection, which is the preceding step in the entire KG generation
process.
Rule Mining from KG. Inductively knowledge reasoning involves generalising patterns from a given set of
observed facts and then generating novel but potentially imprecise predictions. In addition to the incomprehensible
techniques based on embedding, rule mining methods, which benefit from intuitive interpretation of the findings
of link prediction, have maintained the popularity for decades. The rule mining studies in KG can be divided into
two categories according to the main objectives: metrics-oriented and completion-oriented. Metrics-oriented
methods [9, 8, 28] usually use predefined co-occurrence metrics, confidence and support, to find rules satisfying
the given thresholds of the metrics, based on a top-down fashion. Recently, AnyBURL [27] designs a bottom-up
technique for rule learning, which requires few computational resources. The other line of research is completion-
oriented. Different from the predefined metrics-based methods, these studies are mainly based on end-to-end
learning and target on the link completion task. The explainable rules are mainly the intermediate results, which
are obtained via analyzing the parameters of the model. The trained models are used to predict the link directly.
Neural-LP [44] adopts an attention mechanism to select a variable-length sequence as the body of rules for which
confidence scores are learnt from the attention vectors. DRUM [34] uses bidirectional recurrent neural networks
to learn the relations of sequences, which are the body of rules, and their confidence scores are estimated via the
recurrent neural network. RNNLogic [30] utilizes logic rules as a latent variable and trains both a rule generator
and a reasoning predictor with logic rules.

Our work can be seen as one of solutions for rule mining. Different from the past the association-based rule
mining methods, our work aims to discover deeper relationship (i.e. causation) via a more rigorous statistical
inference system. To the best of our knowledge, this is the fist attempt to study rule mining problem under causal
perspective, as far as we know.

6 Conclusion and Future work

In this work, we propose a method, CMLP, for entity-level link prediction based on the causal relationships be-
tween topologies at the concept level. This method constructs complex connectivity between entities and predicts
causal relationships between links at the conceptual level, eliminating spurious correlation that may be learned
by traditional association-based methods. Extensive experiments have shown that the proposed CMLP achieves
leading performance in a variety of OOD experimental settings. Note that previous representation learning based
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models (generally learning from correlations) are hard to generalize to OOD setting, and our model demonstrates
that causal-based learning is a promising solution for this setting.

Since the causal model itself is the method which modes the process of data generation, the mined causal rule
can be used to understand the physical mechanism of knowledge graph generation. It opens up new possibilities
for research in fields such as pharmaceutical economics. Besides, although this paper propose a rule-based model
which can works under OOD setting, how to improve the generalization ability of the representation-based models
is still a open problem and deserved further investigation.
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