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Abstract

Responsible AI is becoming critical as AI is widely used in our everyday lives. Many companies
that deploy AI publicly state that when training a model, we not only need to improve its accuracy,
but also need to guarantee that the model does not discriminate against users (fairness), is resilient to
noisy or poisoned data (robustness), is explainable, and more. In addition, these objectives are not only
relevant to model training, but to all steps of end-to-end machine learning, which include data collection,
data cleaning and validation, model training, model evaluation, and model management and serving.
Finally, responsible AI is conceptually challenging, and supporting all the objectives must be as easy
as possible. We thus propose three key research directions towards this vision – depth, breadth, and
usability – to measure progress and introduce our ongoing research. First, responsible AI must be deeply
supported where multiple objectives like fairness and robust must be handled together. To this end, we
propose FR-Train, a holistic framework for fair and robust model training in the presence of data bias
and poisoning. Second, responsible AI must be broadly supported, preferably in all steps of machine
learning. Currently we focus on the data pre-processing steps and propose Slice Tuner, a selective data
acquisition framework for training fair and accurate models, and MLClean, a data cleaning framework
that also improves fairness and robustness. Finally, responsible AI must be usable where the techniques
must be easy to deploy and actionable. We propose FairBatch, a batch selection approach for fairness
that is effective and simple to use, and Slice Finder, a model evaluation tool that automatically finds
problematic slices. We believe we scratched the surface of responsible AI for end-to-end machine learning
and suggest research challenges moving forward.

1 Introduction

Responsible AI is becoming critical as machine learning becomes widespread in our everyday lives. Companies
including Google [2], Microsoft [3], and IBM [5] publicly state that AI not only needs to be accurate, but also
used and developed, evaluated, and monitored for trust. Although there is no universally agreed notion for
responsible AI, the major objectives include fairness, robustness, explainability, transparency, and accountability.

The usual starting point is to support responsible AI only in model training, but this is not sufficient. For
example, if the training data is biased towards a specific population, there is a fundamental limit into how much
the trained model can avoid being biased as well even using the best fair training algorithms. Instead, we may
need to address the root cause starting from data collection where we need to construct an unbiased dataset.
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We would thus like to support responsible AI in all steps of end-to-end machine learning [8, 37]. Before
model training, the key steps are data collection, data cleaning, and validation. After model training, there are
model evaluation, and model management and serving. In addition, since supporting all the responsible AI
objectives is already conceptually challenging, it is important to make these techniques easy to use as well.

To this end, we propose three research directions – depth, breadth, and usability – and present our contributions.
First, we need to deeply support responsible AI where multiple objectives are addressed together. We present
FR-Train [28], the first holistic framework for fair and robust model training. Second, we need to broadly support
responsible AI in all machine learning steps. We present two systems that focus on data pre-processing: Slice
Tuner [34] is a selective data acquisition framework for fair and accurate models, and MLClean [33] is a data
cleaning framework that also improves fairness and robustness. Third, we need responsible AI to be usable and
actionable. We present two systems: FairBatch [29] is an easy-to-deploy batch selection technique for model
training that improves fairness, and Slice Finder [13, 14] automatically evaluates a model by finding problematic
slices where it underperforms. Our work only scratches the surface of responsible AI for end-to-end machine
learning, and we believe that setting the three research directions is useful to measure progress.

We introduce the responsible AI research landscape in Section 2. We then discuss our systems for depth,
breadth, and usability in Sections 3, 4, and 5, respectively. Finally, we suggest open challenges in Section 6.

2 Responsible AI Research Landscape

We provide a brief history of responsible AI and discuss the research landscape. Responsible AI is also known
as Trustworthy AI and has recently been promoted by Google [2], Microsoft [3], and IBM [5] among others
as a critical issue when using AI in practice. The key objectives include fairness, robustness, explainability,
transparency, and accountability. Among the objectives, we focus on fairness and robustness because they are
both closely related to the training data. The other objectives are also important, but currently outside our scope.

Fairness is the problem of not discriminating against users and has gained explosive interest in the past
decade [7, 35]. An article that popularized fairness was the 2016 ProPublica report [6] on the COMPAS software,
which is used in US courts to predict a defendant’s recidivism (reoffending) rate. COMPAS is convenient,
but is known to overestimate black people’s recidivism risk compared to white people. Recently, various
unfairness mitigation techniques [9] have been proposed and can be categorized as pre-processing, in-processing,
or post-processing depending on whether the techniques are applied before, during, or after model training,
respectively.

Robustness is the problem of preventing or coping with adversarial attacks. In particular, model training
against data poisoning has been heavily studied in the past decade [15, 31]. Nowadays datasets are easier to
publish using tools like Kaggle and Google Dataset Search [11], which means that it is easier to disseminate
poisoned data as well. The data can then be harvested by Web crawlers of unsuspecting victims and used for
model training. While the basic poisoning attacks involve simple labeling flipping (e.g., change a positive label to
be negative), recent poisoning attacks are becoming increasingly sophisticated. The possible defenses include
sanitizing the data before model training or making the model training accurate despite the poisoning.

In practice, machine learning is not just about model training, but involves multiple steps as demonstrated by
end-to-end systems like TensorFlow Extended (TFX) [8] and MLFlow [37]: data collection, data cleaning and
validation, model training, model evaluation, and model management and serving. Hence, responsible AI is not
just a model training issue, but relevant to all of the above steps. The data management community has recently
been addressing the data aspect of responsible AI in end-to-end machine learning [25, 23, 26, 12, 27, 32, 36].
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Figure 1: The three research directions – depth, breadth, and usability – for fully supporting the responsible
AI objectives (fairness, robustness, and others) in addition to accuracy in end-to-end machine learning. The
highlighted parts show our contributions: Slice Tuner [34] addresses fairness in data collection; MLClean [33]
addresses fairness and robustness in data cleaning; FR-Train [28] addresses fairness and robustness in model
training; FairBatch [29] addresses usability for fairness in model training; and Slice Finder [13, 14] addresses
usability for fairness in model evaluation.

The current research landscape naturally leads to the three key research directions we propose – depth,
breadth, and usability – as shown in Figure 1. First, it is important to support many responsible AI objectives at
each step. Second, we need to broadly support responsible AI in as many steps as possible, from data collection
to model serving. Third, we need these techniques to be usable and actionable by machine learning users. We
highlight the responsible AI objectives in Figure 1 where we propose solutions.

3 Deep Responsible AI

We discuss deeply supporting responsible AI, which means that we would like to address multiple objectives
together. We re-emphasize that each objective is currently being heavily studied. For model fairness, there is an
extensive literature in the machine learning and fairness communities on mitigating unfairness before, during, or
after model training [7, 35, 9]. For model robustness, both the machine learning and security communities are
proposing various data sanitization and robust training techniques [22, 31]. However, we believe that responsible
AI requires both fairness and robustness instead of just one. In addition, addressing one objective at a time is not
ideal as we discuss later. Fairness and robustness are also closely related because their problems originate from
the training data: biased data causes unfairness while poisoned data decreases model accuracy. This motivation
leads us to propose FR-Train [28], the first holistic framework for fair and robust training.

Fairness is a subjective notion, and many definitions have been proposed [35] where they can be categorized
depending on what information is used: the classifier, the sensitive attribute (e.g., race or gender), and training
labels. For example, individual fairness only uses the classifier and means that similar individuals must have
similar predictions. Demographic parity [17] (or disparate impact) uses the classifier and the protected attribute
and means that different sensitive groups (e.g., black and white populations) have similar positive prediction
rates. That is, P (Ŷ = 1|Z = 0) ≈ P (Ŷ = 1|Z = 1) where Ŷ is a prediction and Z is a binary sensitive
attribute. Equalized odds [18] uses all three pieces of information and is similar to demographic parity, except
that the probabilities are conditioned on the label. That is, P (Ŷ = 1|Z = 0, Y = l) ≈ P (Ŷ = 1|Z = 1, Y = l)
where Y is the label. In this section, we use demographic parity and measure it using the formula DP :=

min
(
P (Ŷ=1|Z=0)

P (Ŷ=1|Z=1)
, P (Ŷ=1|Z=1)

P (Ŷ=1|Z=0)

)
where a higher value close to 1 means better fairness.

We now explain why addressing fairness and robustness together is important using a concrete example. In
Figure 2, suppose there are two sensitive groups black and white, and that there are ten people of two races: white
(denoted as ‘w’) and black (denoted as ‘b’). Let us assume the boxes indicates positive labels and that we want
to train a threshold classifier that divides the individuals using a single feature X where those on the left have
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Figure 2: (Left) Accurate (black solid line) and fair (blue dotted line) classifiers on clean data followed by data
poisoning. (Right) A fair classifier trained on poisoned data (red dotted line) is evaluated on clean data, showing
a worse accuracy-fairness tradeoff than the fair classifier trained on clean data.

negative predictions (e.g., do not reoffend) while those on the right have positive predictions. On clean data,
a vanilla classifier can obtain perfect accuracy by dividing between the fourth and fifth individuals (Figure 2
solid line classifier). However, the demographic parity DP is not perfect where P (Ŷ = 1|Z = w) = 2

5 = 0.4,
P (Ŷ = 1|Z = b) = 4

5 = 0.8, and DP := min
(
0.4
0.8 ,

0.8
0.4

)
= 0.5. Suppose a fair classifier maximizes accuracy

with perfect DP . One can find such a classifier by dividing between the second and third individuals (Figure 2
blue dotted line classifier). While DP = 1, the accuracy is 0.8 because two white people are now misclassified.

Now suppose we poison the clean data by using the standard method of flipping labels [24]. On the bottom
of the left side of Figure 2, the fifth and seventh individuals are now incorrectly labeled as negative. There are
three ways to handle the poisoned data: (1) do nothing and perform fair training only as usual, (2) take a two-step
approach and perform data sanitization followed by fair training using existing methods, and (3) take a holistic
approach for fair and robust training. Let us first see what happens if we take the first approach. We can train a
fair classifier on the poisoned data with perfect DP by dividing between the eighth and ninth individuals (bottom
of the right side of Figure 2, red dotted line classifier). In that case, we will have perfect DP , but an accuracy of
0.8 on poisoned data. However, if this classifier is deployed in the real world, it will effectively be used on clean
data. This scenario is plausible for any application that serves real customers. However, simply using the same
classifier on clean data results in a worse tradeoff of fairness and accuracy where DP remains the same, but the
accuracy reduces to 0.6. Hence, ignoring poisoning may lead to strictly worse accuracy and fairness results. In
reference [28], we also empirically show that the two-step solution is ineffective. The intuition is that an existing
fairness-only or robustness-only technique cannot easily distinguish data poisoning from bias in the data and ends
up removing all or none of the problematic data.

We thus propose FR-Train to take a holistic approach for fair and robust training. Figure 3 shows the
architecture of FR-Train. On the top, there is a classifier (e.g., predicts recidivism) that competes with a
discriminator for fairness that predicts the sensitive attribute (e.g., the race) based on the predictions. This
adversarial training is similar to Adversarial Debiasing [38], a state-of-the-art fairness-only training algorithm.
The below part is the novel addition where there is a discriminator for robustness that distinguishes the possibly-
poisoned training set with a validation set that is known to be clean. The clean validation set is small and can be
constructed using crowdsourcing and conventional quality control techniques including majority voting. Hence,
the classifier needs to be both fair and robust to compete with the two discriminators. Finally, the predictions
of the robustness discriminator are used to reweight training set examples where cleaner examples get higher
weights. Initially, these weights are not useful because the robustness discriminator is not accurate. However, as
the training progresses, the discriminator becomes accurate, and the weights are used by the classifier.
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Figure 3: The FR-Train architecture and how it can be used for recidivism prediction.

In reference [28], we present a mutual information-based interpretation of FR-Train’s architecture. To give an
intuition, perfect fairness means that the mutual information between the model’s prediction and the sensitive
attribute is 0. Similarly, satisfying robustness can be expressed using mutual information. In this case, perfect
robustness means that the poisoned data distribution is indistinguishable from the clean data distribution (i.e.,
validation set). FR-Train minimizes both of the mutual information values and the classifier loss. We perform
experiments on synthetic and real datasets and train a classifier on poisoned data and evaluate it on clean data. As
a result, FR-Train is the only approach that achieves both high accuracy and fairness while the other baselines
either have poor fairness or accuracy.

4 Broad Responsible AI

In addition to supporting responsible AI in model training, we would also like to broadly support it across many
steps in end-to-end machine learning. While most of the fairness and robustness literature focus on model training,
there needs to be more focus on other machine learning steps as well. Recently, FairPrep [30] was proposed to
support fairness in all steps of data pre-processing before model training. Also for an extensive coverage of data
collection and quality techniques for machine learning, please refer to a survey [27] and tutorial [36]. Here we
also focus on data pre-processing and present two contributions: Slice Tuner [34] is a selective data acquisition
framework for maximizing fairness and accuracy, and MLClean [33] is a data cleaning framework for addressing
both fairness and robustness in addition to accuracy.

4.1 Selective Data Acquisition for Fair and Accurate Models

As machine learning is used in various applications, one of the critical bottlenecks is acquiring enough data
so that the trained model is both accurate and fair. Nowadays, there are many ways to acquire data including
dataset discovery, crowdsourcing, and simulator-based data generation. Data acquisition is not the same as active
learning, which labels existing data. Instead, our focus is on acquiring new data along with its labels.

However, blindly acquiring data is not the right approach. Let us first divide the data into subsets called slices.
Suppose that the slices are customer purchases by various regions: America, Europe, APAC, and so on. Among
them, if we already have enough America data, acquiring more America data is not only unhelpful, but may also
bias the data and have a negative effect on the model accuracy on the other slices.

Instead, we want to acquire possibly different amounts of data per slice in order to maximize accuracy and
fairness. To measure accuracy, we use loss functions like logistic loss. For fairness, we use equalized error
rates [35], which states that the losses of slices must be similar. This notion of fairness is important to any
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Figure 4: (a) Learning curves on two slices of the UTKFace dataset [39]. (b) Slice Tuner architecture.

application that should not discriminate its customers by service quality. A waterfilling approach is a good start
where we simply acquire data so that the slices have similar sizes. However, this approach is not optimal because
some slices may need more data to obtain the same model loss as other slices.

Our key approach is to generate for each slice a learning curve, which estimates the model loss on that
slice given more labeled data. Multiple studies [19, 16] show that a learning curve is best fit using a power-law
function. Figure 4 (a) shows two actual learning curves generated on two race-gender slices of a real dataset
called UTKFace [39]. We can use these learning curves to estimate how much data must be acquired per slice.

Assuming that the learning curves are perfectly reliable (we discuss how to deal with unreliable curves later),
we can determine the amounts of data to acquire to minimize the total loss and unfairness of slices by solving the
following convex optimization problem:

min

n∑
i=1

bi(|si|+ di)
−ai + λ

n∑
i=1

max

{
0,
bi(|si|+ di)

−ai

A
− 1

}
subject to

n∑
i=1

C(si)× di = B

where {si}ni=1 are the slices, {di}ni=1 are the amounts of data to acquire, A is the average loss of slices, C(si)
is the cost function for acquiring an example for si, and B is a cost budget. The first term in the objective
function minimizes the total loss while the second term minimizes the unfairness by penalizing slices that have
higher-than-average losses. The two terms are balanced using λ. By acquiring more data for slices with higher
losses, we eventually satisfy equalized error rates. Slice Tuner’s architecture is shown in Figure 4 (b) where we
perform selective data acquisition on input slices. The runtime bottleneck is the time to actually acquire data.

We now address the key challenge of handling unreliable learning curves. Learning curves are not perfect
because slices may be too small for accurate estimations. Even worse, acquiring data for one slice may “influence”
others. Figure 5 (a) shows how acquiring data for the slice White-Male increases or even decreases the model’s
loss on other slices for UTKFace. The intuition is that the acquired data of one slice pushes the decision boundary
of the model, which in turn changes the losses of other slices (Figure 5 (b)).

The solution is to iteratively update the learning curves. But how often should we iterate? On one hand, each
iteration is expensive and involves multiple model trainings and curve fittings, even though we use amortization
techniques [34]. On the other hand, we do not want to use inaccurate learning curves. Our algorithm works as
follows. We first ensure a minimum slice size to draw some learning curve. In practice, having tens of examples
is enough for this step. Next, we repeat two steps until we run out of budget: (1) acquire data as long as the
estimated influence is not large enough and (2) re-fit the learning curves. The remaining problem is estimating
influence. We propose a proxy called imbalance ratio change where imbalance ratio represents bias and is the
ratio between the largest and smallest slice sizes. The intuition is that a change in imbalance ratio among slices
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Figure 5: (a) Data acquisition on the slice White-Male influencing the losses on the other slices for the UTKFace
dataset. (b) To give an intuition, say there are three slices where shape indicates slice, and color indicates label.
(Top) If we only increase the triangles, the decision boundary may shift to the left due to the new bias, changing
the losses of the other slices. (Bottom) If we evenly increase the data for all slices, the bias does not change, and
there is little influence among the slices.

causes influence. In Figure 5 (b) adding two triangles results in a shifted decision boundary where the imbalance
ratio increases from 2

2 = 1 to 4
2 = 2. On the other hand, if we evenly increase the slices, the decision boundary

does not shift, and the imbalance ratio does not change much either.
In reference [34], we provide more details on the algorithms and also perform experiments on real datasets.

We show that Slice Tuner has lower loss and unfairness compared to two baselines: uniformly acquiring the same
amounts of data per slice and waterfilling. We also make the same comparison when the slices are small and
only have tens of examples. Here the learning curves are very noisy and thus unreliable. Interestingly, Slice
Tuner still outperforms the baselines because it can still leverage the relative loss differences among the learning
curves. As more data is acquired, Slice Tuner performs even better with more reliable learning curves. In the
worst case when the learning curves are completely random, we expect Slice Tuner to perform similarly to one of
the baselines.

4.2 Data Cleaning for Accurate, Fair, and Robust Models

Another important place to support responsible AI is data cleaning [20] where the input data needs to be validated
and fixed before it is used for model training. Historically, multiple communities – data management, machine
learning (model fairness), and security – have been investigating this problem under the names of data cleaning,
unfairness mitigation, and data sanitization, respectively. Unfortunately, not much is known how the different
techniques can be used together when a dataset is dirty, biased, and poisoned at the same time.

MLClean is a unified cleaning framework that performs data cleaning, data sanitization, and unfairness
mitigation together. A key insight is that these three operations have dependencies and must be executed in
a certain order for the best performance. As shown in MLClean’s architecture in Figure 7, data sanitization
and cleaning are performed together followed by unfairness mitigation. Data sanitization can be considered a
stronger version of cleaning because it defends against adversarial poisoning instead of just noise. In addition,
data cleaning and sanitization may affect the bias of data while unfairness mitigation that performs example
reweighting does not affect the correctness of cleaning and sanitization.

As a running example, suppose we run MLClean on our examples with equal weights of 1. Say that data
sanitization clusters examples and removes anomalies while data cleaning performs entity resolution. The two
operations can be naturally combined by generating clusters and running entity resolution within each cluster,
assuming that examples across clusters do not match. Clustering examples before resolution is a common
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ID Weight Name Gender Age Label
e1 1.0 John M 20 1
e2 1.0 Joe M 20 0
e3 1.0 Joseph M 20 0
e4 1.0 Sally F 30 1
e5 1.0 Sally F 40 0
e6 1.0 Sally F 300 1

Table 4: Six examples where e2 and e3 are duplicates (dirty), and e6 has an anomalous age (poisoned).

operation in entity resolution for narrowing down matching candidates. Figure 7 shows how the initial six
examples are clustered into {e1, e2, e3} and {e4, e5} (e6 is considered an outlier), and then e2 and e3 are merged
together into e23 with a summed weight of 2. For unfairness mitigation, suppose we reweight [21] the examples
such that demographic parity (defined in Section 3) is satisfied for the sensitive groups men and women. We can
make the (weighted) positive prediction rates the same by adjusting e23’s weight from 2 to 1. As a result, the
(weighted) positive prediction rates for men and women have the same value of 1.0

1.0+1.0 = 0.5.

e1 e2 e3 e4 e5 e6

Outliere23
Entity resolution

Clustering for anomaly detection

2 1Reweighting

Figure 7: MLClean running on our examples.

In reference [33], we compare MLClean with other base-
lines that use a strict subset of the operations data sanitiza-
tion, data cleaning, and unfairness mitigation or use all three
operations, but in a different order than MLClean. On real
datasets, MLClean has the best model accuracy and fairness,
demonstrating that all three operations are necessary for
the best results. In addition, MLClean is faster than base-
lines that use the three operations in different orders, which
means that utilizing the dependencies among the operations
is important.

5 Usable Responsible AI

The final pillar of responsible AI is making it usable and actionable to all machine learning users. While usability
is not always the main focus in machine learning, it is especially relevant for responsible AI because the various
objectives are already conceptually challenging to understand, so the deployment must be made as easy as
possible. We thus propose two systems: FairBatch [29] is an easy-to-use model training technique for fairness,
and Slice Finder [13, 14] is an easy-to-use model evaluation technique for improving fairness.
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Figure 8: (a) The black path shows how the model fairness improves as FairBatch adjusts two parameters λ1
(sampling rate for examples where Z=0 given Y =0) and λ2 (sampling rate for examples where Z=0 given Y =1)
for each epoch on the COMPAS dataset. “ED disparity” is the accuracy difference conditioned on the true label
between sensitive groups where lower disparity means better equalized odds. (b) Sample PyTorch code where the
batch selection sampler is replaced with FairBatch with a single-line change highlighted in blue.

5.1 Batch Selection for Fair Models

While many unfairness mitigation techniques [9] have been proposed, most of them require significant amounts
of effort to deploy. Pre-processing techniques have the advantage of being applicable to any model, but require
changes in the training data in order to remove bias. In-processing techniques tend to perform well, but usually
propose a new model training algorithm that completely replaces an existing algorithm. An interesting question is
whether we can take the best of both worlds of pre-processing and in-processing without their overheads.

We show that such a solution exists and propose FairBatch, which simply improves the batch selection of
stochastic gradient descent training for better fairness. We formulate a bilevel optimization problem where we
keep the standard training algorithm as the inner optimizer while incorporating the outer optimizer to equip the
inner problem with the additional functionality: adaptively selecting minibatch sizes for the purpose of improving
fairness. While the model is training, FairBatch adaptively adjusts the portions of the sensitive groups within each
batch that is selected for each training epoch based on the fairness of the current intermediate model. For example,
let us use the COMPAS example where we are predicting recidivism rates of criminals. Also let us use equalized
odds (defined in Section 3) as the fairness measure where we want the positive prediction rates of sensitive groups
to be the same conditioned on the true label. Since the label is fixed, this fairness can be interpreted as the model
having the same accuracy for sensitive groups conditioned on the label. Now suppose that an intermediate model
shows higher accuracy for a certain sensitive group. FairBatch then increases the batch-size ratio of the other
underperforming sensitive group in the next batch. Intuitively, a larger batch size ratio results in better accuracy,
so eventually equalized odds will improve. Figure 8 (a) illustrates how FairBatch improves equalized odds during
a single model training. In reference [29], we show that this strategy is theoretically justified and generalize the
algorithm for other fairness measures including demographic parity.

A key feature of FairBatch is its usability where one only needs to replace the batch selection of a machine
learning system. Figure 8 (b) shows a PyTorch code example where one can deploy FairBatch by replacing a
single line of code, and no further changes are needed in the pre-processing or in-processing steps of model
training. In reference [29], we also conduct experiments on synthetic and real datasets and show that FairBatch
surprisingly has performances comparable to or even better than state-of-the-art pre-processing and in-processing
unfairness mitigation techniques in terms of accuracy, fairness, and runtime. In addition, FairBatch is flexible and
can be used to improve the fairness of pre-trained models like ResNet18 and GoogLeNet. Finally, there are batch
selection techniques proposed for faster model training convergence, and FairBatch can be naturally combined
with them to improve fairness as well.
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5.2 Automatic Data Slicing for Fair Models

After model training, models are evaluated before being served. For example, TensorFlow Model Analysis [4]
is a model evaluation component of TFX that accepts a user-specified slicing feature (e.g., country) and shows
the model accuracies per slice (e.g., accuracy per country). Here we are using equalized error rates (defined in
Section 4.1) as our notion of fairness. However, there is potentially an exponential number of slices to explore,
and it is not easy for users who do not have enough domain expertise to quickly sift through them.

We thus propose Slice Finder [13, 14], which automatically finds “problematic” slices (subsets of the data)
where the model underperforms. Given these slices, users can take action by acquiring more data as in Slice Tuner
or debug the problematic data to find the root cause that led to the poor performance. We define a problematic
slice to have the following characteristics. First, the slice must be interpretable where it can be defined with
feature-value pairs, e.g., “Gender=Male and Age=20-30.” While one can also define a slice to be a cluster of
examples, clusters are often difficult to understand in practice. In addition, the slice must have a relatively lower
accuracy than its complement, i.e., the rest of the examples other than the slice, where the difference (effect size)
is large and statistically significant. Finally, the slice must be large enough to have a meaningful impact on the
overall model accuracy.

Since the search space for all possible slices is vast, we propose two approaches for searching. The first is a
decision tree approach where we construct a decision tree of feature-value pairs to find slices. The traversal is
fast, but the slices are non-overlapping, which means that we may miss some problematic slices. The second is a
lattice search approach where we find slices by traversing a lattice of feature-value pairs in a breadth-first manner.
Although we now find overlapping slices, this searching is slower than the decision tree approach. Once we find
potential problematic slices, we perform effect-size and significance testings.

In references [13, 14], we show that Slice Finder performs better than a clustering baseline on real datasets.
Also while lattice searching is slower than decision tree searching, it finds more problematic slices.

6 Open Challenges

We are far from achieving responsible AI for end-to-end machine learning and suggest promising directions. First,
there needs to be deeper and broader support for the responsible AI objectives in each step of end-to-end machine
learning. In addition, we believe the usability aspect of responsible AI has been largely understudied, and that
there needs to be more emphasis on this important direction. Below are some concrete suggestions.

• Data Collection: We believe data acquisition must also support robustness. Dataset searching is becoming
increasingly easy, and one challenge is distinguishing any poisoned data from the rest of the data. We also
believe it is important to address fairness and robustness in data labeling.

• Data Cleaning and Validation: MLClean is preliminary, and an interesting direction is to develop more
general and automatic cleaning and validation techniques that support various combinations of data cleaning
algorithms, fairness measures, and poisoning attacks.

• Model Training: FR-Train is a first of its kind and can be extended in many ways. First, there needs to
be more investigation on how to defend against more sophisticated poisoning attacks other than labeling
flipping. Second, algorithm stability is a well-known issue in adversarial training and can be improved.
Third, one may want to train models without a clean validation set.

• Model Evaluation: There needs to be more robustness research for model evaluation where we can easily
tell whether a model is accurate enough despite data poisoning in the training data.
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• Model Management and Serving: There needs to be more model managing and serving techniques that
support fairness and robustness. While there are task-specific solutions like fairness in ranking [32], an
interesting direction is to generalize and support any task with minimal configuration.

• There needs to be holistic solutions for the rest of the responsible AI objectives including explainability,
transparency, and accountability. For example, recent data provenance and metadata [1, 10] solutions can
be used to explain why each step in machine learning produced a certain result.

7 Conclusion

We proposed three research directions – depth, breadth, and usability – towards fully supporting responsible AI in
end-to-end machine learning. While most research focuses on supporting one of many responsible AI features,
we believe multiple objectives should be supported together, preferably in all steps from data collection to model
serving. So far, we have scratched the surface of this vision where we proposed the following systems: FR-Train
(holistic fair and robust training), Slice Tuner (selective data acquisition for fair models), MLClean (data cleaning
for fair and robust models), FairBatch (easy-to-use batch selection for fair models), and Slice Finder (easy-to-use
problematic slice finding for fair models). We also suggested various open challenges.
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