
Validating Data and Models in Continuous ML pipelines

Mike Dreves, Gene Huang, Zhuo Peng, Neoklis Polyzotis, Evan Rosen, Paul Suganthan G. C.
Google Inc.

Abstract

Production ML is more than writing the code for the trainer. It requires processes and tooling that
enable a larger team to share, track, analyze, and monitor not only the code for ML but also the artifacts
(Datasets, Models, ...) that are manipulated and generated in these production ML pipelines.

In this paper we describe the tools we developed at Google for the analysis and validation of two
of the most important types of artifacts: Datasets and Models. These tools are currently deployed in
production at Google and other large organizations. Our approach is heavily inspired by well-known
principles of data-management systems. Ultimately, we want to enable users to trust their data and
models, and understand how data properties affect the quality of the generated ML models.

1 Introduction

ML has succeeded in tackling a wide range of challenging problems in practice, from medical applications (e.g.,
the detection of retinopathy [1]), to self-driving cars, or agriculture [3], to name a few cases. Moreover, there is a
fast pace of innovation in the scientific field of ML.

When one begins to use ML, they naturally think about writing the code that can train a model based on input
data. This is an important step of using ML, but this code is only a small piece of what it takes to run ML reliably.
In a production setting, the user of ML has to worry about: whether the input data has errors; how to trigger a
retraining of the model when new data arrives; whether the new version of a model is good enough to replace
the model currently used by the downstream stack; whether the serving data (used for prediction requests to the
model) is sufficiently different such that retraining is required; and many more issues.

At Google, we refer to this set of concerns as "ML engineering" in order to separate them from "ML coding",
which refers to the relatively smaller task of writing the trainer. In using this term we draw an analogy to the
distinction between software engineering and coding. Usually, coding refers to a one-off, monolithic piece of
code that is not meant for sharing, whereas software engineering establishes processes and practices around
versioning, testing, and so on, to enable a larger team to work on a shared code base that solves a bigger problem.
The same applies to ML engineering: we need processes and tooling around versioning, testing, monitoring, and
so on, that apply not only to code but also to ML artifacts such as datasets and models.

In this paper, we describe the tooling and processes we developed for the analysis and validation of datasets
and models. These are two of the most important artifacts in production ML pipelines, with clear connections to
the overall effectiveness of ML. We adopt a data-oriented approach to the management of these artifacts. This is
obvious for dataset artifacts. For model artifacts, we note that the quality of a model is inherently tied to the data

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

42



used for training, evaluation, and serving. Moreover, with the advent and maturation of Auto-ML solutions which
can optimize the parameters of the model’s architecture, the input data becomes the next obvious knob that can
be tweaked to improve model quality. Thus, an approach based on data-management principles can be usefully
extended to models.

Our work is in the context of TensorFlow Extended (TFX), a production-ML platform that we developed for
Google’s product teams and the world. The design and functionality of our tools is heavily influenced by our
experience with ML in Google’s production setting, but we believe that the basic principles and lessons learned
apply to other contexts, and are of interest to both researchers and practitioners.

2 Data Validation

ML crucially depends on the quality of the input data in order to produce a good model. In many cases, even
simple errors in the data can affect significantly the resulting model. For example, consider a model that depends
on an input data feature “Country” where the USA is represented with the string “US”. However, if in the next
batch of training data the value becomes “USA”, then without any validation or pre-processing, the model will
simply think that this is a new country.

Furthermore, it is often the case that the predictions from the generated models are logged and used to
generate more data for training. Such feedback loops can amplify even “small” data errors and lead to gradual
regression of model performance over a period of time. Hence, it is critical to catch data errors early, before they
propagate through the complex loops and taint more of the pipeline’s state.

Finally, error-free data is also critical for model understanding, since any attempt to debug and understand the
output of the model or any quality metrics (e.g., AUC, precision, ...) is futile if the evaluation data has errors.
All these observations indicate that we need to treat data as a first-class citizen in ML pipelines, on par with
algorithms and infrastructure, with corresponding tooling to analyze, validate and monitor the data throughout the
various stages of the pipeline.

Data validation is neither a new problem nor unique to ML, and so we can leverage techniques and principles
from the field of data management. However, we argue that the problem acquires unique characteristics in the
context of ML and hence we need to rethink existing solutions. First, we need a way to express ML-related
constraints and expectations on the quality of the data. Second, the data validation system must generate reliable
alerts with high precision, and provide enough context for the human to quickly identify the root cause of the
problem. This is due to the fact that in most cases data errors cannot be fixed automatically – they require some
human intervention, either in the ML pipeline (e.g., rolling back the trainer to a checkpoint unaffected by the
suspect data) or in the data-generation code (e.g., fixing the bugs that cause the errors). Third, the system needs to
scale to production pipelines which typically process billions to trillions of examples. Finally, the system needs to
account for the fact that data is stored and managed externally from the ML pipeline, and often in a variety of
storage systems, and hence a-priori knowledge about the data and its semantics is limited.

To address the above challenges in the context of Google’s production ML pipelines, we developed TensorFlow
Data Validation (TFDV) [13, 12, 6], a scalable data analysis and validation system for ML. Our system is deployed
in production as an integral part of TFX [10], an end-to-end ML platform, and is used by hundreds of product
teams at Google to monitor and validate trillions of training and serving examples per day, amounting to several
petabytes of data per day. We recently open sourced TFDV and the system has received significant attention
from the open-source community as well: more than 50M downloads since the first release in October 2018,
plus it has influenced the development of other open-source data validation systems such as Apache Spark Data
Validation 1. Furthermore, TFDV has been adopted by other large organizations using ML, e.g., see Spotify’s
keynote at TensorFlow World 2019 about using TFDV 2.

1https://databricks.com/session/apache-spark-data-validation
2https://www.youtube.com/watch?v=zxd3Q2gdArY&t=748s

43



Figure 1: TensorFlow Data Validation Architecture.

Few recent works ([19], [18]) have considered the importance of data validation for ML applications. For
example, Amazon (Schelter et. al. [19]) proposed a system for automating data quality verification task that
provides a declarative API to specify common quality constraints and custom validation code. While Amazon’s
system allows users to express arbitrary constraints, we opted to have a restrictive schema definition language
that captures the data constraints for most of our users in order to focus on reliable high precision alerts. Further,
our work emphasizes the user-mediated co-evolution of the schema with data and the model. As far as we can
tell, TFDV is the first open-source data analysis and validation system for ML.

2.1 System Overview

Figure 1 shows the TFDV architecture which consists of a Data Analyzer component which computes statistics in
a scalable fashion over large amounts of data, a Data Validator which finds anomalies in the data, and a Data
Visualizer which provides visualizations of the statistics, schema, and the anomalies.

Data Analyzer. Data Analyzer takes a collection of statistics generators and computes data statistics needed for
validation. TFDV uses Apache Beam [8] to define and process its data pipelines. The statistics generators are
implemented as Beam transforms. Users can provide custom statistics generators which are executed together with
the default generators. The generator API takes Apache Arrow Tables as input, as it is powerful enough to encode
popular logical training data formats: flat (tensorflow.Example, CSV), sequence (tensorflow.SequenceExample)
or structured data (e.g. Protocol Buffers or Apache Avro). TFDV provides decoders for popular data formats
like tensorflow.Example, and CSV. Users can write custom decoders (that convert their input to Arrow Tables) to
handle arbitrary data formats. Realizing the data pipelines using Beam allows TFDV to transparently run the
pipeline in different environments such as a single machine, Flink/Spark cluster, and Google Cloud Dataflow.

The statistics computed by TFDV include individual feature statistics depending on the type of the feature
(e.g., statistics such as min, max, mean, median, histogram etc. for numeric features, statistics such as number
of unique values, top-k values, average length etc. for categorical features.) and cross-feature statistics (e.g.,
correlation between features and mutual information of a feature with the label etc.). We represent the statistics
as a protocol buffer message (See [9] for the complete list of statistics computed by TFDV.).

44



Figure 2: Exploring data using Facets visualization.

Data Validator. The Data Validator checks the properties of the data as specified through a schema. Typically
we expect the data characteristics to remain stable across different splits of data (e.g., training data and evaluation
data) or batches of data that are close in time. Hence, we consider any deviation within a batch (or split) from the
expected data characteristics as an anomaly.

TFDV adapts the “battle-tested” principles from data management systems to the context of ML. Specifically,
in order to codify these expected data characteristics, TFDV generalizes the traditional notion of a schema from
database systems. The schema follows a logical data model where each training or serving example is a collection
of features, with each feature having several constraints attached to it. This flat model has an obvious mapping
to the flat data formats such as tensorflow.Example or CSV. The constraints associated with each feature cover
some basic properties (e.g., type, domain, valency) but also constraints that are relevant to ML (See [12] for a
more detailed discussion of our schema formalism.). Using a schema also allows us to verify any assumptions of
training/serving code (e.g., the schema can be used to generate fuzzy examples and verify if the training/serving
code crashes on those examples) and thereby catch potential model crashes early on. We represent the schema as
a protocol buffer message.

TFDV supports two types of validation: (1) validating a single batch of data against the schema, and (2)
validating two batches of data (e.g., are there any significant changes between training and serving data, or
between successive batches of the training data?). Any disagreement found during validation is flagged as an
anomaly for human inspection and further investigation. See [6] for the complete list of 52 anomalies identified
by TFDV and the conditions on which each anomaly is raised.

Data Visualizer. TFDV provides visualizations for the statistics, schema and the anomalies. It provides a
simple table-based view for the schema and the anomalies. It uses the Facets library [7] to visualize the statistics
(see Figure 2). Specifically, TFDV supports (1) visualizing the statistics of a batch of data, and (2) comparing
statistics between batches of data.

45



Figure 3: An example schema and corresponding data in the tf.train.Example format.

2.2 Inferring an initial schema

As described in Section 2.1, TFDV uses a schema to capture the stable data characteristics. Our assumption is
that the users are responsible to curate the schema. However, many ML pipelines use thousands of features, and
so constructing a schema manually for such pipelines can be quite tedious. Furthermore, the domain knowledge
of the features may be distributed across a number of engineers within the product team or even outside of the
team. In such cases, the upfront effort in schema construction can discourage engineers from setting up data
validation until they run into a serious data error.

To overcome this adoption hurdle, TFDV provides a way to auto-generate the initial schema. This auto-
generated schema attempts to capture salient properties of the data without overfitting to a particular batch of data.
Avoiding overfitting is important: an overfitted schema is more likely to cause spurious alerts when validating a
new batch of data, which in turn increases the cognitive overhead for the on-call engineers, reduces their trust
in the system, and may even lead them to switch off data validation altogether. We currently rely on a set of
reasonable heuristics to perform this initial schema inference. A more formal solution, perhaps with guarantees
or controls on the amount of overfitting, is an interesting direction for future work. We assume the user will
inspect the inferred schema and modify any properties if needed. Figure 3 shows a sample schema. The schema
is represented as a protocol buffer.

2.3 Performing skew detection

Training/Serving skew refers to a difference in the feature values or distributions between the data used to
train a model and the data observed by the serving system. TFDV allows users to check if there are significant
changes between training and serving data. TFDV supports skew detection based on L∞ distance [12] and
Jensen–Shannon divergence [2].

46



3 Model Validation

After training a model based on (validated) input data, the next step in a production pipeline is analyzing the
trained model and deciding whether it can be pushed to the inference/serving stack. This step makes the model
available to other applications. However, pushing a model that returns sub-optimal or even erroneous predictions
can lead to undesired downstream effects. As an example, if a bad model generates uninteresting or irrelevant
recommendations in a movie-streaming service the user experience is likely to suffer. What is needed is the
equivalent of an integration test, where we can evaluate the model’s accuracy on unseen data. For this purpose,
we have developed TensorFlow Model Analysis (TFMA) [4], a scalable model evaluation system. Similar to
TFDV TFMA is deployed in production as an integral part of TFX platform and is used by hundreds of product
teams at Google to evaluate ML models. TFMA was open sourced in March 2018 and has received significant
attention from the open-source community (more than 50M downloads).

While data validation prevents errors through inappropriate input data, it is still possible to introduce errors
into the pipeline as a result of improper training. Most ML frameworks provide tools for evaluating metrics of
interest (e.g., loss or AUC) during training. TFMA takes this a step further by allowing users to re-evaluate their
models post-training over large amounts of data in a distributed manner (using Apache Beam). This evaluation
can be done using the same metrics that were defined during training or with additional metrics added after the
model has been generated. While TFMA performs full passes over generally much larger data than is seen at
training time, the datasets are still just samples drawn from a larger population. To help gauge the reliability of
these computations, TFMA provides confidence intervals for the metrics it computes. For increased reliability
and safety, TFMA provides a means to set expectations on model performance metrics using either absolute
thresholds or thresholds relative to a baseline. Practitioners can then gate pushing their models to production based
on passing the said validation thresholds. In a sense, this model-based validation complements the data-based
validation implemented by TFDV.

TFMA also supports computing and validating model metrics on data slices. Model metrics computed on the
whole evaluation dataset can mask interesting or significant deviations of the same metrics computed on data
slices that correspond to meaningful sub-populations. For instance, a machine-translation model may perform
adequately well on average but significantly worse on a specific language. TFMA allows users to declare slices
of interest and then to get a more detailed view of model metrics computed on the corresponding subsets of
the evaluation data. Model validation can subsequently verify these metrics in order to guard against model
regressions which only affect a small but important slice of the evaluation data.

3.1 System Overview

Figure 4 shows the TFMA architecture which consists of four components: 1) Reading the inputs, 2) Extraction,
3) Evaluation, and 4) Writing results. These components make use of two primary types: tfma.Extract and
tfma.evaluators.Evaluation. The type tfma.Extract represents the data that is extracted during pipeline
processing whereas the type tfma.evaluators.Evaluation represents the output from evaluating the extracts at
various points during the pipeline. In order to provide a flexible API, these types are just Python dictionaries
where the keys are defined (reserved for use) by different implementations.

Extraction. The extraction process is a list of Beam transforms that are run in series. The extractors take
tfma.Extract as input and return tfma.Extract as output. For example, PredictExtractor is one of the default
extractors which uses the input extract produced by the read inputs transform and runs it through a model to
produce extracts that contains the predictions. TFMA allows users to provide custom extractors that can be
inserted at any point in the extraction process.

47



Figure 4: TensorFlow Model Analysis Architecture.

Evaluation. Evaluation is the process of taking an extract and evaluating it. An evaluator is a Beam transform
that takes tfma.Extract as inputs and outputs tfma.evaluators.Evaluation. TFMA supports a wide variety of
model metrics and plots as documented in [5], which are computed as part of the evaluation process. For example,
the default MetricsAndPlotsEvaluator uses the features, labels, and predictions in the extracts as input, group
the extracts by slices, and then performs metrics and plots computations. Further, users can also provide custom
evaluators. TFMA provides visualizations for the metrics and plots as shown in Figure 5.

3.2 Automatically Identifying Problematic Slices

As mentioned in Section 3, TFMA can compute model metrics over slices of data that are of interest to the user.
For example, Figure 5 shows the model metrics sliced by “trip_start_hour" feature. However in many cases, users
do not know a priori which slices are important. Alternatively, a user might miss important sub-slices within
the manually defined slices (e.g., the machine-translation model may under-perform for a specific language only
when the translation request comes from a specific class of devices). To aid with these cases we investigated
techniques to automatically identify slices of interest [11]. We view this automatic slicing as a complement to
the manual slicing already supported by TFMA. For instance, it is possible to start with manually defined slices
and then automatically discover subslices of interest. Our inspiration in this domain has been previous works in
discovering interesting roll-ups/drill-downs in data cubes [14, 15, 17]. Moreover, recent work [16] in the ML
community has shown how knowledge about under-performing slices can be leveraged in order to improve overall
model quality.

48



Figure 5: Visualization of sliced model metrics.

4 Conclusion

In this paper, we described the tools and processes developed at Google for the analysis and validation of two of
the most important artifacts in an ML pipeline: datasets and models. Specifically, we described TFDV, a data
validation system, and TFMA, a model evaluation system. The developed tools have been used extensively within
Google and has received significant attention from the open-source community.

References

[1] Diagnosing Diabetic Retinopathy with Machine Learning. https://about.google/intl/en_us/
stories/seeingpotential

[2] Jensen–Shannon divergence. https://en.wikipedia.org/wiki/Jensen-Shannon_

divergence
[3] How a Japanese cucumber farmer is using deep learning and Ten-

sorFlow. https://cloud.google.com/blog/products/gcp/
how-a-japanese-cucumber-farmer-is-using-deep-learning-and-tensorflow

[4] TensorFlow Model Analysis. https://www.tensorflow.org/tfx/model_analysis/get_
started

49



[5] TensorFlow Model Analysis - Metrics and Plots. https://www.tensorflow.org/tfx/model_
analysis/metrics

[6] TensorFlow Data Validation. https://www.tensorflow.org/tfx/data_validation/get_
started

[7] Facets. https://pair-code.github.io/facets/
[8] Apache Beam. https://beam.apache.org/
[9] TensorFlow Metadata. https://github.com/tensorflow/metadata

[10] Denis Baylor, et al. TFX: A TensorFlow-Based Production-Scale Machine Learning Platform. In ACM
SIGKDD, 2017.

[11] Yeounoh Chung, et al. Slice Finder: Automated Data Slicing for Model Validation. In IEEE ICDE, pages
1550–1553, 2019.

[12] Eric Breck, et al. Data Validation for Machine Learning. In SysML, 2019.
[13] Emily Caveness, et al. TensorFlow Data Validation: Data Analysis and Validation in Continuous ML

Pipelines. In ACM SIGMOD Demo, 2020.
[14] Sunita Sarawagi. User-adaptive exploration of multidimensional data. In VLDB, volume 2000, pages

307–316, 2000.
[15] Gayatri Sathe, and Sunita Sarawagi. Intelligent rollups in multidimensional OLAP data. In VLDB, volume 1,

pages 531–540, 2001.
[16] Vincent Chen, et al. Slice-based Learning: A Programming Model for Residual Learning in Critical Data

Slices. In Advances in Neural Information Processing Systems, pages 9397–9407, 2019.
[17] Manasi Vartak, et al.. SeeDB: Automatically Generating Query Visualizations. In PVLDB, volume 7,

number 13, pages 1581–1584, 2014.
[18] Rabanser, Stephan and Günnemann, Stephan and Lipton, Zachary. Failing Loudly: An Empirical Study of

Methods for Detecting Dataset Shift. In Advances in Neural Information Processing Systems, 2019.
[19] Sebastian Schelter, et al. Automating Large-Scale Data Quality Verification. In VLDB, volume 11,

number 12, pages 1781–1794, 2018.

50


