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Letter from the Editor-in-Chief

The March issue of the Data Engineering Bulletin focuses on the intricate interplay as well as a significant gap
between data management and machine learning when it comes to supporting real-life business applications.

The opinion piece of this issue features a group of distinguished researchers and their assessment and
prognosis of machine learning’s current and future roles in building database systems. Besides highlighting
several specific potentials and challenges such as using machine learning to optimize database indices and query
optimization, the article also gives a great overview of how databases, data analytics and machine learning,
system and infrastructure, work together to support today’s business needs. It is clear that the business needs,
the volume, velocity, and variety of the data, the latency and throughput requirements have evolved dramatically
and in consequence, data management systems must adapt. The opinion pieces described four disruptive forces
underneath the evolution, which are likely to influence future data systems.

Our associate editor Sebastian Schelter put together the current issue–Data Validation for Machine Learning
Models and Applications–that consists of six papers from leading researchers in industry and academia. The
papers focus on data validation, which is a critical component in end-to-end machine learning pipelines that many
business applications rely on.

Haixun Wang
Instacart
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Letter from the Special Issue Editor

Software applications that learn from data using machine learning (ML) are being deployed in increasing numbers
in the real world. Designing and operating such applications introduces novel challenges, which are very different
from the challenges encountered in traditional data processing scenarios. ML applications in the real world
exhibit a much higher complexity than “text book” ML scenarios (e.g., training a classifier on a pre-existing
dataset). They do not only have to learn a model, but must define and execute a whole ML pipeline, which
includes data preprocessing operations such as data cleaning, standardisation and feature extraction in addition to
learning the model, as well as methods for hyperparameter selection and model evaluation. Such ML pipelines
are typically deployed in systems for end-to-end machine learning, which require the integration and validation
of raw input data from various input sources, as well as infrastructure for deploying and serving the trained
models. The system must also manage the lifecycle of data and models in such scenarios, as new (and potentially
changing) input data has to be continuously processed, and the corresponding ML models have to be retrained
and managed accordingly. The majority of these challenges have only recently begun to attract the attention of
the data management community. A major obstacle is that the behavior of ML-based systems heavily depends on
the consumed input data, which can rapidly change, for example due to changed user behavior or due to errors
in external sources that produce the inputs. This area represents a gap between the data management and ML
communities: research in ML mostly focuses on learning algorithms, and research in data management is mostly
concerned with data processing and integration. In this issue, we focus on this gap in data validation for machine
learning, and provide perspectives from both the academic and industrial research communities to learn about the
state of the art, open problems and to uncover interesting research directions for the future.

The first paper presents A Data Quality-Driven View of MLOps and demonstrates how different aspects of
data quality propagate through various stages of machine learning development. It connects data quality to the
downstream machine learning process, an approach that is also taken by our second paper, which argues that
we should move From Cleaning before ML to Cleaning for ML. The authors propose an end-to-end approach to
take the entire application’s semantics and user goals into account when cleaning data, instead of performing the
cleaning operations in an isolated manner beforehand.

The next two papers on Validating Data and Models in Continuous ML pipelines and Automated Data
Validation in Machine Learning Systems from Google and Amazon provide us with an industry perspective
on the area in the focus of this issue. The first paper describes tools developed at Google for the analysis and
validation of two of the most important types of artifacts: Datasets and Models. These tools (which are part of the
Tensorflow Extended Platform) are currently deployed in production at Google and other large organizations, and
are heavily inspired by well-known principles of data-management systems. The second paper from Amazon
reviews some of the solutions developed to validate data at the various stages of a data pipeline in modern ML
applications, discusses to what extent these solutions are being used in practice, and outlines research directions
for the automation of data validation.

The subsequent paper on Enhancing the Interactivity of Dataframe Queries by Leveraging Think Time focuses
on the highly exploratory and iterative nature of data validation in the early stages of an ML application, where
data scientists start with a limited understanding of the data content and quality, and perform data validation
through incremental trial-and-error. The final paper of this issue on Responsible AI Challenges in End-to-end
Machine Learning completes the view on data validation for machine learning by connecting it with pressing
issues from the area of responsible data management.

Working on this issue has been a privilege for me, and I would like to thank the authors for their contributions.

Sebastian Schelter
University of Amsterdam & Ahold Delhaize Research, Netherlands
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ML-In-Databases: Assessment and Prognosis

Tim Kraska, Umar Farooq Minhas, Thomas Neumann, Olga Papaemmanouil, Jignesh M. Patel, Chris Ré, Michael
Stonebraker

Abstract

With the rapid adoption of Machine Learning (ML) in Computing, there has been a flurry of recent
research considering using ML to build the internal component of database systems. While initial work
in this area has shown interesting results, the jury is still out on whether these methods will replace
existing methods. A group of researchers with opinions on both sides of this issue met to assess the state
of this area and to formulate a plan for the next steps that would be needed to determine the potential
role of these new ML-based methods in building future database systems. This article summarizes the
collective perspectives that resulted from these discussions. First, this article describes broad forces
that are changing the landscape in which database systems are deployed, connecting several trends that
likely require rethinking how future database engines are built. Next, this article describes the different
perspectives on this topic of using ML methods to replace existing internal database components. Finally,
the key takeaways from this discussion are presented, and these takeaways also point to directions for
future research.

1 Introduction

Enterprises increasingly want to move to making data-driven decisions across every aspect of their business.
To achieve this goal, they are increasingly adopting a rich ecosystem of data management tools, and database
systems are invariably at the heart of these data ecosystems. However, we see four, possibly very disruptive
forces, that are likely to strongly influence future data systems. These forces, which range from well-established
ones (force #4) to some in their infancy (forces #1 and #2), are described next.

1.1 Force #1: The changing end-user landscape

First, from the end-user perspective, there is a clear goal in enterprises to democratize data, moving to holistic
data-driven decision making across the entire enterprise. Essentially, enterprises want every business user in their
organization to make data-driven decisions, and often in real time.

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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This transformation will require that a broad range of employees in an organization must have access to the
underlying enterprise data (with appropriate access controls and often via applications). In this new world, the
end user is a non-programmer business user, as opposed to a business analyst, who asks ad hoc questions using a
variety of querying paradigms, including natural language and no-code interfaces.

With this driving force, the “audience” for a database system will explode from database programmers and
business analysts to a much larger group of business users. This driving force will also change the technical
programming skill set that one can expect from an end user.

1.2 Force #2: The changing application surface

Second, in this new data-democratized world that we see coming, end users will demand that the underlying
platform carry out a broader range of data analysis tasks. These tasks go beyond traditional structured query
processing (SQL) to include machine learning (both exploratory and predictive) and more complex analytics,
such as regressions and principal components analysis. Moreover, we expect sophisticated visualizations and
natural language processing (NLP) to become much more important. Further, these tasks must be carried out
efficiently on an ever-increasing volume of data.

In addition, when deploying machine learning (ML) for prediction, there is a critical need (increasingly driven
by regulations) to manage and archive the entire data pipeline that is associated with a deployed ML model. In
other words, there is a need for data platforms to provide robust model management as an integrated core feature
of the data platform itself.

1.3 Force #3: The changing data organization

Third, an often-quoted anecdote is that data scientists spend at least 80% of their time finding data sets they want
to analyze, cleaning the data and integrating it together. A further anecdote is that independently constructed data
sets never have a common schema, which makes the data integration problem noted above especially difficult.
Obviously, analyses whether through ML or other means will produce garbage on dirty or inconsistent data. As a
result, a key ground stake for this new data-democratized reality is that there must be a single source of truth
for data in the entire enterprise. This aspect is leading to the consolidation of data spread across data silos into
a common data repository, often called a data lake. To fully leverage this data lake, we see enterprises making
substantially greater investments in data cataloging, data integration and data cleaning off into the future.

1.4 Force #4: The changing hardware substrate

The last driving force, and in many ways the force that is accelerating the other three forces described above, is
the move to the cloud. This force fundamentally shifts the substrate on which analytic database software runs.
Gone are the days in which a business intelligence database system ran on hardware consisting of a physical
server box resident in the enterprise, and consisting of predefined fixed amounts of compute, memory, storage
and networking components. In the cloud the server becomes a collection of disaggregated compute, memory,
storage (with many more tiers), and networking resources, all of which can be mixed in just about any proportion.

Further, this virtual server can be elastically sized, often in a matter of seconds, to add or subtract any of these
hardware resources. While such a virtual server may be a collection of many physical components spread across
a physical data center (or data centers), logically, it presents itself as a single server. We call this virtual server a
cloud server in the remainder of this article.

What is even more powerful is that cloud servers are more economical than traditional servers, as they are
priced using a pay-as-you-go paradigm. Enterprises can size up their cloud server capacity for a short amount
of time and size it down when done, making internal capital allocation processes far cheaper. Thus, large data
projects now become more financially viable.

4



Traditional database systems are notorious for having a large number of tuning knobs that have to be
continually tweaked for performance by human database administrators (DBAs). These knobs have to be set
at the “right” values when the database is initially installed, and then re-tuned as the workload changes. This
reliance on humans to keep database installations running efficiently often results in sub-optimal performance,
costing enterprises time and money. Modern cloud data platforms take this problem head-on and are moving
toward self-tuning. Thus, in the cloud era, there will be a huge reduction in the human IT cost associated with
running a cloud data warehouse.

We see three consequences of these forces, to which we now turn.

2 Consequences of these forces

The database community has started to make fundamental changes to react and leverage the four driving forces
described above. A key direction in recent years has been to rethink the methods that go into every internal
component inside a database engine. These components include storage management (which includes indexing),
query processing methods, query optimization, and query scheduling. In a traditional data processing system these
components are tightly coupled at the architecture level and optimized to run on a specific hardware configuration.

In a cloud server, the storage and compute is disaggregated in the underlying cloud fabric. Each of these
components can be increased elastically independent of each other. Fast networking is often implicitly provided by
the cloud provider. Further, each component of the storage hierarchy can be provisioned (and adjusted elastically).
Thus, the bulk of the data sits in a cloud file system, which in principle has infinite storage capacity. That data can
be accessed by compute resources by pulling data from the cloud file system (CFS). Along the way the data can
be cached in multiple storage locations, including local SSDs and main memory. By-and-large traditional memory
hierarchy rules apply. Storage that is closer to the processor is accessible at a lower latency, but has a higher unit
storage cost, and lower capacity compared to storage that is “further away.” What is interesting however, is that in
a cloud server, every layer of the storage hierarchy can be elastically adjusted. Essentially a data platform can
now provision a virtual cloud server in an arbitrary configuration to best suit the target application needs, and
then reconfigured easily (and economically) as the workload changes. Database systems that don’t leverage this
elastic behavior, will simply not survive the competition in the cloud era.

Traditional database systems will need major reworking to achieve this sort of elasticity. Since a cloud
server is assembled from a set of disaggregated underlying hardware resources, to make full use of this hardware
organization, the internals of database engines must also be disaggregated to run at the speed of the underlying
hardware. There is broad consensus in the database community that database internal components and architecture
must be rethought from scratch for this new cloud server world.

Another trend which follows from these forces is the Software 2.0 movement [9]. This new approach to
software engineering aims to move from thinking about software as a predefined static organization of code to
a dynamic model-based view. In this new approach, machine learning models, often a neural network, are a
fundamental software building block. This new building block can be viewed as a dynamic function that takes
data as input, runs it through the ML model, and outputs the predictions from the model as the output/result of
the function. A critical aspect of this new approach, which we call ML-functions (MLFs), is that an MLF can
easily be retrained using new data. Thus, an MLF can dynamically optimize itself to adapt to new workload
characteristics. This adaptation can often be done internally in the MLF providing an elegant software abstraction
in which the software system can be considered to be a collection of dynamic, self-optimizing components. MLFs
provide a disaggregated approach to software engineering and using it purposefully in this manner provides an
interesting parallel to the disaggregation of hardware components in a cloud server. We expect complex software
systems (not just database systems) will move toward this paradigm to reap the benefits of self-optimization.

Synergistic with the Software 2.0 approach is the move to serverless computing. With serverless computing,
provisioning of hardware resources is automatically done by the serverless infrastructure freeing the developer
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from having to worry about that aspect of application development. Software 2.0 provides a new software
abstraction while serverless provides a new hardware abstraction, and together both make the life of a modern
software developer easier.

In summary, we are already seeing DBMSs being rearchitected for cloud deployment. In addition, serverless
computing, such as AWS Lambda, are becoming an important cloud platform. Finally, the benefits of self-
adaptation are obvious, which will drive large software systems, including DBMSs, toward using ML.

3 ML-in-Databases

Against the backdrop of changes in the broader data landscape described above, a panel was organized at the
2021 Annual Conference on Innovative Data Systems Research (CIDR). The topic for this panel was the role
of Machine Learning (ML) in driving transformative changes to database internals. Below we summarize the
discussion that started at the panel and continued after the initial panel discussion, resulting in the discussion and
direction that is described in this article.

3.1 Learned indices

The first topic for discussion was the role of learned methods to reimagine a variety of database internal
components. There has been a flurry of work over the last few years advocating the use of ML models to replace
the traditional database internal components. This line of work can be considered as advocating for a Software
2.0 approach to reimagining database internal components. There have been two big themes in the community,
namely learned indices and learned query optimizers. We discuss learned indices in this section, and we cover
learned query optimization in the next section.

The learned index approach challenges the way in which database systems use indices. The initial focus of
this line of research (e.g., [10, 7]) has been to provide an alternative to the “ubiquitous” B+-tree index structure [5].
In addition, there has been early work on other index structures, including LSMs and spatial indices. To focus
this article, we only discuss the work related to the B+-tree index.

In a traditional database system, search on a large dataset can be sped up by building a B+-tree index. A
B+-tree index is a disk-optimized balanced tree data structure that has a log(N) average case search time and
I/O complexity. However, one can view a B+-tree search operation as a lookup function that takes as input an
argument (the search key) and returns the set of matching records from the underlying dataset as a result. In a
B+-Tree index, this function has a large data structure (the index) that is associated with the search function. A
learned index on the other hand can be viewed as replacing this data structure with a MLF, and often a hierarchical
collection of MLFs.

The panel discussion on this topic focused on past approaches to learned B+-tree index structures and quickly
pivoted to the central question: Do these learned indices actually outperform traditional B+-trees, especially
when one uses optimized B+-tree indices?

Over the last four decades, a number of B+-tree optimizations have been proposed, including cache-efficient
implementations, and use of sophisticated key compression methods. It was pointed out that both prefix and
postfix compression methods have been used in VSAM indices [3], which have been in commercial systems for
over four decades. These optimizations often produce huge efficiency improvements. Thus, comparison with
an optimized B+-tree implementation that also includes considerations, such as a broad range of compression
techniques, is needed to better understand the role of learned indices in practice.

It was also pointed out that while the research enthusiasm has been high for learned indices, practical adoption
will take time and the final judgement about their practicality is still out. The early work on learned indices has
largely ignored issues of concurrency control mechanisms, and non-main memory storage. Indices are typically
common in transactional workloads and robust concurrency control methods are ground stakes for commercial
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adoption. There is only preliminary work to-date on how to make learned index structure work with a mix of
update and read-only queries, and comparison with non-main memory database systems is missing. Further, the
issue of crash recovery has not been addressed by work on learned indices, and that too is crucial for commercial
traction.

The proponents of learned indices argued that comparisons with highly optimized B+-trees for in-memory
settings including prefix compression (e.g., against the ART index) have been carried out [10, 12] but that other
settings (disk, concurrency) are still missing. However, one should view the work on learned indices as work in
progress.

The proponents of learned indices also pointed out that a critical missing component is the lack of realistic
workloads, which is a broader community challenge. For example, if the data being indexed is Gaussian
distributed, then a MLF will outperform a traditional index. Thus, the performance tradeoffs are very dependent
on the distribution characteristics of the search keys. Getting realistic data distributions has been challenging, and
this aspect is critical in determining the pros and cons of the two approaches to indexing data.

On the issue of performance of learned indices, there is a change in emphasis in parts of the learned index
community from targeting execution time performance improvements to targeting space efficiency. Early results
indicate that the space complexity of learned indices is provably better than B+-tree indices [8], and some
commercial systems (e.g., Google Bigtable) observe throughput improvements because of the smaller index
size [1]. Similarly, the smaller (and faster) lookup performance of learned indexes improved the end-to-end
throughput of LSMs, like RocksDB [6]. However, the practical benefits depend on the workload, making good
workloads/benchmark central to also moving this aspect of the learned index research forward.

3.2 Learned optimizers

Learned query optimizer is another dominant contemporary research theme in the database community. This
sub-community proposes an learned alternative to traditional query optimization (e.g., [11, 14]). A traditional
query optimizer takes as input a query statement (often an algebraic expression) and transforms it to an optimal
plan (another annotated algebraic expression). The internal code organization of a traditional query optimizer
is often a large mesh of functions (with some functions being rules-based) that work together to formulate an
optimal execution plan.

Query optimization is a notoriously difficult task and one that after five decades of work continues to drive
significant research attention. A learned approach to query optimization takes a Software 2.0 approach to this
internal component of a database engine, and aims to use an MLF, often backed by a deep neural network, to
optimize queries.

Similar to the discussion above on learned indices, it was pointed out that work on learned query optimizers is
also preliminary, and there isn’t conclusive evidence that such approaches are yet practical for real deployments.
Besides, query optimization is really critical in analytic environments, and state-of-the-art systems use a column
store organization in such settings, as column stores result in much better query performance. However, until
recently all comparisons of learned query optimizers were against the PostgreSQL optimizer or traditional
row-oriented optimizers (e.g., Oracle or Microsoft SQL Server). Showing gains for analytic queries on a row-store
database does not make a strong case for learned query optimizers.

Proponents of the learned methods pointed out that existing work already compares against some of the
best-known optimizers, such as Microsoft SQL Server and Oracle [14, 13], and noted that PostgreSQL is widely
used as it is open-sourced. This open-source aspect is important as the research in this area requires making
changes to the actual optimizer source code to implement the learned optimization methods. It was further noted
that commercial systems have started to integrate learned cardinality estimates and other ML-based improvements.

Proponents of the learned methods also highlighted that there is an additional benefit of pursuing research in
learned methods, which is to explore it as a research direction to determine what its boundaries are. Even if at the
end of the day, they do not end up outperforming state-of-the-art systems, we will as a community learn a lot
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from this process. Thus, there is a pure research exploration component to pursuing learned approaches.

3.3 Instance optimality

The diversity of database workloads and the elastic nature of the cloud server on which a database instance
runs, presents unique opportunities to tune a specific database instance to the workload and hardware parameters
available at that instant. This idea of instance optimal database deployments is an emerging research trend in
the database community. ML methods are clearly applicable here as many database systems have hundreds if
not thousands of parameters, and the choice of the parameters plays a big role in determining the overall system
performance. Further, even if the parameters have been set once, as the workload changes these parameters must
be reset.

Today such database tuning is largely done statically. However, there is a growing body of research work in
our community that advocates taking as input data from the operational environment – think database and system
logs – and using it for self-tuning. There has been sporadic work over the last four decades on self-tuning, and
ML-based algorithms are likely to play a role in this endeavor, if they can be shown to be superior to traditional
methods.

3.4 ML-in-Databases, the “other” ML

This panel of researchers also noted that perhaps the real reason to bring ML methods into database engines is
orthogonal to replacing existing internal database data structures/algorithms with learned parts. This reason is
related to the rapidly changing database workloads and user base (recall Forces #1 and #2).

Database workloads are changing quite rapidly. With a unified data-centric view of the enterprise (Force #3)
enterprises can run both analytic and ML workloads in the same data engine. Today, these two types of workloads
are often run in two different platforms. For example, a platform that runs SQL analytics and another that runs
ML analytics (e.g., Pandas or Tensorflow). Managing two platforms instead of one increases the data management
costs and also makes data governance more complicated. This current approach of “ML-outside-the-database” is
a huge and growing issue for enterprises.

The community has worked on the integration of ML and SQL in the past. Some commercial database
systems (e.g., [4]) have been shipping ML methods that run inside the database engine since the earlier part of
this century. However, what is needed is a dramatic new approach to not just make ML and SQL workloads
operate in the same data engine, but also to support ML model management in the data platform. Today, there is
an unmet need for robust management of ML pipelines (simplistically think of this as an “execution plan” with
data cleaning, encoding, training, and scoring “operators”). To use an ML model for inferencing (e.g., making
a credit recommendation for a new loan applicant), the enterprise has to put in place a vast data management
infrastructure for the ML models. Regulatory or internal governance policies may require that the entire pipeline
associated with creating the deployed ML model be archived so that it can be revisited in the future (e.g., to
check for bias). As the underlying data changes, a previously optimal model may “drift,” and may also need to be
retrained to make more accurate inferences, which again requires support for robust model management.

In addition, if one looks at the life cycle of data, especially when an enterprise is trying to bring all data
together in an enterprise-wide data lake (Force #2), one sees that there is ML and SQL intertwined at every step.
Just getting the data into the data lake requires data cleaning, which will require using ML methods at scale.
Further, this data cleaning “workload” is not a one-time job, but it is a workload that must be run continually.
Users (and now there is a broader user base due to Force #1) also invoke analytics functions that often use ML for
data exploration and visual discovery. In fact, in many enterprise data settings, these new data workloads (data
cleaning and discovery) take up most of the time of the human user as well as most of the resources in the cloud
server. When taking a holistic look at the workload present in a modern data ecosystem, the ML part is more
dominant than traditional SQL.
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Thus, the real opportunity for ML and database systems is to bring both ML processing and SQL processing
together into the database engine. To achieve this goal, we need to rethink the internal organization of a database
engine even more, and not just try to use ML/learned methods to speed up a traditional database platform, which
arguably only supports SQL and thus a small fraction of the overall enterprise data workload.

Overall, a strong sentiment expressed in the panel was that the real synergies for ML and database to come
together may lie in this area – namely, creating new data technologies that efficiently serve both workloads
natively, and also provides in-built model management capabilities.

4 Key Takeaways

The discussion on this topic of ML-in-databases can be summarized by the following key takeaways, which also
points to directions for future work.

Takeaway #1: The initial comparisons of leaned indices with optimized traditional indices should be further
expanded to include concurrency control and multi-user settings. Learned indices need to make a holistic
argument if they want to challenge the use of traditional indices.

Takeaway #2: A key benefit of learned indices may come from the learned structures requiring lower space
utilization, rather than a reduction in search time. Further work in this area is needed to test this claim.

Takeaway #3: More realistic benchmarks/workloads are critical as the benefits of learned indices is very
dependent on the data distribution. Coupled with Takeaway #1, it may be time for leaned indices to use end-to-end
benchmarks in their comparison, with full parity on features like concurrency control, recovery, non main memory,
and multi-user settings.

Takeaway #4: When evaluating the benefits of a learned optimizer, the yardstick for comparison should not
just be PostgreSQL – a row-store system that is known to have low performance. Since access to the database
system source code is required for this research, using an open-source column-store database system, such as
MonetDB [2], is advocated.

Takeaway #5: To fully exploit the disaggregated and elastic nature of a cloud server, database deployments
will need to consider instance optimal methods so that they can self-tune (and retune) themselves for the workload
at hand. ML methods are likely critical here as long as they can demonstrate superiority to traditional methods.

Takeaway #6: The big opportunity for ML-in-Databases is for database systems to consider new data
processing techniques/architectures that can efficiently process both ML and SQL tasks. The internal data
structures used in such a platform may still be “traditional,” but the huge opportunity ahead for the community is
to expand the scope of workloads in this manner, and to include model management as a core data management
task.
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Abstract

Developing machine learning models can be seen as a process similar to the one established for traditional
software development. A key difference between the two lies in the strong dependency between the quality
of a machine learning model and the quality of the data used to train or perform evaluations. In this
work, we demonstrate how different aspects of data quality propagate through various stages of machine
learning development. By performing a joint analysis of the impact of well-known data quality dimensions
and the downstream machine learning process, we show that different components of a typical MLOps
pipeline can be efficiently designed, providing both a technical and theoretical perspective.

1 Introduction

A machine learning (ML) model is a software artifact “compiled” from data [24]. This point of view motivates a
study of both similarities and distinctions when compared to traditional software. Similar to traditional software
artifacts, an ML model deployed in production inevitably undergoes the DevOps process — a process whose aim
is to “shorten the system development life cycle and provide continuous delivery with high software quality” [6].
The term “MLOps” is used when this DevOps process is specifically applied to ML [4]. Different from traditional
software artifacts, the quality of an ML model (e.g., accuracy, fairness, and robustness) is often a reflection of the
quality of the underlying data, e.g., noises, imbalances, and additional adversarial perturbations.

Therefore, one of the most promising ways to improve the accuracy, fairness, and robustness of an ML
model is often to improve the dataset, via means such as data cleaning, integration, and label acquisition. As
MLOps aims to understand, measure, and improve the quality of ML models, it is not surprising to see that data
quality is playing a prominent and central role in MLOps. In fact, many researchers have conducted fascinating
and seminal work around MLOps by looking into different aspects of data quality. Substantial effort has been
made in the areas of data acquisition with weak supervision (e.g., Snorkel [29]), ML engineering pipelines (e.g.,
TFX [25]), data cleaning (e.g., ActiveClean [27]), data quality verification (e.g., Deequ [40, 41]), interaction (e.g.,
Northstar [26]), or fine-grained monitoring and improvement (e.g., Overton [30]), to name a few.

Meanwhile, for decades data quality has been an active and exciting research area led by the data management
community [7, 47, 37], having in mind that the majority of the studies are agnostic to the downstream ML
models (with prominent recent exceptions such as ActiveClean [27]). Independent of downstream ML models,

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Table 1: Overview of our explorations with data quality propagation at different stages of an MLOps process.

Technical Problem for ML MLOps Stage MLOps Question Data Quality Dimensions

Data Cleaning (Sec. 3) [23] Pre Training Which training sample to clean? Accuracy & Completeness
Feasibility Study (Sec. 4) [32] Pre Training Is my target accuracy realistic? Accuracy & Completeness
CI/CD (Sec. 5) [31] Post Training Am I overfitting to val/test? Timeliness
Model Selection (Sec. 6) [21] Post Training Which samples should I label? Completeness & Timeliness

researchers have studied different aspects of data quality that can naturally be split across the following four
dimensions [7]: (1) accuracy – the extent to which the data are correct, reliable and certified for the task at hand;
(2) completeness – the degree to which the given data collection includes data that describe the corresponding set
of real-world objects; (3) consistency – the extent of violation of semantic rules defined over a set of data; and
(4) timeliness (also referred to as currency or volatility) – the extent to which data are up-to-date for a task.

ML Process
training, validation, ...

Data Quality Issues
accuracy, completeness, 
consistency, timeliness

ML Utility
accuracy, generalization, 
fairness, robustness, ...

Technical Question: How do different data quality 
issues propagate through the ML process?

Data ML Model

Our Experiences and Opinions In this paper, we
provide a bird’s-eye view of some of our previous
works that are related to enabling different function-
alities with respect to MLOps. These works are in-
spired by our experience working hand-in-hand with
academic and industrial users to build ML applica-
tions [39, 48, 35, 46, 2, 38, 18, 19, 8, 36], together
with our effort of building ease.ml [3], a prototype
system that defines an end-to-end MLOps process.

Our key observation is that often MLOps challenges are bound to data management challenges — given the
aforementioned strong dependency between the quality of ML models and the quality of data, the never-ending
pursuit of understanding, measuring, and improving the quality of ML models, often hinges on understanding,
measuring, and improving the underlying data quality issues. From a technical perspective, this poses unique
challenges and opportunities. As we will see, we find it necessary to revisit decades of data quality research
that are agnostic to downstream ML models and try to understand different data quality dimensions – accuracy,
completeness, consistency, and timeliness – jointly with the downstream ML process.

In this paper, we describe four of such examples, originated from our previous research [23, 32, 21, 31].
Table 1 summarizes these examples, each of which tackles one specific problem in MLOps and poses technical
challenges of jointly analyzing data quality and downstream ML processes.

Outline In Section 2 we provide a setup for studying this topic, highlighting the importance of taking the
underlying probability distribution into account. In Sections 3-6 we revisit components of different stages of the
ease.ml system purely from a data quality perspective. Due to the nature of this paper, we avoid going into the
details of the interactions between these components or their technical details. Finally, in Section 7 we describe a
common limitation that all the components share, and motivate interesting future work in this area.

2 Machine Learning Preliminaries

In order to highlight the strong dependency between the data samples used to train or validate an ML model and
its assumed underlying probability distribution, we start by giving a short primer on ML. In this paper we restrict
ourselves on supervised learning in which, given a feature space X and a label space Y , a user is given access
to a dataset with n samples D := {(xi, yi)}i∈[n], where xi ∈ X and yi ∈ Y . Usually X ⊂ Rd, in which case
a sample is simply a d-dimensional vector, whereas Y depends on the task at hand. For a regression task one
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usually takes Y = R, whilst for a classification task on C classes one usually assumes Y = {1, 2, . . . , C}. We
restrict ourselves to classification problems.

Supervised ML aims at learning a map h : X → Y that generalizes to unseen samples based on the provided
labeled dataset D. A common assumption used to learn the mapping is that all data points in D are sampled
identically and independently (i.i.d.) from an unknown distribution p(X,Y ), where X,Y are random variables
taking values in X and Y , respectively. For a single realisation (x, y), we abbreviate p(x, y) = p(X=x,Y =y).

The goal is to choose h(·) ∈ H, whereH represents the hypothesis space, that minimizes the expected risk
with respect to the underlying probability distribution [44]. In other words, one wants to construct h∗ such that

h∗ = argmin
h∈H

EX,Y (L(h(x), y)) = argmin
h∈H

∫
X

∫
Y
L(h(x), y)p(x, y) dy dx, (1)

with L(ŷ, y) being a loss function that penalizes wrongly predicted labels ŷ. For example, L(ŷ, y) = 1(ŷ = y)
represents the 0-1 loss, commonly chosen for classification problems. Finding the optimal mapping h∗ is not
feasible in practice: (1) the underlying probability p(X,Y ) is typically unknown and it can only be approximated
using a finite number of samples, (2) even if the distribution were known, calculating the integral is intractable for
many possible choices of p(X,Y ). Therefore, in practice one performs an empirical risk minimization (ERM) by
solving ĥ = argminh∈H

1
n

∑n
i=1 L(h(xi), yi). Despite the fact that the model is learned using a finite number

of data samples, the ultimate goal is to learn a model which generalizes to any sample originating from the
underlying probability distribution, by approximating its posterior p(Y |X). Using ĥ to approximate h∗ can
run into what-is-known as “overfitting” to the training set D, which reduces the generalization property of the
mapping. However, advances in statistical learning theory managed to considerably lower the expected risk for
many real-world applications whilst avoiding overfitting [15, 52, 44]. Altogether, any aspect of data quality for
ML application development should not only be treated with respect to the dataset D or individual data points
therein, but also with respect to the underlying probability distribution the dataset D is sampled from.

Validation and Test Standard ML cookbooks suggest that the data should be represented by three disjoint
sets to train, validate, and test. The validation set accuracy is typically used to choose the best possible set of
hyper-parameters used by the model trained on the training set. The final accuracy and generalization properties
are then evaluated on the test set. Following this, we use the term validation for evaluating models in the
pre-training phase, and the term testing for evaluating models in the post-training phase.

Bayes Error Rate Given a probability distribution p(X,Y ), the lowest possible error rate achievable by any
classifier is known in the literature as the Bayes Error Rate (BER). It can be written as

R∗X,Y = EX

[
1−max

y∈Y
p(y|x)

]
, (2)

and the map hopt(x) = argmaxy∈Y p(y|x) is called the Bayes Optimal Classifier. It is important to note that,
even though hopt is the best possible classifier (that is often intractable for the reason stated above), its expected
risk might still be greater than zero, which results in the accuracy being at most 1−R∗X,Y . In Section 4, we will
outline multiple reasons and provide examples for a non-zero BER.

Concept Shift The general idea of ML described so far assumes that the probability distribution P (X,Y )
remains fixed over time, which is sometimes not the case in practice [53, 51, 17]. Any change of distribution
over time is known as a concept shift. Furthermore, it is often assumed that both the feature space X and label
space Y remain identical over a change of distribution, which could also be false in practice. A change of X or
p(X) (marginalized over Y ) is often referred to as a data drift, which can result in missing values for training or
evaluating a model. We will cover this specific aspect in Section 3. When a change in p(X) modifies p(Y |X),
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Figure 1: Illustration of the relation between Certain Answers and Certain Predictions [23]. On the right, Q1
represents a checking query, whereas Q2 is a counting query.

this is known as a real drift or a model drift, whereas when p(Y |X) stays intact it is a virtual drift. Fortunately,
virtual drifts have little to no impact on the trained ML model, assuming one managed to successfully approximate
the posterior probability distribution over the entire feature space X .

3 MLOps Task 1: Effective ML Quality Optimization
One key operation in MLOps is seeking a way to improve the quality (e.g., accuracy) of a model. Apart from
trying new architectures and models, improving the quality and quantity of the training data has been known
to be at least as important [28, 14]. Among many other approaches, data cleaning [20], the practice of fixing or
removing noisy and dirty samples, has been a well-known strategy for improving the quality of data.

MLOps Challenge When it comes to MLOps, a challenge is that not all noisy or dirty samples matter equally
to the quality of the final ML model. In other words – when “propagating” through the ML training process, noise
and uncertainty of different input samples might have vastly different effects. As a result, simply cleaning the input
data artifacts either randomly or agnostic to the ML training process might lead to a sub-optimal improvement
of the downstream ML model [28]. Since the cleaning task itself is often performed “semi-automatically” by
human annotators, with guidance from automatic tools, the goal of a successful cleaning strategy from an MLOps
perspective should be to minimize the amount of human effort. This typically leads to a partially cleaned dataset,
with the property that cleaning additional training samples would not affect the outcome of the trained model (i.e.,
the predictions and accuracy on a validation set are maintained).

A Data Quality View A principled solution to the above challenge requires a joint analysis of the impact of
incomplete and noisy data in the training set on the quality of an ML model trained over such a set. Multiple
seminal works have studied this problem, e.g., ActiveClean [27]. Inspired by these, we introduced a principled
framework called CPClean that models and analyzes such a noise propagation process together with principled
cleaning algorithms based on sequential information maximization [23].
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Our Approach: Cleaning with CPClean CPClean directly models the noise propagation — the noises and
incompleteness introduce multiple possible datasets, called possible worlds in relational database theory, and the
impact of these noises to final ML training is simply the entropy of training multiple ML models, one for each of
these possible worlds. Intuitively, the smaller the entropy, the less impactful the input noise is to the downstream
ML training process. Following this, we start by initiating all possible worlds (i.e., possible versions of the
training data after cleaning) by applying multiple well-established cleaning rules and algorithms independently
over missing feature values. CPClean then operates in multiple iterations. At each round, the framework suggests
the training data to clean that minimizes the conditional entropy of possible worlds over the partially clean dataset.
Once a training data sample is cleaned, it is replaced by its cleaned-up version in all possible worlds. At its core,
it uses a sequential information-maximization algorithm that finds an approximate solution (to this NP-Hard
problem) with theoretical guarantees [23]. Calculating such an entropy is often difficult, whereas in CPClean we
provide efficient algorithms which can calculate this term in polynomial time for a specific family of classifiers,
namely k-nearest-neighbour classifiers (kNN).

This notion of learning over incomplete data using certain predictions is inspired by research on certain
answers over incomplete data [1, 49, 5]. In a nutshell, the latter reasons about certainty or consistency of the
answer to a given input, which consists of a query and an incomplete dataset, by enumerating the results over all
possible worlds. Extending this view of data incompleteness to non-relational operator (e.g., an ML model) is a
natural yet non-trivial endeavor, and Figure 1 illustrates the connection.

Limitations Taking the downstream ML model into account for prioritizing human cleaning effort is not new.
ActiveClean [27] suggests to use information about the gradient of a fixed model to solve this task. Alternatively,
our framework relies on consistent predictions and, thus, works on an unlabeled validation set and on ML
models that are not differentiable. In [23] we use kNN as a proxy to an arbitrary classifier, given its efficient
implementation despite exponentially many possible worlds. However, it still remains to be seen how to extend
this principled framework to other types of classifiers. Moreover, combining both approaches and supporting a
labor-efficient cleaning approach for general ML models remains an open research problem.

4 MLOps Task 2: Preventing Unrealistic Expectations

In DevOps practices, new projects are typically initiated with a feasibility study, in order to evaluate and understand
the probability of success. The goal of such a study is to prevent users with unrealistic expectations from spending
a lot of of money and time on developing solutions that are doomed to fail. However, when it comes to MLOps
practices, such a feasibility study step is largely missing — we often see users with high expectations, but with a
very noisy dataset, starting an expensive training process which is almost surely doomed to fail.

MLOps Challenge One principled way to model the feasibility study problem for ML is to ask: Given an
ML task, defined by its training and validation sets, how to estimate the error that the best possible ML model
can achieve, without running expensive ML training? The answer to this question is linked to a traditional
ML problem, i.e., to estimate the Bayes error rate (also called irreducible error). It is a quantity related to
the underlying data distribution and estimating it using finite amount of data is known to be a notoriously hard
problem. Despite decades of study [10, 16, 42], providing a practical BER estimator is still an open research
problem and there are no known practical systems that can work on real-world large-scale datasets. One key
challenge to make feasibility study a practical MLOps step is to understand how to utilize decades of theoretical
studies on the BER estimation and which compromises and optimizations to perform.

Non-Zero Bayes Error and Data Quality Issues At the first glance, even understanding why the BER is
not zero for every task can be quite mysterious — if we have enough amount of data and a powerful ML model,
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Figure 2: ImageNet examples from the validation set illustrating possible reasons for a non-zero Bayes Error.
Image (#6874) on the left illustrates a non-unique label probability, image (#4463) in the middle shows multiple
classes for a fixed sample, and image (#32040) on the right is mislabeled as a “pizza”.

what would stop us from achieving perfect accuracy? The answer to this is deeply connected to data quality.
There are two classical data quality dimensions that constitute the reasons for a non-zero BER: (1) completeness
of the data, violated by an insufficient definition of either the feature space or label space, and (2) accuracy of the
data, mirrored in the amount of noisy labels. On a purely mathematical level, the reason for a non-zero BER
lies in overlapping posterior probabilities for different classes, given a realisable input feature. More intuitively,
for a given sample the label might not be unique. In Figure 2 we illustrate some real-world examples from the
validation set of ImageNet [11]. For instance, the image on the left is labeled as a golfcart (n03445924) whereas
there is a non-zero probability that the vehicle belongs to another category, for instance a tractor (n04465501) –
additional features can resolve such an issue by providing more information and thus leading to a single possible
label. Alternatively, there might in fact be multiple “true” labels for a given image. The center image shows
such an example, where the posterior of class rooster (n01514668) is equal to the posterior of the class peacock
(n01806143), despite being only labeled as a rooster in the dataset – changing the task to a multi-label problem
would resolve this issue. Finally, having noisy labels in the validation set yields another sufficient condition for
a non-zero BER. The image on the left shows such an example, where a pie is incorrectly labeled as a pizza
(n07873807).

A Data Quality View There are two main challenges in building a practical BER estimator for ML models
to characterize the impact of data quality to downstream ML models: (1) the computational requirements and
(2) the choice of hyper-parameters. Having to estimate the BER in today’s high-dimensional feature spaces
requires a large amount of data in order to give a reasonable estimate in terms of accuracy, which results in a high
computational cost. Furthermore, any practical estimator should be insensitive to different hyper-parameters, as
no information about the data or its underlying distribution is known prior to running the feasibility study.

Our Approach: ease.ml/snoopy We design a
novel BER estimation method that (1) has no hyper-
parameters to tune, as it is based on nearest-neighbor
estimators, which are non-parametric; and (2) uses
pre-trained embeddings, from public sources such as
PyTorch Hub or Tensorflow Hub1, to considerably
decrease the dimension of the feature space. The afore-
mentioned functionality of performing a feasibility study using ease.ml/snoopy is illustrated in the above
figure. For more details we refer interested readers to both the full paper [32] and the demo paper for this

1https://pytorch.org/hub and https://tfhub.dev
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component [33]. The usefulness and practicality of this novel approach is evaluated on well-studied standard ML
benchmarks through a new evaluation methodology that injects label noise of various amounts and follows the
evolution of the BER [32]. It relies on our theoretical work [34], in which we furthermore provide an in-depth
explanation for the behavior of kNN over (possibly pre-trained) feature transformations by showing a clear
trade-off between the increase of the BER and the boost in convergence speed that a transformation can yield.

Limitations The standard definition of the BER assumes that both the training and validation data are drawn
i.i.d. from the same distribution, an assumption that does not always hold in practice. Extending our work to a
setup that takes into account two different distributions for training and validation data, for instance as a direct
consequence of applying data programming or weak supervision techniques [29], offers an interesting line of
future research, together with developing even more practical BER estimators for the i.i.d. case.

5 MLOps Task 3: Rigorous Model Testing Against Overfitting

One of the major advances in running fast and robust cycles in the software development process is known as
continuous integration (CI) [12]. The core idea is to carefully define and run a set of conditions in the form of
tests that the software needs to successfully pass every time prior to being pushed into production. This ensures
the robustness of the system and prevents unexpected failures of production code even when being updated.
However, when it comes to MLOps, the traditional way of reusing the same test cases repeatedly can introduce
serious risk of overfitting, thus compromise the test result.

MLOps Challenge In order to generalize to the unknown underlying probability distribution, when training
an ML model, one has to be careful not to overfit to the (finite) training dataset. However, much less attention
has been devoted to the statistical generalization properties of the test set. Following best ML practices, the
ultimate testing phase of a new ML model should either be executed only once per test set, or has to be completely
obfuscated from the developer. Handling the test set in one way or the other ensures that no information of the
test set is leaked to the developer, hence preventing potential overfitting. Unfortunately, in ML development
environments it is often impractical to implement either of these two approaches.

A Data Quality View Adopting the idea of continuously testing and integrating ML models in productions
has two major caveats: (1) test results are inherently random, due to the nature of ML tasks and models, and (2)
revealing the outcome of a test to the developer could mislead them into overfitting towards the test set. The first
aspect can be tackled by using well-established concentration bounds known from the theory of statistics. To deal
with the second aspect, which we refer to as the timeliness property of testing data, there is an approach pioneered
by Ladder [9], together with the general area of adaptive analytics (cf. [13]), that enable multiple reuses of the
same test set with feedback to the developers. The key insight of this line of work is that the statistical power of
a fixed dataset shrinks when increasing the number of times it is reused. In other words, requiring a minimum
statistically-sound confidence in the generalization properties of a finite dataset limits the number of times that it
can be reused in practice.

Our Approach: Continuous Integration of ML Models with ease.ml/ci As part of the ease.ml
pipeline, we designed a CI engine to address both aforementioned challenges. The workflow of the system
is summarized in Figure 3. The key ingredients of our system lie in (a) the syntax and semantics of the test
conditions and how to accurately evaluate them, and (b) an optimized sample-size estimator that yields a budget of
test set re-uses before it needs to be refreshed. For a full description of the workflow as well as advanced system
optimizations deployed in our engine, we refer the reader to our initial paper [31] and the followup work [22],
which further discusses the integration into existing software development ecosystems.
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Figure 3: The workflow of ease.ml/ci, our CI/CD engine for ML models [31].

We next outline the key technical details falling under the general area of ensuring generalization properties
of finite data used to test the accuracy of a trained ML model repetitively.

Test Condition Specifications A key difference between classical CI test conditions and testing ML models
lies in the fact that the test outcome of any CI for ML engine is inherently probabilistic. Therefore, when evaluating
result of a test condition that we call a score, one has to define the desired confidence level and tolerance as an
(ε, δ) requirement. Here ε (e.g., 1%) indicates the size of the confidence interval in which the estimated score
has to lie with probability at least 1− δ (e.g., 99%). For instance, the condition n - o > 0.02 +/- 0.01
requires that the new model is at least 2 points better in accuracy than the old one, with a confidence interval of 1
point. Our system additionally supports the variable d that captures the fraction of different predictions between
the new and old model. For testing whether a test condition passes or fails one needs to distinguish two scenarios.
On one hand, if the score lies outside the confidence interval (e.g., n - o > 0.03 or n - o < 0.01),
the test immediately passes or fails. On the other hand, the outcome is ill-defined if the score lies inside the
confidence interval. Depending on the task, user can choose to allow false positive or false negative results (also
known as “type I” and “type II” errors in statistical hypothesis testing), after which all the scores lying inside the
confidence interval will be automatically rejected or accepted.

Test Set Re-Uses In the case of a non-adaptive scenario in which no information is revealed to the developer
after running the test, the least amount of samples needed to perform H evaluations with the same dataset is the
same as running a single evaluation with δ/H error probability, since the H models are independent. Therefore,
revealing any kind of information to the developer would result in a dataset of size H multiplied by the number
of samples required for one evaluation with δ/H error. However, this trivial strategy is very costly and usually
impractical. The general design of our system offers a different approach that significantly reduces the amount of
test samples needed for using the same test set multiple times. More precisely, after every commit the system
only reveals a binary pass/fail signal to the developer. Therefore, there are 2H different possible sequences of
pass/fail responses, which yields that the number of samples needed for H iterations is the same as running a
single iteration with δ/2H error probability – much smaller than the previous δ/H one. We remark that further
optimizations can be deployed by making use of the structure or low variance properties that are present in certain
test conditions, for which we refer the interested readers to the full paper [31].

Limitations The main limitation consists of the worst-case analysis which happens when the developer acts as
an adversarial player that aims to overfit towards the hidden test set. Pursuing other, less pragmatic approaches to
model the behavior of developers could enable further optimization to reduce the number of test samples needed
in this case. A second limitation lies in the lack of ability to handle concept shifts. Monitoring a concept shift
could be thought of as a similar process of CI – instead of fixing the test set and testing multiple models, one
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could fix a single model and test its generalization over multiple test sets. From that perspective, we hope that
some of the optimizations that we have derived in our work could potentially be applied to monitoring concept
shifts as well. Nevertheless, this needs further study and forms an interesting research path for the future.

6 MLOps Task 4: Efficient Continuous Quality Testing

One of the key motivations for DevOps principles in the first place is the ability to perform fast cycles and
continuously ensure the robustness of a system by quickly adapting to changes. At the same time, both are
well-known requirements from traditional software development that naturally extend to the MLOps world. One
challenge faced by many MLOps practitioners is the necessity to deal with the shift of data distributions when
models are in production. When new production data comes from a different (unknown) distribution, models
trained over previously seen data distributions might not perform well anymore.

MLOps Challenge While there has been various research on automatic domain adaption [45, 50, 54], we
identify a different challenge when presented with a collection of models, each of which could be a “staled model”
or an automatically adapted model given some domain adaption method. This scenario is quite common in many
companies — they often train distinct models on different slices of data independently (for instance one model
for each season) and automatically adapt each of these models using different methods for new data. As a result,
they often have access to a large set of models that could be deployed, hoping to know which one to use given a
fresh collection of production data (e.g., the current time period such as the current day). The challenge is, given
an unlabeled production data stream, to pick the model that performs best. From the MLOps perspective, the goal
is to minimize the amount of labels needed to acquire in order to make such a distinction.

A Data Quality View Concept shift is by its definition related to the timeliness properties of the data. The
available pre-trained models are intended to capture the changes of training data over time. Naturally, simple
rules can be applied to choose the current model if one has access to some meta information about both the
current timestamp and the pre-trained models (e.g., the current weekday and for each model the day it represents).
This problem gets particularly difficult when there are no such meta-data available. In that case, having access to
a fully labeled clean dataset would result in trivially selecting the pre-trained model that achieves the highest
accuracy. Collecting labels for a large enough test set is very costly in practice compared to simply gathering a set
of unlabeled samples though. The reason is that accurately labeling samples requires human, if not expert level,
annotators. Consequently, one wishes to robustly solve the problem of picking the best model for the current time
span with the fewest amount of labeling effort necessary and thus relying on incomplete test data with respect to
their labels.

Our Approach: ease.ml/ModelPicker Model Picker is an online model selection approach to selectively
sample instances that are informative for ranking pre-trained models [21]. Specifically, given a set of pre-trained
models and a stream of unlabeled data samples that arrive sequentially from a data source, the Model Picker
algorithm answers when to query the label of an instance, in order to pick the best model under limited labeling
budget. We conduct a rigorous theoretical analysis to show that Model Picker has no regret for adversarial streams
(e.g., non-i.i.d. data), and is effective in online prediction tasks for both adversarial and stochastic streams.
Moreover, our theoretical bounds match (up to constants) those of existing online algorithms that have access to
all the labels.

Limitations One immediate extension of Model Picker is towards a setting in which the user at once has access
to a pool of unlabeled data samples. In such a pool-based sampling case [43], one can rank the entire collection of
data samples to select the most informative example instead of scanning through the data sequentially to decide

19



whether to query a label or not. Despite the applicability of Model Picker to such a scenario where one can form
a stream by sampling i.i.d. from the pool of samples, the availability of entire data collection can be exploited to
further reduce the annotation costs with a more specialized strategy for pool-based scenarios.

7 Moving Forward

We have briefly described four of our previous works with a unified theme — all of them provide, in our
opinion, functionalities that are useful to facilitate a better MLOps process, which, on the flip side, introduce new
fundamental technical problems that require us to jointly analyze the impact of data quality issues to downstream
ML processes. When studying these technical problems, we often need to go beyond an ML-agnostic view of data
quality and, instead, need to develop new methods that simultaneously combine the two aspects of ML and data
quality. Despite the progress that we have made so far, this endeavor is still at its early stages. In the following,
we present two future directions that, in our opinion, are necessary to facilitate both MLOps as an important
functionality and ML-aware data quality as a fundamental research area.

ML-Aware Data Quality From a technical perspective, jointly understanding data quality and downstream
ML processes is both interesting and challenging. All results we discussed in this paper are arguably limited [23,
32, 21, 31] — after starting from a principled formulation of a problem, reaching fundamental computational
challenges within these principled frameworks is inevitable. We get around those by either (1) opting for simpler
proxy models for which we can derive stronger results and/or more efficient algorithms (e.g., kNN used in
ease.ml/snoopy [32] and CPClean [23]) or (2) optimizing for specific cases commonly used in practice (e.g.,
the patterns in ease.ml/ci [31] that we optimized for). To further facilitate MLOps in general, we are in dire
need for an ML-aware data quality that is not only principled, but also practical for a larger collection of scenarios
and ML models. These are all technically challenging — simply extending the methods that we developed is
unlikely to succeed. We hope that our current endeavors [23, 32, 21, 31] can serve, in some ways, as “examples
of failures” that other researchers can draw inspirations from.

Beyond Accuracy Another common limitation of our work [23, 32, 21, 31] is that they all focus on improving
the accuracy of an ML model artifact. Although this is one of the most important aspects of model quality,
recently researchers have also identified multiple interesting dimensions of model quality such as robustness,
fairness, and explainability. Even though we expect these quality dimensions to become the core of the MLOps
process in the future, how to extend functionalities that we developed for improving accuracy to these quality
dimensions is still an open question. Jointly analyzing the impact of all data-quality dimensions with respect to
more than a single metric that quantifies ML models is a large and promising research area that we believe will
provide further understanding and improvements of the MLOps process.
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Abstract

Data cleaning is widely regarded as a critical piece of machine learning (ML) applications, as data errors
can corrupt models in ways that cause the application to operate incorrectly, unfairly, or dangerously.
Traditional data cleaning focuses on quality issues of a dataset in isolation of the application using the
data—Cleaning Before ML—which can be inefficient and, counterintuitively, degrade the application
further. While recent cleaning approaches take into account signals from the ML model, such as the model
accuracy, they are still local to a specific model, and do not take into account the entire application’s
semantics and user goals. What is needed is an end-to-end application-driven approach towards Cleaning
For ML, that can leverage signals throughout the entire ML application to optimize the cleaning for
application goals and to reduce manual cleaning efforts. This paper briefly reviews recent progress in
Cleaning For ML, presents our vision of a holistic cleaning framework, and outlines new challenges that
arise when data cleaning meets ML applications.

1 Introduction

Machine learning (ML) has gained widespread adoption in real-world problems that span business [1], manufac-
turing [2], healthcare [3], agriculture [4], and more. ML relies on - and is “programmed" by - training data. Thus,
the quality of the training data is a fundamental ingredient toward robust and accurate models, and ultimately
toward useful and reliable ML-based applications [5, 6, 7]. For this reason, data and ML engineers spend a
tremendous amount of time—80% or more of a data scientist’s time [8, 9, 10]—on wrangling and cleaning the
required datasets for their ML applications.

Traditional data cleaning seeks to directly address data quality issues in a specific dataset. Given a structured
dataset that potentially contains errors, it seeks to identify and/or repair those errors to derive a cleaned dataset
that can be shared with the rest of the organization, or used by subsequent queries and applications without
worry. Since cleaning occurs prior to, and often independent of the application, these techniques typically rely on
error models to detecting duplicates or outliers, external constraint information (e.g., functional dependencies or
integrity constraints), or human assessment and input (e.g., to recommend repairs or cleaning examples).

The separation of data cleaning and the application is not optimal. For one, it is hard for users to define, or
even assess, the correct integrity constraints for the application. It is also hard to anticipate the different ways that
the cleaned dataset will later be used. Further, improving a dataset could in fact degrade the application [11].
Thus, it is often unclear how a given cleaning intervention will affect the downstream application. For instance, is
setting an outlier value to the median the best choice for a visualization dashboard, and does it even matter?
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Table 2: Model accuracy on Flights and Census with combinations of cleaned/dirty × training/test data.

Although these are not new issues in data cleaning, ML applications exacerbate these issues and introduce
new and novel cleaning challenges. Table 2 reports an illustrative experiment where we train a classifier using
AutoSklearn [12] and report its accuracy on a separate test dataset. We manually created clean and dirty versions
of the FAA Flights delay [13] and U.S. Census [5] datasets, and split each dataset using 10-fold cross-validation
into training and test sets. We find that whether or not cleaning is beneficial heavily depends on the application.
For the Flights dataset, cleaned training data improves the model accuracy on both clean and dirty test data.
However, cleaning the Census training data actually degrades the model accuracy on dirty data. In fact, training
and testing on dirty data is as accurate as training and testing on clean data, yet requires no effort.

This experiment provides evidence that cleaning is not a local “one-and-done” process. In fact, the appro-
priate cleaning intervention is dependent on the type of error as well as the rest of the application, and
should be approached from this perspective. Consequently, all of the complexities inherent in modern ML
applications become complexities that affect how data is cleaned. In this paper, we argue that data cleaning needs
to take an end-to-end application-driven approach that integrates cleaning throughout the ML application.

1.1 Data Cleaning in ML Applications

Affinity Alerts

Churn PromotionIngest & 
Validate

Prepare Develop Deploy

User profiles

Purchasing

Browsing

Figure 1: Typical workflow for ML applications

ML applications can be modeled as complex workflows
that span an entire organization’s data management, from
data ingest to publishing data products to end users. Con-
sider an e-commerce company that identifies users for pro-
motional discounts (Figure 1). The data management team
ingests user profile data from a third-party data source,
and combines it with internal customer purchasing and
browsing histories. The data is prepared by canonicaliz-
ing the user ids, extracting product information from the
browsed pages, and ensuring that the expected attributes
appear in each data record. Separate data science teams
develop two models: the first estimates the likelihood that a given user will leave the service (churn), and the
second estimates a user’s preference for different products (affinity). These models are used in the promotion
application to decide whether or not to show a promotion to an end-user (user in color), as well as the marketing
team’s internal dashboard and alert system that monitors the churn rate over time. Different teams (colored boxes)
manage different parts of the workflow, and different engineers may monitor intermediate data at different points
in the workflow (dashed lines and gray users).
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1.1.1 Cleaning within individual phases

The e-commerce application highlights the three prototypical phases in an ML application [14, 6]: the Prepare
phase focuses on data ingestion and preparation; the Develop phase focuses on ML model development, training,
and evaluation; and the Deploy phase uses the models in the production-ready application. Each high-level phase
involves complex, multi-step data transformations and processing, and the steps are stitched together in a large
workflow that often spans multiple teams within an organization. Each phase, as well as the ML application as a
whole, poses novel challenges for data cleaning.

The Prepare phase typically focuses on restructuring the input data so that they conform to the expected
“syntax” of the models. This can involve data extraction and wrangling from text documents [15], image resizing
and reshaping [16], attribute type and domain checks [17, 6], as well as simple constraints that any downstream
application will expect [18]. There has also been a large literature on cleaning approaches that seek to address
“semantic errors” [19, 20, 21, 22, 23, 24, 25, 26, 13]. However, most approaches do not take the subsequent
workflow into account, which the above experiment showed can lead to wasted effort or even worse application
outcomes.

The Develop phase focuses on model development, training, and evaluation. Although the ML community
has developed a multitude of robust model designs and training techniques [27], it is often better to directly
address errors and biases in the data [5]. Cleaning in this phase can leverage the ML models and validation data
to direct cleaning efforts to most improve model quality. In contrast to well-defined constraints that are available
during the Prepare phase, quality for ML models is more challenging to define. Using test accuracy alone is
susceptible to overfitting, and other factors such as model generalization must be taken into account but are hard
to quantify. Further, ML models are often trained on nonrelational data, such as images, natural language, and
unstructured documents, which require new types of cleaning interventions.

In the Deploy phase, trained models go into production to directly serve recommendations to end users,
or as part of data analytics that power e.g., dashboards or monitoring systems. Rather than make cleaning
decisions based on model quality, cleaning in this phase can leverage the ML application’s user-facing results to
better identify erroneous input data and save the effort of cleaning data that does not affect the output. However,
cleaning data is harder as it may not be clear what upstream dataset (and which records) to clean, how intermediate
transformations in the workflow might affect possible cleaning interventions, nor how to translate error signals
into actionable interventions. Further, external signals in this phase may override or contradict cleaning decisions
made earlier in the workflow.

1.1.2 Cleaning in ML Applications

Stepping back, the goal of data cleaning is ultimately to improve the ML application. This perspective presents
three main challenges. First, the notion of data quality is more varied and often unclear. Even in traditional data
cleaning, each phase has different goals: data preparation enforces syntactic constraints, model development
seeks to improve model quality, while deployment seeks to improve the ML application. Quality will often rely
on a user’s qualitative judgments based on application-level outputs. For instance, an analyst that examines a
dashboard is well positioned to spot anomalies in the visualizations. On the other hand, human judgments may
not always be trustworthy nor correct, and attention is a limited resource.

Second, data management, cleaning, and error detection is fragmented across different roles and different parts
of the workflow. For instance, a data management team may be responsible for data ingestion and preparation,
data scientists design and train models, ML engineers then productionize and publish models that can be deployed
by application developers. At the same time, the appropriate cleaning intervention (if any is even needed) depends
on the nature of the error and the model [28, 29, 30] (and application). Thus, domain expertise is localized,
visibility into the full workflow is limited, yet their cleaning decisions are conducted and felt globally.
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Third, ML data is both complex and dynamic. Relational, multimedia, and natural language data all require
different types of interventions. ML models are sensitive to population-level errors that can bias the model.
Further, different datasets play different roles throughout the workflow. Ingested data is preprocessed into training
data, which is distinct from test and inference data, and they are both distinct from data used for general analytics.
Finally, data constantly changes over time. For instance, inference data today may become test or training data
tomorrow. The population-level dataset statistics, data schemas, and types of errors can change over time.

Ultimately, data quality management in ML applications requires the ability to make informed cleaning
decisions at different parts of the ML application, for different types of data and errors, and for different purposes
as the data, models, and workflow evolves. This requires coordination across the workflow so that cleaning
decisions can account for downstream needs, while downstream steps can help inform upstream cleaning.

1.2 Looking Forward

To this end, we propose an end-to-end application-driven approach toward cleaning. Specifically, we envision a
holistic framework that connects involved stakeholders of the entire ML application’s workflow. This framework
manages the provenance of cleaning operations throughout the ML application. The provenance enables
stakeholders to provide signals, cleaning suggestions, and expertise at any part of the workflow. Then, this
feedback can be leveraged for cleaning in the rest of the workflow. The framework should also
• Make it possible to change/retract cleaning decisions of early phases based on feedback obtained in later stages

of the workflow;
• Expose an abstract view of cleaning operations so that feedback on data quality and prior cleaning operations

will be usable across all phases. Feedback on data quality will include business rules, human annotations, and
the application’s internal and intrinsic scores;

• Enable the extension and variation of the cleanliness definition in accordance with the use case at hand. It will
allow for diverse error types, the weighting of errors, and error types based on importance.

Paper Scope: There are two forms of data cleaning: repairing errors at the instance level (e.g., find and fix
erroneous records or values), and to fix population-level errors that can arise from distributional shift, biased
sampling, or record errors. This paper primarily focuses on the former notion, and we briefly discuss population-
level errors in Section 4.
In the rest of our paper, we first review the state-of-the-art in data cleaning (Section 2) and identify potential
building blocks of our vision. Then, we layout our holistic cleaning approach and its desired component in detail.
Finally, we shed light on how this vision would also address new challenges that arise in ML applications.

2 Data Cleaning and ML

This section introduces and distinguishes traditional data cleaning techniques from those designed for ML.
Specifically, cleaning before ML approaches perform data cleaning independently of the downstream ML
applications, whereas cleaning for ML approaches explicitly dependent on them.

2.1 Cleaning before ML

Traditional data cleaning was performed during data ingestion as part of an Extract-Transform-Load (ETL)
workflow. Administrators perform data wrangling [15, 31] and transformation [32] so that the data conforms
syntactically (e.g., the appropriate schema, data types) to the application requirements. They further specify
constraints (e.g., domain constraints, functional dependency, distribution) for all database instances. The database
system enforces these constraints and possibly repairs the database to address any violations.
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ML applications often combine a wide diversity of datasets, and it can be challenging for an administrator
to define constraints and repair logic manually. Thus, a number of data cleaning techniques use data-driven
approaches to help detect as well as repair datasets. The following are termed Cleaning Before ML techniques
because they are primarily applied to a training dataset before model development and training, although some
techniques may also be used to clean test data during model inference. These techniques make strong assumptions
about the impact of their repairs on the downstream model and application performance.

Non-learning Approaches. Data cleaning systems for error detection and/or error repair are non-learning if they
directly rely on user-provided rules or specifications (which we generically term cleaning signals). For instance,
pattern-based systems [33, 15] leverage user-specified regular expressions or patterns to identify syntactic text
errors, while rule-based systems [20, 34] rely on user-specified functional dependencies to identify values that
violate the constraints. Outlier detection systems [35, 36] are tuned to specific data distributions and thresholds to
identify outlier values. Finally, systems may leverage external data such as a knowledge base [19] to validate the
instances of a dataset. For instance, if the knowledge base contains address data, KATARA can leverage it to
identify mismappings between cities and ZIP codes of a given dataset.

In the context of ML applications, cleaning systems [17, 6] help developers validate that a training set
exhibits expected properties. For instance, Deequ [17] lets users declaratively write constraints, such as based on
uniqueness, completeness, and value distribution, and compiles them into “data unit-tests” that can be executed at
scale. Many production ML platforms [6, 37, 38] similarly validate that training data contains expected attributes
in its schema, and that data distributions have not drifted beyond a threshold.

Error repair is traditionally posed as a constraint satisfaction problem. Given a set of data constraints, identify
the minimum number of interventions so that there are no constraint violations in the dataset. Variations of
this minimality principle may include additional objectives (e.g., statistical distortion [39]), or allow a small
number of violations. The above approaches lean heavily on the user or administrator to provide accurate and
useful cleaning signals, which may not always be feasible. In addition, each approach is designed for a specific
type of error, and thus exhibits low recall in practice. ML applications may need to combine many cleaning
systems to address different types of errors, or to make use of different types of cleaning signals. We next see
how learning-based cleaning seeks to address some of these limitations.

Learning-based Approaches. Learning-based cleaning leverages ML to identify and repair errors. These fall
under two main directions. Ensembling approaches combine existing cleaning systems into an ensemble and use
learning to decide which to use. The alternative is to treat detection and repair as ML problems that respectively
predict whether a record is erroneous, and what the correct value for an erroneous attribute value should be.

• Error Detection: Metadata-Driven Error Detection [24] and Raha [25] are examples of the ensembling
approach, while ED2 [26], DataWig [40, 41], HoloDetect [22], and Picket [42]. The latter approaches model
each record or cell, along with any cleaning signals, as features used to classify it as erroneous or clean.
Naturally, learning-based approaches rely on pairs of erroneous and clean records as training examples, and
semi-supervised strategies avoid the need to manually provide examples.

For instance, ED2 [26] uses active learning to acquire clean/erroneous labels for records that the model is
uncertain about, while Raha [25] further clusters records by similarity and acquires labels on a per-cluster
basis. HoloDetect [22] uses data augmentation by learning observed error patterns and applying the patterns to
generate synthetic errors. Picket [42] does not rely on any external labels and instead uses self-supervision to
learn an error detection model that can be applied during training or testing.

• Error Repair: Repair systems such as Baran [13] and HoloClean [21] combine different types of cleaning
signals to more accurately repair errors. Baran [13] is an ensembling approach across a library of error repair
strategies, and uses active learning to train a model that predicts which repair strategy to use. The library of
strategies is extensible, and can include additional predictive models that propose fixes. Furthermore, it uses
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Table 3: Taxonomy of recent cleaning for ML systems.

System Intervention Type Semantics Signals Model Type
ActiveClean Manual record repair Model Model Gradient Convex

CPClean Manual value imputation Model Prediction Certainties Nearest Neighbor
BoostClean Cleaning program Blackbox Model Validation Any
AlphaClean Cleaning program Blackbox Custom Objective Any

AutoSklearn ML pipeline Blackbox Model Validation Any
Rain Record repairs Relational Workflow User Complaint Differentiable

transfer learning and label propagation to reduce the required amount of user labels. HoloClean [21] combines
integrity constraints, external data, and statistical profiles into a single factor graph model, and uses the model
to predict the appropriate value for identified errors.

Stepping Back. Traditional data cleaning systems are designed around specific types of cleaning signals, whereas
learning-based approaches use ensembles or models to combine a variety of signals and achieve higher recall.
Weakly semi-supervised techniques such as active learning, label propagation, data augmentation, and transfer
learning help reduce the degree of user involvement. However, these approaches clean a dataset in isolation. We
next describe cleaning systems designed specifically in the context of ML applications.

2.2 Data Cleaning for ML

Data cleaning fundamentally relies on external cleaning signals (constraints, patterns, examples, etc.) to detect and
repair data errors. In contrast to the explicitly user-specified signals described in the previous subsection, cleaning
for ML approaches leverage the downstream model or application to define cleaning signals that incorporate
higher-level semantics. This subsection describes five recent cleaning for ML systems developed in the data
management community. Our rationale for this selection is that these approaches consider the semantics of the ML
task and a subset of its emitted signals to deploy cleaning routines on the training dataset. Thus, we distinguish
them along four dimensions (Table 3): intervention type, semantics, signals, and model type. The intervention
type corresponds to whether the goal is to directly repair a dataset, or to generate a cleaning program that can be
applied to future datasets as well. The semantics describe whether the approach relies on the downstream model
or application semantics, or treats it as a black box. The signals categorize the type of cleaning signal(s) that are
used. The model type describes which group of ML models is supported by the corresponding approach.

ActiveClean. ActiveClean [43] is a data cleaning system for models with convex loss functions. It treats a model
trained on a dirty training set as a suboptimal point along the loss function over the (unknown) clean training set.
It then treats cleaning as a stochastic gradient descent (SGD) problem, where in each step, the system samples
and asks the user to clean records that are expected to shift the model along the steepest gradient. The use of
convex models allows the system to derive convergence guarantees. ActiveClean simply chooses which training
records to repair next, but relies on the user to perform the actual repair. Its cleaning signals combine the user’s
repairs and the model’s loss function. Finally, it relies on the model’s convexity to guarantee convergence.

CPClean. CPClean [44] incrementally cleans a training set until it is certain that no more repairs can possibly
change the model predictions. To do so, it proposes the concept of Certain Predictions (CP) for nearest neighbor
classifiers [44]. A test record is certainly predicted if all classifiers trained on all possible repairs of an incomplete
training set would yield the same prediction. CPClean develops an efficient counting query to compute the
number of possible models that support a specific classification of a given test point, and uses this to quantify the
impact of repairing a given error or missing value. Thus, given a validation set, CPClean seeks to only repair the
training records needed so that all validation records can be certainly predicted. CPClean uses the validation set
and the counting query as the primary cleaning signals, but relies on the user to perform the actual repairs. It is
specially designed for nearest neighbor models, and leverages their robustness to small training perturbations.
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BoostClean and AlphaClean. BoostClean [45] treats cleaning as a boosting problem, and outputs a cleaning
program that can be applied to training or test records. It is specialized to conditional value errors, where an error
can be specified using a simple predicate. Given a predefined library of parameterized detection and cleaning
functions, it automatically selects a sequence of cleaning operations that will maximize the model’s accuracy on a
validation set (or the training set). In each step, BoostClean uses statistical boosting to choose a pair of detection
and cleaning functions and configures their parameters, and applies it to the training set to derive a new model.
BoostClean diverges from prior cleaning systems in that users do not need to manually repair records. Instead,
users simply specify appropriate detection and repair functions for the domain. BoostClean leverages the model’s
training or validation accuracy as the primary cleaning signal.

AlphaClean [46] is a similar system that generates a sequence of cleaning operations from a library of
parameterized cleaning frameworks, including existing systems such as dBoost [47] and HoloClean [21]. In
contrast to boosting, it uses parallelized tree search and learns pruning heuristics to reduce the search space. Since
AlphaClean uses a generic search procedure, the user is free to define their own objective function as the cleaning
signal (e.g., the model accuracy, the number of constraint violations, a combination of the two).

AutoSklearn. AutoSklearn [12] similarly uses the model validation accuracy as the primary cleaning signal to
generate an end-to-end ML pipeline. The pipeline includes preprocessing operations, hyperparameter selection,
and model training. To restrict the search space, the preprocessors are limited to value imputation based on mean,
median, or most-frequent values, and are either applied to the whole dataset or not at all (e.g., no conditional
repairs). Further, AutoSklearn focuses on repairs and does not perform error detection.

Rain. Rain [48] seeks to go beyond an individual model and considers the downstream workflow. It executes
relational workflows consisting of relational operators and inferences made by a differentiable model. For
instance, the query “count number of users that are likely to churn” uses a predicate that filters by predicted
churn, which is estimated by a linear regression model. The user can annotate errors (termed “complaints”) in
the outputs or intermediate results. For instance, the user may specify that the total price in January should be
40 instead of 100, or all values in the output are too low. Rain then ranks erroneous records (and their repairs)
in the training dataset based on how much it will resolve the complaints. To do so, Rain models the workflow
as a differentiable function over the model prediction probabilities. The function can leverage the influence
functions framework [49] to estimate the gradient of the query result with respect to epsilon changes to the
training dataset—the removal of a training record or the addition of a new (cleaned) record. Their experiments
show that a single annotation of an aggregate result can more effectively identify training errors than manually
labeling hundreds of model mispredictions. By supporting complaints over workflow outputs, it empowers users
to specify constraints within the context of the application’s downstream semantics.

Cleaning in the ML Community. The ML community has long studied methods to address or circumvent data
errors in learning. A common approach [36] uses a model to classify training records as erroneous—based
on model uncertainty, voting, clustering, etc—but is primarily limited to deleting records or repairing labels.
Although some errors provably require data cleaning [28], some errors can be good—training with noise is a form
of regularization [50], and is the basis of data augmentation methods [51]. Robust estimation methods re-weigh,
filter, and otherwise adapt the estimation procedure to be insensitive to outlier training data, including worst-case
outliers [52, 53]. For instance, models that perform local averaging such as weighted and interpolated nearest
neighbors are naturally robust to noisy training data [54]. Models may be certified as robust to adversarial test
errors [55, 56, 57]. The above techniques are susceptible to systematic errors. Although they can be explicitly
modeled [58], this requires considerable modeling expertise, and it may not be clear what errors are even present
to model. To this end, open source libraries such as Dabl [59], Dataprep [60], and Facets [7] combine visualization
and common detection methods to aid data preparation and cleaning.

Stepping Back. The database community has made significant contributions toward cleaning approaches that
can be deployed in the Develop and Deploy phases. State-of-the-art cleaning for ML systems [43, 45, 44, 46, 44]
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leverage application-specific signals to guide human cleaning or to choose cleaning operations. Some of them
are restricted to cleaning training data and cannot generalize to unseen data [43, 44]. Debugging systems, such
as Rain, consider the output of an entire workflow to trace-back training instances that lead to wrong results. A
recurrent problem is that each proposed solution only covers a specific aspect of cleaning, such as specific error
types, dataset components, or ML models. As a result, a successful attempt at cleaning a dataset for deployment
forces analysts and scientists to use multiple disconnected approaches.

3 Cleaning for ML Applications

The Introduction highlighted three major challenges toward data cleaning for ML applications. First, the definition
of data quality and what a data error even means is not only user-defined, but is also model- and application-
specific. This makes these definitions difficult to foresee and articulate during the model design and data ingestion
phase. Second, domain knowledge and expertise is fragmented across the different users—developers, ML experts,
IT staff, and end users—that each have limited visibility into the ML application’s workflow (or workflow for
short). Third, ML applications are complex, dynamic, and heterogeneous. They combine and process relational
and non-relational data streams whose properties may continuously change over time.

As a step toward tackling these challenges, this section describes a research agenda that extends data cleaning
to encompass the needs of ML applications. We first center the agenda around a high-level architecture, and then
highlight a number of promising research challenges in each of the architectural components.

3.1 Architecture

Affinity Alerts
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Validate

Prepare Develop Deploy

User profiles

Purchasing
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Signal Collector

Cleaning Optimizers

ProvenanceCleaning 
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Figure 2: Envisioned Holistic Cleaning Framework.

Data cleaning is fundamentally human-centered. Humans
design the ML application with specific goals in mind;
humans build, operate, and maintain each component of
the application’s workflow; and humans use the resulting
application to accomplish their tasks. Thus, it is crucial to
“bring cleaning to the user.” At any point in the workflow,
it should be easy to inspect the data that flows through,
and provide data quality signals that help to make error
detection and repair decisions.

We envision data cleaning as an instrumentation layer
that sits atop the entire application workflow (Figure 2).
Its purpose is to use elicit cleaning signals throughout the
workflow to decide which data to clean, how to improve
data quality, and where in the workflow to instrument which
cleaning operations. The dashed lines denote workflow
steps that serve as inspection points for users and provide
cleaning signals to the Signal Collector. The inspected data
can first be processed and transformed (e.g., by a script or query) before being rendered to the user (e.g., as a
table, interactive visualization). The key characteristic of any data interface is that it can be annotated with data
errors that the user sees, expected trends or data properties, or any other signal that can aid the cleaning system.
These signals are collected and routed to Cleaning Optimizers that make local or global cleaning decisions
about what cleaning operations to install or test. The Instrumenter then augments the workflow with cleaning
operations (red squares), and monitors their effectiveness over time. The monitoring signals serve as additional
feedback to improve the optimizers. The user input-optimize-clean loop is a classic approach toward user-centered
data cleaning [62]. The key distinction of the proposed design is that this loop permeates throughout the ML
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application. Data that is deeper in the workflow encodes increasingly more application semantics and qualitatively
changes the scope and type of cleaning signals that users can provide. For instance, signals collected during the
Develop phase can leverage model-specific statistics to quantify data quality, while signals in the Deploy phase,
such as data presented to the end user, encode utility toward the user’s task. This parallels visual analytics, which
transforms, filters, and summarizes data as visualizations to surface unanticipated trends and patterns that are not
visible, nor easily expressible, in the raw data.

3.2 Signal Collection

Cleaning signals are external information that initiate and inform data cleaning in the workflow. Existing cleaning
approaches assume a single cleaning signal is collected at a specific point in the workflow, and is coupled with
the cleaning algorithm (Section 2.2). In contrast, we envision a framework that can request and collect cleaning
signals from any point in the workflow at varying levels of applicaton abstractions.

3.2.1 Signal Types

In general, a cleaning signal is any information that can aid data cleaning. Signals can be provided by the users
(e.g., through a visualization), derived from the application (e.g., model accuracy), or programmatically generated
(e.g., an alert, or constraint violation). We initially propose to support the four types of signals—constraints, rules,
annotations, and objectives—commonly used in existing cleaning systems.

Integrity constraints [20], such as functional dependencies, denial constraints, can be specified for any input,
intermediate, or output dataset in the workflow. They can be used directly, or be used to trigger alert signals
when they detect violations. Similarly, ML-specific constraints may specify e.g., fairness [63], robustness, or
generalization properties. Constraints may be user-specified or automatically generated.

Rules include predicates to remove records or ETL transformations, and may trigger signals when they fail.
Manual annotations of a dataset specify erroneous records or values. For instance, a user may annotate that a
value should be 50 instead of 30, or provide a label for a training record. Annotations can also be automatically
computed in the workflow through application-specific scores, such as the model validation score [45, 12, 46],
prediction certainty [44], and gradient information [43]. Finally, the cleaning system can directly listen on the
actual application objective, such as classification accuracy.

3.2.2 Eliciting Signals

To elicit the various user and application-specific signals from the ML workflow, it must be possible for the
cleaning system to inspect workflow data. This leads to two main questions:

Where to elicit? When used as part of data debugging or engineering, there are natural points in the workflow
where users are accustomed to provide signals. These typically include data ingestion, before and after model
training, and the application output. However, there are likely other useful points to assess data quality to detect
potential errors, or to elicit signals to aid later cleaning. For instance, it is often difficult to coordinate across
organizations, thus collecting signals at steps that cross organizational boundaries may be prudent.

A major research question is what signals should be elicited during data cleaning. Once a user has reported
a data error (say, in the application output), where should additional signals be collected that can improve the
cleaning algorithms? For instance, the algorithm may generate candidate repairs and ask the user to label them; or
ask users to annotate other application outputs to choose between possible repairs; or ask for integrity constraints
to narrow a search space. This is also an opportunity to automatically collect signals (e.g., model accuracies)
without any user effort.

32



What elicitation interfaces? Users should be able to use interfaces to interactively e.g., confirm or highlight
errors in the data [26, 25, 13], provide example records [13, 32], and specify constraints or rules [20]. Assuming
that workflow data is structured, an initial approach is to provide a library of general data presentation options,
such as automatic data visualization [64, 65], spreadsheet interfaces, or a scripting environment. Further, systems
can interactively explain error causes and how they are detected/corrected [66, 67, 68, 69, 70, 71]. Here, one
research opportunity is to design recommender systems that propose the best setup from a large number of
potential visualization methods based on previous user interaction and metadata. Collecting signals at these
various phases enables to clean training, test, and deployment data with the same cleaning goals in mind to avoid
distributional gaps.

3.3 Cleaning Optimizers

Signals represent the application or user’s expectations about data quality, and can be both used to initiate data
cleaning or improve cleaning quality. For instance, a user annotation may notice an output error, which triggers
the need to cleaning a training dataset; an integrity constraint on the training data helps prune the algorithm’s
search space since it is already enforced. The purpose of the cleaning optimizer is to combine different signals
and propose a pipeline of cleaning operations that detect and repair errors in a dataset, and where to apply them.
Each cleaning optimizer may be an existing signal-specific cleaning system (such as those in Section 2) or new
“holistic” optimizers that combine disparate signals. Each optimizer should specify the subset of the workflow
it can be responsible for (e.g., model training, data preparation, relational sub-workflows), the signal types it
requests, and crucially, the types of interventions it accounts for. We distinguish optimizers along two dimensions:
whether the optimizer is local to a phase or operator in the workflow, or takes a subset or whole workflow into
account; and whether the optimizer treats the workflow as a white or black box.

3.3.1 A “Holistic” Cleaning Optimizer

An open question is to what extent different signals throughout the workflow can be integrated to holistically clean
data in the workflow. The different signal types naturally express hard constraints, soft constraints, and objective
functions, thus may be amenable toward translating into a singular optimization problem. Prior works such as
HoloClean [21] and Baran [13] have shown how this is possible using factor graphs and ensembles for specific
combinations of signals. Many existing works focus on specific classes of data errors, signals, and workflows,
and a major challenge is how to support a wider range of signal types, interventions, different collection points,
and incorporating the workflow semantics.

3.3.2 Workflow-independent vs -dependent Optimizers

A workflow-independent optimizer is specific to a single workflow operator and does not use any workflow
semantics. Most existing systems that clean [21, 20], wrangle [15, 20, 33], or transform [32] a specific dataset are
workflow-independent. In contrast, a workflow-dependent optimizer cleans data at a given point in the workflow
by using signals (e.g., model accuracy, user annotations) from downstream and/or upstream. Although recent
cleaning systems incorporate downstream signals [45, 46, 44, 12], it is an open question how to integrate multiple
cleaning signals collected from different points in the workflow and optimize in a workflow-dependent manner.

3.3.3 White vs Black Box

Workflow-dependent optimizers combine workflow semantics and cleaning signals. For instance, if a user
specifies errors in the application output, and the system wishes to clean ingested data during the Prepare phase, it
needs to consider all of the workflow’s operator semantics to assess how different cleaning decisions would affect
the output. Optimizers can be either implemented as a white or black-box approach.
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In white-box approaches, the optimizer has access to signals of every single transformation in the ML
pipeline, and leverages well-defined workflow semantics (e.g., in relational workflows) to encode the pipeline
logic into constraints and/or an optimization objective. For instance, Rain encodes the SQL query as a relaxed
provenance polynomial, and can evaluate custom record-level interventions. A white-box-specific optimization
is to reduce the overhead of retraining by avoiding repetitive computation through partial retraining [72, 73] or
caching [74, 75].

In contrast, black-box approaches ignore intermediate results and simply reason about the workflow input
and output. They may translate cleaning signals into optimization constraints and objectives, and use generic
black-box optimization techniques such as meta-learning techniques or Bayesian optimization to search the
space of cleaning interventions. Existing meta-learning approaches that ensemble many cleaning algorithms
(e.g., Raha [25], Baran [13]) only encode dataset properties in their feature vector and ignore the semantics
of the application workflow. BOExplain [76] treats workflow cleaning as a blackbox hyperparameter search
problem. Ultimately, the key challenge is to define an effective but concise search space, and to create a workflow
representation that facilitates meta learning for ML-dependent cleaning.

White-box approaches can be more accurate and efficient, but do not readily support custom logic or user-
defined functions. On the other hand, black-box approaches can be applied to any ML workflow, but can be very
inefficient. A potential middle-ground is to approximate the workflow using heuristics, or making assumptions
about the workflow operator semantics. For instance, the system might approximate an operator using an ML
model [44], or symbolically execute the operator to derive a logical expression [77, 78]. Another interesting
direction is to trace back the error causes to the corresponding workflow components [66].

3.4 Scope Refinement

When there are many data sources, datasets, and annotations, a fundamentally challenging problem is knowing
which datasets are the candidates that may be responsible for the annotations. We call this the Scope of the
annotations. There are several promising directions for scope refinement.

One approach to identify the datasets to clean is to assess their potential impact on the error annotations,
either directly using sensitivity analysis [48], or using a framework akin to certain predictions [44]. Assuming
that the dataset to clean is known, one way to refine scope is to use feature [79] or instance selection [80] to
identify the most important columns and rows in the training data. ActiveClean and CPClean follow the instance
selection approach [43, 44]. A third direction is to narrow the scope to the provenance of the annotated data [48].
However, this can still be a large set of records. For instance, the end-user-facing output of the ML applications
trivially depends on all of the datasets (and a subset of their records).

Research opportunities in this field are to combine workflow-dependent optimization with scope refining
strategies. The optimizer could generate different cleaning pipelines for different scopes of the data. For example,
it could generate a set of cleaning operations based on functional dependencies for categorical data and use a
Gaussian outlier detection technique and use a “replace with median value” as the default cleaning operation for
numerical features. Some cleaning pipelines might be more general and cover a larger scope of the dataset leading
to unnecessary cleaning efforts but instrumenting individual pipelines, which are simpler, for specific subsets of
the dataset might introduce an unnecessary overhead. Automatically identifying the best scope refinement and the
best trade-off for a dataset at hand is an interesting research problem. Being able to distinguish different scopes
of a dataset also enables to prioritize cleaning efforts for the most significant scopes. Thus, one can decide to
instrument cleaning on dataset subsets that are small but significant to speed-up real-time model and configuration
testing in the Develop phase.
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3.5 Instrumenter

Once the cleaning optimizers have chosen promising interventions, they need to be instrumented into the workflow.
Although most systems support dynamic instrumentation, it alone is not sufficient, as the workflow and the
data properties may differ from the assumptions made during optimization, and can also change over time. In
real-world applications, data constantly changes over time [81, 34, 82]. The challenge is to identify when the
distribution shifted too much so that any of the installed cleaning rules do not apply anymore. Thus, it is crucial
to provide assessment and monitoring functionalities to aid the engineers to manage the data cleaning process.

One can investigate how to backtest or speculatively test interventions before installing them. Another
interesting direction is to define an algorithm that periodically or continuously assesses the effectiveness of
past cleaning interventions. Ultimately, the monitoring approach helps the data cleaning “team” to manage the
disparate cleaning signals collected throughout the workflow to understand which are reliable, are consistent with
each other, and which are used for a given intervention. A practical challenge here is to efficiently keep track of
instrumented cleaning operations and data changes. Existing approaches that ensemble cleaning operators have to
keep track of thousands of operators [25, 13] on each dataset. One could think of index-based solutions to scale
the trace-back requests for large datasets or develop models that learn and predict the relationships.

4 New Challenges of Cleaning for ML

The previous section outlined our vision of holistic and flexible data cleaning for ML applications, and research
opportunities related to the different components.

Data cleaning systems, including the proposed system in this paper, have historically been designed for
structured, e.g., relational, and persistent datasets. Within this scope, they have focused on record and value-level
errors, and data quality metrics are designed for these errors in mind, e.g., number of constraint violations,
outlier-ness of a value. However, there are a number of challenges that go beyond the scope of our proposed
vision. The type of input data used in ML workflows goes beyond structured data and can become less tangible
through entanglement of models.

The notion of data quality is also much broader in scope for ML applications, and includes population-level
errors, as well as social and cultural norms. This subsection describes these novel challenges and provides
pointers for further consideration.

Unstructured data. ML approaches are especially successful for unstructured data, such as images, sound,
and video. Traditional data management cleaning approaches and their cleaning operations focus on numeric,
categorical, and textual data [26, 25, 13, 21, 22]. The proliferation of generative models offers the potential to
similarly repair unstructured data by transforming e.g., images in semantically meaningful ways.

Model entanglement. This phenomenon arises when a model (or a component in general) compensates for errors
in an upstream model [11, 83]. In this setting, the models are entangled, and improving any model individually
will degrade the end-to-end performance. In general, hidden dependencies across different parts of the application
can severely complicate data cleaning, and necessitates the need to incorporate downstream signals and workflow
logic into the cleaning process. Identifying and disassociating entangled components is another important problem
to tackle.

Population-level Errors: This paper focused on record-level errors, however population-level errors also impact
ML applications today. These may be due to biased sampling, or systematic errors from data generating processes
or preprocessing logic, and manifest as biased models and biased predictions. In these contexts, even cleaning
all of the records in a dataset may not fully address the distributional biases. These errors can affect the ML
application in not just biased predictions—differences between training and test distributions, or distribution drift
over time can all introduce application-level issues.
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Although there is work in detecting distributional shifts in a dataset [84, 85], accounting for group-wise errors
(and interventions) the downstream implications is considerably more challenging than doing so for an individual
record due to interaction effects [86]. Furthermore, continuing the research on pre-processing techniques [63] to
avoid bias and inspecting pipelines for violating data patterns [87] is a promising direction to explore.

Social/cultural norms: Another new generation of errors are violations against social and cultural norms.
For instance, one should avoid training on text, image, sound, or video corpora that contain hate speech [7],
misinformation [88], or privacy violations [89, 90]. While some of these issues could be identified with lists of
forbidden words, many might not be initially obvious to a human. The problems might appear in the downstream
application in a more tangible form, which motivates to design algorithms that can trace the results back to
data. These re-emerging quality dimensions are also changing over time. A potential direction is to design
active-learning systems that support users to continuously define these norms.

Robustness Prediction: An increasingly important field in ML is safety [42]. Out-of-distribution [91] or
adversarial test records can cause the ML model to make wrong predictions. ML-driven cleaning has the potential
to help tackle these issues. Although individual value errors may be hard to detect, identifying erroneous records
with respect to the model or application may be possible.

Clever Hans. The ML pipeline is expected to work well (to generalize) on new unseen data—training data used
to update models, data used to make predictions, or any other data used in the application. Guiding the cleaning
efforts with signals, such as validation score or uncertainty, might mislead the cleaning efforts through spurious
correlations (Clever Hans phenomenon [92]). While in the Develop phase the cleaning might lead to higher
accuracy, because it used the spurious correlations, we might end up with lower performance because these
correlations are not prevalent. E.g., Lapuschkin et al. [92] found that their trained ML model used the source
tag horse_photo_archive.de to classify images as horses instead of actual horse characteristics, such as its tail or
its head. While the model performed very well on that dataset, it clearly missed the goal of capturing the visual
features of a horse. Cleaning that is guided by accuracy might aggravate this problem. To prevent Clever Hans
phenomena, it is not enough to have a feedback loop from the Deploy phase. A promising direction is to make
model explanation an integral part of data cleaning.
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Abstract

Production ML is more than writing the code for the trainer. It requires processes and tooling that
enable a larger team to share, track, analyze, and monitor not only the code for ML but also the artifacts
(Datasets, Models, ...) that are manipulated and generated in these production ML pipelines.

In this paper we describe the tools we developed at Google for the analysis and validation of two
of the most important types of artifacts: Datasets and Models. These tools are currently deployed in
production at Google and other large organizations. Our approach is heavily inspired by well-known
principles of data-management systems. Ultimately, we want to enable users to trust their data and
models, and understand how data properties affect the quality of the generated ML models.

1 Introduction

ML has succeeded in tackling a wide range of challenging problems in practice, from medical applications (e.g.,
the detection of retinopathy [1]), to self-driving cars, or agriculture [3], to name a few cases. Moreover, there is a
fast pace of innovation in the scientific field of ML.

When one begins to use ML, they naturally think about writing the code that can train a model based on input
data. This is an important step of using ML, but this code is only a small piece of what it takes to run ML reliably.
In a production setting, the user of ML has to worry about: whether the input data has errors; how to trigger a
retraining of the model when new data arrives; whether the new version of a model is good enough to replace
the model currently used by the downstream stack; whether the serving data (used for prediction requests to the
model) is sufficiently different such that retraining is required; and many more issues.

At Google, we refer to this set of concerns as "ML engineering" in order to separate them from "ML coding",
which refers to the relatively smaller task of writing the trainer. In using this term we draw an analogy to the
distinction between software engineering and coding. Usually, coding refers to a one-off, monolithic piece of
code that is not meant for sharing, whereas software engineering establishes processes and practices around
versioning, testing, and so on, to enable a larger team to work on a shared code base that solves a bigger problem.
The same applies to ML engineering: we need processes and tooling around versioning, testing, monitoring, and
so on, that apply not only to code but also to ML artifacts such as datasets and models.

In this paper, we describe the tooling and processes we developed for the analysis and validation of datasets
and models. These are two of the most important artifacts in production ML pipelines, with clear connections to
the overall effectiveness of ML. We adopt a data-oriented approach to the management of these artifacts. This is
obvious for dataset artifacts. For model artifacts, we note that the quality of a model is inherently tied to the data

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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used for training, evaluation, and serving. Moreover, with the advent and maturation of Auto-ML solutions which
can optimize the parameters of the model’s architecture, the input data becomes the next obvious knob that can
be tweaked to improve model quality. Thus, an approach based on data-management principles can be usefully
extended to models.

Our work is in the context of TensorFlow Extended (TFX), a production-ML platform that we developed for
Google’s product teams and the world. The design and functionality of our tools is heavily influenced by our
experience with ML in Google’s production setting, but we believe that the basic principles and lessons learned
apply to other contexts, and are of interest to both researchers and practitioners.

2 Data Validation

ML crucially depends on the quality of the input data in order to produce a good model. In many cases, even
simple errors in the data can affect significantly the resulting model. For example, consider a model that depends
on an input data feature “Country” where the USA is represented with the string “US”. However, if in the next
batch of training data the value becomes “USA”, then without any validation or pre-processing, the model will
simply think that this is a new country.

Furthermore, it is often the case that the predictions from the generated models are logged and used to
generate more data for training. Such feedback loops can amplify even “small” data errors and lead to gradual
regression of model performance over a period of time. Hence, it is critical to catch data errors early, before they
propagate through the complex loops and taint more of the pipeline’s state.

Finally, error-free data is also critical for model understanding, since any attempt to debug and understand the
output of the model or any quality metrics (e.g., AUC, precision, ...) is futile if the evaluation data has errors.
All these observations indicate that we need to treat data as a first-class citizen in ML pipelines, on par with
algorithms and infrastructure, with corresponding tooling to analyze, validate and monitor the data throughout the
various stages of the pipeline.

Data validation is neither a new problem nor unique to ML, and so we can leverage techniques and principles
from the field of data management. However, we argue that the problem acquires unique characteristics in the
context of ML and hence we need to rethink existing solutions. First, we need a way to express ML-related
constraints and expectations on the quality of the data. Second, the data validation system must generate reliable
alerts with high precision, and provide enough context for the human to quickly identify the root cause of the
problem. This is due to the fact that in most cases data errors cannot be fixed automatically – they require some
human intervention, either in the ML pipeline (e.g., rolling back the trainer to a checkpoint unaffected by the
suspect data) or in the data-generation code (e.g., fixing the bugs that cause the errors). Third, the system needs to
scale to production pipelines which typically process billions to trillions of examples. Finally, the system needs to
account for the fact that data is stored and managed externally from the ML pipeline, and often in a variety of
storage systems, and hence a-priori knowledge about the data and its semantics is limited.

To address the above challenges in the context of Google’s production ML pipelines, we developed TensorFlow
Data Validation (TFDV) [13, 12, 6], a scalable data analysis and validation system for ML. Our system is deployed
in production as an integral part of TFX [10], an end-to-end ML platform, and is used by hundreds of product
teams at Google to monitor and validate trillions of training and serving examples per day, amounting to several
petabytes of data per day. We recently open sourced TFDV and the system has received significant attention
from the open-source community as well: more than 50M downloads since the first release in October 2018,
plus it has influenced the development of other open-source data validation systems such as Apache Spark Data
Validation 1. Furthermore, TFDV has been adopted by other large organizations using ML, e.g., see Spotify’s
keynote at TensorFlow World 2019 about using TFDV 2.

1https://databricks.com/session/apache-spark-data-validation
2https://www.youtube.com/watch?v=zxd3Q2gdArY&t=748s
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Figure 1: TensorFlow Data Validation Architecture.

Few recent works ([19], [18]) have considered the importance of data validation for ML applications. For
example, Amazon (Schelter et. al. [19]) proposed a system for automating data quality verification task that
provides a declarative API to specify common quality constraints and custom validation code. While Amazon’s
system allows users to express arbitrary constraints, we opted to have a restrictive schema definition language
that captures the data constraints for most of our users in order to focus on reliable high precision alerts. Further,
our work emphasizes the user-mediated co-evolution of the schema with data and the model. As far as we can
tell, TFDV is the first open-source data analysis and validation system for ML.

2.1 System Overview

Figure 1 shows the TFDV architecture which consists of a Data Analyzer component which computes statistics in
a scalable fashion over large amounts of data, a Data Validator which finds anomalies in the data, and a Data
Visualizer which provides visualizations of the statistics, schema, and the anomalies.

Data Analyzer. Data Analyzer takes a collection of statistics generators and computes data statistics needed for
validation. TFDV uses Apache Beam [8] to define and process its data pipelines. The statistics generators are
implemented as Beam transforms. Users can provide custom statistics generators which are executed together with
the default generators. The generator API takes Apache Arrow Tables as input, as it is powerful enough to encode
popular logical training data formats: flat (tensorflow.Example, CSV), sequence (tensorflow.SequenceExample)
or structured data (e.g. Protocol Buffers or Apache Avro). TFDV provides decoders for popular data formats
like tensorflow.Example, and CSV. Users can write custom decoders (that convert their input to Arrow Tables) to
handle arbitrary data formats. Realizing the data pipelines using Beam allows TFDV to transparently run the
pipeline in different environments such as a single machine, Flink/Spark cluster, and Google Cloud Dataflow.

The statistics computed by TFDV include individual feature statistics depending on the type of the feature
(e.g., statistics such as min, max, mean, median, histogram etc. for numeric features, statistics such as number
of unique values, top-k values, average length etc. for categorical features.) and cross-feature statistics (e.g.,
correlation between features and mutual information of a feature with the label etc.). We represent the statistics
as a protocol buffer message (See [9] for the complete list of statistics computed by TFDV.).
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Figure 2: Exploring data using Facets visualization.

Data Validator. The Data Validator checks the properties of the data as specified through a schema. Typically
we expect the data characteristics to remain stable across different splits of data (e.g., training data and evaluation
data) or batches of data that are close in time. Hence, we consider any deviation within a batch (or split) from the
expected data characteristics as an anomaly.

TFDV adapts the “battle-tested” principles from data management systems to the context of ML. Specifically,
in order to codify these expected data characteristics, TFDV generalizes the traditional notion of a schema from
database systems. The schema follows a logical data model where each training or serving example is a collection
of features, with each feature having several constraints attached to it. This flat model has an obvious mapping
to the flat data formats such as tensorflow.Example or CSV. The constraints associated with each feature cover
some basic properties (e.g., type, domain, valency) but also constraints that are relevant to ML (See [12] for a
more detailed discussion of our schema formalism.). Using a schema also allows us to verify any assumptions of
training/serving code (e.g., the schema can be used to generate fuzzy examples and verify if the training/serving
code crashes on those examples) and thereby catch potential model crashes early on. We represent the schema as
a protocol buffer message.

TFDV supports two types of validation: (1) validating a single batch of data against the schema, and (2)
validating two batches of data (e.g., are there any significant changes between training and serving data, or
between successive batches of the training data?). Any disagreement found during validation is flagged as an
anomaly for human inspection and further investigation. See [6] for the complete list of 52 anomalies identified
by TFDV and the conditions on which each anomaly is raised.

Data Visualizer. TFDV provides visualizations for the statistics, schema and the anomalies. It provides a
simple table-based view for the schema and the anomalies. It uses the Facets library [7] to visualize the statistics
(see Figure 2). Specifically, TFDV supports (1) visualizing the statistics of a batch of data, and (2) comparing
statistics between batches of data.
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Figure 3: An example schema and corresponding data in the tf.train.Example format.

2.2 Inferring an initial schema

As described in Section 2.1, TFDV uses a schema to capture the stable data characteristics. Our assumption is
that the users are responsible to curate the schema. However, many ML pipelines use thousands of features, and
so constructing a schema manually for such pipelines can be quite tedious. Furthermore, the domain knowledge
of the features may be distributed across a number of engineers within the product team or even outside of the
team. In such cases, the upfront effort in schema construction can discourage engineers from setting up data
validation until they run into a serious data error.

To overcome this adoption hurdle, TFDV provides a way to auto-generate the initial schema. This auto-
generated schema attempts to capture salient properties of the data without overfitting to a particular batch of data.
Avoiding overfitting is important: an overfitted schema is more likely to cause spurious alerts when validating a
new batch of data, which in turn increases the cognitive overhead for the on-call engineers, reduces their trust
in the system, and may even lead them to switch off data validation altogether. We currently rely on a set of
reasonable heuristics to perform this initial schema inference. A more formal solution, perhaps with guarantees
or controls on the amount of overfitting, is an interesting direction for future work. We assume the user will
inspect the inferred schema and modify any properties if needed. Figure 3 shows a sample schema. The schema
is represented as a protocol buffer.

2.3 Performing skew detection

Training/Serving skew refers to a difference in the feature values or distributions between the data used to
train a model and the data observed by the serving system. TFDV allows users to check if there are significant
changes between training and serving data. TFDV supports skew detection based on L∞ distance [12] and
Jensen–Shannon divergence [2].
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3 Model Validation

After training a model based on (validated) input data, the next step in a production pipeline is analyzing the
trained model and deciding whether it can be pushed to the inference/serving stack. This step makes the model
available to other applications. However, pushing a model that returns sub-optimal or even erroneous predictions
can lead to undesired downstream effects. As an example, if a bad model generates uninteresting or irrelevant
recommendations in a movie-streaming service the user experience is likely to suffer. What is needed is the
equivalent of an integration test, where we can evaluate the model’s accuracy on unseen data. For this purpose,
we have developed TensorFlow Model Analysis (TFMA) [4], a scalable model evaluation system. Similar to
TFDV TFMA is deployed in production as an integral part of TFX platform and is used by hundreds of product
teams at Google to evaluate ML models. TFMA was open sourced in March 2018 and has received significant
attention from the open-source community (more than 50M downloads).

While data validation prevents errors through inappropriate input data, it is still possible to introduce errors
into the pipeline as a result of improper training. Most ML frameworks provide tools for evaluating metrics of
interest (e.g., loss or AUC) during training. TFMA takes this a step further by allowing users to re-evaluate their
models post-training over large amounts of data in a distributed manner (using Apache Beam). This evaluation
can be done using the same metrics that were defined during training or with additional metrics added after the
model has been generated. While TFMA performs full passes over generally much larger data than is seen at
training time, the datasets are still just samples drawn from a larger population. To help gauge the reliability of
these computations, TFMA provides confidence intervals for the metrics it computes. For increased reliability
and safety, TFMA provides a means to set expectations on model performance metrics using either absolute
thresholds or thresholds relative to a baseline. Practitioners can then gate pushing their models to production based
on passing the said validation thresholds. In a sense, this model-based validation complements the data-based
validation implemented by TFDV.

TFMA also supports computing and validating model metrics on data slices. Model metrics computed on the
whole evaluation dataset can mask interesting or significant deviations of the same metrics computed on data
slices that correspond to meaningful sub-populations. For instance, a machine-translation model may perform
adequately well on average but significantly worse on a specific language. TFMA allows users to declare slices
of interest and then to get a more detailed view of model metrics computed on the corresponding subsets of
the evaluation data. Model validation can subsequently verify these metrics in order to guard against model
regressions which only affect a small but important slice of the evaluation data.

3.1 System Overview

Figure 4 shows the TFMA architecture which consists of four components: 1) Reading the inputs, 2) Extraction,
3) Evaluation, and 4) Writing results. These components make use of two primary types: tfma.Extract and
tfma.evaluators.Evaluation. The type tfma.Extract represents the data that is extracted during pipeline
processing whereas the type tfma.evaluators.Evaluation represents the output from evaluating the extracts at
various points during the pipeline. In order to provide a flexible API, these types are just Python dictionaries
where the keys are defined (reserved for use) by different implementations.

Extraction. The extraction process is a list of Beam transforms that are run in series. The extractors take
tfma.Extract as input and return tfma.Extract as output. For example, PredictExtractor is one of the default
extractors which uses the input extract produced by the read inputs transform and runs it through a model to
produce extracts that contains the predictions. TFMA allows users to provide custom extractors that can be
inserted at any point in the extraction process.
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Figure 4: TensorFlow Model Analysis Architecture.

Evaluation. Evaluation is the process of taking an extract and evaluating it. An evaluator is a Beam transform
that takes tfma.Extract as inputs and outputs tfma.evaluators.Evaluation. TFMA supports a wide variety of
model metrics and plots as documented in [5], which are computed as part of the evaluation process. For example,
the default MetricsAndPlotsEvaluator uses the features, labels, and predictions in the extracts as input, group
the extracts by slices, and then performs metrics and plots computations. Further, users can also provide custom
evaluators. TFMA provides visualizations for the metrics and plots as shown in Figure 5.

3.2 Automatically Identifying Problematic Slices

As mentioned in Section 3, TFMA can compute model metrics over slices of data that are of interest to the user.
For example, Figure 5 shows the model metrics sliced by “trip_start_hour" feature. However in many cases, users
do not know a priori which slices are important. Alternatively, a user might miss important sub-slices within
the manually defined slices (e.g., the machine-translation model may under-perform for a specific language only
when the translation request comes from a specific class of devices). To aid with these cases we investigated
techniques to automatically identify slices of interest [11]. We view this automatic slicing as a complement to
the manual slicing already supported by TFMA. For instance, it is possible to start with manually defined slices
and then automatically discover subslices of interest. Our inspiration in this domain has been previous works in
discovering interesting roll-ups/drill-downs in data cubes [14, 15, 17]. Moreover, recent work [16] in the ML
community has shown how knowledge about under-performing slices can be leveraged in order to improve overall
model quality.
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Figure 5: Visualization of sliced model metrics.

4 Conclusion

In this paper, we described the tools and processes developed at Google for the analysis and validation of two of
the most important artifacts in an ML pipeline: datasets and models. Specifically, we described TFDV, a data
validation system, and TFMA, a model evaluation system. The developed tools have been used extensively within
Google and has received significant attention from the open-source community.
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Abstract

Machine Learning (ML) algorithms are a standard component of modern software systems. The validation
of data ingested and produced by ML components has become a central challenge in the deployment and
maintenance of ML systems. Subtle changes in the input data can result in unpredictable behavior of an
ML algorithm that can lead to unreliable or unfair ML predictions. Responsible usage of ML components
thus requires well calibrated and scalable data validation systems. Here, we highlight some challenges
associated with data validation in ML systems. We review some of the solutions developed to validate data
at the various stages of a data pipeline in modern ML systems, discuss their strengths and weaknesses
and assess to what extent these solutions are being used in practice. The research reviewed indicates
that the increasing need for data validation in ML systems has driven enormous progress in an emerging
community of ML and Data Base Management Systems (DBMS) researchers. While this research has led
to a number of technical solutions we find that many ML systems deployed in industrial applications are
not leveraging the full potential of data validation in practice. The reasons for this are not only technical
challenges, but there are also cultural, ethical and legal aspects that need to be taken into account when
building data validation solutions for ML systems. We identify the lack of automation in data validation
as one of the key factors slowing down adoption of validation solutions and translation of research into
useful and robust ML applications. We conclude with an outlook on research directions at the intersection
of ML and DBMS research to improve the development, deployment and maintenance of ML systems.

1 Introduction

Machine Learning (ML) technology has become a standard component in modern software systems. Many
decisions are increasingly being automated with ML and the predictions of ML models are being exposed in data
products or consumed by other downstream software components. This trend gives rise to new research challenges
at the intersection between Data Base Management Systems (DBMS) community and the ML community. Many
of these challenges are related to data validation. In contrast to standard software systems, for which a large
arsenal of testing concepts and utilities exists, testing of ML systems is difficult. Depending on the ingested
data, ML systems can behave very different, and often subtle changes in the input data, that are hard to detect by
humans, can lead to very different ML predictions [4].
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advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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This data dependency in the transformations induced by ML models is their very strength: It allows these
systems to adapt to any problem setting by learning from rules defined implicitly by a data set. But this flexibility
comes at a cost: The more complex and powerful ML systems become, the more difficult it becomes to validate
their predictions.

For decades ML scientists have been considering data validation rather an engineering challenge than a
research problem. Recently however with more ML systems being deployed in customer facing applications
newspaper headlines remind us that without proper validation of ML components we will see more racist chatbots1

or fatal car crashes2. Scientists in the field are beginning to take this problem very seriously. There is an emergent
field of research around data management tailored to ML workflows [36]. Testing, monitoring and validation
of ML systems and the data ingested and produced by ML models has become a major focus of research with
dedicated workshops at major conferences and a rapidly growing research community, as summarized in section 3.
Also the recent trend in ML to render models and their predictions more transparent [52] can be regarded as an
attempt to validate ML systems and training or prediction data [67]. However to the best of our knowledge there
is no commonly agreed upon data validation solution for ML systems that has reached broad adoption. Here, we
argue that one of the most important factors is that automating validation of ML systems is difficult. Especially
when systems learn autonomously and continuously, it can be challenging to ensure that the performance of an
ML system is not shifting due to accidental or adversarial changes in the data. Given the above examples for
how ML systems can fail in practice, it is obvious that ML systems require scalable, robust and automated data
validation solutions. This constraint does not apply to academic research, and thus the lack of automation in ML
system validation can be considered as a major blocker slowing down the transfer of the often rapidly evolving
advances in ML research into robust and trustworthy customer facing products.

But why is this so difficult to automate? Researchers in the DBMS community have been investigating data
profiling for decades [3] and many of these solutions are just right for some aspects of data validation also in the
context of ML systems. However some of the challenges in ML system monitoring go beyond that. Many data
validation aspects in ML systems depend on the state of the trained ML model, such as the performance of a ML
model under data set shift, or the differential privacy of a model [16, 2, 5]. Other aspects such as fairness of a ML
model require domain expertise that ML engineers often do not have. As illustrated in Figure 1 the competencies
required to validate data in the various stages of an ML system require competencies that are usually distributed
across several experts in a team or even separate teams.

In the following chapters we will first review the challenges associated with data validation in ML systems
and highlighting some of the practical implications. Afterwards we review some of the data validation solutions,
with a special focus on the practical applicability of these approaches. Finally we will conclude with an outlook of
technical and non-technical challenges associated with ML system validation in order to ensure more responsible
usage of ML systems in production software systems.

2 Data Validation Dimensions

As ML systems learn from data, validation of the data ingested during training and prediction is a fundamental
prerequisite for well functioning and robust ML systems [58, 10]. Relevant data validation dimensions for ML
systems can be broadly categorized into those notions of data quality commonly considered in classical data base
management systems (DBMS) and ML model dependent dimensions. In the following, we highlight some of the
dimensions and provide examples for each category.

1https://blogs.microsoft.com/blog/2016/03/25/learning-tays-introduction/
2https://www.nytimes.com/2016/09/15/business/fatal-tesla-crash-in-china-involved-autopilot-

government-tv-says.html
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Figure 1: Responsibilities for a machine learning (ML) production software system are often distributed across
different roles and teams [1]. Data from various sources is integrated, features are extracted and ML models
transform these into predictions, which are then served to users whose behavioural signals are fed back to the
system. Monitoring and validating these data streams at scale is only feasible with automated tests. But validating
the data in each of these stages requires different competencies and often domain expertise. This imposes novel
technical and conceptual challenges on engineering teams when automating ML production systems.

2.1 Classical DBMS dimensions

Independent of ML applications there are many data validation dimensions that have been investigated in the
DBMS community, more specifically in the data profiling literature[3]:

Data Correctness: This dimension refers to schema violations, such as string values in numeric columns, or
generally syntactically wrong data. Defects in this dimension can often break ML processing pipelines. Some of
these violations can be detected easily for instance by type checks, and corrupted data instances can be filtered
out.

Data Consistency refers to defects that are not captured by syntactic correctness, including duplicate entries or
invalid values. Detecting these cases can be difficult and computationally challenging, but there exist efficient
approaches to de-duplication and detection of semantic inconsistencies. Violations of semantic inconsistencies
can for instance be detected by validation of functional or approximate functional dependencies [46, 35].

Completeness of a data source reflects the ratio of missing values in a data set. In principle this dimension is
simple to probe, however only under the assumption that the missing value symbol is known. Unfortunately this
assumption is often violated. As missing values often cause problems in data pipelines feeding into ML systems,
a common strategy of avoid such problems is to replace missing values with syntactically valid values. These
transformations often make the missing values pass validations for correctness and consistency.
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Statistical Properties: This dimension includes basic descriptive statistics of an attribute, such as mean of a
numeric or mode of a categorical variable, and more complex parametric or non-parametric statistical aggregates
of a data set. A popular validation strategy in this data dimension is anomaly detection.

2.2 ML model dependent dimensions

Validating the above data quality dimensions can be challenging, but these tests of the input data are independent
of the downstream ML model. This implies that testing only for these dimensions can lead to both false negatives,
when a data corruption is not detected that has a negative impact on the downstream ML model, as well as
false positives, when a data corruption raises an alarm but does not have any effect on the downstream ML
model. Examples for false negatives of ML model independent validations include adversarial attacks, such as
for instance avoiding filters for adult language by leet speak3 strings obfuscated by misspellings and replacing
letters with numeric characters. Examples for false positive alarms are ML models employing strong L1 or
sparsity-enforcing regularization constraints. In these models, a large number of input features is often not
affecting the ML model output, hence distributional shifts in these input features would not be reflected in shifts
of the ML model outputs and validation of the input data independent of the model outputs will raise false alarms.

Data validation in the context of ML production systems thus has to take into account the current state of
the downstream ML model to ensure robust and reliable performance. The state of the ML model and and the
impact of data corruptions on ML performance can be monitored by a number of different validation dimensions
of the ML model output data. These have to be validated along with the usual criteria common to all production
software systems, such as requirements on the latency and availability of the system. SageMaker Model Monitor4

is a solution that enables monitoring of models deployed in production. For example, alarms are triggered when
data distributions shifts are detected.

Predictive performance metrics are usually the most important metrics optimized in production ML systems.
These metrics include accuracy, precision or F1-score of a classifier, the mean-squared error, mean absolute error
or r2-scores for regression models or various ranking losses, evaluated via cross-validation on a test set that was
not used for training the respective ML model. When the data processed by trained and deployed ML model
is drawn from the same distribution as the training and test data, then these cross-validated metrics reflect the
predictive performance reliably. But in production ML systems, this assumption is often violated. Examples
include shifts in the input data (covariate shifts) or shifts in the target data distribution (label shift).

Robustness The shifts induced by corruptions in the data that are a) not caught by upstream classical data
validation techniques and that have b) a negative impact on the predictive performance of a production ML system
can be difficult to detect, as there is no ground truth label information available for the data. In the absence of
ground truth data needed to compute predictive performance metrics, one can resort to classical data validation
techniques applied to the outputs of ML models. But this approach can fail to detect certain covariate shifts
induced by outliers, adversarial attacks or other corruptions.

Privacy metrics have become increasingly important since ML models are used to process personal data such
as health care data, financial transactions, movement patterns or really almost every aspect of our lives. Popular
concepts include differential privacy [17] and k-anonymity [61]. Note that k-anonymization [61] is not model
dependent, it is a property of a data base where user data is considered private if information about each user
cannot be distinguished from at least k-1 other users whose information is in the dataset. In the field of ML,
differential privacy is more useful than k-anonymity. Two main reasons for that are a) k-anonymity is defined for

3https://en.wikipedia.org/wiki/Leet
4https://docs.aws.amazon.com/sagemaker/latest/dg/model-monitor.html
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a fixed data set, if new rows are added, one might need to convert the data again in order to achieve k-anonymity,
and b) if a k-anonymous data set is combined with other information, it is often possible to de-anonymize the
data. A large body of literature in the ML community builds upon the definition of ε-differential privacy [18]
which deals with the problem of learning little to nothing about individual data-points while learning a lot about
the population by ensuring the same conclusions can be drawn whether any single data-point is included in the
dataset or not. Most implementations of differentially private ML models add noise to the data, gradients or the
model coefficients [2, 59, 47, 42]. This can be an effective countermeasure to model inversion attacks [20] or
membership inference attacks [59]. The amount of noise added determines the amount of privacy preserved – but
it also bounds the predictive performance or utility of the ML model [30].

Robustness to adversarial data Recent developments have shown that ML models, placed at the centre of
security-critical systems such as self-driving cars, can be targeted by dedicated adversarial examples - inputs
that are very difficult to distinguish from regular data but are misclassified by the model [22]. Those inputs,
created by applying a small but very significant perturbation to regular examples can be used to manipulate the
model to predict outputs desired by an adversary [62, 9, 44]. The robustness to adversarial attacks of the model
can be measured by (1) generating a set of adversarial examples based on the test set [62, 37, 28, 43, 22] and
(2) computing what is the change in models accuracy given a fixed average distortion, or what is the minimum
average distortion needed to reach 0% accuracy on the test set.

Fairness Another dimension that is highly relevant when putting ML systems in production is that of fairness
or more generally ethical aspects of ML predictions [40]. There are a number of examples when ML technology
used as assistive technology for instance in border control5 or policing6 led to racist or otherwise biased decisions.
It has been widely recognized in the ML research community that when building ML applications validating
the ML predictions with respect to fairness is a fundamental prerequisite. Evaluating this dimension is however
amongst the most difficult of all validation challenges: there are different fairness definitions, and even if one
could agree on a small set of definitions, validating these requires insight into the respective grouping variables,
which are, for ethical and legal reasons, typically not available. The relevant grouping information is thus often
reflected in a data set through other features, which are considered not ethically problematic, such as zip code,
but which are often correlated with ethically sensitive features. Other implicit biases of data sets can emerge from
data preprocessing, for instance how missing values are dealt with when they are distributed not equally across
ethnical groups [65]. Detecting these biases requires not only domain expertise, but also often information that is
not contained in the data set itself.

3 Current Solutions

Validating data at each of the stages in a ML workflow as sketched in Figure 1 requires a wide range of
competencies from data engineering over ML algorithms to user interface design. These competencies are often
distributed across different roles in a team, and especially in small (5 to 10 members) teams, it is not unlikely
that only one person has the competency to dive deep into a root cause analysis of the various data validation
dimensions sketched in section 2. Solving problems in an on-call situation or when scaling up an ML system
requires reliable automation for the data validation. As many of these validations have to be data dependent, such
automation often amounts to using ML to validate data in ML workflows which has, for instance, been done for
outlier removal [68], data cleaning [34] or missing value imputation [8].

5https://www.bbc.com/news/technology-53650758
6https://www.nytimes.com/2019/07/10/opinion/facial-recognition-race.html
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There are, however, simpler approaches that do not leverage ML models to validate data in ML systems, such
as Tensorflow Extended (TFX) [6] or DEEQU [54]. In the following we will highlight some of the state of the art
solutions to automated data validation in the context of ML systems.

3.1 Schema Validation

Validating syntactic correctness, also referred to as schema validation, is – at first glance – relatively simple and
often integral part of data ingestion. Usually data violating data type constraints will immediately raise errors and
break a data pipeline. Yet, these validations are often counteracted by humans. In practice it is not uncommon to
use generic data types such as strings for data that is actually numeric, ordinal or categorical. While this will
ensure that schema violations are minimized, as any data type can be cast to string, it imposes additional work on
any downstream validation for data correctness and consistency. This problem is worsened by the fact that some
software libraries popular in the ML community often cast string data that contains numeric data automatically to
numeric data types. This can have effects on entire scientific communities. A recent study reports that casting
errors induced by excel in biomedical data occur in approximately one fifth of the papers in leading genomics
journals [70].

While simple validation such the data type can be trivially automated, it is unlikely that this will prevent
engineers from having to deal with data type errors. There will always be on-call engineers who need to fix
problems as fast as possible and the cost of having stale or broken data pipelines in a production system is often
far bigger then the difficulty to quantify cost of accumulating hidden technical debt by specifying generic data
types like strings and thereby circumventing data type checks. This is why this simple task of data type detection
is actually an interesting research challenge. Often simple heuristics will do the job and the popular libraries
use these heuristics to determine the data type of columns. The simplest heuristic is probably to try and cast a
value to a certain data type and try other data types in case an error is raised7. Such heuristics often work well in
practice but can be insufficient, especially when dealing with heterogeneous data, such as mixed data types in
one column. Also, for the seemingly simple task of automating data type inference, there is interesting recent
work on using ML models to infer a probabilistic notion of the most likely data type given the symbols used in a
data base [12]. Approaches combining scalable heuristics with more sophisticated ML based data type inference
techniques are a promising alternative to the current situation in which restrictive data type checks and broken
data pipelines often lead data engineers to opt for too generic data types.

3.2 Data Correctness and Data Consistency

Validation of data consistency and correctness are one of the areas where classical DBMS research has made
significant contributions, for instance in the data profiling literature [3]. Popular approaches to validate correctness
and consistency are rule based systems such as NADEEF [13]. There are commercial versions of simple rule
based systems, a popular example is trifacta8. And there are open source systems for semi-automated validation
of consistency, such as Open-Refine9. Other approaches primarily investigated in an academic context include
attempts to learn (approximate/relaxed) functional dependencies between columns of a table [46]. These
functional dependencies between columns include for example a dependency between a column containing
zip codes and another column containing city names. These dependencies can be used to automatically learn
validation checks related to consistency and correctness [50]. Such approaches are well established and there
exist efficient methods for large scale functional dependency discovery [35]. Yet, in the context of data pipelines
for ML systems none of these approaches have reached broad adoption. We discuss some potential reasons in
section 4.

7https://github.com/pandas-dev/pandas/blob/v1.1.4/pandas/core/dtypes/common.py#L138
8https://www.trifacta.com/
9https://openrefine.org/
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In addition to the solutions of the DBMS community there are a number of approaches developed at the
intersection of DBMS and ML communities, tailored to ML specific workflows [11, 54]. The research is
accompanied by open source libraries1011 that implement schema validation by checking for correct data types,
but they also offer validation options for or other basic data properties, for instance whether the values are
contained in a predefined set. Prominent examples for a data validation solution for ML systems are the ones
integrated in SageMaker Data Wrangler12 and TFX [11]. Their schema validation conveniently allows users to
define integrity checks on the serving data in an ML system, e.g. for data type or value ranges. Schema validation
parameters can also be derived from the training data, which allows to automate many of these checks.

3.3 Validation of Statistical Properties

All data sets are subject to noise, be it because humans enter wrong values into a form or because human software
developers write code that leads to faulty data ingestion. Dealing with this noise is difficult for exact validation
rules such as functional dependencies. Statistical learning techniques can help to deal with noisy data.

Error-Detection Solutions Taking a probabilistic stance on DBMSs is not a new idea [48]. Recently, the idea
of using statistical techniques for data validation tasks has become a major focus of research. One example
are statistical learning approaches to error detection in data bases [50, 25, 29, 39]. These approaches have the
potential to automatically validate data correctness and to automatically clean data sets. Some of these systems
can be automated to a large extent [32, 34], others rely on a semi-supervised approach [33].

ML Frameworks for Statistical Data Validation Also data validation solutions like TFX data validation [11]
or DEEQU [54] address data validation including statistical rules, such as deviation of values around the mean of
a numeric column. These validation solutions can be very helpful, if one knows what to test for. But data sources
can easily have billions of rows and hundreds of columns. For these cases it can infeasible to manually create,
validate and maintain data quality checks. To alleviate the burden of manually creating constraints, the authors of
DEEQU [54] propose to utilize historic data to generate column profiles and generate data quality constraints
from these. These quality constraints can also make use of the temporal structure of data quality metrics collected
over time using time series models or other anomaly detection methods.

Anomaly Detection Methods Instead of applying them to metrics computed on a data set, anomaly detection
methods are also often used to detect anomalies in the data tuples directly. There are many methods available in
easy to use software libraries, see for instance [68], and there are commercial products that allow to automate
anomaly detection in large scale industrial settings13. While the goal of these anomaly detection approaches is
similar to the above error detection approaches originating in the DBMS community, many anomaly detection
solutions emerged from the ML community. One of the most important differences is that anomaly detection
approaches, as most ML methods, usually expect the data to come in matrix form, with all columns being numeric.
Most methods from the DBMS community expect the data to be high cardinality categorical data, some also are
applicable to numeric values, but that is not very common in research on functional dependencies for instance
[46]. So applying anomaly detection methods to heterogeneous data sets with non-numeric (categorical, ordinal
or even free text data) requires to apply feature extraction techniques to bring the data into a numeric format. This
is a standard preprocessing step in ML pipelines, but popular software libraries for anomaly detection, such as
[68], do not include this important preprocessing step. This makes these libraries difficult to apply for automated

10https://www.tensorflow.org/tfx/guide/tfdv
11https://github.com/awslabs/deequ
12https://aws.amazon.com/sagemaker/data-wrangler/
13https://aws.amazon.com/de/blogs/big-data/real-time-clickstream-anomaly-detection-with-

amazon-kinesis-analytics/
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data validation. It is possible to integrate standard anomaly detection methods as statistical data validation steps
in ML systems, but this imposes two additional challenges onto the engineering team. For one, this integration
requires to write ’glue code’ for the feature extraction – which is often one of the major sources for accumulating
technical debt in a software system. And secondly this requires to have a good evaluation metric for the anomaly
detection. Which is, in contrast to standard supervised learning scenarios, often difficult to define and get ground
truth data for.

Model Robustness and Generalization Performance Another central problem with all of the above ap-
proaches to statistical data validation in a ML context is that most of these methods are blind to the impact of data
errors on downstream ML components. This is however one of the most important aspects for ML systems. Often
it does not matter for the ML model, whether a feature is affected by a data shift, for instance when regularization
of an ML model forces the ML model to ignore a feature. And in other cases tiny changes in the input, which
human observers would not be able to detect, can have devastating consequences on the ML model output [4].
Recent work in the ML community has shown that especially novel deep learning methods can suffer from severe
stability problems [14]. Some aspects of this can be mitigated by employing standard ML concepts such as
k-fold cross-validation (CV). This approach has unfortunately lost popularity due to the sheer compute demand
of modern deep learning methods. Most deep learning papers usually use just a single train/validation/test split.
Standard nested k-fold CV can have decisive advantages when it comes to measuring robustness of a ML model.
However, these techniques only work when there is ground truth data available. In a production setting, this is
often not the case. There exist however also other methods to measure the robustness of ML models when there is
no ground truth data available. For instance in [55] the authors leverage a set of declaratively defined data errors
applied to data for which ground truth is available and measure the predictive performance of a ML model under
these perturbations. This allows to train a meta model that can be used to predict the predictive performance on
new unseen data with high precision. Such an approach can be useful in production ML systems to automatically
validate data errors with respect to their impact on downstream ML model performance.

3.4 Fairness Validation

Fairness is one of the most prominent examples of how ML systems can fail and severely influence the public
opinion about a company or an entire scientific community. It is thus of utmost importance to ensure that this
dimension of data validation in the context of ML systems is not neglected. Yet validating this dimension is
especially difficult, for a number of reasons. First and foremost it is difficult to define fairness. An excellent
overview over the last decades of fairness research with a focus on ML systems can be found in [40]. The
main insight here is that fairness validation it is not only a technical challenge. Instead, it is imperative to
include multiple scientific disciplines in this research, in particular also researchers from sociology, psychology
and law. Setting the stage for such transdisciplinary research is a challenge in itself, for instance finding a
common terminology is not trivial. But we have seen that the research community has made progress by fostering
transdisciplinary discussions at newly emerging conferences14. The joint efforts of different communities have
helped to identify many ways in which biases leading to unfair ML systems can enter a workflow. Many of these
biases arise in the data generating process. Enabling scientists and engineers to identify such biases should be
part of the research agenda of the data management and ML community [60]. One example in this direction is
FairBench [65], an open source library that helps to trace changes in data distributions and visualize distortions
with respect to protected group memberships throughout the pipeline. Another example is SageMaker Clarify15,
an explainability feature for Amazon SageMaker that provides insights into data and ML models by identifying
biases and explaining predictions. It is deeply integrated into Amazon SageMaker, a fully managed service

14See for instance https://dl.acm.org/conference/fat
15https://aws.amazon.com/sagemaker/clarify/
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that enables data scientists and developers to build, train, and deploy ML models at any scale. Clarify supports
bias detection and feature importance computation across the ML lifecycle, during data preparation, model
evaluation, and post-deployment monitoring. Libraries like these are a prerequisite to better automation of
fairness validation. However, another more fundamental problem of fairness validation remains even if technical
solutions for visualizing and detecting biases are available: Group membership variables are required for most
technical solutions to fairness. Storing these variables can be more challenging, from an operational stance, than
storing other non-confidential data.

3.5 Privacy Validation

Similar to fairness, also privacy is a difficult to define validation dimension. However in contrast to fairness,
the research community has converged to a few concepts that are relatively straightforward in terms of their
definitions. Popular concepts include differential privacy [17] and k-anonymity [61], see also section 2. Most ML
related work on privacy focuses on differential privacy, where noise is added the data, gradients or the model
coefficients. Validating and trading off privacy against predictive performance or utility of the ML model can be
challenging [30]. Empirically, evaluating privacy is often done using membership inference attacks [59], which
has also been adopted for unsupervised ML models [24]. One limitation of these approaches is that privacy
validation is always dependent on a specific model and data set. General statements about privacy and utility
independent of models and data is hence difficult.

3.6 Validation of Robustness against adversarial attacks

Privacy validation is aiming at defending the ML system against a certain type of adversarial attack, where for
instance the identity of data points used for training the ML system is revealed. There are however other types of
adversarial attacks, for instance when artificial examples are generated to result in ML predictions with a certain
outcome. Validation of robustness against such types of attacks can be achieved by perturbations around the
data manifold [45, 38]. This can be achieved by extracting latent representations of the input data [26] or of
the predictions [7, 19]. Alternative methods rely on training an additional classifier used to decide whether an
example is adversarial or not [21, 23, 41]. Complementary to the work on validating adversarial robustness, a lot
of work has been devoted to making ML models more robust to adversarial attacks by augmenting the training
datasets with adversarial examples [22, 38, 66, 69].

3.7 Human in the loop evaluation

Most of the above data quality dimensions are easy for humans to assess. This is why human audits are still
one of the most direct and most robust options for data validation in ML systems. Expert auditors, such as
researchers developing a new service, often can quickly identify errors and their root causes by simply inspecting
input and outputs of a ML system. Among the most important disadvantages with this approach is that these
validations are expensive and do not scale well. Sometimes human-in-the-loop validations can be scaled up
using crowd-sourcing platforms such as Yandex’ Toloka or Amazon Mechanical Turk. Increasing the quality
of crowd-sourced validations is an active topic of ML research [64]. For instance there are attempts to render
audits more efficient by including transparency of ML model predictions [56] or by providing more inciting
incentives [27, 63]. Still, this approach can be difficult to automate and is generally used as an andon cord in
a modelling pipeline rather than an integrated quality test. This is not only due to the fact that it is difficult to
integrate human audits in build processes. Focussing on human judgements only can lead to biased validations,
especially when using transparent ML methods [57].
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4 Conclusion

Validation of input and output data in ML production systems has many facets that require competencies often
distributed across a heterogeneous team of engineers and scientists, as illustrated in Figure 1. While some of the
data validation challenges, such as schema validation or data consistency, can be tackled with traditional data
profiling methods established the DBMS community, other validation dimensions are specific to ML systems.
These ML model dependent validation challenges include aspects like accuracy and robustness under data shifts,
fairness of ML model predictions and privacy concerns.

In section 3 we highlight a number of solutions to validate single aspects. Many of these approaches are
typically tailored to specific use cases and often require considerable integration efforts in production ML systems.
A good example are the various solutions from both the ML community as well as the DMBS community for
checking simple data properties, such as the data types, and also more complex dimensions like data consistency.
Many of these approached allow for automating the generation of validation checks. Yet in practice it is not trivial
to automate the generation of validations for a new ML system that ingests and produces millions of rows and
columns. For instance, there are many cases when simple validation checks on input data will lead to false alarms
when shifts or errors in a single feature do not impact the output of a downstream ML model – maybe because
that feature was neglected by the ML model, when strong regularization during the ML model training phase
taught the model to ignore that feature.

Despite the rapid progress in recent years to automate and monitor ML systems: to the best of our knowledge
there exists no data validation system that has reached broad adoption and which takes into account all of the data
validation dimensions sketched in section 2. One reason for this is the difficulty of combining the multitude of
validation strategies listed in section 3 into one unified framework. Considering the rapid pace of research at the
intersection of ML and DBMS, see for instance [15], it is fair to assume that it is merely a matter of a few years
until one framework or some open standard for data validation in the context of ML systems will have reached
broad adoption.

There are many data validation challenges in ML systems that go beyond technical aspects. Many of them
are due to the complex nature of the data transformations induced by ML models. For instance identifying
unfair biases often requires domain knowledge or access to grouping variables, which are often not available.
And even if those are available, it is not always clear how fairness in the context of ML systems can be defined
[67]. A conceptual challenge related to privacy is for instance the trade-off between utility and differential
privacy of a ML system [30]: how much predictive accuracy should be sacrificed to ensure privacy? Sacrificing
accuracy against privacy in domains like health care or jurisdiction is a difficult question for which ethical and
legal dimensions are more important than technical aspects. Next to these ethical and legal aspects, there is
one key factor hindering adoption of comprehensive data validation in ML systems and that more related to
cultural aspects. Many scientists like to build new models and tools, but writing tests, integrating monitoring
and validation stages in an ML system are not exactly the most popular tasks amongst researchers. But often the
competencies of the scientists who built a model is required to build well functioning monitoring and validation
solutions in ML systems.

Based on these observations we derive some suggestions for how to drive innovation and adoption of data
validation in the context of ML systems. First, we hope that the current trend for research at the intersection of
ML and DBMS communities will continue to grow and identify more synergies leveraging and complementing
each others expertise. We have seen some great examples of constructive but vivid discussion between the two
communities, for instance that sparked by Kraska and colleagues around their work on learning index structures
[31]. This work is unrelated to data validation and mentioned merely as an example of transdisciplinary research
debates. Second, when building ML systems there is a broad spectrum of operational challenges and seamless
integration with cloud infrastructure is key to reaching broad adoption.
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We conclude that establishing data validation in ML systems will require a stronger focus on usability and
simple APIs. Third we believe that data validation in ML systems will reach broad adoption once the research
community will have found better ways of automating the validation workflow, most importantly the generation
of checks for each of the data validation dimensions listed in section 2.

In the past years we have seen great examples of automated tooling for tracking ML experiments [53],
experimentation in ML production systems [10], input data validation [54, 11] and validation strategies for
predictions of ML systems [49, 55, 14]. One example of how some of these data validation techniques could
be integrated into an automated workflow would be that presented in [51], where the authors propose to iterate
through a sequence of data validation [54], data cleaning[8] and quantification of downstream impact on ML
predictive performance [55] to achieve an automated ML workflow. We believe that increasing the level of
usability through automation in data validation will enable researchers to focus on more important questions
like the conceptual, ethical and legal questions and ultimately lead to more responsible usage of ML systems in
production systems.
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1 Introduction

During the course of Machine Learning (ML) model development, a critical first step is data validation, ensuring
that the data meets acceptable standards necessary for input into ML training procedures. Data validation involves
various sub-tasks, including data preparation: transforming the data into a structured form suitable for the desired
end-goal, and data cleaning: inspecting and fixing potential sources of errors. These validation steps of data
preparation and cleaning are essential even if the eventual goal is simply exploratory data analysis as opposed to
ML model development—in both cases, the quality of the eventual end-result, be it models or insights, are highly
tied to these steps. This data validation process is highly exploratory and iterative, as the data scientist often starts
off with a limited understanding of the data content and quality. Data scientists therefore perform data validation
through incremental trial-and-error, with the goals evolving over time: they make a change, inspect the result
(often just a sample) to see if it has improved or “enriched” the dataset in some way, e.g., by removing outliers or
filling in NULL values, expanding out a nested representation to a flat relational one, or pivoting to organize the
dataset in a different manner more aligned with the analysis goals.

To support this iterative process of trial-and-error, data scientists often use powerful data analysis libraries
such as Pandas [7] within computational notebooks, such as Jupyter or Google Colab [12, 1]. Pandas supports a
rich set of incrementally specified operators atop a tolerant dataframe-based data model, drawn from relational
algebra, linear algebra, and spreadsheets [14] embedded within a traditional imperative programming language,
Python. While the use of dataframe libraries on computational notebooks is a powerful solution for data validation
on small datasets, this approach starts to break down on larger datasets [14], with many operations requiring
users to wait for unacceptably long periods, breaking flow. Currently, this challenge may be overcome by either
switching to a distributed dataframe system (such as Dask [3] and Modin [6]), which introduces setup overhead
and potential incompatibilities with the user’s current workflow, or by users manually optimizing their queries,
which is a daunting task as pandas has over 200 dataframe operations. We identify two key opportunities for
improving the interactive user experience without requiring changes to user behavior:

• Users often do not want to inspect the entire results of every single step.

• Users spend time thinking about what action to perform next.
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advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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Unfortunately, at present, every cell (the unit of execution in a notebook) issued by the user is executed
verbatim immediately, with the user waiting until execution is complete to begin their next step. Moreover, the
system is idle during think time, i.e., when users are thinking about their next step or writing code. Fundamentally,
specification (how the user writes the query) and execution (what the system executes) are tightly coupled.

In this paper, we outline our initial insights and results towards optimizing dataframe queries for interactive
workloads by decoupling specification and execution. In particular, dataframe queries are not executed imme-
diately, unless the user intends to inspect the results, but are deferred to be computed during think time. We
distinguish operators that produce results that users inspect, what we call interactions, from those that do not. We
can then use program slicing to quickly determine what code is critical in that it influences the interactions, i.e.,
what the user intends to see immediately, and what is non-critical, in that it can be computed in the background
during think-time to speed up future interactions. For the critical portions, we further identify if it can be rewritten
in ways that allows us to improve interactivity further. For example, identifying that users often only examine
the first or last few rows/columns of the result allows us to compute this as part of the critical portion and defer
the rest to the non-critical portion. For the non-critical portions, by deferring the execution of the non-critical
portions, we can perform more holistic query planning and optimization. Moreover, we may also speculatively
compute other results that may prove useful in subsequent processing. We call our framework opportunistic
evaluation, preserving the benefits of eager evaluation (in that critical portions are prioritized), and lazy or
deferred evaluation (in that non-critical portions are deferred for later computation). This paper builds on our
prior vision [14], wherein we outline our first steps towards establishing a formal framework for reasoning about
dataframe optimization systematically.

2 Background and Motivation

2.1 Key Concepts

Users author dataframe queries in Jupyter notebooks, comprising code cells and output from executing these
code cells. Figure 1 shows an example notebook containing dataframe queries on the left. Each code cell
contains one or more queries and sometimes ends with a query that outputs results. In this part of Figure 1,
every cell ends in a query (namely, df1.describe(), df1.head(), and df2.describe()) that outputs
results. Dataframe queries are comprised of operators such as apply (applying a user defined function on
rows/columns), describe (compute and show summary statistics), and head (retrieve the top K rows of
the dataframe). Operators such as head and describe, or simply the dataframe variable itself, are used for
inspecting intermediate results. We call these operators interactions. Users construct queries incrementally
by introducing interactions to verify intermediate results. An interaction usually depends on only a subset
of the operators specified before it. For example, df1.describe() in Figure 1 depends only on df1 =
pd.read_csv("small_file") but not df2 = pd.read_csv("LARGE_FILE"). We call the set of
dependencies of an interaction the interaction critical path. To show the results of a particular interaction, the
operators not on its interaction critical path do not need to be executed even if they were specified before the
interaction.

After an interaction, users spend time inspecting the output and authoring new queries based on the output.
We call the time between the display of the output and the submission of the next query think time, during which
the CPU is idle (assuming there are no other processes running on the same server) while the user inspects
intermediate results and authors new queries. We propose opportunistic evaluation, an optimization framework
that leverages this think time to reduce interactive latency. In this framework, the execution of operators that
are not on interaction critical paths, which we call non-critical operators, are deferred to being evaluated
asynchronously during think time to speed up future interactions.
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2.2 Motivating Scenarios and Example Optimizations

To better illustrate the optimization potential of opportunistic evaluation, we present two typical data analysis
scenarios that could benefit from asynchronous execution of queries during think time to minimize interactive
latency. While the user’s program remains the same, we illustrate the modifications to the execution plan that
highlights the transformations made.

2.2.1 Interaction-based Reordering

Consider a common workflow of analyzing multiple data files, shown on the left in Figure 1. The user, Sam,
executes the first cell, which loads both of the files, and is forced to wait for both to finish loading before she
can interact with either of the dataframes. To reduce the interactive latency (as perceived by the user), we
could conceptually re-order the code to optimize for the immediate output. As shown on the right in Figure 1,
the re-ordered program defers loading the large file to after the interaction, df1.describe(), obviating
the need to wait for the large file to load into df2 before Sam can start inspecting the content of the small
file. To further reduce the interactive latency, the system could load df2 while Sam is viewing the results of
df1.describe(). This way, the time-consuming process of loading the large file is completed during Sam’s
think time, thus reducing the latency for interacting with df2.

1
2
3

4
5
6

7

output

output

output

df1[“col1”] = df1[“col1”].apply(UDF1)
df1[“col2”] = df1[“col2”].apply(UDF2)
df1.head()

df2.describe()

df1 = pd.read_csv(“small_file”)
df2 = pd.read_csv(“LARGE_FILE”)
df1.describe()

# user executes the first cell
df1 = pd.read_csv(“small_file”)
df1.describe()
# output

# execute the following in the background
# while the user inspects the output above
df2 = pd.read_csv(“LARGE_FILE”)

# user executes the second cell
df1[“col1”] = df1[“col1”].apply(UDF1)
df1[“col2”] = df1[“col2”].apply(UDF2)
df1.head()
# output

# user executes the third cell
df2.describe()
# output

1
3

2

7

Figure 1: Example program transformation involving operator reordering: (left) Original program where user has
to wait for both files to load before viewing any; (right) Optimized program where the user can view the smaller
file first while the other loads.

2.2.2 Prioritizing Partial Results

For any large dataframes, users can only inspect a handful of rows at a time. However the current evaluation
mechanism requires all the rows to be evaluated. Expensive queries such as those involving user-defined functions
(UDFs) could take a long time to fully compute, as shown on the left in Figure 2.

To reduce interactive latency, one can prioritize computation of only the portion of the dataframe inspected.
This method is essentially an application of predicate pushdown, a standard technique from database query
optimization. The right part of Figure 2 provides an example transformation for the particular operator, groupby.
While the first cell prioritizes the computation of the inspected rows, the user may still need the result of the
entire computation, which is scheduled to be computed later while Sam is still reading the result of the previous
cell, groupNow.head(10), i.e. the think time. A noteworthy attribute of dataframes is row and column
equivalence [14], which means that predicate pushdown can also happen when projecting columns as well.
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output

df = pd.read_csv(“file”)
groups = df.groupby(“col”).agg(expensiveUDF)
groups.head(10)

# user executes the code cell
df = pd.read_csv(“file”)
top10Groups = df[“col”].unique()[:10]
groupsNow = df[df[“col”].isin(top10Groups)].agg(expensiveUDF)
groupsNow.head(10)
# output 

# execute the following in the background
# while the user inspects the output above
groups = df.groupby(“col”).agg(expensiveUDF)

Figure 2: Program transformation involving predicate pushdown. (left) Original program where the user has to
wait for an expensive UDFs to fully compute; (right) Optimized program where the user can view a partial result
sooner.

3 Assessment of Opportunities with Notebook Execution Traces

To assess the size of opportunity for our aforementioned optimizations to reduce interactive latency in computa-
tional notebooks, we evaluate two real world notebook corpora.

One corpus is collected from students in the Data 100 class offered at UC Berkeley. Data 100 is an
intermediate data science course offered at the undergraduate level, covering topics on tools and methods for data
analysis and machine learning. This corpus contains 210 notebooks across four different assignments, complete
with the history of cell execution content and completion times captured by instrumenting a custom Jupyter
extension.

We also collected Jupyter notebooks from Github comprising a more diverse group of users than Data
100. Jupyter’s IPython kernel stores the code corresponding to each individual cell executions in a local
history.sqlite file1. We used 429 notebook execution histories that Macke et al. [13] scraped from Github
that also contained pandas operations.

To assess optimization opportunities, we first quantify think time between cell executions, and then evaluate
the prevalence of the code patterns discussed in Section 2.2.

3.1 Think-Time Opportunities

Our proposed opportunistic evaluation framework takes advantage of user think time to asynchronously process
non-critical operators to reduce the latency of future interactions. To quantify think time, we measure the time
lapsed between the completion of a cell execution and the start of the next cell execution using the timestamps in
the cell execution and completion records, as collected by our Jupyter notebook extension. Note that the think
time statistics are collected only on the Data 100 corpus, as the timestamp information is not available in the
Github corpus. Figure 3 shows the distribution of think time intervals on the left, measured in seconds, between
consecutive cell executions across all notebooks, while the right part of Figure 3 shows the distribution of the
median think time intervals, measured in seconds, within each notebook. We removed automatic cell re-execution
(“run all”) from the dataset. We can see that while there are many cells that were executed quickly, there exist
cells that had ample think time—the 75th percentile think time is 23 seconds.

3.2 Program Transformation Opportunities

Interaction-Based Reordering. To assess the opportunities to apply operator reordering to prioritize interactions,
we evaluate the number of non-critical operators specified before each interaction. We use the operator DAG, to be
described in Section 4.2, to determine the dependencies of an interaction and count the number of operators that

1https://ipython.readthedocs.io/en/stable/api/generated/IPython.core.history.html
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Figure 3: Think time the average “think time” between cell executions and the average think time per notebook.
(left) Think time between cell executions; (right) Median think time per notebook across cells.

are not dependencies, i.e., non-critical operators, specified above the interaction. Figure 4 shows the distributions
for the two datasets. In both cases, non-critical operators present a major opportunity: the Data 100 and Github
corpus have, respectively, 54% and 42% interactions with non-critical operators.
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Figure 4: Number of non-critical operators before interactions. (left) Data 100: µ = 4, σ = 5; (right) Github: µ =
7, σ = 11
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Figure 5: Stats for head/tail interactions used in each notebook. (left) Data 100: µ = 0.04, σ = 0.028; (right)
Github: µ = 0.11, σ = 0.21

Prioritizing Partial Results. The optimization for prioritizing partial results via predicate pushdown can be
applied effectively to many cases when predicates are involved in queries with multiple operators. The most
common predicates in the dataframe setting are head() and tail(), which show the top and bottom K rows
of the dataframe, respectively. Figure 5 show the distribution of the fraction of interactions that are either head
or tail in each notebook. We see that partial results views are much more common in the GitHub dataset than
Data 100. This could be due to the fact that users on GitHub tend to keep the cell output area short for better
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Figure 6: Distribution of number of operators that can benefit from reuse. (left) Data 100: µ = 5, η = 3, σ = 8;
(right) Github: µ = 7, η = 3, σ = 14
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Figure 7: Opportunistic Evaluation Kernel Architecture.

rendering of the notebook by Github, but further studies are needed to corroborate this hypothesis. Lastly, partial
views are not nearly as prevalent as non-critical operators before an interaction, accounting only for < 20% of
the interactions.
Reuse of Intermediate Results. Since dataframe queries are incrementally constructed, with subsequent queries
building on top of previous ones, another common query optimization technique that is applicable is caching
these intermediate results. To assess the opportunities to speed up queries by caching, we evaluate the number of
times an operator is shared by different interactions but not stored as a variable by the user. Ideally, we would
also have the execution times of the individual operators, which is not possible without a full replay. We present
an initial analysis that only assesses the existence of reuse opportunities, as shown in Figure 6. Both the Data 100
and Github datasets have a median of 3 operators that can benefit from reuse.
Of the types of optimizations explored, operator reordering appears to be the most common. Thus, we focus our
initial explorations of opportunistic evaluation on operator reordering for asynchronous execution during think
time, while supporting preemption to interrupt asynchronous execution and prioritize interaction.

4 System Architecture

In this section, we introduce the system architecture for implementing our opportunistic evaluation framework for
dataframe query optimization within Jupyter notebooks. At a high level, we create a custom Jupyter Kernel to
intercept dataframe queries in order to defer, schedule, and optimize them transparently. The query execution
engine uses an operator DAG representation for scheduling and optimizing queries and caching results, and is
responsible for scheduling asynchronous query executions during think time. When new interactions arrive, the
execution of non-critical operators is preempted and partial results are cached to resume execution during the next
think time. A garbage collector periodically uncaches results corresponding to the DAG nodes to avoid memory
bloat based on the likelihood of reuse.
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import pandas as pd

path = “…”
data = pd.read_csv(path)
data.head()

A = data[‘A’].fillna(data.mean().mean())
B = data[‘B’].fillna(data.mean().mean())
A.value_counts()

pandas

pd

path
data_0

head_0
code: data.head()

data[‘A’]_0

data[‘B’]_0read_csv_0
code: pd.read_csv(path)

mean_2
code: data.mean()

mean_1
code: data.mean().mean()

mean_0
code: data.mean()

mean_3
code: data.mean().mean()

A_0

B_0

fillna_0
code: data[‘A’].fillna(data.mean().mean())

fillna_1
code: data[‘B’].fillna(data.mean().mean())

value_counts_0
code: A.value_counts()

Figure 8: Example Code Snippet and Operator DAG.

4.1 Kernel Instrumentation

Figure 7 illustrates the round-trip communication between the Jupyter front-end and the Python interactive shell.
The black arrows indicate how communication is routed normally in Jupyter, whereas the green and purple arrows
indicate how we augment the Jupyter Kernel to enable opportunistic evaluation. First, when the code is passed
from the front-end to the kernel, it is intercepted by the custom kernel that we created by wrapping the standard
Jupyter kernel. As shown in the green box, the code is passed to a parser that generates a custom intermediate
representation, the operator DAG. The operator DAG is then passed to the query optimizer to create a physical
plan for the query to be executed. This plan in then passed to the Python interactive shell for execution. When
the shell returns the result after execution, the result is intercepted by the custom kernel to augment the operator
DAG with runtime statistics as well as partial results to be used by future queries, and the query results are passed
back to the notebook server, as indicated by the purple arrows.

4.2 Intermediate Representation: Operator DAG

Figure 8 shows an example operator DAG constructed from the code snippet on the left. The orange hexagons are
imports, yellow boxes are variables, ovals are operators, where green ovals are interactions. The operator DAG is
automatically constructed by analyzing the abstract syntax tree of the code, in the parser component in Figure 7.
We adopt the static single assignment form in our operator DAG node naming convention to avoid ambiguity of
operator references, as the same operator can be invoked many times, either on the same or different dataframes.
In the case that the operator DAG contains non-dataframe operators, we can simply project out the irrelevant
operators by keeping only the nodes that are weakly connected to the pandas import node.

To see how the operator DAG can be used for optimization, consider two simple use cases:
Critical path identification. To identify the critical path to the interaction A.value_counts(), we can
simply start at the corresponding node and traverse the DAG backwards to find all dependencies. Following
this procedure, we would collect all nodes in the green region as the critical path to A.value_counts()
(corresponding statements are highlighted in green on the left), slicing out the operators associated with the
statement B = data[‘B’].fillna(data.mean().mean()), which does not need to be computed for
the interaction.
Identifying repeated computation. Note that data.mean().mean() is a common subexpression in both A
and B; recognizing this allows us to cache and reuse the result for data.mean().mean(), which is expensive
since it requires visiting every element in the dataframe. We assume that operators are idempotent, i.e., calling
the same operators on the same inputs would always produce the same results. Thus, descendants with identical
code would contain the same results. Based on this assumption, we eliminate common subexpressions by starting
at the root nodes and traversing the graph breadth first, merging any descendants with identical code. We then
proceed to the descendants of the descendants and carry out the same procedure until the leaf nodes are reached.
Following this procedure, we would merge mean_0 with mean_2 and mean_1 with mean_3 in the red dotted
region in Figure 8.

We will discuss more optimizations in Section 5.
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4.3 Operator Execution & Garbage Collector

When a notebook cell is executed, the opportunistic kernel first parses the code in the cell to add operators to the
operator DAG described above. The DAG is then passed to the query optimizer, which will either immediately
kick off the execution of interaction critical paths, if they are present in the DAG, or consider all the non-critical
operators to determine what to execute next. We discuss optimizations for non-critical operators in Section 5.2.

After the last interaction is executed and the results are returned, the query optimizer will continue executing
operators asynchronously until the entire DAG is executed. In the event that an interaction arrives while a non-
critical operator is executing, we preempt the execution of the non-critical operator to avoid delaying the execution
of the interaction critical path. We discuss optimizations for supporting effective preemption in Section 5.1.

While the kernel executes operators, a garbage collector (GC) is working in the background to uncache results
in the operator DAG to control memory consumption. A GC event is triggered when memory consumption
is above 80% of the maximum memory allocated to the kernel, at which point the GC inspects the operator
DAG to uncache the set of operator results that are the least likely to speed up future queries. We discuss cache
management in Section 5.2.

5 Optimization Framework

The opportunistic evaluation framework optimizes for interactive latency by deferring to think time the execution
of operators that do not support interactions. The previous section describes how we use simple program analysis
to identify the interaction critical path that must be executed to produce the results for an interaction. In this
section, we discuss optimizations for minimizing the latency of a given interaction in Section 5.1 and optimizations
for minimizing the latency of future interactions by leveraging think time in Section 5.2. We discuss how to
model user behavior to anticipate future interactions in Section 5.3.

5.1 Optimizing Current Interactions

Given an interaction critical path, we can apply standard database optimizations for single queries to optimize
interactive latency. For example, if the interaction operator is head (i.e., examining the first K rows), we can
perform predicate pushdown to compute only part of the interaction critical path that leads to the top K rows in
the final dataframe. The rest can be computed during think time in anticipation of future interactions.

The main challenge for optimizing interactive latency in opportunistic evaluation is the ability to effectively
preempt the execution of non-critical operators. This preemption ensures that we avoid increasing the interactive
latency due to irrelevant computation. The current implementation of various operators within pandas and other
dataframe libraries often involves calling lower-level libraries that cannot be interrupted during their execution.
In such cases, the only way to preempt non-critical operators is to abort their execution completely, potentially
wasting a great deal of progress. We propose to overcome this challenge by partitioning the dataframe so that
preemptions lead to, in the worst case scenario, only loss of the progress on the current partition.
Dataframe partitioning. Partitioning the dataframe in the opportunistic evaluation setting involves navigating
the trade-off between the increase in future interactive latencies due to loss of progress during preemption and the
reduction in operator latency due to missed holistic optimizations on the entire dataframe. In the setting where
interactions are sparse, a single partition maximizes the benefit of holistic optimization while losing progress on
the entire operator only occasionally due to preemption. On the other hand, if interactions are frequent and erratic,
a large number of small partitions ensures progress checkpointing, at the expense of longer total execution time
across all partitions. Thus, the optimal partitioning strategy is highly dependent on user behavior. We discuss how
to model user behavior in Section 5.3.
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Without a high-fidelity user interaction model, we can create unevenly sized partitions to handle the variability
in the arrival rate of interactions. First, we create small partitions for the top and bottom K rows in the dataframe
not only to handle the rapid succession of interactions but also to support partial-result queries involving head
and tail that are prevalent in interactive dataframe workloads. Then, for the middle section of the dataframe,
the partitions can reflect the distribution of think time such that the partition sizes are smaller at intervals where
interactions are likely to be issued. For example, if the median think time is 20s and the operator’s estimated
execution time is 40s, it might be desirable to have smaller partitions after 50% of the rows have been processed.

The above strategy assumes sequential processing of every row in the dataframe. If, instead, the prevalent
workload is working with a select subset of rows, then it is more effective to partition based on the value of the
attributes that are commonly used for selection. Of course, partitioning is not necessary if computation started
during think time does not block computation for supporting interactions.

Note that another important consideration in generating partial results is the selectivity of the underlying
operators and whether they are blocking operators. For the former, we may need to employ a much larger
partition simply to generate K results. For the latter, we may need to prioritize the generation of the aggregates
corresponding to the groups in the top or bottom K (in the case of group-by), or to employ algorithms that
prioritize the generation of the K first sorted results (in the case of sorting). In either case, the problem becomes
a lot more challenging.

5.2 Optimizing Future Interactions Leveraging Think Time

Non-critical Operator scheduling. We now discuss scheduling non-critical operators. Recall that these operators
are organized in a DAG built from queries. The job of our scheduler is to decide which source operators to
execute. Source operators in the DAG are those whose precedent operators do not exist or are already executed.
We assume an equal probability of users selecting any operator in the DAG to extend with an interaction.

The scheduler is optimized to reduce the interaction latency; we introduce the notion of an operator’s delivery
cost as the proxy for it. If an operator has not been executed yet, its delivery cost is the cost of executing the
operator along with all of its unexecuted predecessors. Otherwise, the delivery cost is zero. Our scheduler
prioritizes scheduling the source operator that can reduce the delivery cost across all operators the most. We
define a utility function U(si) to estimate the benefit of executing a source operator si. This function, for a node
si is set to be the sum of the delivery cost for the source operator and all of its successors Di:

U(si) =
∑
j∈Di

cj (3)

where cj is the delivery cost for an operator j. Our scheduler chooses to execute the one with the highest U(si).
This metric prioritizes those operators that “influence” as many expensive downstream operators as possible.
Caching for reuse. When we are executing operators in the background, we store the result of each newly
computed operator in memory. However, if the available memory (i.e., the memory budget) is not sufficient
to store the new result, we need to recover enough memory by discarding materialized results of previously
computed operators. If the discarded materialized results are needed by future operators, we will execute the
corresponding operators to recompute them. Here, the optimization problem is to determine which materialized
results should be discarded given the memory budget. Our system addresses this problem by systematically
considering three aspects of a materialized result, denoted ri: 1) the chance of ri being reused, pi, 2) the cost
of recomputing the materialized result, ki, and 3) the amount of memory it consumes, mi. We estimate pi by
borrowing ideas from the LRU replacement algorithm. We maintain a counter T to indicate the last time any
materialized result is reused and each materialized result is associated with a variable ti that tracks the last time it
is reused. If one materialized result ri is reused, we increment the counter T by one and set ti to T . We use the
following formula to estimate pi:

pi =
1

T + 1− ti
(4)
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We see that the more recently a materialized result ri is reused, the higher pi is. We can use a cost model as in
relational databases to estimate the recomputation cost ki. We note that we do not always recompute an operator
from scratch. Given that the other materialized results are in memory, our cost model estimates the recomputation
cost by considering reusing existing materialized results. Therefore, we use the following utility function to
decide which materialized result should be discarded.

O(ri) = pi ×
mi

ki
(5)

Here, mi
ki

represents the amount of memory we can spare per unit of recomputation cost to pay. The lower mi
ki

is,
the more likely we discard ri. Finally, our algorithm will discard the ri with the lowest O(ri) value.
Speculative materialization. Our system not only considers caching results generated by users’ programs, but
also speculatively materializes and caches results that go beyond what users specify, to be used by future operators.
One scenario we observed is that users intend to explore the data by changing the value of a filter repeatedly. In
this case, we can materialize the intermediate output results before we apply the filter and when users modify
the filter, we can reuse the saved results without computing them from scratch. The downside of this approach
is that it can increase the latency of computing an interaction when the think time is limited. Therefore, we
enable this optimization only when users’ predicted think time of writing a new operator is larger than the time of
materializing the intermediate states.

5.3 Prediction of User Behavior

The accurate prediction of user behavior can greatly improve the efficacy of opportunistic evaluation. Specifically,
we need to predict two types of user behavior: think time and future interactions. Section 3.1 described some
preliminary statistics that can be used to construct a prior distribution for think time. As the system observes
the user work, this distribution can be updated to better capture the behavior of the specific user, as we expect
the distribution of think time to vary greatly based on the dataset, task, user expertise, and other idiosyncrasies.
These workload characteristics can be factored into the think time model for more accurate prediction. This think
time model can be used by the optimizer to decide the size of dataframe partitions to minimize progress loss due
to preemption or to schedule non-critical operators whose expected execution times are compatible with the think
time duration.

To predict future interactions, we can use the models from Yan et al. [17]. These models are trained on a
large corpus of data science notebooks from Github. Since future interactions often build on existing operators,
we can use the future interaction prediction model to estimate the probabilities of non-critical operators in the
DAG leading to future interactions, which can be used by the scheduler to pick non-critical operators to execute
next. Let pj be the probability of the children of an operator j being an interaction. We can incorporate pj into
the utility function in Equation 3 to obtain the updated utility function:

Up(si) =
∑
j∈Di

cj × pj (6)

Of course, the benefits of opportunistic evaluation can lead to modifications in user behavior. For example,
without opportunistic evaluation, a conscientious user might self-optimize by avoiding specifying expensive
non-critical operators before interactions, potentially at the cost of code readability. When self-optimization
is no longer necessary when authoring queries, the user may choose to group similar operators for better code
readability and maintenance, thus creating more opportunities for opportunistic evaluation optimizations.
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Figure 9: An example notebook. Cells that show an output are indicated with a red box.

6 Case Study

In this section, we evaluate how opportunistic evaluation will impact the end user through a case study. Figure 9
shows an excerpt from the original notebook, taken from a Kaggle competition (https://www.kaggle.com/c/home-
credit-default-risk).

In this case study, the data scientist first read in the file, and was forced to immediately wait. Then, the user
wanted to see the columns that exist in the dataset. This is often done when the data scientist first encounters
a dataset. They therefore printed the first 5 lines with data.head(). This inspection is important for data
validation: the data scientist wanted to ensure that the data was parsed correctly during data ingestion. After
these two data validation steps, the data scientist noticed that there were a significant number of null values in
multiple columns.

The cell labeled In[4] shows how the data scientist solved the null values problem: they decided to drop
any column that does not have at least 80% of its values present. Notice that the data scientist first wanted to
see what the results of the query would look like before they executed it, so they added a .head() to the end
of the query that drops the columns. Likely this was done during debugging, where many different, but similar
queries were attempted until the desired output was achieved. The query was then repeated to overwrite the data
variable. An important note here is that the full dataset is lost at this point due to the overwriting of the data
variable. The data scientist will need to reread the file if they want access to the full dataset again. After dropping
columns with less than 80% of their values present, the data scientist double-checked their work by inspecting the
columns of the overwritten data dataframe. Next, we evaluate the benefits of the opportunistic evaluation
approach by determining the amount of synchronous wait time saved by leveraging think time.

To evaluate opportunistic evaluation in our case study, think time was injected into the notebook from the
distribution presented in Figure 3. We found that the time that the hypothetical data scientist spent waiting on
computation was almost none: the read_csv phase took 18.5 seconds originally, but since the output of the
columns and head were prioritized, they were displayed almost immediately (122ms). The data scientist then
looked at the two outputs from columns and head for a combined 16.2 seconds. This means the data scientist
synchronously waited on the read_csv for approximately 1.3 seconds. Next, the user had to wait another
2.3 seconds for the columns with less than 80% of their values present to be dropped. Without opportunistic
evaluation, the user would have to pay this time twice, once to see the first 5 lines with head and again to see the
data.columns output in cell In[6].
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7 Related Work

Recently, researchers and developers have begun to turn their attention to the optimization, usability, and
scalability of dataframes as the community begins to recognize its important role in data exploration and analysis.
Some of these issues are brought on by the increasingly complex API and ever-growing data sizes. Pandas itself
has best practices for performance optimization embedded within its user guide [4]. However, enabling these
optimizations often requires a change to the user’s behavior.

Many open source systems attempt to provide improved performance or scalability for dataframes. Often, this
means only supporting dataframe functionalities that are simple to parallelize (e.g., Dask [3]), or supporting only
those operations which can be represented in SQL (e.g. Koalas [5] and SparkSQL [2]). Our project, Modin [6], is
the only open source system with an architecture that can support all dataframe operators.

In the research community, there are multiple notable papers that have tackled dataframe optimization
through vastly different approaches. Sinthong et al. propose AFrame, a dataframe system implemented on top of
AsterixDB by translating dataframe APIs into SQL++ queries that are supported by AsterixDB [15]. Another
work by Yan et al. aims to accelerate EDA with dataframes by “auto-suggesting” data exploration operations [17].
Their approach has achieved considerable success in predicting the operations that were actually carried out
by users given an observed sequence of operations. More recently, Hagedorn et. al. designed a system for
translating pandas operations to SQL and executing on existing RDBMSs [9]. In a similar vein, Jindal et. al. built
a system called Magpie for determining the optimal RDBMS to execute a given query [11]. Finally, Sioulas et.
al. describe techniques for combining the techniques from recommendation systems to speculatively execute
dataframe queries [16].

Our proposed approach draws upon a number of well established techniques from the systems, PL, and DB
communities. Specifically, determining and manipulating the DAG of operators blends control flow and data flow
analysis techniques from the PL community [8]. The optimization of dataframe operators draws inspiration from
battle-tested database approaches such as predicate pushdown, operator reordering, multi-query optimization, and
materialized views [10], as well as compiler optimizations such as program slicing and common subexpression
elimination. Furthermore, we borrow from the systems literature on task scheduling to take enable asynchronous
execution of dataframe operators during think time.

8 Conclusion & Future Work

We proposed opportunistic evaluation, a framework for accelerating interactions with dataframes. Interactive
latency is critical for iterative, human-in-the-loop dataframe workloads for supporting data validation, both for
ML and for EDA. Opportunistic evaluation significantly reduces interactive latency by 1) prioritizing computation
directly relevant to the interactions and 2) leveraging think time for asynchronous background computation for
non-critical operators that might be relevant to future interactions. We have shown, through empirical analysis,
that current user behavior presents ample opportunities for optimization, and the solutions we propose effectively
harness such opportunities.

While opportunistic evaluation addresses data validation prior to model training, data validation challenges
are present in other parts of the end-to-end ML workflow. For example, after a trained model has been deployed,
it is crucial to monitor and validate online data against the training data in order to detect data drift, both in terms
of distribution shift and schema changes. A common practice to address data drift is to retrain the model on newly
observed data, thus introducing data drift into the data pre-processing stage of the end-to-end ML workflow.
Being able to adapt the data validation steps in a continuous deployment setting to unexpected data changes is an
open challenge.
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Abstract

Responsible AI is becoming critical as AI is widely used in our everyday lives. Many companies
that deploy AI publicly state that when training a model, we not only need to improve its accuracy,
but also need to guarantee that the model does not discriminate against users (fairness), is resilient to
noisy or poisoned data (robustness), is explainable, and more. In addition, these objectives are not only
relevant to model training, but to all steps of end-to-end machine learning, which include data collection,
data cleaning and validation, model training, model evaluation, and model management and serving.
Finally, responsible AI is conceptually challenging, and supporting all the objectives must be as easy
as possible. We thus propose three key research directions towards this vision – depth, breadth, and
usability – to measure progress and introduce our ongoing research. First, responsible AI must be deeply
supported where multiple objectives like fairness and robust must be handled together. To this end, we
propose FR-Train, a holistic framework for fair and robust model training in the presence of data bias
and poisoning. Second, responsible AI must be broadly supported, preferably in all steps of machine
learning. Currently we focus on the data pre-processing steps and propose Slice Tuner, a selective data
acquisition framework for training fair and accurate models, and MLClean, a data cleaning framework
that also improves fairness and robustness. Finally, responsible AI must be usable where the techniques
must be easy to deploy and actionable. We propose FairBatch, a batch selection approach for fairness
that is effective and simple to use, and Slice Finder, a model evaluation tool that automatically finds
problematic slices. We believe we scratched the surface of responsible AI for end-to-end machine learning
and suggest research challenges moving forward.

1 Introduction

Responsible AI is becoming critical as machine learning becomes widespread in our everyday lives. Companies
including Google [2], Microsoft [3], and IBM [5] publicly state that AI not only needs to be accurate, but also
used and developed, evaluated, and monitored for trust. Although there is no universally agreed notion for
responsible AI, the major objectives include fairness, robustness, explainability, transparency, and accountability.

The usual starting point is to support responsible AI only in model training, but this is not sufficient. For
example, if the training data is biased towards a specific population, there is a fundamental limit into how much
the trained model can avoid being biased as well even using the best fair training algorithms. Instead, we may
need to address the root cause starting from data collection where we need to construct an unbiased dataset.

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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We would thus like to support responsible AI in all steps of end-to-end machine learning [8, 37]. Before
model training, the key steps are data collection, data cleaning, and validation. After model training, there are
model evaluation, and model management and serving. In addition, since supporting all the responsible AI
objectives is already conceptually challenging, it is important to make these techniques easy to use as well.

To this end, we propose three research directions – depth, breadth, and usability – and present our contributions.
First, we need to deeply support responsible AI where multiple objectives are addressed together. We present
FR-Train [28], the first holistic framework for fair and robust model training. Second, we need to broadly support
responsible AI in all machine learning steps. We present two systems that focus on data pre-processing: Slice
Tuner [34] is a selective data acquisition framework for fair and accurate models, and MLClean [33] is a data
cleaning framework that also improves fairness and robustness. Third, we need responsible AI to be usable and
actionable. We present two systems: FairBatch [29] is an easy-to-deploy batch selection technique for model
training that improves fairness, and Slice Finder [13, 14] automatically evaluates a model by finding problematic
slices where it underperforms. Our work only scratches the surface of responsible AI for end-to-end machine
learning, and we believe that setting the three research directions is useful to measure progress.

We introduce the responsible AI research landscape in Section 2. We then discuss our systems for depth,
breadth, and usability in Sections 3, 4, and 5, respectively. Finally, we suggest open challenges in Section 6.

2 Responsible AI Research Landscape

We provide a brief history of responsible AI and discuss the research landscape. Responsible AI is also known
as Trustworthy AI and has recently been promoted by Google [2], Microsoft [3], and IBM [5] among others
as a critical issue when using AI in practice. The key objectives include fairness, robustness, explainability,
transparency, and accountability. Among the objectives, we focus on fairness and robustness because they are
both closely related to the training data. The other objectives are also important, but currently outside our scope.

Fairness is the problem of not discriminating against users and has gained explosive interest in the past
decade [7, 35]. An article that popularized fairness was the 2016 ProPublica report [6] on the COMPAS software,
which is used in US courts to predict a defendant’s recidivism (reoffending) rate. COMPAS is convenient,
but is known to overestimate black people’s recidivism risk compared to white people. Recently, various
unfairness mitigation techniques [9] have been proposed and can be categorized as pre-processing, in-processing,
or post-processing depending on whether the techniques are applied before, during, or after model training,
respectively.

Robustness is the problem of preventing or coping with adversarial attacks. In particular, model training
against data poisoning has been heavily studied in the past decade [15, 31]. Nowadays datasets are easier to
publish using tools like Kaggle and Google Dataset Search [11], which means that it is easier to disseminate
poisoned data as well. The data can then be harvested by Web crawlers of unsuspecting victims and used for
model training. While the basic poisoning attacks involve simple labeling flipping (e.g., change a positive label to
be negative), recent poisoning attacks are becoming increasingly sophisticated. The possible defenses include
sanitizing the data before model training or making the model training accurate despite the poisoning.

In practice, machine learning is not just about model training, but involves multiple steps as demonstrated by
end-to-end systems like TensorFlow Extended (TFX) [8] and MLFlow [37]: data collection, data cleaning and
validation, model training, model evaluation, and model management and serving. Hence, responsible AI is not
just a model training issue, but relevant to all of the above steps. The data management community has recently
been addressing the data aspect of responsible AI in end-to-end machine learning [25, 23, 26, 12, 27, 32, 36].
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Figure 1: The three research directions – depth, breadth, and usability – for fully supporting the responsible
AI objectives (fairness, robustness, and others) in addition to accuracy in end-to-end machine learning. The
highlighted parts show our contributions: Slice Tuner [34] addresses fairness in data collection; MLClean [33]
addresses fairness and robustness in data cleaning; FR-Train [28] addresses fairness and robustness in model
training; FairBatch [29] addresses usability for fairness in model training; and Slice Finder [13, 14] addresses
usability for fairness in model evaluation.

The current research landscape naturally leads to the three key research directions we propose – depth,
breadth, and usability – as shown in Figure 1. First, it is important to support many responsible AI objectives at
each step. Second, we need to broadly support responsible AI in as many steps as possible, from data collection
to model serving. Third, we need these techniques to be usable and actionable by machine learning users. We
highlight the responsible AI objectives in Figure 1 where we propose solutions.

3 Deep Responsible AI

We discuss deeply supporting responsible AI, which means that we would like to address multiple objectives
together. We re-emphasize that each objective is currently being heavily studied. For model fairness, there is an
extensive literature in the machine learning and fairness communities on mitigating unfairness before, during, or
after model training [7, 35, 9]. For model robustness, both the machine learning and security communities are
proposing various data sanitization and robust training techniques [22, 31]. However, we believe that responsible
AI requires both fairness and robustness instead of just one. In addition, addressing one objective at a time is not
ideal as we discuss later. Fairness and robustness are also closely related because their problems originate from
the training data: biased data causes unfairness while poisoned data decreases model accuracy. This motivation
leads us to propose FR-Train [28], the first holistic framework for fair and robust training.

Fairness is a subjective notion, and many definitions have been proposed [35] where they can be categorized
depending on what information is used: the classifier, the sensitive attribute (e.g., race or gender), and training
labels. For example, individual fairness only uses the classifier and means that similar individuals must have
similar predictions. Demographic parity [17] (or disparate impact) uses the classifier and the protected attribute
and means that different sensitive groups (e.g., black and white populations) have similar positive prediction
rates. That is, P (Ŷ = 1|Z = 0) ≈ P (Ŷ = 1|Z = 1) where Ŷ is a prediction and Z is a binary sensitive
attribute. Equalized odds [18] uses all three pieces of information and is similar to demographic parity, except
that the probabilities are conditioned on the label. That is, P (Ŷ = 1|Z = 0, Y = l) ≈ P (Ŷ = 1|Z = 1, Y = l)
where Y is the label. In this section, we use demographic parity and measure it using the formula DP :=

min
(
P (Ŷ=1|Z=0)

P (Ŷ=1|Z=1)
, P (Ŷ=1|Z=1)

P (Ŷ=1|Z=0)

)
where a higher value close to 1 means better fairness.

We now explain why addressing fairness and robustness together is important using a concrete example. In
Figure 2, suppose there are two sensitive groups black and white, and that there are ten people of two races: white
(denoted as ‘w’) and black (denoted as ‘b’). Let us assume the boxes indicates positive labels and that we want
to train a threshold classifier that divides the individuals using a single feature X where those on the left have
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Figure 2: (Left) Accurate (black solid line) and fair (blue dotted line) classifiers on clean data followed by data
poisoning. (Right) A fair classifier trained on poisoned data (red dotted line) is evaluated on clean data, showing
a worse accuracy-fairness tradeoff than the fair classifier trained on clean data.

negative predictions (e.g., do not reoffend) while those on the right have positive predictions. On clean data,
a vanilla classifier can obtain perfect accuracy by dividing between the fourth and fifth individuals (Figure 2
solid line classifier). However, the demographic parity DP is not perfect where P (Ŷ = 1|Z = w) = 2

5 = 0.4,
P (Ŷ = 1|Z = b) = 4

5 = 0.8, and DP := min
(
0.4
0.8 ,

0.8
0.4

)
= 0.5. Suppose a fair classifier maximizes accuracy

with perfect DP . One can find such a classifier by dividing between the second and third individuals (Figure 2
blue dotted line classifier). While DP = 1, the accuracy is 0.8 because two white people are now misclassified.

Now suppose we poison the clean data by using the standard method of flipping labels [24]. On the bottom
of the left side of Figure 2, the fifth and seventh individuals are now incorrectly labeled as negative. There are
three ways to handle the poisoned data: (1) do nothing and perform fair training only as usual, (2) take a two-step
approach and perform data sanitization followed by fair training using existing methods, and (3) take a holistic
approach for fair and robust training. Let us first see what happens if we take the first approach. We can train a
fair classifier on the poisoned data with perfect DP by dividing between the eighth and ninth individuals (bottom
of the right side of Figure 2, red dotted line classifier). In that case, we will have perfect DP , but an accuracy of
0.8 on poisoned data. However, if this classifier is deployed in the real world, it will effectively be used on clean
data. This scenario is plausible for any application that serves real customers. However, simply using the same
classifier on clean data results in a worse tradeoff of fairness and accuracy where DP remains the same, but the
accuracy reduces to 0.6. Hence, ignoring poisoning may lead to strictly worse accuracy and fairness results. In
reference [28], we also empirically show that the two-step solution is ineffective. The intuition is that an existing
fairness-only or robustness-only technique cannot easily distinguish data poisoning from bias in the data and ends
up removing all or none of the problematic data.

We thus propose FR-Train to take a holistic approach for fair and robust training. Figure 3 shows the
architecture of FR-Train. On the top, there is a classifier (e.g., predicts recidivism) that competes with a
discriminator for fairness that predicts the sensitive attribute (e.g., the race) based on the predictions. This
adversarial training is similar to Adversarial Debiasing [38], a state-of-the-art fairness-only training algorithm.
The below part is the novel addition where there is a discriminator for robustness that distinguishes the possibly-
poisoned training set with a validation set that is known to be clean. The clean validation set is small and can be
constructed using crowdsourcing and conventional quality control techniques including majority voting. Hence,
the classifier needs to be both fair and robust to compete with the two discriminators. Finally, the predictions
of the robustness discriminator are used to reweight training set examples where cleaner examples get higher
weights. Initially, these weights are not useful because the robustness discriminator is not accurate. However, as
the training progresses, the discriminator becomes accurate, and the weights are used by the classifier.
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Figure 3: The FR-Train architecture and how it can be used for recidivism prediction.

In reference [28], we present a mutual information-based interpretation of FR-Train’s architecture. To give an
intuition, perfect fairness means that the mutual information between the model’s prediction and the sensitive
attribute is 0. Similarly, satisfying robustness can be expressed using mutual information. In this case, perfect
robustness means that the poisoned data distribution is indistinguishable from the clean data distribution (i.e.,
validation set). FR-Train minimizes both of the mutual information values and the classifier loss. We perform
experiments on synthetic and real datasets and train a classifier on poisoned data and evaluate it on clean data. As
a result, FR-Train is the only approach that achieves both high accuracy and fairness while the other baselines
either have poor fairness or accuracy.

4 Broad Responsible AI

In addition to supporting responsible AI in model training, we would also like to broadly support it across many
steps in end-to-end machine learning. While most of the fairness and robustness literature focus on model training,
there needs to be more focus on other machine learning steps as well. Recently, FairPrep [30] was proposed to
support fairness in all steps of data pre-processing before model training. Also for an extensive coverage of data
collection and quality techniques for machine learning, please refer to a survey [27] and tutorial [36]. Here we
also focus on data pre-processing and present two contributions: Slice Tuner [34] is a selective data acquisition
framework for maximizing fairness and accuracy, and MLClean [33] is a data cleaning framework for addressing
both fairness and robustness in addition to accuracy.

4.1 Selective Data Acquisition for Fair and Accurate Models

As machine learning is used in various applications, one of the critical bottlenecks is acquiring enough data
so that the trained model is both accurate and fair. Nowadays, there are many ways to acquire data including
dataset discovery, crowdsourcing, and simulator-based data generation. Data acquisition is not the same as active
learning, which labels existing data. Instead, our focus is on acquiring new data along with its labels.

However, blindly acquiring data is not the right approach. Let us first divide the data into subsets called slices.
Suppose that the slices are customer purchases by various regions: America, Europe, APAC, and so on. Among
them, if we already have enough America data, acquiring more America data is not only unhelpful, but may also
bias the data and have a negative effect on the model accuracy on the other slices.

Instead, we want to acquire possibly different amounts of data per slice in order to maximize accuracy and
fairness. To measure accuracy, we use loss functions like logistic loss. For fairness, we use equalized error
rates [35], which states that the losses of slices must be similar. This notion of fairness is important to any
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Figure 4: (a) Learning curves on two slices of the UTKFace dataset [39]. (b) Slice Tuner architecture.

application that should not discriminate its customers by service quality. A waterfilling approach is a good start
where we simply acquire data so that the slices have similar sizes. However, this approach is not optimal because
some slices may need more data to obtain the same model loss as other slices.

Our key approach is to generate for each slice a learning curve, which estimates the model loss on that
slice given more labeled data. Multiple studies [19, 16] show that a learning curve is best fit using a power-law
function. Figure 4 (a) shows two actual learning curves generated on two race-gender slices of a real dataset
called UTKFace [39]. We can use these learning curves to estimate how much data must be acquired per slice.

Assuming that the learning curves are perfectly reliable (we discuss how to deal with unreliable curves later),
we can determine the amounts of data to acquire to minimize the total loss and unfairness of slices by solving the
following convex optimization problem:

min

n∑
i=1

bi(|si|+ di)
−ai + λ

n∑
i=1

max

{
0,
bi(|si|+ di)

−ai

A
− 1

}
subject to

n∑
i=1

C(si)× di = B

where {si}ni=1 are the slices, {di}ni=1 are the amounts of data to acquire, A is the average loss of slices, C(si)
is the cost function for acquiring an example for si, and B is a cost budget. The first term in the objective
function minimizes the total loss while the second term minimizes the unfairness by penalizing slices that have
higher-than-average losses. The two terms are balanced using λ. By acquiring more data for slices with higher
losses, we eventually satisfy equalized error rates. Slice Tuner’s architecture is shown in Figure 4 (b) where we
perform selective data acquisition on input slices. The runtime bottleneck is the time to actually acquire data.

We now address the key challenge of handling unreliable learning curves. Learning curves are not perfect
because slices may be too small for accurate estimations. Even worse, acquiring data for one slice may “influence”
others. Figure 5 (a) shows how acquiring data for the slice White-Male increases or even decreases the model’s
loss on other slices for UTKFace. The intuition is that the acquired data of one slice pushes the decision boundary
of the model, which in turn changes the losses of other slices (Figure 5 (b)).

The solution is to iteratively update the learning curves. But how often should we iterate? On one hand, each
iteration is expensive and involves multiple model trainings and curve fittings, even though we use amortization
techniques [34]. On the other hand, we do not want to use inaccurate learning curves. Our algorithm works as
follows. We first ensure a minimum slice size to draw some learning curve. In practice, having tens of examples
is enough for this step. Next, we repeat two steps until we run out of budget: (1) acquire data as long as the
estimated influence is not large enough and (2) re-fit the learning curves. The remaining problem is estimating
influence. We propose a proxy called imbalance ratio change where imbalance ratio represents bias and is the
ratio between the largest and smallest slice sizes. The intuition is that a change in imbalance ratio among slices
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Figure 5: (a) Data acquisition on the slice White-Male influencing the losses on the other slices for the UTKFace
dataset. (b) To give an intuition, say there are three slices where shape indicates slice, and color indicates label.
(Top) If we only increase the triangles, the decision boundary may shift to the left due to the new bias, changing
the losses of the other slices. (Bottom) If we evenly increase the data for all slices, the bias does not change, and
there is little influence among the slices.

causes influence. In Figure 5 (b) adding two triangles results in a shifted decision boundary where the imbalance
ratio increases from 2

2 = 1 to 4
2 = 2. On the other hand, if we evenly increase the slices, the decision boundary

does not shift, and the imbalance ratio does not change much either.
In reference [34], we provide more details on the algorithms and also perform experiments on real datasets.

We show that Slice Tuner has lower loss and unfairness compared to two baselines: uniformly acquiring the same
amounts of data per slice and waterfilling. We also make the same comparison when the slices are small and
only have tens of examples. Here the learning curves are very noisy and thus unreliable. Interestingly, Slice
Tuner still outperforms the baselines because it can still leverage the relative loss differences among the learning
curves. As more data is acquired, Slice Tuner performs even better with more reliable learning curves. In the
worst case when the learning curves are completely random, we expect Slice Tuner to perform similarly to one of
the baselines.

4.2 Data Cleaning for Accurate, Fair, and Robust Models

Another important place to support responsible AI is data cleaning [20] where the input data needs to be validated
and fixed before it is used for model training. Historically, multiple communities – data management, machine
learning (model fairness), and security – have been investigating this problem under the names of data cleaning,
unfairness mitigation, and data sanitization, respectively. Unfortunately, not much is known how the different
techniques can be used together when a dataset is dirty, biased, and poisoned at the same time.

MLClean is a unified cleaning framework that performs data cleaning, data sanitization, and unfairness
mitigation together. A key insight is that these three operations have dependencies and must be executed in
a certain order for the best performance. As shown in MLClean’s architecture in Figure 7, data sanitization
and cleaning are performed together followed by unfairness mitigation. Data sanitization can be considered a
stronger version of cleaning because it defends against adversarial poisoning instead of just noise. In addition,
data cleaning and sanitization may affect the bias of data while unfairness mitigation that performs example
reweighting does not affect the correctness of cleaning and sanitization.

As a running example, suppose we run MLClean on our examples with equal weights of 1. Say that data
sanitization clusters examples and removes anomalies while data cleaning performs entity resolution. The two
operations can be naturally combined by generating clusters and running entity resolution within each cluster,
assuming that examples across clusters do not match. Clustering examples before resolution is a common
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Figure 6: The MLClean architecture where data sanitization and data cleaning are performed together followed
by unfairness mitigation. Optionally, a previous model can be used by any of the three operations.

ID Weight Name Gender Age Label
e1 1.0 John M 20 1
e2 1.0 Joe M 20 0
e3 1.0 Joseph M 20 0
e4 1.0 Sally F 30 1
e5 1.0 Sally F 40 0
e6 1.0 Sally F 300 1

Table 4: Six examples where e2 and e3 are duplicates (dirty), and e6 has an anomalous age (poisoned).

operation in entity resolution for narrowing down matching candidates. Figure 7 shows how the initial six
examples are clustered into {e1, e2, e3} and {e4, e5} (e6 is considered an outlier), and then e2 and e3 are merged
together into e23 with a summed weight of 2. For unfairness mitigation, suppose we reweight [21] the examples
such that demographic parity (defined in Section 3) is satisfied for the sensitive groups men and women. We can
make the (weighted) positive prediction rates the same by adjusting e23’s weight from 2 to 1. As a result, the
(weighted) positive prediction rates for men and women have the same value of 1.0

1.0+1.0 = 0.5.

e1 e2 e3 e4 e5 e6

Outliere23
Entity resolution

Clustering for anomaly detection

2 1Reweighting

Figure 7: MLClean running on our examples.

In reference [33], we compare MLClean with other base-
lines that use a strict subset of the operations data sanitiza-
tion, data cleaning, and unfairness mitigation or use all three
operations, but in a different order than MLClean. On real
datasets, MLClean has the best model accuracy and fairness,
demonstrating that all three operations are necessary for
the best results. In addition, MLClean is faster than base-
lines that use the three operations in different orders, which
means that utilizing the dependencies among the operations
is important.

5 Usable Responsible AI

The final pillar of responsible AI is making it usable and actionable to all machine learning users. While usability
is not always the main focus in machine learning, it is especially relevant for responsible AI because the various
objectives are already conceptually challenging to understand, so the deployment must be made as easy as
possible. We thus propose two systems: FairBatch [29] is an easy-to-use model training technique for fairness,
and Slice Finder [13, 14] is an easy-to-use model evaluation technique for improving fairness.
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Figure 8: (a) The black path shows how the model fairness improves as FairBatch adjusts two parameters λ1
(sampling rate for examples where Z=0 given Y =0) and λ2 (sampling rate for examples where Z=0 given Y =1)
for each epoch on the COMPAS dataset. “ED disparity” is the accuracy difference conditioned on the true label
between sensitive groups where lower disparity means better equalized odds. (b) Sample PyTorch code where the
batch selection sampler is replaced with FairBatch with a single-line change highlighted in blue.

5.1 Batch Selection for Fair Models

While many unfairness mitigation techniques [9] have been proposed, most of them require significant amounts
of effort to deploy. Pre-processing techniques have the advantage of being applicable to any model, but require
changes in the training data in order to remove bias. In-processing techniques tend to perform well, but usually
propose a new model training algorithm that completely replaces an existing algorithm. An interesting question is
whether we can take the best of both worlds of pre-processing and in-processing without their overheads.

We show that such a solution exists and propose FairBatch, which simply improves the batch selection of
stochastic gradient descent training for better fairness. We formulate a bilevel optimization problem where we
keep the standard training algorithm as the inner optimizer while incorporating the outer optimizer to equip the
inner problem with the additional functionality: adaptively selecting minibatch sizes for the purpose of improving
fairness. While the model is training, FairBatch adaptively adjusts the portions of the sensitive groups within each
batch that is selected for each training epoch based on the fairness of the current intermediate model. For example,
let us use the COMPAS example where we are predicting recidivism rates of criminals. Also let us use equalized
odds (defined in Section 3) as the fairness measure where we want the positive prediction rates of sensitive groups
to be the same conditioned on the true label. Since the label is fixed, this fairness can be interpreted as the model
having the same accuracy for sensitive groups conditioned on the label. Now suppose that an intermediate model
shows higher accuracy for a certain sensitive group. FairBatch then increases the batch-size ratio of the other
underperforming sensitive group in the next batch. Intuitively, a larger batch size ratio results in better accuracy,
so eventually equalized odds will improve. Figure 8 (a) illustrates how FairBatch improves equalized odds during
a single model training. In reference [29], we show that this strategy is theoretically justified and generalize the
algorithm for other fairness measures including demographic parity.

A key feature of FairBatch is its usability where one only needs to replace the batch selection of a machine
learning system. Figure 8 (b) shows a PyTorch code example where one can deploy FairBatch by replacing a
single line of code, and no further changes are needed in the pre-processing or in-processing steps of model
training. In reference [29], we also conduct experiments on synthetic and real datasets and show that FairBatch
surprisingly has performances comparable to or even better than state-of-the-art pre-processing and in-processing
unfairness mitigation techniques in terms of accuracy, fairness, and runtime. In addition, FairBatch is flexible and
can be used to improve the fairness of pre-trained models like ResNet18 and GoogLeNet. Finally, there are batch
selection techniques proposed for faster model training convergence, and FairBatch can be naturally combined
with them to improve fairness as well.
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5.2 Automatic Data Slicing for Fair Models

After model training, models are evaluated before being served. For example, TensorFlow Model Analysis [4]
is a model evaluation component of TFX that accepts a user-specified slicing feature (e.g., country) and shows
the model accuracies per slice (e.g., accuracy per country). Here we are using equalized error rates (defined in
Section 4.1) as our notion of fairness. However, there is potentially an exponential number of slices to explore,
and it is not easy for users who do not have enough domain expertise to quickly sift through them.

We thus propose Slice Finder [13, 14], which automatically finds “problematic” slices (subsets of the data)
where the model underperforms. Given these slices, users can take action by acquiring more data as in Slice Tuner
or debug the problematic data to find the root cause that led to the poor performance. We define a problematic
slice to have the following characteristics. First, the slice must be interpretable where it can be defined with
feature-value pairs, e.g., “Gender=Male and Age=20-30.” While one can also define a slice to be a cluster of
examples, clusters are often difficult to understand in practice. In addition, the slice must have a relatively lower
accuracy than its complement, i.e., the rest of the examples other than the slice, where the difference (effect size)
is large and statistically significant. Finally, the slice must be large enough to have a meaningful impact on the
overall model accuracy.

Since the search space for all possible slices is vast, we propose two approaches for searching. The first is a
decision tree approach where we construct a decision tree of feature-value pairs to find slices. The traversal is
fast, but the slices are non-overlapping, which means that we may miss some problematic slices. The second is a
lattice search approach where we find slices by traversing a lattice of feature-value pairs in a breadth-first manner.
Although we now find overlapping slices, this searching is slower than the decision tree approach. Once we find
potential problematic slices, we perform effect-size and significance testings.

In references [13, 14], we show that Slice Finder performs better than a clustering baseline on real datasets.
Also while lattice searching is slower than decision tree searching, it finds more problematic slices.

6 Open Challenges

We are far from achieving responsible AI for end-to-end machine learning and suggest promising directions. First,
there needs to be deeper and broader support for the responsible AI objectives in each step of end-to-end machine
learning. In addition, we believe the usability aspect of responsible AI has been largely understudied, and that
there needs to be more emphasis on this important direction. Below are some concrete suggestions.

• Data Collection: We believe data acquisition must also support robustness. Dataset searching is becoming
increasingly easy, and one challenge is distinguishing any poisoned data from the rest of the data. We also
believe it is important to address fairness and robustness in data labeling.

• Data Cleaning and Validation: MLClean is preliminary, and an interesting direction is to develop more
general and automatic cleaning and validation techniques that support various combinations of data cleaning
algorithms, fairness measures, and poisoning attacks.

• Model Training: FR-Train is a first of its kind and can be extended in many ways. First, there needs to
be more investigation on how to defend against more sophisticated poisoning attacks other than labeling
flipping. Second, algorithm stability is a well-known issue in adversarial training and can be improved.
Third, one may want to train models without a clean validation set.

• Model Evaluation: There needs to be more robustness research for model evaluation where we can easily
tell whether a model is accurate enough despite data poisoning in the training data.
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• Model Management and Serving: There needs to be more model managing and serving techniques that
support fairness and robustness. While there are task-specific solutions like fairness in ranking [32], an
interesting direction is to generalize and support any task with minimal configuration.

• There needs to be holistic solutions for the rest of the responsible AI objectives including explainability,
transparency, and accountability. For example, recent data provenance and metadata [1, 10] solutions can
be used to explain why each step in machine learning produced a certain result.

7 Conclusion

We proposed three research directions – depth, breadth, and usability – towards fully supporting responsible AI in
end-to-end machine learning. While most research focuses on supporting one of many responsible AI features,
we believe multiple objectives should be supported together, preferably in all steps from data collection to model
serving. So far, we have scratched the surface of this vision where we proposed the following systems: FR-Train
(holistic fair and robust training), Slice Tuner (selective data acquisition for fair models), MLClean (data cleaning
for fair and robust models), FairBatch (easy-to-use batch selection for fair models), and Slice Finder (easy-to-use
problematic slice finding for fair models). We also suggested various open challenges.
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