
Interpretable Attribute-based Action-aware Bandits for
Within-Session Personalization in E-commerce

Xu Liu1, Congzhe Su2, Amey Barapatre2, Xiaoting Zhao2, Diane Hu2, Chu-Cheng Hsieh2, Jingrui He3
1 Arizona State University, 2 Etsy Inc., 3 University of Illinois at Urbana-Champaign

xliu338@asu.edu, {csu, abarapatre, xzhao, dhu, chsieh}@etsy.com, jingrui.he@gmail.com

Abstract

When shopping online, buyers often express and refine their purchase preferences by exploring different
items in the product catalog based on varying attributes, such as color, size, shape, and material. As
such, it is increasingly important for e-commerce ranking systems to quickly learn a buyer’s fine-grained
preferences and re-rank items based on their most recent activity within the session. In this paper, we
propose an Online P ersonalized Attribute-based Re-ranker (OPAR), a light-weight, within-session
personalization approach using multi-arm bandits (MAB). As the buyer continues on their shopping
mission and interacts with different products in an online shop, OPAR learns which attributes the buyer
likes and dislikes, forming an interpretable user preference profile and improving re-ranking performance
over time, within the same session. By representing each arm in the MAB as an attribute, we reduce the
complexity space (compared with modeling preferences at the item level) while offering more fine-grained
personalization (compared with modeling preferences at the product category level). We naturally extend
this formulation to weight attributes differently in the reward function, depending on how the buyer
interacts with the item (e.g. click, add-to-cart, purchase). We train and evaluate OPAR on a real-world
e-commerce search ranking system and benchmark it against 4 state-of-the-art baselines on 8 datasets
and show an improvement in ranking performance across all tasks.

A Introduction

When buyers shop online, they are often faced with thousands, if not millions, of products to explore and
potentially purchase. In recent years, we’ve seen a growing interest in industrial applications of ranking systems
as they help minimize distractions for the buyer and surface a digestible number of products that are most relevant
to their shopping mission. These ranking systems take the form of search or recommendation systems, where
products are ranked in descending order of relevance to the buyer [13, 17, 21, 31, 33, 37].

Just as a shopper might browse the aisles of a shop, online shoppers also spend time on a retailer’s website
searching and clicking on items before they decide what they want to buy. This process is an attempt to refine
their purchase intent as they learn more about the product catalog. For example, a buyer might be interested
in purchasing a ring; however, they often must click on a number of different rings before they understand
possible styles, shapes, colors, and materials that are available. Eventually, the buyer might decide that they have
a preference for an emerald gemstone, with a circular shape, and a gold band. Shifting to looking for a necklace,

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

65

Millions
of Items

Relevance Optimization OPAR
Hundreds
of Items

Dozens
of Items

Figure 1: The first two components show a typical 2-stage ranker, where the first-pass narrows down the product
catalog to relevant items, while the second-pass performs fine-grained re-ranking to optimize for a business
metric. The proposed model, OPAR, is responsible for within-session, online personalization that can be effective
on its own or as a third-pass ranker on top of a 2-stage ranking system.

the buyer must refine their preference again. Often the buyer’s preference for attributes like colors and materials
changes quickly over the course of one visit. An intelligent ranking system must continually serve content that
stays relevant to the buyer’s changing preference, a capability we refer to as within-session personalization.

Many production ranking systems today have multiple goals to balance: online retailers not only surface
content that is relevant to the shopper’s buying mission (for example, a search query for “wristwatc" must
produce wrist watches), but they also aim show content that is likely to improve a business metric (eg. conversion
rate, or GMV). In order to balance these goals, many production ranking systems leverage a 2-stage ranking
process (Figure 1): the first pass (commonly referred to as candidate set selection) narrows hundreds of millions
of items from the product catalog down to a few hundred relevant items [14, 21, 36]; the second pass then
re-ranks the top few hundred relevant items in a way that optimizes for specific user action (such as a click
or purchase) [9, 10, 22, 31]. In order to maximize prediction accuracy, these systems often train on billions of
historical data points that may span over the course of months or years and thus cannot react quickly enough to
the buyer’s changing preference within a shopping visit.

In this paper, we propose an Online P ersonalized Attribute-based Re-ranker (OPAR) that can respond quickly
to the changing preferences of a buyer within their immediate shopping session, while still reaping the benefits of
a traditional 2-stage system. In the MAB literature, it is common to address this problem by treating each arm in
the bandit to represent a single item [37], product category [28, 33] or a context [13, 15, 16]. In contrast, OPAR
decomposes each product into a descriptive set of attributes (such as its color, texture, material, and shape), and
represents each arm as an attribute. As the buyer interacts with different products in an online shop, the bandit
learns which attributes the buyer likes and dislikes, forming an interpretable user preference profile that is used
to re-rank products in real-time in a personalized manner. By representing each arm as an attribute, we reduce
the complexity of the space, while allowing more fine-grained personalization within a product category. We
naturally extend this formulation to weight attributes differently in the reward function, depending on how the
user interacts with that item (e.g. attributes from a clicked item will be weighted less than attributes from an
add-to-cart item).

In our example of searching for a ring, we see in Figure 2 that initially, the same 12 items are shown to
two different users. While user 1 might click on items that contain the attributes crystal, gemstone, ruby, rose
gold (outlined in green), user 2 might have different preferences and click on items that contain the attributes
diamond, engagement, oval cut, 14K gold (outlined in blue). At this point, OPAR will begin to differentiate the
diverging preferences of these two users based on the different attributes that each user has shown interest in. On
a subsequent search page, OPAR will rank gemstone rings higher for user 1, while user 2 will see diamond rings
at the top of the list. Furthermore, because the learned weights of each attribute can be observed for each user,
our model is extremely interpretable.

While OPAR can be used as a stand-alone algorithm, we find it to be most effective when deployed as a

66

Figure 2: Example of attribute and action-aware re-ranking by OPAR. From left to right: (1) shows search results
for the query “Ring”. User 1 clicked on two gemstone rings (outlined in green), while User 2 adds a diamond
ring to their cart (outlined in blue) (2) The attribute of the clicked items are “Crystal”, “Gemstone”, “Ruby” and
“Rose Gold”, while the add-to-cart item has the attributes “Diamond”, “Engagement”, “Oval-Cut” and “14k Gold”
(3) On a subsequent search page, OPAR re-ranks items based on each user’s diverging preferences.

third-pass ranker on top of a traditional two-stage ranking system (see Figure 1). This allows us to leverage the
power of traditional 2-pass systems that learn from long-term data aggregated over billions of user and item
preferences, while still being nimble enough to personalize a buyer’s experience by taking into account their most
recent activity.

In the following, we will introduce the proposed model, OPAR, and show how we apply it to a search ranking
problem on a popular e-commerce platform. Our contributions are as follows:

• Attribute-level personalization: OPAR performs real-time personalized re-ranking based on user’s prefer-
ences at the attribute level and reduces the space complexity while offering more fine-grained personaliza-
tion.

• Light-weight, online re-ranker: OPAR improves ranking performance with little data and requires us to
track a minimal number of variables as arms and can be added on top of the traditional 2-pass ranking
systems.

• Interpretable user preferences: The learned attribute weights give visibility into attributes that the user
likes and dislikes. Top-weighted ones can be used for down-stream personalization tasks.

• Evaluation on real-world datasets: OPAR is trained and evaluated on real-world e-commerce data and
is compared to baselines on 8 datasets from a production e-commerce ranking system. We describe a
session-level ranking metric to understand ranking improvements within a session.

B Related Work

In this section, we summarize the related work from literature and categorize them into two aspects: (1) Session-
based Ranking System, and (2) Multi-armed Bandit Ranking System.

67

B.1 Within-Session Ranking

The within-session ranking task tries to predict what action the user will take next within the current shopping
session, leveraging the temporal nature of their browsing behavior from within the same session [17, 34].
Significant breakthroughs in deep learning (i.e, batch normalization and dropout), have led to its wide adoptions
in various communities and applications [35]. In [11], recurrent neural networks (RNNs) were proposed for
this within-session ranking task and gained significant attraction given its superior predictive performance for
the next-item recommendation. This has been an active research area with various enhancements proposed
specifically for predicting short-term user behavior within the same shopping session [11, 12, 24, 27, 34].

Given that a long-term memory models are insufficient to address drift in user interests, [18] proposed a short-
term attention priority model to capture users’ general (long-term) interest in addition to the users’ within-session
interest via a short-term memory model based on the recent clicks. In parallel, [17] studied the behavior-intensive
neural network for personalized next-item recommendation by considering both users’ long-term preference
as well as within-session purchase intent. As RNNs have shown and emerged as the powerful technique to
model sequential data for this task, [20] argued for an alternative model, inspired by machine translation, by
proposing an encoder-decoder neural architecture with an attention mechanism added to capture user session
intents and inter session dependencies. In addition to sequential models, [23] leverages graph neural networks by
constructing a session graph and then modeling a weighted attention layer when predicting user’s preference in
session. To tackle uncertainty that arises in a user’s within-session behavior, authors in [8] proposed a Matrix
Factorization-based attention model to address large-volume and high-velocity session streaming data and [19]
handles the missing value issue for the matrix factorization.

Most previous work cited above do not aim for interpretability of its results. In contrast, the model we
propose specifically leverages item attributes from the product catalog, resulting in a simple algorithm that learns
interpretable user profiles that aid in within-session personalization. The closest related work is [4] that proposes
the attribute-aware neural attentive model for the next shopping basket recommendation but does not seem to
easily adapt for the real-time scenario due to its complexity.

B.2 Multi-Armed Bandits Ranking System

Requiring a responsive and scalable ranking system that can adapt to the dynamic nature of shifting user
preferences (especially in the cold start setting) has led to increasingly wider industry adoption of multi-armed
bandit (MAB) in modern day ranking systems. The theoretical foundation and analysis of MABs have been well-
studied, with popular approaches include ε-greedy [26], Upper Confidence Bounds [2], Thompson sampling [7],
EXP3 [3], and others [26]. In the e-commerce [37] setting, the goal is to maximize user satisfaction (i.e.,
exploitation), while quickly learning (i.e., exploration) users preferences by exploring unseen content.

Hu et al. in [13] proposed to use reinforcement learning to learn an optimal ranking policy that maximizes the
expected accumulative rewards in a search session. Yan et al. from [33] built a scalable deep online ranking system
(DORS) with MABs as the last pass to dynamically re-rank items based on user real-time feedback and showed
significant improvement in both users satisfaction and platform revenue. Furthermore, authors from [25] proposed
a multi-armed nearest-neighbor bandit to achieve collaborative filtering for the interactive recommendation, by
modeling users as arms and exploring the users’ neighborhood. [29] proposed an interactive collaborative topic
regression model that infers the clusters of arms via topic models [5] and then utilizes dependent arms for the
recommendation.

In this literature, it is common to address this problem by treating each arm in the bandit to represent a single
item [37], product category [33] or a context [13, 15, 16]. In contrast, OPAR decomposes each product into its
descriptive set of attributes (such as its color, texture, material, and shape), represents each arm as an attribute
and provides great explainability in addition to its performance.

68

(a) (b)

(c) (d)

Figure 3: Top attribute-value pairs for top categories: (a) Jewelry; (b) Clothing; (c) Craft Supplies and Tools, (d)
Home and Living.

C Problem Formulation

In this section, we provide definitions for commonly used terms such as sessions and attributes. We then explain
our model in two parts: (1) how to represent within-session attribute preferences, and (2) how to re-rank items
based on these preferences.

C.1 Definitions

Definition 1: A session is a sequence of actions that the buyer takes while engaging with an e-commerce platform
in trying to fulfill a shopping mission (e.g. search, click, add-to-cart). The session typically ends when the buyer
leaves the site with a purchase or abandons after a significant duration of inactivity (e.g., 30 minutes). Note that
we focus on product search here but should be generally applicable to other ranking or recommendation problems.

Let us define a session S = {[Qt, It, At]}Tt=1 that is a sequence of T user actions within a session, in which
T can vary across sessions. The session starts at t = 1 and ends at T with a purchase (or becomes inactive). At
each time step, item list It ∈ RM×1 contains M candidate items to be re-ranked for query Qt, and then how the

69

user engages with the list of items is represented by At:

At(xi) =


0, no action on xi
1, xi is purchased
2, xi is added to cart
3, xi is clicked

, ∀xi ∈ It. (21)

Definition 2: An attribute is a basic unit (e.g. size, color) that describes the product characteristics of an item.
The attributes are determined by taxonomists based on the product category while the value of the attributes
(e.g. large, green) are volunteered by the seller, or inferred by machine-learned classifiers. These attribute-
value pairs help buyers efficiently navigate through an overwhelmingly large inventory. Thus, each item xi is
represented as the composition of its attributes, with Hxi denoting the total number of attributes associated with
xi : xi = {atr1, atr2, . . . , atrHxi

}.
Figure 3 shows four category-specific word clouds of attributes-value pairs exhibited in items from top

categories at Etsy, one of the largest e-commerce platform for handmade, vintage, and craft supplies. Some of
the most common attributes are universal: size, color, and material. Others are category specific: sleeve length,
earring location, and craft type. Lastly, some attributes (e.g. holiday, occasion, recipient) describe how or when
the item can be used.

C.2 Problem Statement

Our goal is to (1) formulate each user’s within-session preference for product attributes and (2) re-rank a list of
candidate items based on the user’s inferred within-session preference on item attributes.
Part 1: How to formulate users’ in-session attribute preferences?
Input: For session S, (1) item lists {It}Tt=1 with each item xi = {atrHxi

} as composition of product attributes;
and (2) session-level record of user actions on shown items, {At}Tt=1.
Output User’s preference Θ on attributes as beta-distributed: Θ = {θatrn}Nn=1 ∼ {Beta(αatrn , βatrn)}Nn=1,
where N denotes the total number of attributes encountered in session S.

For a user, we model their within-session preference on an attribute as a latent value θatrn ∈ [0, 1] denoting
the probability that they would like the attribute exhibited in the item. Motivated by Thompson Sampling [1], let
θatrn be beta-distributed, with αatrn , βatrn be the two parameters of the distribution. In Section E.2 we show a
method on estimating the parameters of attributes from historical data. From the list of shown items It, the user
engages on a subset of items (denoted in At) to express their preference for item attributes according to Θ. Given
the feedback, we propagate rewards from the user actions to the associated attributes with increments, δAt(xi),
and update the posterior distribution of Θ, with rewards normalized at xi by its cardinality (number of associated
attributes on that item).
Part 2: How to sequentially re-rank It based on user preference Θ to optimize in-session personalization?
Input: At time t, (1) Candidate list of items It, and (2) user in-session preference Θ.
Output: Sequentially learn ft : It ×Θ→ Ĩt.

Below we will present the OPAR algorithm to address the problem statement discussed here.

D Proposed Algorithm, OPAR

In this section, we present the details of the proposed OPAR model and its extension OPARw which differentiates
different user actions.

70

Algorithm 1: OPAR Algo: Re-Ranking & Parameter Update
Input:

Given a session S = {[Qt, It, At]}Tt=1

{δi}i: actions: action-aware increments on attribute parameters
γ: hyper-parameter to control intensity on negatives
Ut, Vt: the associated attributes from engaged items; the associated attributes from impressed items
| · |0: cardinality operator

for [Qt, It, At] ∈ S do
(1) Rerank on the Item List f : It → Ĩt

sample satrh ∼ Beta(αatrh , βatrh), ∀atrh ∈ NS

for xi ∈ It do
Given xi = {atrh}

Hxi
h=1 as associated attributes in xi, set score(xi) =

∑
atrh∈xi g(satrh)

end
Ĩt = sorted([score(xi)]xi∈It)
(2) Update attribute parameters given At
Let Ut = ∪{atrh : ∀atrh ∈ xi if At(xi) 6= 0, ∀xi ∈ It}
Let Vt = ∪{atrh : ∀atrh ∈ xi ∀xi ∈ It}
for xi ∈ It do

if At(xi) 6= 0, item xi has positive actions then
αatrh+ = δAt(xi) × {1− Exp (−|Ut|0)}, ∀atrh ∈ xi

else if At(xi) = 0, no action on item xi then
βatrh+ = δAt(xi) × {1− Exp (−γ|Vt\Ut|0)}, ∀atrh ∈ xi

end
end

end
Output: All re-ranking results [Ĩt]

T
t=1

D.1 Scoring and Re-ranking Item List

Given attribute-level bandits with each arm as an item attribute, we describe below our approach on how we score
and re-rank items, motivated by the Thompson Sampling approach on [1].

Let N denote the number of attributes associated with item list It. For each attribute in {atrh : atrh ∈
xi, ∀xi ∈ It}, we randomly sample θatrh from its corresponding distribution, denoting the probability that the
user is interested in the attribute, atrh, at time t:

θatrh ∼ Beta(αatrh , βatrh). (22)

Then, each item xi ∈ It is scored and ranked by:

score(xi) =
∑

atrh∈xi

g(θatrh), (23)

where g(θatrh) = 1
rank(θatrh)

is a harnomic function of the index that θatrh is ranked among [θatrh]
Hxi
h=1, with a

tie-breaker uniformly at random. A larger score(xi) indicates higher satisfication with item xi given users’ short
in-session preference on the attributes. Lastly, we present the user Ĩt, which is reranked list of the items based on
[score(xi)]xi∈It .

71

D.2 Attribute Parameter Updates

With the feedback gathered from the user action At, we do the following updates for the attribute parameters. Let
Ut denote the set of attributes associated from items with positive actions (i.e., click, add-to-cart, purchase), and
Vt be union of all attributes exist in xi ∈ It:

Ut = ∪{atrh : ∀atrh ∈ xi ifAt(xi) 6= 0, ∀xi ∈ It}, Vt = ∪{atrh : ∀atrh ∈ xi, ∀xi ∈ It}.

For a given atrh, let Ỹt,atrh and Z̃t,atrh denote the set of items associated with positive user action and no-action,
respectively,

Ỹt,atrh = {xi ∈ It : atrh ∈ xi and atrh ∈ Ut}, Z̃t,atrh = {xi ∈ It : atrh ∈ xi and atrh ∈ Vt\Ut}.

Then, the Beta distribution of each attribute is updated as follows:

αatrh+ =
∑
Ỹt,atrh

δAt(xi)

(
1− e−|Ut|0

)
,∀atrh ∈ Ut,

βatrh+ =
∑
Z̃t,atrh

δAt(xi)

(
1− e−γ|Vt\Ut|0

)
,∀atrh ∈ Vt\Ut,

(24)

where | · |0 denotes the cardinality operator and γ controls intensity on implicit no-actions.

D.3 OPAR algorithm Procedure

In summary, given a session S = {[Qt, It, At]}Tt=1, OPAR can be summarized with the following steps, with the
pseudo code of OPARw shown in Algorithm 1.

1. Initialize attribute dictionary atrDic ∈ RN×2, which contains N pairs of parameters for attributes, where
each row of atrDic denotes the Beta distribution parameter set (αatr, βatr) for a given attribute. Different
initializations have been experimented, including uniform, random or estimated based on held-out historical
datasets (shown in Section E.2).

2. At time t, we score each item xi ∈ It based on Eq. (23): it first aggregates over the associated attribute
preferences sampled in Eq. (22), and then re-rank items based on scores in Eq. (23) and present as Ĩt. More
details in Section D.1.

3. At time t, we receive the obervation At on It, and then update the distribution of all attributes associated
with item xi in the atrDic based on the Eq. (24) described in Section D.2.

OPAR: attribute-based bandits with equal action-weighting for actions in {click, add-to-cart, purchase}.
This means that for positive actions, δclick = δadd-to-cart = δpurchase.

OPARw: extend OPAR to weight action-aware updates as follows, δclick 6= δadd-to-cart 6= δpurchase, and
hypertune them.

4. We iterate step (2) and (3) until the end of the session.

E Experiments

In this section, we show how OPAR performs on a real-world e-commerce ranking system and benchmark
it against 4 baselines on 8 datasets. While OPAR can be applied to any content that requires re-ranking, we

72

Table 19: Etsy Real-world Session-based Dataset Over 3 weeks

ID Category |Session (User)| |Query| |Item| |Attributes| |Actions|

1 Clothing 4642 46091 1100040 2495 58932
2 Home & Living 9073 103959 2282542 2455 134416
3 Paper & Party Supplies 4419 35132 691919 1666 55037
4 Craft Supplies & Tools 10913 123662 2536492 2799 171363
5 Accessories 5813 38215 897533 2419 49342
6 Electronics & Accessories 1638 10505 216860 1302 14354
7 Jewelry 5585 67507 1530285 2266 79874
8 Overall Category 26442 474594 9295453 3363 624882

specifically chose to train, evaluate, and analyze the model performance on a search ranking system, as the
explicit search queries issued by a user shows higher purchase intent, allowing us to better evaluate OPAR’s
ranking and interpretation capabilities. Our experimentation seeks to answer the following questions:
Experiment #1: What is the ranking performance of the proposed OPAR model? (Answered in subsection E.4.1)
Experiment #2: How does OPAR perform as an action-aware model? (Answered in subsection E.4.2)
Experiment #3: How does OPAR help to understand users’ short-term, in-session shopping preference? (An-
swered in subsection E.4.3)

E.1 Data Collection

The dataset is collected and sampled from a month of user search logs at Etsy, one of the largest e-commerce
platforms for handmade, vintage items, and craft supplies. To avoid bot traffic, filters are added to include sessions
with at least 10 search events (i.e., queries, browses, clicks, add-to-carts) and at least one purchase to focus on
sessions with strong shopping missions. Using an existing query classifier, we predict the most probable category
(e.g. jewelry, home and living) associated with the first query of each session, and then bucket the entire session
into one of 7 categories. This helps us understand shopping behaviors within each category. Table 19 shows
statistics of each data set, representing nearly 500k search queries from 26k sessions and 620k user actions
combined on nearly ten million items, with cardinalities computed within each dataset. We do not perform the
evaluation on existing public datasets, because (to the best of our best knowledge) there is no existing dataset that
includes all meta-data needed for our study (e.g. query, item attribute, user interaction logs).

E.2 Experimental Set-up

We split each of the 8 datasets into 2 parts (with sessions ordered chronologically). The first two-thirds of the
data is a held-out dataset. Because we are focused on online learning, using only within-session data, the
held-out dataset is mainly used for estimating the parameters of the Beta distributions, {(αatr, βatr)}∀atr, and to
aggregate attribute counts associated with engaged items to determine attribute popularity, powering the “Atr-POP”
algorithm in Section E.3. The remaining data is the testing dataset, on which we report re-ranking performance
for OPAR and other baseline algorithms on in Table 20.

While OPAR can function as a stand-alone ranking algorithm, we evaluate OPAR (as well as other baselines)
on top of an existing 2-pass ranking system (as described in Figure 1). More formally, each session in the
testing dataset, S = {[Qt, It, At]}Tt=1 contains a sequential list of query content Qt, a candidate set It of items
to be re-ranked, and logged user actions At on It (e.g. click, purchase). In our experiments, It is a truncated
list of the top 48 items returned by an existing 2-pass ranker, indicating that this list comprises of the most

73

relevant items to the query. As we will see in experimental results, applying OPAR adds an effective layer of
attribute-based personalization in real-time that was not feasible with the underlying system. In order to simulate
an online environment, only within-session user interactions leading up to the current time step are used for
ranking predictions.

E.3 Evaluation Metrics and Baselines

Below, we describe the offline metrics we use to evaluate OPAR on the testing dataset, as well as the baselines we
benchmark.

E.3.1 Evaluation Metrics

Following the general ranking metric Normalized Discounted Cumulative Gain (NDCG) [30], we propose a set
of session-level ranking metrics to evaluate our model.

1. Click-NDCG: For each query Qt issued in S that has at least one click in At (i.e, clicks as relevances),
click-NDCGt measures the re-ranking performance of the item list Ĩt (after re-ranking It) shown to the user
at t. For all timestamp with at least a click, we first compute stepwise sequential re-ranking performance
click-NDCGt as:

click-NDCGt = click-DCGt/IDCGt,∀t = 1, ...T, (25)

and click-NDCG of a session S is the average of click-NDCGt over events that have at least one click:

click-NDCG = Average(click-NDCGt). (26)

2. Purchase-NDCG: Following the above methodology, we compute the session-level re-ranking performance
limit to search events with attributed purchases. A session on a shopping site is defined as a sequence of
events ending with a purchase or a significant duration of inactivity. Given that, Purchase-NDCG given a
session is essentially purchase-NDCGT .

For each re-ranking algorithm reported in Table 20, we compute Click-NDCG @k and Purchase-NDCG@k
for k = {4, 12, 24, 48} by averaging click-NDCGs @k and purchase-NDCGs@k given session s over all sessions
in each dataset. Note that k is a multiple of 4 as that this shopping site displays 4 items per row on desktops.

E.3.2 Baselines

We compared OPAR’s ranking performance with 4 state-of-the-art baselines:

1. LambdaMART [32] is the boosted tree version of LambdaRank [6], which introduces the use of gradient
boosted decision trees for solving a ranking task and won Track 1 of the 2010 Yahoo! Learning To Rank
Challenge. A personalized search re-ranker is trained based on long-term user historical data to optimize
for the user’s purchasability on an item given the query issued and the user’s historical preference.

2. Atr-KNN is derived from Item-KNN [11]. Each item is presented by n-hot-encoding of associated attributes
with n being the cardinality of all attributes. That is, its ith entry equals to 1 if the referred attribute presents
in the item, otherwise 0. Items in the list It+1 are re-ranked based on their euclidean-distance from the last
engaged item(s) in It. Note that the items xi ∈ It with no-action has no impact on this re-ranking.

3. Atr-POP reranks the candidate set, It, of items based on the attributes’ popularity estimated with held-out
historical records. This baseline is one of the most common solutions derived from [11] given its simplicity
and efficacy.

74

Table 20: Re-ranking performance comparison on over all data sets (top-left) and 7 category-specific data sets.

Over All Category Clothing
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase
NDCG

@4 0.1795 0.0130 0.0749 0.0618 0.2994 0.3042 0.1948 0.0103 0.0516 0.0551 0.2384 0.2494
@12 0.2629 0.0412 0.1323 0.1425 0.3505 0.3607 0.2670 0.0348 0.1269 0.0824 0.2685 0.2744
@24 0.3162 0.1260 0.2112 0.2018 0.3718 0.3900 0.3019 0.0090 0.2193 0.1434 0.3209 0.3263
@48 0.3724 0.2554 0.2861 0.2518 0.4512 0.4578 0.3774 0.2462 0.2784 0.2157 0.3976 0.4030

Click
NDCG

@4 0.1459 0.0816 0.0705 0.0701 0.3120 0.3158 0.1328 0.0067 0.0690 0.0691 0.3058 0.3197
@12 0.2265 0.1456 0.1264 0.1354 0.3213 0.3229 0.2137 0.0228 0.1224 0.1414 0.3126 0.3257
@24 0.2955 0.2157 0.2021 0.1922 0.3318 0.3489 0.2821 0.0658 0.2045 0.1844 0.3274 0.3424
@48 0.3815 0.3245 0.2813 0.2689 0.4047 0.4051 0.3711 0.2309 0.2807 0.2613 0.3988 0.4061

Home & Living Paper & Party Supplies
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase
NDCG

@4 0.1755 0.0131 0.0649 0.0571 0.2920 0.2952 0.1822 0.0010 0.1255 0.0684 0.2828 0.2965
@12 0.2670 0.0396 0.1226 0.1281 0.3391 0.3436 0.2667 0.0406 0.1692 0.0941 0.3367 0.3497
@24 0.3218 0.0936 0.2066 0.1752 0.3838 0.3879 0.3276 0.1297 0.2469 0.1542 0.3796 0.3905
@48 0.3874 0.2543 0.2789 0.2164 0.4462 0.4491 0.3876 0.2550 0.3216 0.1943 0.4291 0.4399

Click
NDCG

@4 0.1481 0.0054 0.0601 0.0944 0.3201 0.3219 0.1585 0.0052 0.1084 0.0839 0.2825 0.2874
@12 0.2294 0.0213 0.1175 0.1416 0.3244 0.3256 0.2394 0.0247 0.1586 0.1367 0.2931 0.2973
@24 0.2978 0.0598 0.1973 0.1843 0.3485 0.3491 0.3103 0.0644 0.2300 0.1742 0.3383 0.3189
@48 0.3835 0.2278 0.2746 0.2288 0.4032 0.4086 0.3911 0.2306 0.3104 0.2007 0.4017 0.4072

Craft Supplies & Tools Accessories
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase
NDCG

@4 0.1912 0.0135 0.0739 0.0741 0.3101 0.3268 0.1954 0.0251 0.0683 0.0511 0.2166 0.2178
@12 0.2735 0.0407 0.1296 0.1125 0.3673 0.3781 0.2828 0.0741 0.1431 0.0849 0.2835 0.2930
@24 0.3272 0.1208 0.1970 0.1644 0.4084 0.4188 0.3324 0.1406 0.2510 0.1222 0.3304 0.3361
@48 0.3844 0.2577 0.2820 0.2214 0.4366 0.4750 0.3869 0.2693 0.2917 0.1641 0.3962 0.4020

Click
NDCG

@4 0.1458 0.0055 0.0749 0.0994 0.3118 0.3166 0.1502 0.0105 0.0673 0.0712 0.2495 0.2605
@12 0.2262 0.0513 0.1290 0.1279 0.3241 0.3293 0.2324 0.0439 0.1358 0.1331 0.2656 0.2708
@24 0.2955 0.2042 0.1953 0.1935 0.3525 0.3521 0.3006 0.1091 0.2398 0.1800 0.3155 0.3212
@48 0.3811 0.2278 0.2815 0.2277 0.4080 0.4078 0.3848 0.2391 0.2885 0.2312 0.3548 0.4029

Electronics & Accessories Jewelry
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase
NDCG

@4 0.2136 0.0501 0.0715 0.0814 0.2847 0.2995 0.1661 0.0060 0.0576 0.0718 0.3051 0.3285
@12 0.3014 0.1109 0.1546 0.1223 0.3386 0.3782 0.2534 0.0766 0.1074 0.1142 0.3484 0.3854
@24 0.3519 0.0176 0.2652 0.1674 0.4257 0.4152 0.3087 0.1470 0.1668 0.1847 0.3866 0.3973
@48 0.4060 0.2965 0.2981 0.2416 0.4516 0.4656 0.3814 0.2460 0.2663 0.2367 0.4425 0.4598

Click
NDCG

@4 0.1530 0.0267 0.0805 0.0641 0.2074 0.2051 0.0701 0.0027 0.0621 0.0614 0.3314 0.3892
@12 0.2324 0.0703 0.1580 0.0939 0.2487 0.2622 0.1314 0.0106 0.1141 0.1021 0.3783 0.3963
@24 0.3029 0.1410 0.2657 0.1345 0.3158 0.3120 0.1989 0.1276 0.1762 0.1647 0.3956 0.4162
@48 0.3880 0.2560 0.3026 0.1667 0.3978 0.4078 0.3119 0.2192 0.2700 0.2144 0.4190 0.4475

Table 21: Multiple Purchase Intents within One Session

Timestamp Query Query Taxonomy Engaged Attributes

1st
Purchase

Intent

0 ’flower girl basket’ paper and party supplies (NO ACTION) Browsing

1-4 ’flower girl basket wedding’ paper and party supplies (CLICK)
’Prime Color: White’, ’Occasion: Wedding’, ’Holiday: Christmas’,
’Wedding theme: Beach & tropical’, ’Craft type: Floral arranging’

5-9 ’flower girl basket beach wedding’ paper and party supplies (CLICK)
’Prime Color: Blue’, ’Occasion: Wedding’, ’Holiday: Christmas’,
’Wedding theme: Beach & tropical’, ’Secondary color: White’, ’Craft type: Floral arranging’

10-11 ’two flower girl and one pillow’ paper and party supplies Browsing

Purchase Intent Change

2nd
Purchase

Intent

12-15 ’hat for beach wedding’ clothing.women_clothing (CLICK) ’Prime Color: Blue’, ’Occasion: Wedding’
16-22 ’turquoise petals’ accesories (CLICK) ’Prime Color: Blue’, ’occasion: Bridal shower’, ’Wedding theme: Fairytale & princess’

23 ’bride hair decoration beach theme’ clothing.women_clothing (NO ACTION) Browsing

Final Purchase 24 ’turquoise petals’ accesories (PURCHASE) ’Prime Color: Blue’, ’Occasion: Bridal shower’, ’Wedding theme: Fairytale & princess’

4. GRU4Rec [11] applies recurrent neural networks (RNN) on short session-based data of clicked items to
achieve session-based next-item recommendation. Each session is encoded as a 1-of-N vector, in which the
ith entry is 1 if the corresponding item is clicked else 0, with N denoting the number of items. While the
user’s consecutive clicks on items are used in the next item prediction, it is attribute-agnostic.

While it is common for each arm in the bandits to represent a single item or product category, we skip it as a
baseline here as this would incur higher exploration cost with potential latency bottleneck when scaling up to an
inventory of hundred millions of items and also lose interpretability of product attributes.

75

E.4 Experimental Results

In this section, we describe experimentation results for evaluating three kinds of performance: (1) ranking
performance, (2) impact of differentiating between user action types, and (3) interpretability.

E.4.1 Overall Re-ranking Performance

Table 20 shows experiment results of our model (OPARs) against 4 baselines described in Section E.3. The
results can be categorized into two parts: (1) performance on the aggregated datasets over all categories (top-left);
and (2) performance on each of the 7 category-specific datasets, representing different shopping missions and
behaviors across categories (i.e, “Clothing”, “Home & Living”). Across all 8 datasets for the re-ranking task,
OPARw outperform against all 4 baselines, including LambdaMART, Atr-KNN, Atr-POP, and GRU4Rec in both
purchase-NDCG and click-NDCG.

For the overall dataset (top-left), OPARw shows over 6% lift in click-NDCG@48 compared to the best baseline,
and over 20% increase in purchase-NDCG@48. Similar results are observed in each category-specific re-ranking.
For k, the best improvement for OPARw is achived at k = 4, ordering by @4 >> @12 >> @24 >> @48. With
attribute-based bandits, interactive feedbacks from the in-session user actions, even just fewer clicks, efficiency
propagate rewards to associated attributes and quickly learns preferred attributes that matter the most to the user,
thus optimize user purchase intent.

E.4.2 Effectiveness of Action-aware MABs

To explore users’ in-session activity with different types of actions (i.e, click, add-to-cart), we run experiments
with the action-aware bandit model, with OPARw hypertuned rewards from clicks vs add-to-carts, to differentiate
types of user actions. The results in Table 20 are reported from a tuned model that assigns larger weights to clicks
than add-to-carts, with an intuition that there is a high topical drift observed in the user’s browsing intent after
items are added to carts. As shown in Table 20, collectively OPARw outperforms OPAR by 1.6% and 1.1% in
purchase NDCG@4 and click NDCG@4, respectively. When segmenting by categories, OPARw also outperforms
OPAR in almost all categories, except Electronics & Accessories and Craft Supplies & Tools on purchase NDCG.

E.4.3 Interpretability of Within-Session Shopping Mission

It is often observed that a user exhibits multiple purchase intents with diverse preferences within a session. Table
21 presents a record of a user’s in-session activities. Figure 4 (top) shows the sequential improvement of OPAR in
session-level click-NDCG over time compared to the baseline, and Figure 4 (bottom) shows how OPAR captures
user’s preference, θatrh , on 5 attributes over time. The “Engaged Attributes” column in Table 21 maps out all
attributes associated with the clicked items for the corresponding query.

As shown in Table 21, the user is interested in three categories as his/her purchase intents: first in “paper &
party supplies”, then drift to “women clothing” and “accessories”, and lastly converted in “accessories” with a
purchase. After the browsing period from timestamp t = 0 with no user actions, βatr for the attributes associated
with the browsing-only items are incremented while no attributes have been updated with positive rewards for
the given user. OPAR launches from a lower click-NDCG at the beginning, while obtains better re-ranking
performance compared with baseline by learning that the user is interested in white prime color and is looking
for the wedding occasion theme by the end of t = 4. From then OPAR outperforms the baseline in click NDCG
while activated more attributes related to wedding themes in beach and tropical and expanded to floral crafting
type and blue for prime color. The re-ranking performance continues to improve from t = 5, .., 9 as more items
related to these attribute themes are discovered.

Starting from t = 12, the user starts to explore the 2nd categorical purchase intent, pivoting from “paper and
party supplies” to “clothing” and “accessories”. However, the latest activated attributes based on the engaged

76

items on the first set of shopping queries still relevant. The user has a consistent preference in attributes, such
as “Prime Color: Blue”, “Occasion: Wedding”, and “Wedding theme: Fairytale & princess” as she is searching
for a “hat for beach wedding” and/or “bride hair decoration beach theme”. Thus, for the second purchase intent
starting at t = 12, we observe a high jump start in OPAR’s click NDCG at t = 12 comparing to the first intent at
t = 1 and the metric continues to stepwise improve. As demonstrated in Figure 4 (bottom), “wedding theme” and
“primary color: blue" are the top two performant attributes that OPAR learned and identified over time.

(a)

(b)

Figure 4: In-session OPAR re-ranking performance.

F Conclusion

This paper proposes an interpretable Online Personalized Attributed-based Re-ranker (OPAR) as a light-weight
third-pass, followed by the normal 2-stage ranking process, to personalize a buyer’s in-session experience based
on product attributes. Given the important presence of attributes in the product category with its simplicity
in explainability, we propose attribute-based multi-armed bandits to quickly learn the buyer’s fine-grained
preferences and re-rank items based on the recent activities within the session to achieve in-session personalization.
We then extend the reward function of the attribute-based bandits to weight based on the type of actions the buyer
interacts with the item (i.e, click, add-to-cart, purchase). Lastly, we train and evaluate OPAR on the real-word
e-commerce search ranking system, and show its superior performance against the baselines across multiples
datasets. For future works, we could consider bias correction (i.e, position) in parameter updates to reduce self
reinforcing, and model interactions between query and attributes to capture user preferences on attributes beyond

77

engaged items.

78

References

[1] S. Agrawal, N. Goyal. Analysis of thompson sampling for the multi-armed bandit problem. Conference on learning
theory, 2012.

[2] P. Auer, N. Cesa-Bianchi, P. Fischer. Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning,
2002.

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, R-E. Schapire. The Nonstochastic Multiarmed Bandit Problem. Society for
Industrial and Applied Mathematics, 2003.

[4] T. Bai, Ting, J-Y. Nie, W-X. Zhao, Y. Zhu, P. Du, J-R. Wen, Ji-Rong. An Attribute-Aware Neural Attentive Model
for Next Basket Recommendation. The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval (SIGIR ’18), 2018.

[5] D-M. Blei, A-Y. Ng, M.I. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning Research, 2003.

[6] C-J. Burges, R. Ragno, Q-V. Le. Learning to rank with nonsmooth cost functions. Advances in Neural Information
Processing Systems, 2007.

[7] C. Olivier, L. Li. An Empirical Evaluation of Thompson Sampling. Advances in Neural Information Processing
Systems 24, 2011.

[8] L. Guo, H. Yin, Q. Wang, T. Chen, A. Zhou, N. Quoc Viet Hung. Streaming Session-Based Recommendation.
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

[9] R. Guo, X. Zhao, A. Henderson, L. Hong, H. Liu. Debiasing Grid-based Product Search in E-commerce. Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’20), 2020.

[10] M. Haldar, P. Ramanathan, T. Sax, M. Abdool, L. Zhang, A. Mansawala, S. Yang, B. Turnbull, J. Liao. Improving
Deep Learning for Airbnb Search. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’20), 2020.

[11] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk. Session-based Recommendations with Recurrent Neural Networks.
arXiv: 1511.06939, 2015.

[12] L. Hu, L. Cao, S. Wang, G. Xu, J. Cao, Z. Gu. Diversifying Personalized Recommendation with User-Session Context.
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17), 2017.

[13] Y. Hu, Q. Da, A. Zeng, Y. Yu, Y. Xu. Reinforcement Learning to Rank in E-Commerce Search Engine: Formalization,
Analysis, and Application. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ’18), 2018.

[14] J-T. Huang, A. Sharma, S. Sun, L. Xia, D. Zhang, P. Pronin, J. Padmanabhan, G. Ottaviano, L. Yang. Embedding-
Based Retrieval in Facebook Search. Proceddings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’20), 2020.

[15] L. Shuai, K. Purushottam. Context-Aware Bandits. arXiv: 1510.03164, 2015.

[16] S. Li, B. Wang, S. Zhang, W. Chen, Wei. Contextual Combinatorial Cascading Bandits. Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume 48 (ICML’16), 2016.

[17] Z. Li, H. Zhao, Q. Liu, Z. Huang, T. Mei, E. Chen. Learning from History and Present: Next-Item Recommendation
via Discriminatively Exploiting User Behaviors. Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2018.

[18] Q. Liu, Y. Zeng, R. Mokhosi, H. Zhang. STAMP: Short-Term Attention/Memory Priority Model for Session-Based
Recommendation. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2018.

[19] X. Liu, J. He, S. Duddy, L. O’Sullivan, Liz. Convolution-consistent collective matrix completion. Proceedings of the
28th ACM international conference on information and knowledge management, p:2209–2212, 2019.

[20] P. Loyola, C. Liu, Y. Hirate. Modeling User Session and Intent with an Attention-Based Encoder-Decoder Architecture.
Proceedings of the Eleventh ACM Conference on Recommender Systems, 2017.

79

[21] P. Nigam, Y. Song, V. Mohan, V. Lakshman, W. Ding, A. Shingavi, H. Teo, H. Gu, B. Yin. Semantic Product Search.
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

[22] P. Pobrotyn, T. Bartczak, M. Synowiec, R. Białobrzeski, J. Bojar. Context-Aware Learning to Rank with Self-Attention.
arXiv:2005.10084, 2020.

[23] R. Qiu, J. Li, Z. Huang, H. Yin. Rethinking the Item Order in Session-Based Recommendation with Graph Neural
Networks. Proceedings of the 28th ACM International Conference on Information and Knowledge Management
(CIKM ’19), 2019.

[24] M. Quadrana, A. Karatzoglou, B. Hidasi, P. Cremonesi. Personalizing Session-Based Recommendations with
Hierarchical Recurrent Neural Networks. Proceedings of the Eleventh ACM Conference on Recommender Systems
(RecSys ’17), 2017.

[25] J. Sanz-Cruzado, P. Castells, E. López. A Simple Multi-Armed Nearest-Neighbor Bandit for Interactive Recommenda-
tion. RecSys, 2019.

[26] R-S. Sutton, A-G. Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.

[27] Y-K. Tan, X. Xu, Y. Liu. Improved Recurrent Neural Networks for Session-Based Recommendations. Proceedings of
the 1st Workshop on Deep Learning for Recommender Systems (DLRS’16), 2016.

[28] C-H. Teo, H. Nassif, D. Hill, S. Srinivasan, M. Goodman, V. Mohan, S-V-N. Vishwanathan. Adaptive, Personalized
Diversity for Visual Discovery. Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16),
p:35–38, 2016.

[29] Q. Wang, C. Zeng, W. Zhou, T. Li, S-S. Iyengar, L. Shwartz, G-Y. Grabarnik. Online Interactive Collaborative
Filtering Using Multi-Armed Bandit with Dependent Arms. IEEE Transactions on Knowledge and Data Engineering,
2019.

[30] Y. Wang, L. Wang, Y. Li, D. He, W. Chen, T-Y. Liu. A theoretical analysis of NDCG ranking measures. COLT:
Proceedings of the 26th annual conference on learning theory, volume 8, page 6, 2013.

[31] L. Wu, D. Hu, L. Hong, H. Liu. Turning clicks into purchases: Revenue optimization for product search in e-commerce.
The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018.

[32] Q. Wu, C. Burges, S. JC and K-M. Svore, J. Gao. Adapting boosting for information retrieval measures. Information
Retrieval Journey, 2010.

[33] Y. Yan, Z. Liu, M. Zhao, W. Guo, W-P. Yan, Y. Bao. A practical deep online ranking system in e-commerce
recommendation. Springer: Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
p:186–201, 2018.

[34] F. Yu, Q. Liu, S. Wu, L. Wang, T. Tan, Tieniu. A Dynamic Recurrent Model for Next Basket Recommendation.
Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’16), 2016.

[35] S. Zhang, L. Yao, A. Sun, Y. Tay. Deep Learning Based Recommender System: A Survey and New Perspectives.
ACM Comput. Surv., 2019.

[36] X. Zhao, R. Louca, D. Hu, L. Hong. The Difference Between a Click and a Cart-Add: Learning Interaction-Specific
Embeddings. Companion Proceedings of the Web Conference, 2020.

[37] Y. Zhao, Y-H. Zhou, M. Ou, H. Xu, N. Li. Maximizing Cumulative User Engagement in Sequential Recommendation:
An Online Optimization Perspective. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2020.

80

