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Abstract

Recent advances on query languages (QLs) and DBMS suggest that their traditional role in application
development can and should be extended dramatically in many big-data application areas, including
graph, machine learning and data mining applications. This is made possible by the superior expressive
power that database aggregates bring to recursive queries and the realization of their powerful non-
monotonic semantics via efficient and scalable fixpoint-base operational semantics. Thus, in this paper,
we discuss how classical algorithms can be expressed concisely using queries with aggregates in recursion
that have a rigorous declarative semantics. Then we discuss what modifications, if any, are needed on
such programs to have an efficient and scalable fixpoint-based operational semantics, whereby we can
also identify queries that are conducive to bulk-synchronous and stale-synchronous parallelism.

1 Introduction

Relational DBMS and their logic-based QLs made possible for programmers to develop applications without
having to navigate database storage structures via statements written in a procedural language. Many initial
skeptics notwithstanding, relational DBMS proved quite effective in terms of usability, performance and scalability.
In fact their success led to and was reinforced by significant extensions, including the introduction of very powerful
aggregate functions, such as OLAP functions that enable direct support for descriptive analytics by SQL queries.
Another important extension was the SQL support for recursive queries which allows simple algorithms, such as
transitive closure, to be expressed directly as queries. However, the quantum leap in expressive power achievable
by combining recursive queries with aggregates was never realized because of SQL stratification requirement,
which specifies that non-monotonic constructs can be applied to the results of recursive definitions but cannot be
used in the recursive definitions. This requirement was then enforced to avoid the major semantic problems faced
by recursive reasoning via non-monotonic constructs. However, significant progress was made since then by
researchers focusing on the use of aggregates in AI, logic programming and Datalog: for instance, the concept of
Stable Models has gained wide acceptance as the formal basis for declarative semantics in the logic programming
arena [5] [6]. So far, however, these advances did not have much impact upon the database field because of two
main issues. The first issue is that the non-constructive definition of Stable Model Semantics (SMS) for programs
with negation is making difficult for programmers to show that their queries with aggregates satisfy SMS, and the
second issue is that establishing the SMS for a program does not guarantee its efficient constructive realization,
and significant re-writing of the original program is often needed to implement it via fixpoint computations and
the recursive query implementation techniques of SQL DBMS, as well as Datalog systems.

In this paper, we describe an approach that addresses these two issues and proved successful in a number
of advanced applications [1, 8, 9, 11–13, 15]. We will start with an intuitive treatment of the declarative SMS of
recursive queries with extrema, and show that queries with count, sum and average can be reduced to queries with
max. Then, we provide simple criteria to detect when the SMS of such queries can be turned directly into an
efficient and scalable fixpoint computation and when these instead require significant rewriting by the techniques
described in the paper. While in our examples we use Datalog programs, we will show how these can be expressed
using SQL queries for which the same conclusions apply. Throughout the paper, we will refer to queries and
programs as synonyms.
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2 Stable Model Semantics and Fixpoint Computation for Programs with Extrema

A simple application of extrema in recursive queries consists in finding the min or max distance from a given
initial node a of all nodes in the graph where the edges have positive length. The following program, computing
max distances, exemplifies key semantic issues.

Example 1 (A stratified program to compute the max distance from a ):
r1 : dist(a, 0).
r2 : dist(Y, Dy)← dist(X, Dx), arc(X, Y, Dxy), Dy=Dx+Dxy.
r3 : mxdist(Y, max〈Dy〉)← dist(Y, Dy).

Assume for instance that we have the following fact base that describes an acyclic directed graph:

arc(a, b, 10) arc(a, c, 20) arc(b, c, 18) arc(c, d, 12)

Then, the semi-naive fixpoint computation on the first two rules derives the following new atoms at each step
(whereas the naive fixpoint includes the atoms produced at previous steps along with those produced at this step):

Step 1 Step 2 Step3 Step 4
dist(a, 0) dist(b, 10), dist(c, 20) dist(c, 28), dist(d, 32) dist(d, 40)

With the computation on the first two rules having reached fixpoint, rule r3 is applied next, whereby Step 5
produces mxdist(a, 0), mxdist(b, 10), mxdist(c, 28), and mxdist(d, 40), while mxdist(c, 20) and
mdxist(d, 32) are not derived since they are dominated by the previous atoms1 and thus they are not max-
imal.

Our stratified derivation can be optimized by pushing the max constraint into recursion, while keeping the
original stratification whereby the fixpoint computation of dist by rules r1 and r2 must be completed before r3
can be used to derive mxdist.

Example 2 (Using max in recursion to compute the max distance from a ):
r1 : dist(a, 0).
r2 : dist(Y, max〈Dy〉)← dist(X, Dx), arc(X, Y, Dxy), Dy=Dx+Dxy.
r3 : mxdist(Y, Dy)← dist(Y, Dy).

The semi-naive fixpoint computation of our rules r1 and r2 so revised produces atoms that are dominated by
other atoms produced at later steps. These non-maximal atoms are called provisional max atoms, and they are
depicted as cancelled in the picture below, since they will be lost at later steps.

Step 1 Step 2 Step3 Step 4
dist(a, 0) dist(b, 10), �����

dist(c, 20) dist(c, 28), ������
dist(d, 32) dist(d, 40)

Max (min) atoms that are not provisional are called final max (min) atoms. Then, with the fixpoint computation
for dist completed Step 4, r3 at Step 5 simply renames the final max atoms so obtained producing mxdist(a, 0),
mxdist(b, 10), mxdist(c, 28) and mxdist(d, 40).

The minimal model of a monotonic program can be derived by an eager computation that, at each step,
derives all the possible consequences of the current interpretation. A derivation that at each step only derives a
non-empty subset of those consequences will be called judicious. Then, we have that a program with extrema has
M as its stable model iff M can be derived via a judicious derivation that contains no provisional atom [16].

For instance, the stratified derivation shown for Example 1 is a judicious one since the fixpoint computation
of dist by rules r1 and r2 produces no provisional atom, and r3 then selects from the atoms so generated the

1We say that atom(X1, Y1) dominates atom(X2, Y2) when X1 = X2 and Y1 > Y2.
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final max mxdist atoms. Indeed, the iterated fixpoint computation of every max-stratified program defines a
judicious computation that produces its stable model.

On the other hand, although the eager computation in Example 2 contains provisional atoms, it still computes
the stable model of our program. Indeed, after all those provisional atoms are cancelled during the fixpoint
computation, we have a valid judicious derivation for the stable model of our program. Programs that have this
property will be said to be resilient. The program in Example 2 is resilient.

The requirement that programs must have SMS is now widely accepted in the field because otherwise
programs might not have sound logic-based semantics, as illustrated by the following example. Say, for instance,
that users are only interested in nodes whose distance from a along the longest path is < 40, and they add the con-
dition Dy<40 to r3 in Example 2. The modified program is still stratified and returns dist(a, 0), dist(b, 10),
dist(c, 28) dist(d, 40) and mxdist(a, 0), mxdist(b, 10), mxdist(c, 28), which defines its stable model.

However, if Dy<40 is added to r2, instead of r3, then the eager computation generates the following derivation:

Example 3 (Eager computation for Ecample 2 after dist(c, 20) is added to r2):

Step 1 Step 2 Step 3
dist(a, 0) dist(b, 10), �����

dist(c, 20) dist(c, 28), dist(d, 32)

Then in Step 4, r3 derives from these: mxdist(a, 0), mxdist(b, 10), mxdist(c, 28), mxdist(d, 32).
The logical problem with this outcome is that the atom dist(c, 20) is no longer in the result; thus, there is no
justification for dist(d, 32) and mxdist(d, 32) to be in the answer.

Therefore, for Datalog programs with aggregates to produce logically sound results, the programs must have
SMS. We will first discuss how to achieve this objective for programs with max and min, and then for programs
with count, sum and average whose formal semantics is actually defined using max.

Pre-Mappable Extrema and Stable Model Semantics: In our previous examples, we have seen that an eager
fixpoint computation produces a stable model for some queries but not for others. Thus programmers need
simple criteria to guarantee that their programs belong to the first group (i.e., they are resilient) and the notion of
pre-mappable (PreM ) constraints [17] is introduced next to satisfy this requirement.

The mapping defined by a set of rules in a program is called their Immediate Consequence Operator (ICO) and
it is denoted by T . Then, the constraint γ is said to be pre-mappable (PreM ) to T when, for every interpretation
I of P , we have that: γ(T (I)) = γ(T (γ(I))).

For instance, in rule r2 of Example 1, to find the maximal Dy for a given Y, we only need to consider the
max Dx value for the X value that, via arc(X, Y, Dxy), produces that Y. Thus, in Example 2, the constraint
is_max(Y, Dy) applied to the head of r2 can pre-applied to dist(X, Dx) in the body of the rule, and from there to
the rules generating dist(X, Dx) in the previous step of the fixpoint computation without changing the results of
the fixpoint computation. This PreM property allows us to transform Example 1 into Example 2 with assurance
that the same mxdist results will be obtained. More recently, it was proved [16] that PreM also guarantees
that recursive programs with extrema satisfying PreM have a SMS that can be computed using the fixpoint
techniques now used in the efficient implementation of recursive queries by SQL and Datalog systems. General
conditions for PreM to hold is a given program were discussed in [18].

The PreM property provides a very useful sufficient condition for recursive queries with aggregates to have a
declarative SMS that can be computed quite efficiently using the techniques currently used for monotonic queries.
Nevertheless, many queries have SMS although they do not satisfy PreM. For instance, consider Example 2 with
Dy<40 added to r2. Then, instead of using an eager derivation we can omit deriving dist(c, 20) at Step 2, and
derive dist(c, 28) at Step 3: this completes a judicious derivation free of provisional atoms that thus delivers
its stable model. In this revised program, the PreM property is lost and and eager fixpoint derivation does not
produce its stable model, whereby other techniques, such as those discussed in the next sections are needed to
compute it.
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Programs with MIN. The formal properties of programs with min can be derived by duality from those of
programs with max and imply that many min programs of practical interest have SMS. For instance, if we revise
our examples to use min instead of max, we find that r2 still satisfies PreM after the addition of Dx<40, and
therefore an eager fixpoint computation can be used to compute its stable model. Moreover, the presence of cycles
of positive length in graph(__ , __ ) does not compromise the SMS of our min programs, since the second time a
node Y in the cycle is visited during derivation, its larger Dy value is discarded, whereas in max queries larger
values turn previous values into provisional ones. A wide range of classical graph algorithms can be expressed
concisely using aggregates in recursive rules that have the PreM property and are thus conducive to efficient and
scalable implementations [8, 11, 13, 15]. In fact, along with other optimization techniques, the semi-naive fixpoint
can be extended to programs with extrema, with the simple provision that the new atoms generated at each step
will replace any provisional atom they dominate.

3 Semantics of Programs Using the Continuous Count and Final Count Aggregates

The OLAP functions of SQL introduced the continuous count aggregate which returns all positive integers up to
the cardinality of the set. Continuous count will be denoted by mcnt, since it is monotonic in the lattice of set
containment, i.e. if S1 ⊆ S2 then mcnt(S1) ⊆ mcnt(S2). The final count fcnt that computes the cardinality of a
set can be expressed as the max of the monotonic count on the set. For instance, with bintbl(__ , __ ) denoting
an arbitrary binary table the following rule computes the cardinality of the set of distinct Y-values associated with
a group-by value X:

r : mcagr(X, mcnt〈Y〉)← bintbl(X, Y). (1)

The semantics of this rule is as follows:

Definition 1 (Defining the semantics of continuous monotonic count mcnt ):
ra : mcnt(X, 0)← bintbl(X, __ ).
rb : mcnt(X, C1)← mcnt(X, C), bintbl(X, Y), onenext(Y, (X), C), C1 = C + 1.
rc : mcagr(X, max〈C〉)← mcnt(X, C).

The predicate onenext(Y, (X), C) guarantees that, for each group-by value X , each value Y is counted
exactly once. In Datalog this can be expressed by replacing onenext(Y, (X), C) in rb with the pair of goals
choice((X, C), Y), choice((X, Y), C), since programs that use the choice construct have SMS [7]. In the actual
implementations, the use of the get_next construct, that visits the tuples in bintb exactly once, guarantees that
this constraint is never violated. Also observe that the zero count assigned by ra is always eliminated by rc. Thus
the semantics of the final count that compute the cardinality of the set can now be defined using mcnt and max.
For example, the semantics of the following rule:

fcagr(X, fcnt〈Y〉)← bintbl(X, Y).

is defined by the following two rules:

(a) : magr(X, mcnt〈Y〉)← bintbl(X, Y).
(b) : fcagr(X, max〈C〉)← magr(X, C).

A Bill of Materials (BoM) Example. Here, basic(Part, Cost) is the price charged by the supplier of a part.

Example 4 (basic describes the cost of basic parts, and arc defines the part-subpart graph):
basic(a, 6.2). basic(b, 9.4). basic(c, 13.2). basic(d, 4.8). basic(e, 4.8).
arc(a, f). arc(b, f). arc(c, f). arc(c, g). arc(d, g). arc(e, g). arc(f, g).

Assume now that we introduce the (somewhat artificial) notion of complex assemblies as those which are
assembled from three or more components which are either basic parts or complex subassemblies. Then the
following query returns the complex assemblies in our BoM.
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Example 5 (Find the assemblies and the total count of basic parts they contain when this is ≥ 3):

ρ1 : cassb(To, 3)← basic(To, __ ), C = 3.
ρ2 : cardc(To, fcnt〈Frm〉)← cassb(Frm, __ ), arc(Frm, To).
ρ3 : cassb(To, Totcnt)← cardc(To, Totcnt), Totcnt ≥ 3.

The semantics of this program is defined by the following program obtained by expanding ρ2 into rules ρ2a and
ρ2b that express the computation of fcnt aggregate via mcnt and max:

Example 6 (Defining the semantics of fcnt in Example 5 as the max of mcnt. ):

ρ1 : cassb(To, 2000)← basic(To, __ ).
ρ2a : cardc(To, mcnt〈Frm〉)← cassb(Frm, __ ), arc(Frm, To).
ρ2b : mxcard(To, max〈C〉)← cardc(To, C).
ρ3 : cassb(To, Totcnt)← mxcard(To, Totcnt), Totcnt ≥ 3.

The max aggregate is the only non-monotonic construct in this program. Therefore, to achieve SMS, we must
find a judicious derivation that does not produce any provisional max. One such derivation could e.g. use ρ1 and
ρ2a to produce cardc(f, 3) and cardc(g, 3). At this point, our judicious derivation produces mxcard(f, 3) but
not mxcard(g, 3). Then, from mxcard(f, 3) we derive cassb(f, 3). From this, we derive cardc(g, 4), which
yields mxcard(g, 4) and cassb(g, 4). Since this derivation has produced no provisional max, SMS is guaranteed.
On the other hand, an eager computation woud have used cardc(g, 3) to produce mxcard(g, 3) before deriving
mxcard(g, 4) and cassb(g, 4), which remove the provisional mxcard(g, 3) but not cassb(g, 3). Thus we cannot
use the eager fixpoint technology of our current systems to compute the stable model for this program. As we
look for a solution, we see that there is a simple one that consists in revising ρ3 into the following rule:

ρ′3 : cassb(To, max〈Totcnt〉)← mxcard(To, Totcnt), Totcnt ≥ 3.

The max-enhanced version of the program so obtained has the same SMS as the original program and its
eager fixpoint computation produces its stable model, thus we will say that our program is quasi-resilient. While
many programs of interest are quasi resilient, others are not, and no max enhancement will deliver their SMS.
For instance, say that we add the additional goal Totcnt<4; then, the stable model for this program contains
cassb(f, 3), but it does neither contains cassb(g, 3) nor cassb(g, 4). However the fixpoint of its max-enhanced
version now contains cassb(g, 3). Thus the max-enhancement here neither preserves the original SMS nor it
makes it resilient. To address this situation, users must be provided with (i) criteria to recognize programs that
can be max-enhanced into equivalent programs that are resilient, and (ii) more general implementation methods
for programs that have a SMS but do not belong to group (i). The notion of Reverse Premappability (RPreM )
provides a simple answer to (i). With T denoting the the ICO of one or more rule, we will say that R PreM holds
for T if γ(T (I)) = T (γ(I)) for every I . Since PreM holds for max in rule ρ3, max can be introduced into
this rule without changing the result; indeed, it only enforces the max constraint on atoms generated from rule
ρ2b, i.e. atoms that already satisfy the max constraint. However if we instead use rule ρ′3, then a max atom,
such as mxcard(g, 4) obtained from ρ2b, will be filtered out by the < 4 condition, whereby ρ′3 will now return
mxcard(g, 3) as max: a clear violation of SMS. Therefore, to realize the SMS for the program with the <4
condition, we need different solutions, such as the one that relies on the pre-counting technique discussed in the
next section.

Dealing with Duplicates. Duplicates are immaterial for extrema because of their idempotence property, but
not for the other aggregates a special notation is needed to specify that duplicates are not excluded from the
computation. Say for instance that we have a ternary table terntbl(A1, A2, A3) and for each value of A1 we
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would like to count all occurrences of A2, where every occurrences of A2 associated with different A3 value
contributes to the count. Then, instead of the following rule,

dbagr(X, fcnt〈[Y, Z]〉)← terntbl(X, Y, Z). (2)

we can use the rule (3) below with the special duplicate notation that will also be used for sum and average:

dbagr(X, fcnt〈Y, Z〉)← terntbl(X, Y, Z). (3)

4 Queries Using Sum and Average.

The semantics of the sum of the elements in a set can be specified by adding up its elements while counting them
so that the sum value associated with the final count can be returned.2

Consider for instance the following example that for each assembly derives the total of the costs of the basic
parts it uses, by adding up those of its subparts. The notation sum〈Cost, Frm〉) denote that duplicate Cost from
different subparts Frm all contribute to the sum.

Example 7 (For each assembly, find the total cost of the basic parts it uses):

ρ1 : pcst(To, Cost)← basic(To, Cost).
ρ2 : ragr(To, sum〈Cost, Frm〉)← pcst(Frm, Cost), arc(Frm, To).
ρ3 : pcst(To, Cost)← ragr(To, Cost).

Now, the computation of sum〈Cost, Frm〉 requires (a) an initial step where count and sum are initialized to zero,
(b) an iterative step that adds one to the current count and adds the new Cost to the current sum, and (c) a final
max step that selects the final count, which is used to return the final sum value associated with it.

Example 8 (The max-based formal semantics for Example 7):

ρ1 : pcst(To, Cst)← basic(To, Cst).
ρ2a : rsum(To, C, S)← pcst(Frm, __ ), arc(Frm, To), C = 0, S = 0.
ρ2b : rsum(To, C1, S1)← pcst(Frm, Cst), arc(Frm, To), rsum(To, C, S),

onenext(Cst, Frm, (To), C), C1=C+1, S1=S + Cst.
ρ2c : ragr(To, max〈C〉)← rsum(To, C, __ ).
ρ3 : pcst(To, Cst)← ragr(To, Fcnt), rsum(To, Fcnt, Cst).

To define the semantics of average, rule ρ3 above will be modified to return Cst/Fcnt instead of Cst.
As we now investigate the declarative and operational semantics of this example, we see that we can assume

that no cycle exists in the BoM part-subpart graph, no provisional max value is ever generated by ρ2c and SMS
is thus guaranteed. However, when it comes to operational semantics, the situation of sum is quite different
from that of count; this can be easily seen by comparing rule ρ2a in Example 6, where successive count values
are ignored by cassb(From, __ ), against rule ρ2a in Example 8 in which successive values are cumulatively
added incorrectly to the sum. Thus, except for special cases, such as that of perfectly balanced trees, an eager
computation will not deliver the correct sum value. To realize SMS, we must therefore revise the original program
to make sure that, for each node, the Cst contributions of its predecessors are added all at once. One technique to
achieve that is the pre-counting approach used in [12] which will compute the sum at a node only after the sum
is computed at each of its immediate predecessors. To implement this technique, the program in Example 7 is
revised into that in Example 9, below, by the addition of rule ρ̄0 that precomputes the in-degree of each node.
Then, ρ2 is modified into ρ̄2 to keep count of the number of a node’s immediate predecessors that have so far
contributed to its sum. Thus, the correct final sum value used in ρ̄3 is the one obtained when count is equal to
the in-degree of the node. In passing, observe that ρ̄2 also illustrates how multiple aggregates sharing the same
group-by value can be specified in the head of a rule.

2Using the max of the continuous count on the set elements does not identify their sum when negative numbers are present.
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Example 9 (Cost of nodes by pre-computing the number of their incoming arcs):

ρ̄0 : indgr(To, fcnt〈Frm〉)← arc(Frm, To).
ρ̄1 : pcst(To, Cost)← basic(To, Cost).
ρ̄2 : ragr(To, sum〈Cost, Frm〉, fcnt〈Frm〉)← pcst(Frm, Cost), arc(Frm, To).
ρ̄3 : pcst(To, Cost)← ragr(To, Cost, NNods), indgr(To, NNods).

Thus we have now a program where the eager FPC realizes its SMS, returning the same pcst(To, Cost)
atoms as the original program. Pre-counting is also applicable to programs with count and average and represents
a simple technique to derive an efficient and scalable fixpoint computation for programs that have a declarative
SMS. However, in the simple form we have discussed, pre-counting relies on the assumption that all the nodes
are reachable form basic parts. When that is not the case, more complex programs could be used to compute the
actual count of immediate predecessors of a node reachable form the basic parts. Alternatively, the Group-by
Layering technique described in [16] can be used to avoid the generation of provisional values, by delaying the
derivation of each group-by node until a derivation step where the last of its predecessors is computed. In acyclic
graphs, this step could be determined using topological sorting, but this requires a complex Datalog program and
implies the serialization of nodes that could be computed in parallel. The technique described in [16] instead
computes for each node its maximum distance from basic nodes and is amenable to parallelism.

5 Parallelism and Layered Computation.

By applying pre-counting on Example 7, we obtained Example 9 where the computation a new node is started
only after it is completed at its predecessors. In many applications of interest, this kind of revision is not needed
since the completion conditions that enable the fixpoint computation to realize SMS follow directly from the
structure of the program and the parallelization strategy used by the system. Among such applications, we find
those using algorithms such as Markov-Chains, Lloyd’s Clustering and Batch Gradient Descent.

Markov Chains. This algorithm is interesting because of its similarity to the Page Rank algorithm that led to
Map-Reduce. Thus, in Example 10, we assume a database of facts mov(Frm, To, Perc), where Perc denotes the
fraction of population that every year relocates from city Frm to city To. For each city, there is also a non-zero arc
from the city back to itself showing the fraction of people who remain in the same city. Therefore, the sum of
Perc for the arcs leaving a city (i.e., a node) is equal to one.

Now, assuming that initially every city has a population of 100,000 people we would like to determine how
the population evolves over the years. Also to assure termination, we stop the computation after 999 steps (i.e., a
number of steps that is normally sufficient for the computation to either converge to a final state or reveal that no
convergence should be expected). Then, we can use the following program, where sum〈In, Frm〉 adds up the In
contributions from all Frm cities, without discarding duplicate In values coming from different Frm cities:

Example 10 (The Markov Chains algorithm):

ρ1 : markv(1, Cit, Pop)← mov(Cit, To, __ ), Pop = 100000.
ρ2 : next(J, To, sum〈In, Frm〉)← markv(J, Frm, Pop), mov(Frm, To, Perc), In = Pop×Perc.
ρ3 : markv(J1, Cit, Pop)← next(J, Cit, Pop), J ≤ 999, J1 = J + 1.

Observe that we have here a program that is locally stratified by the value of the first argument in markv, whereby
SMS hold. The same conclusion follows by representing as a directed arc the dependency from the group-by
arguments markv(J, Frm, __ ) in ρ2 to markv(J1, Cit, __ ) in the head of ρ3. Since J1 = J+1 the graph so
established is acyclic, and this provides yet another proof that declarative SMS holds.

Now, for an operational semantics that correctly realizes the SMS of this program, we can observe that the
number of incoming arcs representing the population that migrate into a city each year remains the same, and thus
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we can use the pre-counting approach previously described. Then, the head ρ2 will be extended with an additional
argument that counts the number of contributions added so far. Them, ρ3 ignores the sum values produced by
ρ2, until the count argument equals the pre-counted in-degree of the node. The stable model for the program
generated by this pre-computing transformation is then computed by the eager derivation that is conducive to
scalability via stale-synchronous parallelism [4, 16].

However, other solutions are available and actually preferable in Datalog systems that support more advanced
operational semantics. Indeed some Datalog compilers [2] will recognize the explicit local stratification that holds
for the group-by argument in our rules, and arrange for an evaluation where all computations at level J1=J+1

are performed after the Jth-level ones are completed. In these Datalog systems, the stable model for Example
10 can computed with no revision required in the program. The same conclusion holds for systems designed to
support bulk-synchronous parallelism (BSP) in which a new distribution-computation cycle at level J+1 is not
started until the completion of the previous cycle, in which aggregates at group-by level J were evaluated. This
approach achieves high parallel performance [9].

Applications Requiring a Combination of Different Aggregates. Queries that combine multiple aggregates
can express concisely a broad spectrum of advanced algorithms that support graph, data mining and ML
applications with superior performance and scalability [3,8–15]. For instance, we next discuss Lloyd’s clustering
algorithm that combines sum, average and min aggregates.

K-means Clustering: We are given a large set of D-dimensional points. Each point is described by a unique
Pno and its coordinate values in each of the D dimensions, i.e., by D facts conforming to the following
template: point(Pno, Dim, Value). We also have a small set of centroids, for which we generate an initial
assignment center(0, Cno, Dim, Val) by the predicate init(Cno, Dim, Val) defined using any of the simple
techniques described in the literature. Then, Lloyd’s clustering algorithm can be expressed concisely as shown in
Example 11.

Example 11 (Clustering a lá Lloyd.):

r0 : center(J, Cno, Dim, Val)← init(Cno, Dim, Val), J = 0.
r1 : cdist(J1, Pno, Cno, sum〈SqD〉)← point(Pno, Dim, Val), center(J0, Cno, Dim, CVal).

SqD=(Val− Cval) ∗ (Val−Cval), J1 = J0 + 1.
r2 : mdist(J2, Pno, min〈[DSm, Cno]〉)← cdist(J1, Pno, Cno, DSm), J2 = J1 + 1.
r3 : center(J0, Cno, Dim, avg〈Val, Pno〉)← mdist(J2, Pno, [__ , Cno]), points(Pno, Dim, Val),

J2 ≤ 999, J0 = J2 + 1.

At each step J Example 11 computes the quadratic distance of each point from each centroid, so that r2 can select
for each point the centroid closest to it. Then, for each centroid, r3 recomputes its position by averaging the
coordinates of the points that have this as their nearest centroid3:

This program is structurally similar to the Markov Chains program of Example 10, and the two programs have
similar properties in terms of declarative and operational semantics. In fact, the first argument in the heads of
their rules define an explicit stratification that implies SMS. Moreover, since the cardinality of Pno and Cno sets
remain constant throughout the computation, we can use the pre-counting approach to construct the stable model
by an eager fixpoint computation that is conducive to SSP scalability. However, with bulk-synchronous parallelish
(BSP) the SMS of this program can be realized quite naturally and efficiently by simply synchronizing the BSP
steps with the first arguments in the head of the rule, i.e., with J0, J1, J2. This guarantees that the declarative
and operational semantics of our programs are completely aligned and conducive to efficient implementations

3Thus min assume a total ordering where [X1, Y1] ≤ [X2, Y2] holds if X1 < X2 or if X1 = X2 and Y1 ≤ Y2. This ordering is easily
extended to lists of arbitrary length.
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that are scalable via BSP. In fact, Lloyd’s algorithm is among the several data mining algorithms implemented
on Apache Spark using Datalog with recursive aggregates. The performance and scalability of these algorithms
have undergone extensive experimentation, showing that they perform as well or better than the same algorithms
expressed by lengthy4 procedural-language programs [1, 8, 9, 11–13, 15].

Expressing ML Applications The problem of supporting efficient and scalable ML applications concisely
expressed as Datalog queries with aggregates was studied in [12]. For instance, to support gradient descend, we
can use a verticalized representation vtrain(Id, C, V, Y) for the training set, where Id denotes the id of a training
instance, Y denotes its label, C and V denote the dimension and the value along that dimension, respectively. Then
a Batch Gradient Descent application can be expressed by the program in Example 12 where

– model(J, C, P) is the training model in verticalized form, where J is the iteration counter C is a dimension in
the model, and P is the parameter value for that dimension.

– gradient(J, C, D) contains the gradient result G at iteration J for the Cth dimension.
– predict(J, Id, YP) represents the intermediate prediction results, where Id denotes the id of the training

instance, and YP its the predicted y value at iteration J.

Firstly, the model is initialized according to some predefined mechanisms in r0 (Here we use 0.01). Then the
function f is used to make predictions on all training instances according to the model obtained in the previous
iteration in r1. Next the gradient is computed by the function g (derived according to the loss function L) using
the predicted results in r2. Finally, in r3 the model is updated w.r.t the gradients (and optional regularization Ω).
Here, lr denotes the learning rate and n is the number of training instances. Then, the training process moves on
to the next iteration.

Example 12 ( Batch Gradient Descent (BGD)):

r0 : model(J, C, P)← vtrain(_, C, _, _), J = 0, P = 0.01.
r1 : predict(J, Id, sum〈Y0〉)← vtrain(Id, C, V, _), model(J, C, P), Y0 = f(V, P), J1=J+1.
r2 : gradient(J2, C, sum〈G0〉)← vtrain(Id, C, V, Y), predict(J1, Id, YP), G0=g(YP, Y, V), J2=J1+1.
r3 : model(J, C, NP)← model(J, C, P), gradient(J, C, G),

NP = P− lr ∗ (G/n + Ω(P)), J=J3+1.

As in previous two examples, the J argument in the group-by establishes a structure that guarantees SMS and
superior scalability via BSP. The same is true for a wide spectrum of ML algorithms that can be expressed with
different functions f , g, Ω in above program. In particular, the Mini-batch Gradient Descent (MGD) require only
minor changes to above queries [12].

6 Conclusion
The usage of aggregates in recursive Datalog programs entails a concise expression for very powerful algorithms
that combine a formal declarative SMS with a powerful and scalable fixpoint-based operational semantics. This
paper has unified the semantics of programs with different aggregates by turning them all into equivalent programs
with extrema, and thus significantly simplified the verification of their SMS by reducing it to the exclusion of
provisional extrema from the derivation. Using the PreM property we identified a large class of resilient or
quasi-resilient programs for which the current implementation techniques used in Datalog provide an efficient
and SSP-scalable implementation of their SMS. For programs that do not belong to this class, the paper proposed
simple rewriting techniques, such as pre-counting to realign their operational semantics with declarative one.
Finally in many programs of practical interest, the synchronized execution produced by SSP also guarantees the

4For instance, the corresponding procedural version requires twenty-fold the lines of codes used in Example 11.
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correct derivation of their SMS. These findings suggest that many big-data algorithms that are now developed
using procedural languages can instead be developed directly using query languages, including SQL, since
recursive Datalog queries with aggregates, can be translated into equivalent SQL queries, as discussed in the
appendix.
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A Aggregates in Recursive SQL Queries

The single source shortest path Datalog query of Example 1 can be expressed in SQL.

Example 13 (SSSP on base table: edge(Src : int, Dst : int, Cost : double) by stratified SQL):

WITH recursive sssp (Dst, Cost) AS
(SELECT "a", 0)
UNION
(SELECT edge.Dst, sssp.Cost + edge.Cost
FROM sssp, edge WHERE sssp.Dst = edge.Src)

SELECT Dst, MIN(Cost) AS minCost FROM sssp GROUP BY Dst

To express the query of Example 2 by a compact representation, we will assume that the aggregate columns, such
as MIN(Cost) are implicitly grouped by the other columns in SELECT: i.e., by Dst for the example at hand.

Example 14 (SSSP on base table: edge(Src : int, Dst : int, Cost : double) by unstratified SQL):

WITH recursive sssp (Dst, min(Cost) AS minCost GROUP BY Dst) AS
(SELECT "a", 0)
UNION
(SELECT edge.Dst, sssp.minCost + edge.Cost
FROM sssp, edge WHERE sssp.Dst = edge.Src)
SELECT Dst, minCost FROM sssp

Similar translations apply to the other examples and aggregates discussed in the paper, with the provision that
the keywords ALL and DISTINCT will be added to specify their behavior in the presence of duplicates.
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