
Deep Hierarchical Product Classification Based on Pre-Trained
Multilingual Knowledge

Wen Zhang
wenzhaw@amazon

Yanbin Lu
luyanbin@amazon

Bella Dubrov
belladub@amazon

Zhi Xu
xuzhi@amazon

Shang Shang
shashang@amazon

Emilio Maldonado
emilim@amazon

Abstract

The customer experience of online shopping is largely contingent on the accuracy of product classification.
Considering the amount of products and all the possible categories, it is desirable to construct a framework
to auto-assign products into correct categories at scale. Machine learning based systems often suffer
from poor data quality, such as incomplete item descriptions, adversarial noise in the training data, etc.,
causing low precision/recall of predictions. To overcome these difficulties, we propose a deep hierarchical
product classifier based on BERT pretrained knowledge. Additionally, we propose several learning
strategies, e.g., bootstrap learning, negative sampling, soft label and semantic augmentation, to capture
consistent knowledge hidden behind noisy data to prevent overfitting. Experiments on a large data set
with different data configurations prove the effectiveness of the proposed model.

A Introduction

Online retailers provide a wide choice of commodities on their websites and a human curated taxonomy that
allows customers to browse and discover products of interest. It is a challenging problem to be able to classify
product into correct categories at scale. There are two main sources of information involved in the classification
process: description of product and definition of categorization. However, considering large amount of products
and the number of categories, catalog data are very often to be noisy. For example, product descriptions provided
by content providers might be incomplete or misleading, and the multi-functionality of certain products might
result in confusion between taxonomy categories. Human labeling is expensive. Hence, it is desirable to have an
auto-product classification algorithm that can efficiently handle noisy data and make correct prediction.

The task defined in this study is to effectively extract the semantic representation of a large corpus of
data for downstream classification tasks, i.e. large scale product classification. Learning semantic distributed
representation has been well explored in recent years from the level of character representation to document
representation, with the majority of the work initially focused on word/token embedding and later on sentence
representation [3–5]. Recently, substantial work has shown benefits of using pre-trained models (PTMs) to
better understand universal language representations and significantly reduce training time of new models. Two
representative research projects, OpenAI GPT-1/2/3 (Generative Pre-training) [6–8] and BERT (Bidirectional

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

26



Encoder Representation form Transformer) [9], designed very deep network structures with various pre-training
tasks and achieved SOTA performance in many NLP benchmarks. In this study, we leverage a pre-trained
version of BERT for multilingual understanding, named multilingual BERT (mBERT)1. It is a masked language
model [10] trained with shared vocabulary and weights on Wikipedia text from the top 104 languages. We hope
that product classification for multiple locales (marketplaces, most of time are referred by countries, where online
retailers want to operate) with different languages can benefit from this pre-trained model’s ability for multilingual
understanding.

Generally, machine learning based systems, e.g. deep learning models, have been found to be vulnerable to
various types of noise in the training data, such as corruptions or adversarial samples. Without proper configuration,
models with large parameters easily converge to a poor local optimum that overfit to the noise/outliers. The
backbone BERT model applied in this research carries millions of parameters, hence proper training strategies to
overcome data noise are crucial to the success of the classification tasks. Learning from the task domain and
data structures, we explore and design several training strategies to leverage product classification. For example,
we create pseudo labels by self-justified learning and smooth model predictions via temperature scaling. These
two mechanisms can adaptively prevent model from over-confidence. Accounting for multilabel learning with
incomplete data source, negative sampling is also added during training. The performance of these strategies shed
lights on model fine-tuning over the noisy data and provide hints for the designation of the next generation of
model architectures.

The major contribution of this study can be summarized in 3 folds: 1) We discuss the basic types of data
noises existing in practical product data sources; 2) We design a deep hierarchical classifier to efficiently predict
product categories in both department and leaf category levels; 3) We propose several training strategies to further
improve classification accuracy. To validate the proposed method, we conduct extensive experiments on 2 large
independent datasets and also discuss the roles of each training strategy through an ablation study.

Figure 1: product item and category taxonomy

B Product Data Quality and Noises

In this section, we will briefly introduce the common types of data noises that affect our classification model.
The models of this study are based on natural language processing. Here, we only focus on the noise in text

1https://github.com/google-research/bert/blob/master/multilingual.md

27



information, e.g. descriptions of items and semantic definitions of their categories. These types of noise are also
prevalent in multi-modal data but differ in their manifestation and noise distribution.

The text data of a product generally contains descriptions of the item properties. The product title information
includes the major properties and functions of the item as a single sentence. Sometimes, the item’s category name
is already provided in the title. A more detailed description of the product, its various functions and properties
is usually found in the item description in the form of several sentences or bullet points. Thus, sentence-level
semantic understanding is crucial to extract the full value of this information. It is worth noting that all of the
aforementioned data noise comes from the large raw data mostly provided by sellers, hence manual cleaning
requires significant cost and time.

Item categories are predefined by online retailers according to catalog selection. The structure of categories,
also termed as taxonomy, is the label space that we are targeting during classification. Hence, given different
taxonomies, the accuracy of classification models varies due to changes in the complexity and dimension of the
label space. In general, a taxonomy is manually curated by taxonomists as a hierarchical tree. Its granularity
decides the size of item categories and learning logic from a given root node to its leaf children. Due to the
selection are localized, taxonomy trees are not consistent across locales, thus a model capable of handling various
label spaces is needed.

B.1 Incomplete and Misleading Item Descriptions

Incompleteness and misleading product description make the classification task challenging. In this study, we
focus on three item text features: item title, item description and item bullet points. The information necessary for
a correct classification might exist in each of them or across features. For example, in pet supplies, an aquarium
mat, that should be classified as an aquarium decoration, might be confused with a dog bed mat, if the keyword
”aquarium” is missing in the title. It is a common case, especially in a new locale where low quality data samples
are abundant. Sometimes, incomplete item description comes with misleading information, which results in
additional confusion for the model. In the previous case, the item bullet points of the aquarium mat focus on how
to clean this item, misleading the classifier on the product usage instead of what the product is, and classify it as
an aquarium cleaner. This problem might be severe if the other features are short or noisy. Another example is
a fish tank which contains several aquarium decorations as gifts. The model needs adaptive ability to focus on
important descriptions of the main product in a bundle.

B.2 Adversarial Item Information

This type of data noise is generated by the sellers who might change item descriptions to depict different product
aspects, intentionally or not, leading to products potentially depicted for a different category. We can further
characterize the noise into soft adversarial noise and hard adversarial noise. The soft adversarial noise emphasizes
some peripheral properties of the item, while the hard adversarial noise contains mendacious item descriptions.
In the former scenario, to increase the visibility of their products, some sellers tend to describe multiple functions
or properties of the item in detail, which obscures its inherent purpose. It is analogous to the case of misleading
item description discussed before. This noise increases the difficulties of a stable learning. In the latter scenario,
item description is totally irrelevant to the actual selling item. For instance, a TV mount frame can camouflage
as a TV with various sizes as long as the seller removes the keyword ”mount” from the title. Interestingly, this
type of adversarial noise sometimes couples with a correct item image, which suggests opportunities to introduce
multimodal learning (such as using product images) during product classification.

B.3 Definition of Noise in Label Space

Another important yet hard to eliminate data noise is label noise. Unlike in the unsupervised setting, where
the label space can be inferred during feature learning, we train our classifier with supervised knowledge. This

28



label space is constructed by taxonomists from a selected group of samples over a period of time, or inherited
or migrated from an established stable ontology, e.g. item categories of a new locale is a child tree of a mature
locale on an international online retailer. As data accumulates, the amount of items with previously unseen
labels increases and thus the current taxonomy fails to capture the true label complexity. On the other hand,
defined labels are not necessarily mutually exclusive, resulting in a multi-label learning problem. However,
incomplete label space is inevitable in this setting. Confusing labels present additional difficulties for supervised
classification.

C Deep Hierarchical Product Classification Framework (DHPC)

The proposed model for product classification is a two-stage classifier, making the whole pipeline work as a
hierarchical classifier. There are two main reasons. First, the label space of target product categories contains
thousands of labels, which are sometimes confusing. Some techniques termed as extreme multilabel classifica-
tion/ranking (XML/XMR) are designed to deal with this type of learning tasks with large label space. However,
effective information mining from the large noisy dataset poses numerous challenges to reach high accuracy.
The other reason for hierarchical classification is that taxonomy structure defined by internal taxonomists is a
hierarchical tree. It is straightforward to incorporate this structure into our model. Besides, from the business
perspective, a hierarchical classifier can help to identify departments with low accuracy and then to fine-tune them
separately in the order of priority. In this paper, we denote the first level classifier as the department classifier,
which assigns products to a department, e.g., electronics, fashion etc. Each locale generally contains dozens of
departments. The second level classifier, called a leaf classifier, predicts items further into granular categories of
each department. The number of categories ranges from hundreds to tens of thousands.

The whole pipeline is shown in Fig. 2. First, item text information including item title, description and bullet
points are preprocessed to remove nonalphabetic characters and resample for balanced category distribution.
Since the number of categories in department and leaf classifiers are distinct, we shall wisely select sampling
threshold values. For department classifier, we randomly select hundreds of items per leaf node and combine all
leaf node samples in a given department. For leaf classifier, we randomly select thousands of items per leaf node
without replacement. After data preprocessing, the department and leaf classifiers are trained independently with
an identical deep network structure. Details of the model structure will be presented in the next section.

The inference pipeline differs from the training schedule. Rather than independent querying, it works in
cascade from department prediction down to leaf node prediction. As indicated in Fig. 2, the department classifier
predicts the source item into the electronics department. The leaf classifier of the electronics department further
predicts that item as a iPhone case. That is, we rank model prediction scores to find suggested department and
then infer a leaf node within that department. During this process, a set of department prediction scores and the
corresponding set of leaf prediction scores is generated. The two scores are then multiplied as confidence score
for thresholding and model calibration.

C.1 Deep Neural Network Classifier

Considering model ability to handle multiple languages for various locales, we select a state-of-the-art multi-
lingual model as the backbone structure. Specifically, we choose to use the pre-trained Bidirectional Encoder
Representations from Transformers (BERT) in a multilingual setting. Our model is then fine-tuned on top of
this architecture with an additional feed-forward neural network (FFNN) as the non-linear classifier. The model
architecture is shown in Fig. 3 and consists of 4 important components: an embedding component, an transformer
encoder, a feature pooled network and a non-linear multi-layer classifier. Parameters of the embedding component
and transformer encoder are pre-trained on a large corpus of multilingual text.

In the first step, item text information is tokenized by a trained multilingual dictionary (contains 30522
words). Then, the embedding layer projects these tokenized words into a latent space. WordPiece embedding is

29



Model

Model

Leaf Nodes

Departments

Locale 
Taxonomy Locale

Department 1

BrowseNode i BrowseNode j

Department N

BrowseNode i

OtterBox Prefix Series Case for 
iPhone 12 & iPhone 12 Pro - Clear

Item Text Information

Train Inference

Electronics

iPhone
Case

Department 
Matching 

Leaf Matching 

Department/Leaf Data 
Preprocessing

Department/Leaf Data 
Classifiers

Hierarchical Label Space

…

…

Figure 2: Hierarchical product classification framework (DHPC). The blue arrow and green arrow streams
respectively indicate training and inference processes.

used here instead of the usual practice word embedding. During this process, segment embedding and position
embedding are also concurrently encoded and added to the token embedding. It allows the model to understand
sentence-wise sequential order. In our case, we use segment embedding to indicate whether words belong to item
title, description or bullet points. The output of this embedding layer is a sequence of high dimensional symbol
representations.

The transformer encoder maps the output of the embedding layer to a sentence/paragraph level semantic
embedding vector,E[CLS]. The original BERT transformer encoder contains 12 identical bidirectional transformer
layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is
a simple, position-wise fully connected FFNN. A residual connection is employed around each of the two
sub-layers, followed by layer normalization. That is, the output of each sub-layer is LayerNorm(x+Sublayer(x)).

Knowledge Skip. Generally, supervised classification tasks use the first embedding vector E[CLS] of outputs of
the transformer layer as the semantic representation. During experiments, we observed that keywords of product
categories frequently exist in the title information, which is relatively easier to catch by attention than statement
understanding. Therefore, in our model, we consider both deep and shallow encoded knowledge to enhance
classification accuracy. E[CLS] from every other intermediate transformer layer are pooled together with the last
one and then undergo a feature pooling network. There are several options for feature pooling, e.g., maxpool,
meanpool or concatenation.

The last part of our model is a two-layer fully-connected network with BatchNorm and Dropout layers inside.
The classification loss is binary cross entropy allowing for multi-label learning.

C.2 Model Accuracy and Coverage

Model accuracy and coverage are two essential evaluation metrics we use to quantitatively assess the model
performance in a product classification system. Since the ground truth distribution of product categories is
unequal, and the importance of categories is determined by business purposes, the preferred model must combine
high accuracy with high coverage.

30



𝐸["#$]𝐸["#$]

𝐸[$&'(&] 𝐸)* 𝐸+* 𝐸[$,-] 𝐸)) 𝐸.)

Tok 1 Tok N Tok 1 Tok M

… …

……

Item Title Item Description/Bullet Point

…

…

𝐸["#$]

𝐸["#$] Trm Trm Trm Trm Trm

Trm Trm Trm Trm Trm

Pooling Layer
(Max/Mean/Concat)

N*768
768

1024

BatchNorm/
Dropout Categories

Embedding
Features

Confidence
Vector

FFN Classifier

Pre-Trained BERT

Figure 3: Deep hierarchical product classifier with pre-trained BERT knowledge

D Training Strategy

Training a deep neural network on large noisy data, e.g. classifying millions of items with thousands of target
labels, would easily result in overfitting and get trapped in a false local optimum, i.e. overconfidence. Especially
in our cases, the product’s text information contains mixed types of noise mentioned in the Sec. B. To overcome
these difficulties during the training process, general training strategies, such as early stopping, dropout, weight
regularization/decay etc., are employed. Moreover, to further improve the model as well, we adopt the following
training strategies.

D.1 Bootstrap Learning

The first training strategy is a self-justified learning mechanism accounting for knowledge consistency during
training [1]. It augments the usual prediction objective with a notion of perceptual consistency, e.g. consistency
of model predictions in each batch training. More specifically, it allows the model to disagree with a perceptually-
inconsistent training label and effectively relabel the data while training. The assumption behind this idea is
that incorrect labels are likely to be inconsistent with other data points predicted to the same label by the model.
Therefore, it acts in a manner of self label clean-up and bootstraps itself until convergence to a stable knowledge.
Here, we incorporate this idea into the cross-entropy training loss. Recalling the binary cross-entropy (BCE) loss:

LBCE(p, q) = −
N∑
k=1

pklog(qk) + (1− pk)log(1− qk), (5)

where pk, qk are ground truth label and model prediction, respectively. N is the size of target labels. To allow for
differentiability of the proposed bootstrap loss, the label consistency is defined by predicted category probabilities
qk, hence the above BCE loss is modified as:

31



LBootstrap(p, q) = −
N∑
k=1

βpklog(qk) + β(1− pk)log(1− qk) + (1− β)qklog(qk), (6)

where parameter 0 ≤ β ≤ 1 balances bootstrap learning and supervised classification. It is empirically set in
the range [0.8, 0.95]. Due to the large batch training steps (tbatch), we can set a delta activation β̂ that adaptively
turns on/off the bootstrap loss at a given global step Tgate:

β̂ =

{
1, if tbatch < Tgate

β, if tbatch ≥ Tgate
(7)

D.2 Negative Sampling

It is common that a product possess multiple functions, but we have limited knowledge of their complete category
labels in the training data. The label tags are provided by sellers based on their limited knowledge of category
taxonomy. Generally, one or a few positive labels will be allocated for a given item in the training set and the rest
of labels are assumed to be negatively associated with it. However, in such a setting, negative samples outnumber
positive samples dramatically, leading to a high precision but low recall. To avoid quick convergence to a false
local optimum, we adopt negative sampling in the learning objective. Suppose, in Eq. 8, N = Npos +Nneg, i.e.,
Npos positive labels and Nneg negative labels. Eq. 6 is updated as:

Lnegsamp(p, q) = −
Npos∑
k=1

β̂pklog(qk)−
Nneg

σN

Nneg∑
j∼P (σ)

β̂(1− pk)log(1− qk)−
N∑
k=1

(1− β̂)qklog(qk), (8)

where P (σ) is a probability function to select soft negative samples, and σ controls their contribution in the loss.

D.3 Soft Label with Temperature Scaling

Label smoothing is a way to make our model more robust so that it generalizes well, which is especially useful in
big data mining. It was first introduced by Szegedy et al. [2] for multi-class supervised learning tasks in computer
vision. It is originally designed for the last classifier layer with softmax function to prevent overconfidence. The
mathematical formulation is simple:

pk = (1− ε)pk + εu(k), (9)

by mixing the ground truth label pk with a scaling term u(k). u(k) is a distribution function in the label space
and the simplest choice is a fixed scaling value, e.g. 1

N . Hence, it prevents the largest logit (output of last layer)
from becoming much larger than all others. We use a similar idea to scale prediction scores instead of the ground
truth labels. In Eq. 8, qk is the sigmoid output of logit, qk = sigmoid(logitk). Therefore, following the same
logic, we modify qk as :

qk = sigmoid(
logitk
ε(tbatch)

), (10)

where ε > 0 can be a fixed value or a function of global batch training step tbatch allowing for adaptive scaling as
we did in β̂. It is worth noting that ε > 1 and ε < 1 carries quite different roles during training, forcing the model
towards the opposite converging status. Setting ε > 1 in the early training stage can help to explore potential
local optima while setting ε < 1 makes the model quickly converge to a local optimum.

32



D.4 Augmentation with Label Semantic Information

Label semantic information plays an essential role in product classification, since this knowledge is predefined
to perceptively group items with their inherent properties. We also observe that, if text information of an item
contains key words having a similar morphology of label name, it has a greater chance to be correctly predicted.
Hence, we believe it is beneficial to incorporate the label information into our training data and force the model
to understand these patterns. Specifically, we randomly chose a small portion of training data per leaf node and
shuffling their title information by words. Then, we insert their labels’ name in any place of the shuffled title.
Their item description and bullet points are removed. Because, comparing with item title, other text information
tend to follow the logic of natural language in sentences. Shuffling would destroy these properties.

E Experiments

In this section, we include several experiments to validate the effectiveness of the proposed framework in two
large datasets. We also conduct an analysis of product classification with different data settings, model structures,
supervised learning goals and training strategies. Since these factors might positively affect our supervised
learning tasks, we explore their potential and use cases. All experimental details are given below and results are
reported with discussions.

E.1 Product Classification in 2 Large Datasets

This experiment is designed to evaluate the proposed model in real use cases. We try to understand how it
performs under different language environments and data qualities.

E.1.1 Experimental Settings

Two independent datasets are sampled from two European locales (two countries, L1 and L2, using distinct
languages from an online retailer) which contain millions of product items with text information in a newly build
online shopping site. L1 data contains 50% of golden data source, i.e. positive labels of items were human-audited
and hence high quality, and 50% general data, i.e., samples of original product data source with noise. L2 data is
all general data which means it is noisier than L1 data. The major challenge of learning with these two datasets is
that we do not have complete positive/negative label information for each item, e.g. labels are not fully explored.
Discussion of data collections and label process can be found in Sec. B and Sec. D.2. The training data contains
several hundreds of millions of items with thousands of labels. The test set for each locale is sampled from
catalog based on importance. It contains thousands of items distributed in thousands of labels. For these datasets,
the text information is mixed with incomplete data source (i.e. missing item description or bullet point) that are
deliberately constructed to assess practical use cases.

We chose a deep neural network (DNN) model as the baseline comparison. It encodes multi-view text inputs
through an embedding layer and then pools the embeddings before a Multilayer Perceptron Classifier (MPC).
The MPC consists of a few fully connected layers. This simple yet effective model successfully classify product
item with high accuracy. It worth noting that the DNN model is trained from scratch for each dataset using the
same set of hyper-parameters.

Accuracy score is calculated from the human assessment of the model prediction. The final prediction score
is the multiplication of department confidence score and leaf confidence score, reflecting how much confidence a
model has in the final leaf node predictions. This score is then used to threshold model prediction in order to
reach a given accuracy demand. Please note, all of the assessment is weighted by the importance of departments.

33



Table 9: Comparison with DNN baseline model for department/leaf classification in the L1 data.
Improvement(+)/Downgrade(-) of the department/leaf level accuracy is reported.

Department Name Department Acc Improve Leaf Acc Improve

Department 1 -0.0377 -0.0427
Department 2 -0.1230 +0.0258
Department 3 -0.0254 +0.0317
Department 4 +0.0065 -0.0433
Department 5 -0.0506 +0.0148
Department 6 -0.0578 +0.0599
Department 7 -0.0262 +0.0520
Department 8 +0.0016 +0.0819
Department 9 -0.0249 +0.0253
Department 10 -0.0658 -0.0067
Department 11 +0.0182 +0.0173
Department 12 +0.0321 +0.0771

E.1.2 Results

L1 Dataset. Hierarchical classification results of product items in L1 are shown in Tab. 9. Compared with
the DNN baseline, the overall accuracy predicted by the proposed model is improved by 3.4% for leaf node
predictions but slightly worse (drops 1%) for department predictions. Considering the chain effect in the
hierarchical classification, within some departments, DHPC possesses a significantly better accuracy than the
DNN model. For example, in Department 11 (the largest department) and Department 12 (the 3rd largest), DHPC
is better in both department and leaf classifiers. However, we also observe that, in the 2nd largest department
(Department 4), although the department classification beats DNN model, DHPC has an obvious worse accuracy
in leaf node classification. After investigation, we found the discrepancy is caused from resampling strategies
during data prepossessing since category distribution in this department is less balanced than in the other 2 largest
departments.

L2 Dataset. L2 data is generally noisier than L1 data, hence the overall classification accuracies in the department
and leaf level are lower than that of L1 product classification. In comparison, DHPC improves leaf node accuracy
by 2% while the department level accuracy remains the same. Similarly, we further compare them in Department
3, 4, 6 (the top-3 largest departments). Except for the department classification of Department 3, all of the other
department/leaf classifications indicate superior performance of the proposed model. Overall, DHPC excels in
most department and leaf classifications in the L2 dataset.

Accuracy VS. Coverage. In addition to the accuracy assessed with the whole dataset, we attempt to evaluate the
confidence of the proposed model, providing insights for model fine-tuning. To this end, we threshold model
predictions based on confidence scores to allow at least 90% accuracy. For L1 dataset, DHPC outperforms DNN
model by 13% more coverage after thresholding. For L2 dataset, we observe 13% more coverage at 90% accuracy
compare to the DNN model.

E.2 Ablation Study of Proposed Training Strategies

In this section, we conduct several ablation studies to evaluate our proposed training strategies and discover their
potentials. Parameter exploration in these experiments provides hints for future model design.

34



Table 10: Comparison with DNN baseline model for department/leaf classification in L2 data.

Department Name Department Acc Improve Leaf Acc Improve

Department 1 -0.1516 +0.0345
Department 2 +0.0324 +0.0231
Department 3 -0.0338 +0.0252
Department 4 +0.0091 +0.0259
Department 5 +0.0511 +0.1128
Department 6 +0.0085 +0.0441
Department 7 -0.0477 -0.0630
Department 8 +0.0909 +0.0489
Department 9 -0.0607 -0.0643
Department 10 +0.0417 +0.0913

E.2.1 Evaluation of Active Bootstrap Learning

Active bootstrap learning helps the model to capture the most consistent knowledge (self-confidence) during
training and overcome overfitting issues. We explore various parameter choices for the L1 department classifier.
β controls the strength of self-confidence. Tgate indicates at which global training step we will turn on this
strategy, otherwise the model uses the traditional binary cross-entropy loss. From results in Tab. 11, we find early
initialization of bootstrap learning, e.g. Tgate = 0 with a weak self-confidence setting, e.g. β = 0.9, offers the
best performance. Hence, we argue that, for product classification, consistent knowledge captured at the very
early stage of training contributes to high accuracy predictions.

Table 11: Influence of bootstrap learning in L1 department classification. Improvement (+) or Downgrade (-).

β 0.9 0.8 0.7 0.6

Tgate = 0 +0.0148 -0.0016 +0.0047 +0.0029
Tgate = 1000 +0.0007 -0.0015 -0.0023 -0.0038
Tgate = 3000 -0.0011 -0.0020 -0.0024 -0.0038

E.2.2 Model Pruning

We prune the original BERT model structures by using shallow embedding features for product classification.
Specifically, we extract E[CLS] of the first 2 layers and then pooling (PruneBert2), first 4 layers (PruneBert4)
and first 6 layers (PruneBert6). We follow the same hyper-parameter settings for all pruned models and test their
prediction power in two L1 product classification tasks, e.g., department classification and leaf node classification
of Department 10. In this experiment, we do not add any noise handling training strategies introduced in Sec. D.
The prediction accuracy is reported in Tab. 12, which indicates a very close performance to the original BERT
when using its first 4 layers. Considering that the original BERT has 110 MM parameters, this experiment
suggests a simple structure of BERT with shallow encoding layers (half of total parameters) while effectively
captures categorical information in our tasks.

E.2.3 Evaluation of Negative Sampling

Defining a suitable P (σ) in Eq. 8 is challenging given the complex confusion patters across departments. In this
preliminary study, we randomly select a portion of unlabeled categories (σ) as soft negative labels. Here, we
explore σ settings from 0 to 60% with step size 10% for department and leaf classifiers respectively. As shown in

35



Table 12: Changes of department/leaf prediction accuracy after model pruning.

Model PruneBERT2 PruneBERT4 PruneBERT6

Department Classifier (L1) -0.012 -0.004 -0.003
Leaf Classifier (Department 10, L1) -0.015 -0.001 -0.003

Parameters 40MM 54MM 67MM

Table 13: Influence of negative sampling in department/leaf classification. Improvement (+) or Downgrade (-).

σ 0.9 0.8 0.7 0.6

Department Classifier (L1) -0.013 -0.019 -0.011 -0.019
Leaf Classifier (Department 10, L1) +0.006 +0.001 +0.010 +0.005

Tab. 13, the department classifier exerts the best performance when negative sampling is turned off, but the leaf
node classifier embraces a large σ value, e.g. σ = 0.7 for leaf classifier of Department 10 in L1 data.

E.2.4 Evaluation of Soft Labels

We search smoothing factor ε in a wide range [1.5, 0.7] to provide a comprehensive understanding of soft labels
for noisy data. We turn on this strategy at the very beginning of the training process since we do not found any
opportunities if we delay it. The result in Tab. 14 shows that making smoothed soft labels, e.g., ε < 1, helps our
model towards high accuracy but it has to be carefully chosen to prevent from over-smoothing, e.g. downgrade if
ε < 0.7. We also find the necessity of more training epochs to allow a complete convergence (20% more training
epochs).

Table 14: Influence of soft label in department/leaf classification. Improvement (+) or Downgrade (-).

ε 1.5 1.2 0.9 0.7

Department Classifier (L1) -0.002 -0.001 +0.015 +0.005
Leaf Classifier (Department 10, L1) -0.010 +0.001 +0.010 -0.002

F Conclusions and Future Work

In this study, we propose a deep hierarchical classification framework for text-based product classification
based on the pre-trained multilingual BERT model. We address typical types of data noises in the product data
source and design several learning strategies to handle them. Experiments on two large datasets demonstrate the
effectiveness of the proposed model. The additional ablation study further provides domain knowledge of optimal
choices of training strategies under different data and task settings.

There are several interesting directions for further investigation. For example, we can improve classification
accuracy by using a pre-trained model designed for languages of the targeting locale. Besides, multimodal
information such as product images can be complementary sources as a feature. In addition, we can further
upgrade the proposed training strategies by adding/replacing them with self-adaptive selection functions, such as
label-semantic-based negative sampling.

References

[1] Reed, Scott, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew Rabinovich.
"Training deep neural networks on noisy labels with bootstrapping." arXiv preprint arXiv:1412.6596 (2014).

36



[2] Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. "Rethinking the
inception architecture for computer vision." In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2818-2826. 2016.

[3] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word
representation." In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pp. 1532-1543. 2014.

[4] Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov. "Enriching word vectors with
subword information." Transactions of the Association for Computational Linguistics 5 (2017): 135-146.

[5] Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018).

[6] Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. "Improving language understanding
by generative pre-training." (2018).

[7] Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. "Language
models are unsupervised multitask learners." OpenAI blog 1, no. 8 (2019): 9.

[8] Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020).

[9] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of deep bidirec-
tional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

[10] Taylor, Wilson L. "“Cloze procedure”: A new tool for measuring readability." Journalism quarterly 30, no.
4 (1953): 415-433.

[11] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv
preprint arXiv:1503.02531 (2015).

[12] Liu, Jingzhou, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. "Deep learning for extreme multi-label
text classification." In Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 115-124. 2017.

[13] Jain, Himanshu, Yashoteja Prabhu, and Manik Varma. "Extreme multi-label loss functions for recommen-
dation, tagging, ranking & other missing label applications." In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 935-944. 2016.

[14] Goldberg, Yoav, and Omer Levy. "word2vec Explained: deriving Mikolov et al.’s negative-sampling
word-embedding method." arXiv preprint arXiv:1402.3722 (2014).

37


