
Bulletin of the Technical Committee on

Data
Engineering
June 2021 Vol. 45 No. 2 IEEE Computer Society

Letters
Letter from the Editor-in-Chief . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Haixun Wang 1
Letter from the Special Issue Editor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Bing Yin and Sreyashi Nag 2

Opinions
Developing Big-Data Application as Queries: an Aggregate-Based approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Carlo Zaniolo, Ariyam Das, Jiaqi Gu, Youfu Li, Mingda Li, Jin Wang 3

Special Issue on Knowledge Management in E-Commerce Applications
Improving Hierarchical Product Classification using Domain-specific Language Modelling . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Alexander Brinkmann, Christian Bizer 14
Deep Hierarchical Product Classification Based on Pre-Trained Multilingual Knowledge . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . Wen Zhang, Yanbin Lu, Bella Dubrov, Zhi Xu, Shang Shang, Emilio Maldonado 26
Graph Neural Networks for Inconsistent Cluster Detection in Incremental Entity Resolution . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Robert Barton, Tal Neiman and Changhe Yuan 38
Optimizing Email Marketing Campaigns in the Airline Industry using Knowledge Graph Embeddings . . . . . . . . .

. . . . . . . Amine Dadoun, Raphaël Troncy, Michael Defoin Platel, Riccardo Petitti and Gerardo Ayala Solano 51
Interpretable Attribute-based Action-aware Bandits for Within-Session Personalization in E-commerce . . . . . . . .

. . . . . . . Xu Liu, Congzhe Su, Amey Barapatre, Xiaoting Zhao, Diane Hu, Chu-Cheng Hsieh and Jingrui He 65
Using Product Meta Information for Bias Removal in E-Commerce Grid Search . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . Apoorva Balyan, Atul Singh, Praveen Suram, Deepak Arora and Varun Srivastava 81

2021 IEEE TCDE Awards
Letter from the Impact Award Winner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Divesh Srivastava 92
Letter from the Rising Star Award Winner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arun Kumar 94

Conference and Journal Notices
TCDE Membership Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



Editorial Board

Editor-in-Chief
Haixun Wang
Instacart
50 Beale Suite
San Francisco, CA, 94107
haixun.wang@instacart.com

Associate Editors

Bing Yin, Sreyashi Nag
Amazon.com
Palo Alto
California, USA

Sebastian Schelter
University of Amsterdam
1012 WX Amsterdam, Netherlands

Shimei Pan, James Foulds
Information Systems Department
UMBC
Baltimore, MD 21250

Jun Yang
Department of Computer Sciences
Duke University
Durham, NC 27708

Distribution
Brookes Little
IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
eblittle@computer.org

The TC on Data Engineering
Membership in the TC on Data Engineering is open to

all current members of the IEEE Computer Society who
are interested in database systems. The TCDE web page is
http://tab.computer.org/tcde/index.html.

The Data Engineering Bulletin
The Bulletin of the Technical Committee on Data Engi-

neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be sent
to the Editor-in-Chief. Papers for each issue are solicited
by and should be sent to the Associate Editor responsible
for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

The Data Engineering Bulletin web site is at

http://tab.computer.org/tcde/bull_about.html.

TCDE Executive Committee

Chair
Erich J. Neuhold
University of Vienna

Executive Vice-Chair
Karl Aberer
EPFL

Executive Vice-Chair
Thomas Risse
Goethe University Frankfurt

Vice Chair
Malu Castellanos
Teradata Aster

Vice Chair
Xiaofang Zhou
The University of Queensland

Editor-in-Chief of Data Engineering Bulletin
Haixun Wang
Instacart

Awards Program Coordinator
Amr El Abbadi
University of California, Santa Barbara

Chair Awards Committee
Johannes Gehrke
Microsoft Research

Membership Promotion
Guoliang Li
Tsinghua University

TCDE Archives
Wookey Lee
INHA University

Advisor
Masaru Kitsuregawa
The University of Tokyo

Advisor
Kyu-Young Whang
KAIST

SIGMOD and VLDB Endowment Liaison
Ihab Ilyas
University of Waterloo

i



Letter from the Editor-in-Chief

The June issue of the Data Engineering Bulletin features an opinion piece by Carlo Zaniolo et al, a collection of
papers on the topic of knowledge management for e-commerce, and letters from the 2021 IEEE TCDE Award
winners.

It feels nostalgic to read the opinion piece written by Carlo Zaniolo et al on the topic of stable semantics and
aggregates. It continues to amaze me that aggregates combined with recursion can be so powerful and at the same
time so elegant. The immediate contribution of the paper is to unify the semantics of programs with different
aggregates, and thus significantly simplify the verification of their stable model semantics. But the paper is really
a culmination of a long history of research focusing on how to express very powerful algorithms using declarative
programs and the root of the research dates back to a few seminal works by Zaniolo decades ago, including the
work on the Logic Database Language (LDL).

The subject of this special issue is knowledge management for e-commerce, curated by associate editors Bing
Yin and Sreyashi Nag, who work on e-commerce search at Amazon. Despite e-commerce’s huge growth in the
last decades and the massive technology investment behind online shopping, the field is still in its early stage
when it comes to creating an amazing customer experience. The challenge is that a great customer experience
must be founded on a clear understanding of customers’ needs and the products that can potentially fulfill the
needs. It has become clear that knowledge management – from customer profiling to product knowledge graph
curation – lies at the core of this effort.

We would like to congratulate Divesh Srivastava and Arun Kumar for winning the 2021 IEEE TCDE Award.
Srivastava is the recipient of the Impact Award for his contributions to many areas of data management in the
last three decades, including deductive databases, streaming algorithms, and data integration, etc. Kumar is the
recipient of the Rising Star Award for his vision and pioneering work on DB+ML systems. In their letters, they
shared their unique perspectives on the past and the future of data management.

Haixun Wang
Instacart

1



Letter from the Special Issue Editor

The global e-Commerce market size is valued at USD 9.09 trillion with an annual growth rate of 14.7 percent.
The 2020 pandemic dramatically changed people’s lifestyles. E-Commerce will further accelerate its growth and
penetration into people’s daily lives. E-Commerce websites and apps are among the top visits of everyone’s daily
routine. Customers want E-Commerce websites and apps as their personal assistant that finds the exact products
they are searching for, provides recommendations when they are not sure which products to buy, and answers
questions about product details. E-Commerce presents a diverse set of data mining challenges such as product
attributes parsing, learning to rank product lists, product clustering, and classification, personalization.

This special issue selects six example works in data mining for E-Commerce from industry companies such
as Walmart, Etsy, and Amazon and academia institutes. In recent years, Deep Learning has become the new
norm for AI and Machine Learning. We certainly see the trend in the submissions that many old E-Commerce
problems benefit from the advanced deep learning algorithms. We selected a few papers in this issue to showcase
the applications of Deep Learning in E-Commerce applications. The first paper presents academic research to
improve hierarchical product classification with transformer models. Transformer models such as BERT are
state of the art for many NLP tasks. However, E-Commerce often has its unique vocabulary and domain-specific
texts. Fine-tuning and self-supervised continuous pre-training with domain-specific data is the trend to apply
the BERT style models in E-Commerce. The authors demonstrated the effectiveness of this approach in the
Common Crawl data set. The second paper works on a similar problem, but it is from a real-world application by
the Amazon team. The Amazon team demonstrated the effectiveness of domain-specific fine-tuning of BERT
models and shared valuable tips and tricks to get it working in a real production such as negative sampling, soft
label with temperature scaling, bootstrap learning, and leveraging in-domain knowledge augmentation. The third
paper is also from an Amazon product knowledge team. It presents the application of graph neural networks
in parsing and understanding product descriptions. E-Commerce data comes as a big heterogeneous graph of
queries, customers, sellers, products, product entities (brand, franchise, etc.) and thus is an ideal place for graph
neural networks to shine.

E-Commerce has the advantage over brick-and-mortar stores in their ability to personalize the experience
based on user profile. The fourth paper is an example of such personalization work in airline ticket marketing. The
interesting part is their approach that leverages knowledge graph embeddings rather than rule-based knowledge
engineering to better target the right audience. The fifth paper presents the work in Etsy’s personalized product
ranking. As the buyer continues on their shopping mission and interacts with different products in an online
shop, their model learns which attributes the buyer likes and dislikes, forming an interpretable user preference
profile and improving re-ranking performance over time within the same session. E-Commerce should make
a generational lift from a simple Information Retrieval engine to a more proactive mission-aware shopping
assistant. Etsy’s work demonstrated encouraging user experience improvements as a result of mission-aware
personalization.

The last paper in this special issue is from Walmart. The authors re-visited an old problem in learning to rank
for web search, the positional bias in the displayed result list. E-Commerce websites often have a more diverse UI
layout, such as a grid view instead of a simple list view in web search. The author addressed the inefficiency of
applying the classic position bias removal method to E-Commerce. The paper is interesting since it demonstrates
some unique challenges in E-Commerce than the general web search.

Working on this issue has been a privilege for me, and we would like to thank the authors for their contribu-
tions.

Bing Yin and Sreyashi Nag
Amazon.com

2



Developing Big-Data Application as Queries: an Aggregate-Based approach

Carlo Zaniolo, Ariyam Das, Jiaqi Gu, Youfu Li, Mingda Li, Jin Wang
University of California at Los Angeles

Abstract

Recent advances on query languages (QLs) and DBMS suggest that their traditional role in application
development can and should be extended dramatically in many big-data application areas, including
graph, machine learning and data mining applications. This is made possible by the superior expressive
power that database aggregates bring to recursive queries and the realization of their powerful non-
monotonic semantics via efficient and scalable fixpoint-base operational semantics. Thus, in this paper,
we discuss how classical algorithms can be expressed concisely using queries with aggregates in recursion
that have a rigorous declarative semantics. Then we discuss what modifications, if any, are needed on
such programs to have an efficient and scalable fixpoint-based operational semantics, whereby we can
also identify queries that are conducive to bulk-synchronous and stale-synchronous parallelism.

1 Introduction

Relational DBMS and their logic-based QLs made possible for programmers to develop applications without
having to navigate database storage structures via statements written in a procedural language. Many initial
skeptics notwithstanding, relational DBMS proved quite effective in terms of usability, performance and scalability.
In fact their success led to and was reinforced by significant extensions, including the introduction of very powerful
aggregate functions, such as OLAP functions that enable direct support for descriptive analytics by SQL queries.
Another important extension was the SQL support for recursive queries which allows simple algorithms, such as
transitive closure, to be expressed directly as queries. However, the quantum leap in expressive power achievable
by combining recursive queries with aggregates was never realized because of SQL stratification requirement,
which specifies that non-monotonic constructs can be applied to the results of recursive definitions but cannot be
used in the recursive definitions. This requirement was then enforced to avoid the major semantic problems faced
by recursive reasoning via non-monotonic constructs. However, significant progress was made since then by
researchers focusing on the use of aggregates in AI, logic programming and Datalog: for instance, the concept of
Stable Models has gained wide acceptance as the formal basis for declarative semantics in the logic programming
arena [5] [6]. So far, however, these advances did not have much impact upon the database field because of two
main issues. The first issue is that the non-constructive definition of Stable Model Semantics (SMS) for programs
with negation is making difficult for programmers to show that their queries with aggregates satisfy SMS, and the
second issue is that establishing the SMS for a program does not guarantee its efficient constructive realization,
and significant re-writing of the original program is often needed to implement it via fixpoint computations and
the recursive query implementation techniques of SQL DBMS, as well as Datalog systems.

In this paper, we describe an approach that addresses these two issues and proved successful in a number
of advanced applications [1, 8, 9, 11–13, 15]. We will start with an intuitive treatment of the declarative SMS of
recursive queries with extrema, and show that queries with count, sum and average can be reduced to queries with
max. Then, we provide simple criteria to detect when the SMS of such queries can be turned directly into an
efficient and scalable fixpoint computation and when these instead require significant rewriting by the techniques
described in the paper. While in our examples we use Datalog programs, we will show how these can be expressed
using SQL queries for which the same conclusions apply. Throughout the paper, we will refer to queries and
programs as synonyms.

3



2 Stable Model Semantics and Fixpoint Computation for Programs with Extrema

A simple application of extrema in recursive queries consists in finding the min or max distance from a given
initial node a of all nodes in the graph where the edges have positive length. The following program, computing
max distances, exemplifies key semantic issues.

Example 1 (A stratified program to compute the max distance from a ):
r1 : dist(a, 0).
r2 : dist(Y, Dy)← dist(X, Dx), arc(X, Y, Dxy), Dy=Dx+Dxy.
r3 : mxdist(Y, max〈Dy〉)← dist(Y, Dy).

Assume for instance that we have the following fact base that describes an acyclic directed graph:

arc(a, b, 10) arc(a, c, 20) arc(b, c, 18) arc(c, d, 12)

Then, the semi-naive fixpoint computation on the first two rules derives the following new atoms at each step
(whereas the naive fixpoint includes the atoms produced at previous steps along with those produced at this step):

Step 1 Step 2 Step3 Step 4
dist(a, 0) dist(b, 10), dist(c, 20) dist(c, 28), dist(d, 32) dist(d, 40)

With the computation on the first two rules having reached fixpoint, rule r3 is applied next, whereby Step 5
produces mxdist(a, 0), mxdist(b, 10), mxdist(c, 28), and mxdist(d, 40), while mxdist(c, 20) and
mdxist(d, 32) are not derived since they are dominated by the previous atoms1 and thus they are not max-
imal.

Our stratified derivation can be optimized by pushing the max constraint into recursion, while keeping the
original stratification whereby the fixpoint computation of dist by rules r1 and r2 must be completed before r3
can be used to derive mxdist.

Example 2 (Using max in recursion to compute the max distance from a ):
r1 : dist(a, 0).
r2 : dist(Y, max〈Dy〉)← dist(X, Dx), arc(X, Y, Dxy), Dy=Dx+Dxy.
r3 : mxdist(Y, Dy)← dist(Y, Dy).

The semi-naive fixpoint computation of our rules r1 and r2 so revised produces atoms that are dominated by
other atoms produced at later steps. These non-maximal atoms are called provisional max atoms, and they are
depicted as cancelled in the picture below, since they will be lost at later steps.

Step 1 Step 2 Step3 Step 4
dist(a, 0) dist(b, 10), �����

dist(c, 20) dist(c, 28), ������
dist(d, 32) dist(d, 40)

Max (min) atoms that are not provisional are called final max (min) atoms. Then, with the fixpoint computation
for dist completed Step 4, r3 at Step 5 simply renames the final max atoms so obtained producing mxdist(a, 0),
mxdist(b, 10), mxdist(c, 28) and mxdist(d, 40).

The minimal model of a monotonic program can be derived by an eager computation that, at each step,
derives all the possible consequences of the current interpretation. A derivation that at each step only derives a
non-empty subset of those consequences will be called judicious. Then, we have that a program with extrema has
M as its stable model iff M can be derived via a judicious derivation that contains no provisional atom [16].

For instance, the stratified derivation shown for Example 1 is a judicious one since the fixpoint computation
of dist by rules r1 and r2 produces no provisional atom, and r3 then selects from the atoms so generated the

1We say that atom(X1, Y1) dominates atom(X2, Y2) when X1 = X2 and Y1 > Y2.

4



final max mxdist atoms. Indeed, the iterated fixpoint computation of every max-stratified program defines a
judicious computation that produces its stable model.

On the other hand, although the eager computation in Example 2 contains provisional atoms, it still computes
the stable model of our program. Indeed, after all those provisional atoms are cancelled during the fixpoint
computation, we have a valid judicious derivation for the stable model of our program. Programs that have this
property will be said to be resilient. The program in Example 2 is resilient.

The requirement that programs must have SMS is now widely accepted in the field because otherwise
programs might not have sound logic-based semantics, as illustrated by the following example. Say, for instance,
that users are only interested in nodes whose distance from a along the longest path is < 40, and they add the con-
dition Dy<40 to r3 in Example 2. The modified program is still stratified and returns dist(a, 0), dist(b, 10),
dist(c, 28) dist(d, 40) and mxdist(a, 0), mxdist(b, 10), mxdist(c, 28), which defines its stable model.

However, if Dy<40 is added to r2, instead of r3, then the eager computation generates the following derivation:

Example 3 (Eager computation for Ecample 2 after dist(c, 20) is added to r2):

Step 1 Step 2 Step 3
dist(a, 0) dist(b, 10), �����

dist(c, 20) dist(c, 28), dist(d, 32)

Then in Step 4, r3 derives from these: mxdist(a, 0), mxdist(b, 10), mxdist(c, 28), mxdist(d, 32).
The logical problem with this outcome is that the atom dist(c, 20) is no longer in the result; thus, there is no
justification for dist(d, 32) and mxdist(d, 32) to be in the answer.

Therefore, for Datalog programs with aggregates to produce logically sound results, the programs must have
SMS. We will first discuss how to achieve this objective for programs with max and min, and then for programs
with count, sum and average whose formal semantics is actually defined using max.

Pre-Mappable Extrema and Stable Model Semantics: In our previous examples, we have seen that an eager
fixpoint computation produces a stable model for some queries but not for others. Thus programmers need
simple criteria to guarantee that their programs belong to the first group (i.e., they are resilient) and the notion of
pre-mappable (PreM ) constraints [17] is introduced next to satisfy this requirement.

The mapping defined by a set of rules in a program is called their Immediate Consequence Operator (ICO) and
it is denoted by T . Then, the constraint γ is said to be pre-mappable (PreM ) to T when, for every interpretation
I of P , we have that: γ(T (I)) = γ(T (γ(I))).

For instance, in rule r2 of Example 1, to find the maximal Dy for a given Y, we only need to consider the
max Dx value for the X value that, via arc(X, Y, Dxy), produces that Y. Thus, in Example 2, the constraint
is_max(Y, Dy) applied to the head of r2 can pre-applied to dist(X, Dx) in the body of the rule, and from there to
the rules generating dist(X, Dx) in the previous step of the fixpoint computation without changing the results of
the fixpoint computation. This PreM property allows us to transform Example 1 into Example 2 with assurance
that the same mxdist results will be obtained. More recently, it was proved [16] that PreM also guarantees
that recursive programs with extrema satisfying PreM have a SMS that can be computed using the fixpoint
techniques now used in the efficient implementation of recursive queries by SQL and Datalog systems. General
conditions for PreM to hold is a given program were discussed in [18].

The PreM property provides a very useful sufficient condition for recursive queries with aggregates to have a
declarative SMS that can be computed quite efficiently using the techniques currently used for monotonic queries.
Nevertheless, many queries have SMS although they do not satisfy PreM. For instance, consider Example 2 with
Dy<40 added to r2. Then, instead of using an eager derivation we can omit deriving dist(c, 20) at Step 2, and
derive dist(c, 28) at Step 3: this completes a judicious derivation free of provisional atoms that thus delivers
its stable model. In this revised program, the PreM property is lost and and eager fixpoint derivation does not
produce its stable model, whereby other techniques, such as those discussed in the next sections are needed to
compute it.

5



Programs with MIN. The formal properties of programs with min can be derived by duality from those of
programs with max and imply that many min programs of practical interest have SMS. For instance, if we revise
our examples to use min instead of max, we find that r2 still satisfies PreM after the addition of Dx<40, and
therefore an eager fixpoint computation can be used to compute its stable model. Moreover, the presence of cycles
of positive length in graph(__ , __ ) does not compromise the SMS of our min programs, since the second time a
node Y in the cycle is visited during derivation, its larger Dy value is discarded, whereas in max queries larger
values turn previous values into provisional ones. A wide range of classical graph algorithms can be expressed
concisely using aggregates in recursive rules that have the PreM property and are thus conducive to efficient and
scalable implementations [8, 11, 13, 15]. In fact, along with other optimization techniques, the semi-naive fixpoint
can be extended to programs with extrema, with the simple provision that the new atoms generated at each step
will replace any provisional atom they dominate.

3 Semantics of Programs Using the Continuous Count and Final Count Aggregates

The OLAP functions of SQL introduced the continuous count aggregate which returns all positive integers up to
the cardinality of the set. Continuous count will be denoted by mcnt, since it is monotonic in the lattice of set
containment, i.e. if S1 ⊆ S2 then mcnt(S1) ⊆ mcnt(S2). The final count fcnt that computes the cardinality of a
set can be expressed as the max of the monotonic count on the set. For instance, with bintbl(__ , __ ) denoting
an arbitrary binary table the following rule computes the cardinality of the set of distinct Y-values associated with
a group-by value X:

r : mcagr(X, mcnt〈Y〉)← bintbl(X, Y). (1)

The semantics of this rule is as follows:

Definition 1 (Defining the semantics of continuous monotonic count mcnt ):
ra : mcnt(X, 0)← bintbl(X, __ ).
rb : mcnt(X, C1)← mcnt(X, C), bintbl(X, Y), onenext(Y, (X), C), C1 = C + 1.
rc : mcagr(X, max〈C〉)← mcnt(X, C).

The predicate onenext(Y, (X), C) guarantees that, for each group-by value X , each value Y is counted
exactly once. In Datalog this can be expressed by replacing onenext(Y, (X), C) in rb with the pair of goals
choice((X, C), Y), choice((X, Y), C), since programs that use the choice construct have SMS [7]. In the actual
implementations, the use of the get_next construct, that visits the tuples in bintb exactly once, guarantees that
this constraint is never violated. Also observe that the zero count assigned by ra is always eliminated by rc. Thus
the semantics of the final count that compute the cardinality of the set can now be defined using mcnt and max.
For example, the semantics of the following rule:

fcagr(X, fcnt〈Y〉)← bintbl(X, Y).

is defined by the following two rules:

(a) : magr(X, mcnt〈Y〉)← bintbl(X, Y).
(b) : fcagr(X, max〈C〉)← magr(X, C).

A Bill of Materials (BoM) Example. Here, basic(Part, Cost) is the price charged by the supplier of a part.

Example 4 (basic describes the cost of basic parts, and arc defines the part-subpart graph):
basic(a, 6.2). basic(b, 9.4). basic(c, 13.2). basic(d, 4.8). basic(e, 4.8).
arc(a, f). arc(b, f). arc(c, f). arc(c, g). arc(d, g). arc(e, g). arc(f, g).

Assume now that we introduce the (somewhat artificial) notion of complex assemblies as those which are
assembled from three or more components which are either basic parts or complex subassemblies. Then the
following query returns the complex assemblies in our BoM.

6



Example 5 (Find the assemblies and the total count of basic parts they contain when this is ≥ 3):

ρ1 : cassb(To, 3)← basic(To, __ ), C = 3.
ρ2 : cardc(To, fcnt〈Frm〉)← cassb(Frm, __ ), arc(Frm, To).
ρ3 : cassb(To, Totcnt)← cardc(To, Totcnt), Totcnt ≥ 3.

The semantics of this program is defined by the following program obtained by expanding ρ2 into rules ρ2a and
ρ2b that express the computation of fcnt aggregate via mcnt and max:

Example 6 (Defining the semantics of fcnt in Example 5 as the max of mcnt. ):

ρ1 : cassb(To, 2000)← basic(To, __ ).
ρ2a : cardc(To, mcnt〈Frm〉)← cassb(Frm, __ ), arc(Frm, To).
ρ2b : mxcard(To, max〈C〉)← cardc(To, C).
ρ3 : cassb(To, Totcnt)← mxcard(To, Totcnt), Totcnt ≥ 3.

The max aggregate is the only non-monotonic construct in this program. Therefore, to achieve SMS, we must
find a judicious derivation that does not produce any provisional max. One such derivation could e.g. use ρ1 and
ρ2a to produce cardc(f, 3) and cardc(g, 3). At this point, our judicious derivation produces mxcard(f, 3) but
not mxcard(g, 3). Then, from mxcard(f, 3) we derive cassb(f, 3). From this, we derive cardc(g, 4), which
yields mxcard(g, 4) and cassb(g, 4). Since this derivation has produced no provisional max, SMS is guaranteed.
On the other hand, an eager computation woud have used cardc(g, 3) to produce mxcard(g, 3) before deriving
mxcard(g, 4) and cassb(g, 4), which remove the provisional mxcard(g, 3) but not cassb(g, 3). Thus we cannot
use the eager fixpoint technology of our current systems to compute the stable model for this program. As we
look for a solution, we see that there is a simple one that consists in revising ρ3 into the following rule:

ρ′3 : cassb(To, max〈Totcnt〉)← mxcard(To, Totcnt), Totcnt ≥ 3.

The max-enhanced version of the program so obtained has the same SMS as the original program and its
eager fixpoint computation produces its stable model, thus we will say that our program is quasi-resilient. While
many programs of interest are quasi resilient, others are not, and no max enhancement will deliver their SMS.
For instance, say that we add the additional goal Totcnt<4; then, the stable model for this program contains
cassb(f, 3), but it does neither contains cassb(g, 3) nor cassb(g, 4). However the fixpoint of its max-enhanced
version now contains cassb(g, 3). Thus the max-enhancement here neither preserves the original SMS nor it
makes it resilient. To address this situation, users must be provided with (i) criteria to recognize programs that
can be max-enhanced into equivalent programs that are resilient, and (ii) more general implementation methods
for programs that have a SMS but do not belong to group (i). The notion of Reverse Premappability (RPreM )
provides a simple answer to (i). With T denoting the the ICO of one or more rule, we will say that R PreM holds
for T if γ(T (I)) = T (γ(I)) for every I . Since PreM holds for max in rule ρ3, max can be introduced into
this rule without changing the result; indeed, it only enforces the max constraint on atoms generated from rule
ρ2b, i.e. atoms that already satisfy the max constraint. However if we instead use rule ρ′3, then a max atom,
such as mxcard(g, 4) obtained from ρ2b, will be filtered out by the < 4 condition, whereby ρ′3 will now return
mxcard(g, 3) as max: a clear violation of SMS. Therefore, to realize the SMS for the program with the <4
condition, we need different solutions, such as the one that relies on the pre-counting technique discussed in the
next section.

Dealing with Duplicates. Duplicates are immaterial for extrema because of their idempotence property, but
not for the other aggregates a special notation is needed to specify that duplicates are not excluded from the
computation. Say for instance that we have a ternary table terntbl(A1, A2, A3) and for each value of A1 we

7



would like to count all occurrences of A2, where every occurrences of A2 associated with different A3 value
contributes to the count. Then, instead of the following rule,

dbagr(X, fcnt〈[Y, Z]〉)← terntbl(X, Y, Z). (2)

we can use the rule (3) below with the special duplicate notation that will also be used for sum and average:

dbagr(X, fcnt〈Y, Z〉)← terntbl(X, Y, Z). (3)

4 Queries Using Sum and Average.

The semantics of the sum of the elements in a set can be specified by adding up its elements while counting them
so that the sum value associated with the final count can be returned.2

Consider for instance the following example that for each assembly derives the total of the costs of the basic
parts it uses, by adding up those of its subparts. The notation sum〈Cost, Frm〉) denote that duplicate Cost from
different subparts Frm all contribute to the sum.

Example 7 (For each assembly, find the total cost of the basic parts it uses):

ρ1 : pcst(To, Cost)← basic(To, Cost).
ρ2 : ragr(To, sum〈Cost, Frm〉)← pcst(Frm, Cost), arc(Frm, To).
ρ3 : pcst(To, Cost)← ragr(To, Cost).

Now, the computation of sum〈Cost, Frm〉 requires (a) an initial step where count and sum are initialized to zero,
(b) an iterative step that adds one to the current count and adds the new Cost to the current sum, and (c) a final
max step that selects the final count, which is used to return the final sum value associated with it.

Example 8 (The max-based formal semantics for Example 7):

ρ1 : pcst(To, Cst)← basic(To, Cst).
ρ2a : rsum(To, C, S)← pcst(Frm, __ ), arc(Frm, To), C = 0, S = 0.
ρ2b : rsum(To, C1, S1)← pcst(Frm, Cst), arc(Frm, To), rsum(To, C, S),

onenext(Cst, Frm, (To), C), C1=C+1, S1=S + Cst.
ρ2c : ragr(To, max〈C〉)← rsum(To, C, __ ).
ρ3 : pcst(To, Cst)← ragr(To, Fcnt), rsum(To, Fcnt, Cst).

To define the semantics of average, rule ρ3 above will be modified to return Cst/Fcnt instead of Cst.
As we now investigate the declarative and operational semantics of this example, we see that we can assume

that no cycle exists in the BoM part-subpart graph, no provisional max value is ever generated by ρ2c and SMS
is thus guaranteed. However, when it comes to operational semantics, the situation of sum is quite different
from that of count; this can be easily seen by comparing rule ρ2a in Example 6, where successive count values
are ignored by cassb(From, __ ), against rule ρ2a in Example 8 in which successive values are cumulatively
added incorrectly to the sum. Thus, except for special cases, such as that of perfectly balanced trees, an eager
computation will not deliver the correct sum value. To realize SMS, we must therefore revise the original program
to make sure that, for each node, the Cst contributions of its predecessors are added all at once. One technique to
achieve that is the pre-counting approach used in [12] which will compute the sum at a node only after the sum
is computed at each of its immediate predecessors. To implement this technique, the program in Example 7 is
revised into that in Example 9, below, by the addition of rule ρ̄0 that precomputes the in-degree of each node.
Then, ρ2 is modified into ρ̄2 to keep count of the number of a node’s immediate predecessors that have so far
contributed to its sum. Thus, the correct final sum value used in ρ̄3 is the one obtained when count is equal to
the in-degree of the node. In passing, observe that ρ̄2 also illustrates how multiple aggregates sharing the same
group-by value can be specified in the head of a rule.

2Using the max of the continuous count on the set elements does not identify their sum when negative numbers are present.

8



Example 9 (Cost of nodes by pre-computing the number of their incoming arcs):

ρ̄0 : indgr(To, fcnt〈Frm〉)← arc(Frm, To).
ρ̄1 : pcst(To, Cost)← basic(To, Cost).
ρ̄2 : ragr(To, sum〈Cost, Frm〉, fcnt〈Frm〉)← pcst(Frm, Cost), arc(Frm, To).
ρ̄3 : pcst(To, Cost)← ragr(To, Cost, NNods), indgr(To, NNods).

Thus we have now a program where the eager FPC realizes its SMS, returning the same pcst(To, Cost)
atoms as the original program. Pre-counting is also applicable to programs with count and average and represents
a simple technique to derive an efficient and scalable fixpoint computation for programs that have a declarative
SMS. However, in the simple form we have discussed, pre-counting relies on the assumption that all the nodes
are reachable form basic parts. When that is not the case, more complex programs could be used to compute the
actual count of immediate predecessors of a node reachable form the basic parts. Alternatively, the Group-by
Layering technique described in [16] can be used to avoid the generation of provisional values, by delaying the
derivation of each group-by node until a derivation step where the last of its predecessors is computed. In acyclic
graphs, this step could be determined using topological sorting, but this requires a complex Datalog program and
implies the serialization of nodes that could be computed in parallel. The technique described in [16] instead
computes for each node its maximum distance from basic nodes and is amenable to parallelism.

5 Parallelism and Layered Computation.

By applying pre-counting on Example 7, we obtained Example 9 where the computation a new node is started
only after it is completed at its predecessors. In many applications of interest, this kind of revision is not needed
since the completion conditions that enable the fixpoint computation to realize SMS follow directly from the
structure of the program and the parallelization strategy used by the system. Among such applications, we find
those using algorithms such as Markov-Chains, Lloyd’s Clustering and Batch Gradient Descent.

Markov Chains. This algorithm is interesting because of its similarity to the Page Rank algorithm that led to
Map-Reduce. Thus, in Example 10, we assume a database of facts mov(Frm, To, Perc), where Perc denotes the
fraction of population that every year relocates from city Frm to city To. For each city, there is also a non-zero arc
from the city back to itself showing the fraction of people who remain in the same city. Therefore, the sum of
Perc for the arcs leaving a city (i.e., a node) is equal to one.

Now, assuming that initially every city has a population of 100,000 people we would like to determine how
the population evolves over the years. Also to assure termination, we stop the computation after 999 steps (i.e., a
number of steps that is normally sufficient for the computation to either converge to a final state or reveal that no
convergence should be expected). Then, we can use the following program, where sum〈In, Frm〉 adds up the In
contributions from all Frm cities, without discarding duplicate In values coming from different Frm cities:

Example 10 (The Markov Chains algorithm):

ρ1 : markv(1, Cit, Pop)← mov(Cit, To, __ ), Pop = 100000.
ρ2 : next(J, To, sum〈In, Frm〉)← markv(J, Frm, Pop), mov(Frm, To, Perc), In = Pop×Perc.
ρ3 : markv(J1, Cit, Pop)← next(J, Cit, Pop), J ≤ 999, J1 = J + 1.

Observe that we have here a program that is locally stratified by the value of the first argument in markv, whereby
SMS hold. The same conclusion follows by representing as a directed arc the dependency from the group-by
arguments markv(J, Frm, __ ) in ρ2 to markv(J1, Cit, __ ) in the head of ρ3. Since J1 = J+1 the graph so
established is acyclic, and this provides yet another proof that declarative SMS holds.

Now, for an operational semantics that correctly realizes the SMS of this program, we can observe that the
number of incoming arcs representing the population that migrate into a city each year remains the same, and thus

9



we can use the pre-counting approach previously described. Then, the head ρ2 will be extended with an additional
argument that counts the number of contributions added so far. Them, ρ3 ignores the sum values produced by
ρ2, until the count argument equals the pre-counted in-degree of the node. The stable model for the program
generated by this pre-computing transformation is then computed by the eager derivation that is conducive to
scalability via stale-synchronous parallelism [4, 16].

However, other solutions are available and actually preferable in Datalog systems that support more advanced
operational semantics. Indeed some Datalog compilers [2] will recognize the explicit local stratification that holds
for the group-by argument in our rules, and arrange for an evaluation where all computations at level J1=J+1

are performed after the Jth-level ones are completed. In these Datalog systems, the stable model for Example
10 can computed with no revision required in the program. The same conclusion holds for systems designed to
support bulk-synchronous parallelism (BSP) in which a new distribution-computation cycle at level J+1 is not
started until the completion of the previous cycle, in which aggregates at group-by level J were evaluated. This
approach achieves high parallel performance [9].

Applications Requiring a Combination of Different Aggregates. Queries that combine multiple aggregates
can express concisely a broad spectrum of advanced algorithms that support graph, data mining and ML
applications with superior performance and scalability [3,8–15]. For instance, we next discuss Lloyd’s clustering
algorithm that combines sum, average and min aggregates.

K-means Clustering: We are given a large set of D-dimensional points. Each point is described by a unique
Pno and its coordinate values in each of the D dimensions, i.e., by D facts conforming to the following
template: point(Pno, Dim, Value). We also have a small set of centroids, for which we generate an initial
assignment center(0, Cno, Dim, Val) by the predicate init(Cno, Dim, Val) defined using any of the simple
techniques described in the literature. Then, Lloyd’s clustering algorithm can be expressed concisely as shown in
Example 11.

Example 11 (Clustering a lá Lloyd.):

r0 : center(J, Cno, Dim, Val)← init(Cno, Dim, Val), J = 0.
r1 : cdist(J1, Pno, Cno, sum〈SqD〉)← point(Pno, Dim, Val), center(J0, Cno, Dim, CVal).

SqD=(Val− Cval) ∗ (Val−Cval), J1 = J0 + 1.
r2 : mdist(J2, Pno, min〈[DSm, Cno]〉)← cdist(J1, Pno, Cno, DSm), J2 = J1 + 1.
r3 : center(J0, Cno, Dim, avg〈Val, Pno〉)← mdist(J2, Pno, [__ , Cno]), points(Pno, Dim, Val),

J2 ≤ 999, J0 = J2 + 1.

At each step J Example 11 computes the quadratic distance of each point from each centroid, so that r2 can select
for each point the centroid closest to it. Then, for each centroid, r3 recomputes its position by averaging the
coordinates of the points that have this as their nearest centroid3:

This program is structurally similar to the Markov Chains program of Example 10, and the two programs have
similar properties in terms of declarative and operational semantics. In fact, the first argument in the heads of
their rules define an explicit stratification that implies SMS. Moreover, since the cardinality of Pno and Cno sets
remain constant throughout the computation, we can use the pre-counting approach to construct the stable model
by an eager fixpoint computation that is conducive to SSP scalability. However, with bulk-synchronous parallelish
(BSP) the SMS of this program can be realized quite naturally and efficiently by simply synchronizing the BSP
steps with the first arguments in the head of the rule, i.e., with J0, J1, J2. This guarantees that the declarative
and operational semantics of our programs are completely aligned and conducive to efficient implementations

3Thus min assume a total ordering where [X1, Y1] ≤ [X2, Y2] holds if X1 < X2 or if X1 = X2 and Y1 ≤ Y2. This ordering is easily
extended to lists of arbitrary length.

10



that are scalable via BSP. In fact, Lloyd’s algorithm is among the several data mining algorithms implemented
on Apache Spark using Datalog with recursive aggregates. The performance and scalability of these algorithms
have undergone extensive experimentation, showing that they perform as well or better than the same algorithms
expressed by lengthy4 procedural-language programs [1, 8, 9, 11–13, 15].

Expressing ML Applications The problem of supporting efficient and scalable ML applications concisely
expressed as Datalog queries with aggregates was studied in [12]. For instance, to support gradient descend, we
can use a verticalized representation vtrain(Id, C, V, Y) for the training set, where Id denotes the id of a training
instance, Y denotes its label, C and V denote the dimension and the value along that dimension, respectively. Then
a Batch Gradient Descent application can be expressed by the program in Example 12 where

– model(J, C, P) is the training model in verticalized form, where J is the iteration counter C is a dimension in
the model, and P is the parameter value for that dimension.

– gradient(J, C, D) contains the gradient result G at iteration J for the Cth dimension.
– predict(J, Id, YP) represents the intermediate prediction results, where Id denotes the id of the training

instance, and YP its the predicted y value at iteration J.

Firstly, the model is initialized according to some predefined mechanisms in r0 (Here we use 0.01). Then the
function f is used to make predictions on all training instances according to the model obtained in the previous
iteration in r1. Next the gradient is computed by the function g (derived according to the loss function L) using
the predicted results in r2. Finally, in r3 the model is updated w.r.t the gradients (and optional regularization Ω).
Here, lr denotes the learning rate and n is the number of training instances. Then, the training process moves on
to the next iteration.

Example 12 ( Batch Gradient Descent (BGD)):

r0 : model(J, C, P)← vtrain(_, C, _, _), J = 0, P = 0.01.
r1 : predict(J, Id, sum〈Y0〉)← vtrain(Id, C, V, _), model(J, C, P), Y0 = f(V, P), J1=J+1.
r2 : gradient(J2, C, sum〈G0〉)← vtrain(Id, C, V, Y), predict(J1, Id, YP), G0=g(YP, Y, V), J2=J1+1.
r3 : model(J, C, NP)← model(J, C, P), gradient(J, C, G),

NP = P− lr ∗ (G/n + Ω(P)), J=J3+1.

As in previous two examples, the J argument in the group-by establishes a structure that guarantees SMS and
superior scalability via BSP. The same is true for a wide spectrum of ML algorithms that can be expressed with
different functions f , g, Ω in above program. In particular, the Mini-batch Gradient Descent (MGD) require only
minor changes to above queries [12].

6 Conclusion
The usage of aggregates in recursive Datalog programs entails a concise expression for very powerful algorithms
that combine a formal declarative SMS with a powerful and scalable fixpoint-based operational semantics. This
paper has unified the semantics of programs with different aggregates by turning them all into equivalent programs
with extrema, and thus significantly simplified the verification of their SMS by reducing it to the exclusion of
provisional extrema from the derivation. Using the PreM property we identified a large class of resilient or
quasi-resilient programs for which the current implementation techniques used in Datalog provide an efficient
and SSP-scalable implementation of their SMS. For programs that do not belong to this class, the paper proposed
simple rewriting techniques, such as pre-counting to realign their operational semantics with declarative one.
Finally in many programs of practical interest, the synchronized execution produced by SSP also guarantees the

4For instance, the corresponding procedural version requires twenty-fold the lines of codes used in Example 11.

11



correct derivation of their SMS. These findings suggest that many big-data algorithms that are now developed
using procedural languages can instead be developed directly using query languages, including SQL, since
recursive Datalog queries with aggregates, can be translated into equivalent SQL queries, as discussed in the
appendix.

References

[1] Foto N Afrati, Vinayak Borkar, Michael Carey, et al. Map-reduce extensions and recursive queries. In EDBT, pages
1–8. ACM, 2011.

[2] Faiz Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zaniolo. The deductive database system LDL++.
TPLP, 3(1):61–94, 2003.

[3] Ariyam Das, Youfu Li, Jin Wang, Mingda Li, and Carlo Zaniolo. Bigdata applications from graph analytics to machine
learning by aggregates in recursion. In ICLP’19, 2019.

[4] Ariyam Das and Carlo Zaniolo. A case for stale synchronous distributed model for declarative recursive computation.
In 35th International Conference on Logic Programming, ICLP’19, 2019.

[5] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming. In Proceedings of the Fifth Joint
International Conference and Symposium, pages 1070–1080. MIT Press, 1988.

[6] Michael Gelfond and Yuanlin Zhang. Vicious circle principle and logic programs with aggregates. Theory Pract. Log.
Program., 14(4-5):587–601, 2014.

[7] Sergio Greco, Carlo Zaniolo, and Sumit Ganguly. Greedy by choice. In Moshe Y. Vardi and Paris C. Kanellakis,
editors, Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
June 2-4, 1992, San Diego, California, USA, pages 105–113. ACM Press, 1992.

[8] Jiaqi Gu, Yugo Watanabe, William Mazza, Alexander Shkapsky, Mohan Yang, Ling Ding, and Carlo Zaniolo. Rasql:
Greater power and performance for big data analytics with recursive-aggregate-sql on spark. In ACM SIGMOD Int.
Conference on Management of Data, SIGMOD 2019, 2019.

[9] Youfu Li, Jin Wang, Mingda Li, Ariyam Das an Jiaqi Gu, and Carlo Zaniolo. Kddlog: Performance and scalability in
knowledge discovery by declarative queries with aggregates. International Conference on Data Enginering, ICDE,
2021.

[10] Jiwon Seo, Stephen Guo, and Monica S Lam. SociaLite: Datalog extensions for efficient social network analysis. In
ICDE, pages 278–289. IEEE, 2013.

[11] Alexander Shkapsky, Mohan Yang, Matteo Interlandi, Hsuan Chiu, Tyson Condie, and Carlo Zaniolo. Big data
analytics with Datalog queries on Spark. In SIGMOD, pages 1135–1149. ACM, 2016.

[12] Jin Wang, Jiacheng Wu, Mingda Li, Jiaqi Gu, Ariyam Das, and Carlo Zaniolo. Formal semantics and high performance
in declarative machine learning using datalog. VLDB J., 2021.

[13] Jin Wang, Guorui Xiao, Jiaqi Gu, Jiacheng Wu, and Carlo Zaniolo. RASQL: A powerful language and its system for
big data applications. In SIGMOD 2020 Int. Conference on Management of Data, pages 2673–2676. ACM, 2020.

[14] Jingjing Wang, Magdalena Balazinska, and Daniel Halperin. Asynchronous and fault-tolerant recursive datalog
evaluation in shared-nothing engines. PVLDB, 8(12):1542–1553, 2015.

[15] Mohan Yang, Alexander Shkapsky, and Carlo Zaniolo. Scaling up the performance of more powerful datalog systems
on multicore machines. VLDB J., 26(2):229–248, 2017.

[16] Carlo Zaniolo, Ariyam Das, Youfu Li, Mingda Li, and Jin Wang. Declarative and operational semantics for datalog
programs with aggregates. In Submitted for Publication, pages 1–15, 2021.

12



[17] Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkapsky, and Tyson Condie. Fixpoint
semantics and optimization of recursive Datalog programs with aggregates. TPLP, 17(5-6):1048–1065, 2017.

[18] Carlo Zaniolo, Mohan Yang, Matteo Interlandi, Ariyam Das, Alexander Shkapsky, and Tyson Condie. Declarative
bigdata algorithms via aggregates and relational database dependencies. In Proceedings of the 12th Alberto Mendelzon
International Workshop on Foundations of Data Management, Cali, Colombia, May 21-25, 2018., 2018.

A Aggregates in Recursive SQL Queries

The single source shortest path Datalog query of Example 1 can be expressed in SQL.

Example 13 (SSSP on base table: edge(Src : int, Dst : int, Cost : double) by stratified SQL):

WITH recursive sssp (Dst, Cost) AS
(SELECT "a", 0)
UNION
(SELECT edge.Dst, sssp.Cost + edge.Cost
FROM sssp, edge WHERE sssp.Dst = edge.Src)

SELECT Dst, MIN(Cost) AS minCost FROM sssp GROUP BY Dst

To express the query of Example 2 by a compact representation, we will assume that the aggregate columns, such
as MIN(Cost) are implicitly grouped by the other columns in SELECT: i.e., by Dst for the example at hand.

Example 14 (SSSP on base table: edge(Src : int, Dst : int, Cost : double) by unstratified SQL):

WITH recursive sssp (Dst, min(Cost) AS minCost GROUP BY Dst) AS
(SELECT "a", 0)
UNION
(SELECT edge.Dst, sssp.minCost + edge.Cost
FROM sssp, edge WHERE sssp.Dst = edge.Src)
SELECT Dst, minCost FROM sssp

Similar translations apply to the other examples and aggregates discussed in the paper, with the provision that
the keywords ALL and DISTINCT will be added to specify their behavior in the presence of duplicates.

13



Improving Hierarchical Product Classification using
Domain-specific Language Modelling

Alexander Brinkmann, Christian Bizer
University of Mannheim

{alex.brinkmann, chris}@informatik.uni-mannheim.de

Abstract

In order to deliver a coherent user experience, product aggregators such as market places or price portals
integrate product offers from many web shops into a single product categorization hierarchy. Recently,
transformer models have shown remarkable performance on various NLP tasks. These models are
pre-trained on huge cross-domain text corpora using self-supervised learning and fine-tuned afterwards
for specific downstream tasks. Research from other application domains indicates that additional self-
supervised pre-training using domain-specific text corpora can further increase downstream performance
without requiring additional task-specific training data. In this paper, we first show that transformers
outperform a more traditional fastText-based classification technique on the task of assigning product
offers from different web shops into a product hierarchy. Afterwards, we investigate whether it is possible
to improve the performance of the transformer models by performing additional self-supervised pre-
training using different corpora of product offers, which were extracted from the Common Crawl. Our
experiments show that by using large numbers of related product offers for masked language modelling, it
is possible to increase the performance of the transformer models by 1.22% in wF1 and 1.36% in hF1
reaching a performance of nearly 89% wF1.

A Introduction

Product aggregators like market places or price portals support customers in finding the right offer for their
desired product. To ensure a good customer experience, product aggregators integrate heterogeneous product
offers from large numbers of online shops into their own product categorization hierarchy. This hierarchical
product classification task is a major challenge for product aggregators as most shops use their own proprietary
categorization hierarchy as well as diverse titles and descriptions for the same product. A promising technique
to improve hierarchical product classification are pre-trained transformer models [5, 14]. These pre-trained
transformer models have recently shown success for many NLP tasks [2, 3, 12, 13, 19, 22]. The training of
transformer models involves two steps [2, 3]:

1. Pre-Training: The model is pre-trained on a huge corpus of texts from books, news, online forums and
stories using self-supervised Masked Language Modelling (MLM).

2. Fine-Tuning: The pre-trained model is fine-tuned for downstream tasks using task-specific training data.

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

14



During pre-training the model acquires general knowledge on language representation. This knowledge
can be applied to solve down-stream tasks. In related work the pre-training step is extended by additionally
pre-training the transformer model on domain-specific text corpora [4, 5, 7, 23]. In these works, the extended
self-supervised pre-training results in improved performance on downstream tasks.

Motivated by these findings, we investigate whether additional pre-training using heterogeneous product
offers from the Web can improve hierarchical product classification. For this purpose, we use product offers,
which the Web Data Commons project1 has extracted from the Common Crawl2. For identifying product offers
and their attributes, the project relies on schema.org3 annotations in the HTML pages of the web shops [20]. The
annotations enable the reliable extraction of the offer’s title, the description of the offered product, as well as the
offer’s categorization within the proprietary categorization hierarchy of the specific web shop. The heterogeneous
category values are of special interest, because the categories contain information about the product classification
of the web shop. While being heterogeneous and web shop specific, previous work has show that this knowledge
about product categories is beneficial for categorizing products into a single central product hierarchy [9, 17].

We experiment with three different product corpora for pre-training that differ in size and relatedness to the
downstream task. Through these different characteristics we measure the influence of size and relatedness of the
pre-training corpus on the downstream hierarchical product classification task. Additionally, we experiment with
different hierarchical classification methods. The methods combine RoBERTabase [3] with various classification
heads in order to evaluate different approaches for exploiting the product hierarchy. We evaluate the classification
methods using two product classification tasks involving product offers from many different web shops.

The contributions of this paper are as follows:

• We are the first to show that the performance of transformer models can be improved for the task of
hierarchical product classification by performing additional pre-training using a corpus of related product
offers.

• We show that using related product offers results in a better performance compared to randomly sampled
product offers.

This paper is structured as follows: Section B introduces the classification models that will later be used
for the experiments. Section C describes the evaluation tasks. While Section D presents the results of baseline
experiments without additional language modelling. The effects of domain-specific MLM for hierarchical product
classification are investigated in Section E. Section F discusses related work. All data and code needed to replicate
the results are available online4.

B Classification models

The architecture of all classification models is composed of a pre-trained RoBERTabase transformer model and a
task-specific classification head. RoBERTabase is chosen due to its recent success on related Natural Language
Processing (NLP) tasks [3]. Additionally, for one baseline model RoBERTabase is replaced by fastText5, a state of
the art neural network architecture for language representations [1]. For the classification the RoBERTabase model
encodes the input text of the product offer. The first token of the encoded product offer is handed over to the
classification head. Based on the first token, also referred to as [CLS] token, the classification head predicts a
category for each product hierarchy level. Since it can be assumed that the product hierarchy contains valuable
information, the given product classification challenge is tackled with three different classification heads. These

1http://webdatacommons.org/largescaleproductcorpus/v2/
2https://commoncrawl.org/
3https://schema.org/
4https://github.com/wbsg-uni-mannheim/productCategorization
5https://github.com/facebookresearch/fastText

15

http://webdatacommons.org/largescaleproductcorpus/v2/
https://commoncrawl.org/
https://schema.org/
https://github.com/wbsg-uni-mannheim/productCategorization
https://github.com/facebookresearch/fastText


classification heads try to exploit the upfront known product hierarchy. The three approaches are referred to as
flat classification, hierarchical softmax and Recurrent Neural Network (RNN).

B.1 Flat Classification

For the flat classification, a linear layer makes a prediction based on the [CLS] token. As this classification
approach only assigns product offers to lowest level of categories, the parent categories are inferred using the
product hierarchy. For training a cross-entropy loss is used.

B.2 Hierarchical Softmax

The hierarchical softmax classification head predicts the category path with the highest probability for a product
offer. To arrive at a probability for a category path, one local classifier is trained for each category in the product
hierarchy. The local classifier predicts the probability of a category to be part of the category path. The product
of all local predictions along a category path is the probability of a category path to be predicted for a product
offer. Using softmax the most probable category path among all category paths is chosen. The input of the local
classifiers is the transformer’s [CLS] token. For training the cross-entropy loss is calculated per local classifier
and per global category path. The combined loss deals with both the local impact of a single classifier and the
global impact of a combination of classifiers along a category path.

B.3 Recurrent Neural Network

For the third classification head a RNN sequentially predicts a category for each level in the product hierarchy.
The input for this classification head are the transformer’s [CLS] token and a hidden state with the same size as
the [CLS] token. Based [CLS] token and hidden state a linear layer predicts the category for the current product
hierarchy level. A second linear layer updates the hidden state. The updated hidden state is fed back into the RNN
to predict the next level in the product hierarchy. This procedure is repeated until a category is predicted for each
level in the product hierarchy. During training the cross-entropy loss is calculated for each predicted category.

C Evaluation Tasks

This section introduces the hierarchical product classification tasks that are used for the evaluation. The objective
of the tasks is to assign product offers from different web shops to the correct categories in a single central product
hierarchy.

C.1 MWPD Task

The MWPD task was used at the Mining the Web of Product Data (MWPD) challenge6 [11] for benchmarking.
The MWPD challenge was part of the International Semantic Web Conference (ISWC2020). In the product
classification task of the MWPD challenge participants have to sort product offers from different web shops
into the GS1 Global Product Classification standard (GPC)7 [11]. GPC classifies product offers into a product
hierarchy based on their essential properties and their relationship to other products. For the gold standard of the
MWPD product classification data set the extracted product offers are manually assigned to the first three levels
of the GPC.

6https://ir-ischool-uos.github.io/mwpd/
7https://www.gs1.org/standards/gpc

16

https://ir-ischool-uos.github.io/mwpd/
https://www.gs1.org/standards/gpc


C.2 Icecat/WDC222 Task

The training set of the Icecat/WDC222 task8 is built based on the Open Icecat product data catalogue9. The Open
Icecat product data catalog provides well maintained and normalized product information. For this work the
attributes title, description, category and Global Trade Item Number (GTIN) are considered. For the classification
the first three levels of the product hierarchy are considered. In order to evaluate whether a classifier is able
to correctly classify heterogeneous product offers, the test set of the Icecat/WDC222 task consists of selected
product offers from the Web Data Commons (WDC) Product Corpus10. This corpus contains offers from 79
thousand different websites, which use schema.org annotations. Using the GTIN the product offers are assigned
to one out of 222 leaf categories in the Icecat product hierarchy. All assignments are manually verified. For
all product offers the values of the attributes title, descriptions and GTIN are extracted. As the Icecat training
set contains normalized product offers and the WDC222 test set contains heterogeneous product offers, the
Icecat/WDC222 task measures the transferability of a classifier trained on clean product offers and transferred to
a scenario involving heterogeneous product offers.

Table 1 shows that the MWPD training set is small compared to the training set of the Icecat use case, but the
product offers of the MWPD task are drawn from a comparably large number of different hosts. The WDC222
test set is again rather small but covers more hosts than the Icecat training set. These high numbers of hosts
are an indication for more heterogeneity, because the product offers are differently represented by different
hosts. The analysis of the median and maximum number of records per category of both use cases as shown in
Table 2 reveals that the distribution of product offers among the categories is skewed towards a small number of
categories. This distribution is common for hierarchical classification tasks [8]. The missing description values of
the Icecat/WDC222 task are a sign that the description might harm a classifier’s performance if the classifier is
trained on the Icecat training set and applied to the WDC222 test set.

Evaluation No. Records No. Records No. Hosts No. Hosts No. Nodes Avg. Depth
Task Train Set Test Set Train Set Test Set in Hierarchy Hierarchy
MWPD 10,012 3,107 1,547 878 396 3
Icecat/WDC222 765,743 2,984 1 112 410 2.44

Table 1: Evaluation Task Statistics

Evaluation Data Median No. Missing Median No. Median No. Maximum No.
Task Set Characters Values Characters Records Records

Title Description Description per Category per Category
MWPD Train 50 0% 304 7 3,228
MWPD Test 48 0% 365 4 799
Icecat/WDC222 Train 57 29.65% 1,099 215 145,020
Icecat/WDC222 Test 54 22.72% 140.5 3 516

Table 2: Attribute Statistics

8http://data.dws.informatik.uni-mannheim.de/largescaleproductcorpus/categorization/
9https://icecat.biz/en/menu/channelpartners/index.html

10http://webdatacommons.org/largescaleproductcorpus/v2/

17

http://data.dws.informatik.uni-mannheim.de/largescaleproductcorpus/categorization/
https://icecat.biz/en/menu/channelpartners/index.html
http://webdatacommons.org/largescaleproductcorpus/v2/


D Baseline Experiments

In order to set baselines, we apply the classification models described in Section B to both evaluation tasks that
were introduced in Section C. This section describes the setup as well as the results of the baseline experiments.

D.1 Evaluation Metrics

We use the average weighted F1 (wF1) score and the hierarchical F1 (hF1) score to evaluate the performance of
the different models. Both scores are designed for hierarchical classification tasks [10, 11]. The wF1 score is
calculated as proposed by the organisers of the MWPD challenge and shown in equation 4 [11].

Average weighted F1 (wF1) =
L∑
j=1

1

L

Kj∑
i=1

ni
N
Fi (4)

First, the F1 score of every category i in the hierarchy is calculated. To calculate the weighted F1 score per
hierarchy level, the F1i score for each category i is weighted by number of true instances ni for each category i
divided by the total number of instances N across all categories K on a specific hierarchy level. For the hF1 score
all target and prediction categories of the different levels in the product hierarchy are considered to calculate the
F1 score. This way the hF1 score is suitable for hierarchical classification tasks, as it directs higher credit to
partially correct classifications, considers the distance of errors to the correct category and errors higher up in
the hierarchy are punished more severely [10]. Additionally, McNemar’s significance test is applied to verify
significantly different model performances on the test set [21]. For the test it is determined if a classifier’s
prediction is correct or incorrect first. Second, the numbers of correctly predicted product offers by the first
classifier and incorrectly predicted product offers by the second classifier (correct/ incorrect) and vice versa
(incorrect/ correct) are calculated. Using these numbers of correct/ incorrect and incorrect/ correct predictions as
well as a significance level of 0.01, McNemar’s test determines if the proportion of errors and consequently the
performance of the two compared classifiers on the test set is significantly different.

D.2 Experimental Setup

We use the following hyperparameter setting for the experiments: The learning rate is set to 3e-5 for the
Icecat/WDC222 task and to 5e-5 for the MWPD task. We use a batch size of 8 and a linear weight decay of 0.01.
All fine-tuning experiments are run for 25 epochs on the MWPD data set and 10 epochs on the Icecat/WDC222
data set. The different learning rates and numbers of epochs are a result of multiple experiment runs. In this
setting the average results on the test set over three randomly initialized runs are reported for every experiment.
For McNemar’s test a majority voting among the results of the different runs is performed. As input for the
classification models the values of the attributes title and description are lowercased and excessive white-spaces
are removed. For the experiments in this section a RoBERTabase model is used to obtain a product representation,
which is consumed by different classification heads to obtain a classification.

D.3 Results

The naming convention<input attributes>-<transformer model>-<head> is used to refer to the different models.
If the value of <input attribute> is "1", only the title is used as input. If the value of <input attribute> is "2",
both title and description are used as input. In this section <transformer model> is either "base" for RoBERTabase
or "fast" for fastText. The value of <head> refers to one of the classification heads introduced in Section B "flat",
"hier" for hierarchical or "rnn". Experiments with the same capital letter in the column "Same Error Rate" share
the same error proportion on the test set according to the significance test. Otherwise the experiment’s error
proportion is significantly different. The experimental results for the MWPD task are shown in Table 3. Setting

18



the results of the model 2-fast-flat into context to the other models shows that all transformer-based approaches
outperform the fastText baseline model. A comparison of the models 1-base-flat and 2-base-flat reveals that
adding the description as input improves the performance of the classification. The performance difference of
the models 2-base-flat and 2-base-rnn is not significant and 2-base-hierarchical performs worse than the other
two models. Thus, 2-base-flat is chosen as baseline model for the experiments with domain-specific language
modelling as described in Section E. Table 4 shows the results of the different models for the Icecat/WDC222 task.
Again, the fastText based model 1-fast-flat is outperformed by the transformer-based models. The comparison of
the models 1-base-flat and 2-base-flat shows that adding the description harms the performance of the trained
classifier. This finding is expected given the high percentage of missing values and the difference in the median
number of characters between training and test set as shown in Table 2. This comparison of the models 1-base-flat
and 1-base-rnn shows that the RNN leads to a performance gain. A reason for this improvement might be the
huge size of the Icecat training data set compared to the size of the MWPD data set. This size enables the RNN
classification head to better learn the encoded hierarchy of the labels, which is beneficial for the classification on
the test data set.

Model Attributes Classification wF1 ∆ wF1 hF1 ∆ hF1 Same Error
Head Rate

2-fast-flat Title, Desc. Flat 84.26 82.68
1-base-flat Title Flat 87.01 2.75 87.03 4.35
2-base-flat Title, Desc. Flat 87.52 3.26 87.62 4.94 A
2-base-hier Title, Desc. Hierarchical 87.00 2.74 87.47 4.79
2-base-rnn Title, Desc. RNN 87.47 3.21 87.67 4.99 A

Table 3: Experimental results without Language Modelling - MWPD Task

Model Attributes Classification wF1 ∆ wF1 hF1 ∆ hF1 Same Error
Head Rate

1-fast-flat Title Flat 77.58 83.64
1-base-flat Title Flat 83.36 5.78 84.69 1.05
2-base-flat Title, Desc. Flat 80.91 3.33 81.48 -2.16
1-base-rnn Title RNN 86.56 8.98 85.61 1.97

Table 4: Experimental results without Language Modelling - Icecat/WDC222 Task

E Domain-specific Language Modelling

After establishing baseline results in the previous section, we now investigate the effect of domain-specific
language modelling on the performance of RoBERTabase models for hierarchical product classification. In this
section the extraction of the domain-specific product offer corpora and the applied MLM approach are explained.
The effects of domain-specific MLM are demonstrated by fine-tuning the newly pre-trained transformer models
on the MWPD use case. The results of this fine-tuning are set into relation to the baseline results without
domain-specific pre-training.

19



E.1 Product Corpora

In total three different product corpora are used for domain-specific MLM. All three product corpora contain
product offers extracted from the WDC Product Corpus11. The WDC Product Corpus contains structured data
for 365,577,281 product offers that are extracted from 581,482 different hosts using schema.org annotations.
The hosts use schema.org annotations to enrich the search results of product aggregators with their web shop’s
product offers [20]. Three strategies are applied to retrieve product offers from the WDC Product Corpus. For the
first two domain-specific product corpora 1,547 top-level domains of product offers from the MWPD training
set are identified. Using these top-level domains, product offers from the same top-level domains are extracted
from the WDC Product Corpus. This heuristic assumes that all products offered by a single shop (top-level
domain) are related. The first product corpus contains 75,248 product offers and is called Small Related product
corpus. The second product corpus contains 1,185,884 product offers and is referred to as Large Related product
corpus. Through these two corpora the effect of the number of the product offer on MLM is measured. For the
third corpus a large random sample of product offers is extracted from the WDC product corpus. This corpus
is referred to as Large Random product corpus. The Large Random product corpus enables us to measure the
effect of relatedness of product offers on domain-specific language modelling. Table 5 gives an overview of the
product corpora’s characteristics. For the two related product corpora the median number of records per hosts
is higher compared to the Large Random product corpus. This shows the focus of the related corpora on the
top-level domains extracted from the training set. The Large Random product corpus does not have this focus.
Consequently, the number of hosts is a lot higher and the median number of records per host is lower.

Product No. No. Median No. Max No.
Corpus Records Hosts Records per Host Records per Host
Small Related 75,248 1,160 100 400
Large Related 1,185,884 1,505 48 5,885
Large Random 1,029,063 98,421 2 2,878

Table 5: Size of Product Corpora

All extracted product offers have a title and at least one of the attributes description or category. The attributes
are identified using the schema.org product annotations12 name for title, description for description as well
as category, breadcrumb and breadcrumbList for category. The attribute category is associated with multiple
annotations, because different hosts use various annotations to categorise their products. Lastly, all attribute
values are lowercased and excessive white spaces are removed. Table 6 shows that the product corpus Large
Random has a comparably high percentage of missing description values. The Large Related product corpus has
a lot of missing category values. These characteristics might influence the outcome of MLM.

Product Median No. Median No. Missing Median No. Missing
Corpus Characters Characters Values Characters Values

Title Description Desccription Category Category
Small Related 38 310 10.43% 24 29.69%
Large Related 41 275 7.06% 22 68.90%
Large Random 34 39 72.99% 70 44.32%

Table 6: Distribution of Attributes in the Product Corpora

11http://webdatacommons.org/structureddata/2017-12/stats/schema_org_subsets.html
12https://schema.org/Product

20

http://webdatacommons.org/structureddata/2017-12/stats/schema_org_subsets.html
https://schema.org/Product


E.2 Attribute Combinations

For MLM the attributes title, category and description are used. The product categories do not follow the
categories of the downstream hierarchical product classification, because these categories assigned by the online
shops themselves. Still these categories can contain valuable product information. In the basic setup the attribute
values are concatenated to a single line text representation of the product. This default attribute combination
is referred to as Title-Cat-Desc. To measure the effect of the heterogeneous categories, two additional product
text representations are used for MLM. In one scenario only title and description are considered for MLM.
The categories are disregarded. This scenario is referred to as Title-Desc and encoded in the model’s name as
<transformer model>nocat. As alternative setup, the product attributes are split into two lines. One line contains
the attribute values of title and category and the other line contains the attribute values of title and description.
This scenario is referred to as Title-Cat/Title-Desc and encoded in the model’s name as <transformer model>ext.
This way the influence of the heterogeneous categories during language modelling can be measured. Due to the
smaller size and the low percentage of missing category values of the product corpus Small Related as shown in
Table 5, the impact of using the category information on the model performance is evaluated using this product
corpus.

E.3 MLM Procedure

The pre-training used to inject knowledge about product offers into the RoBERTa base model follows the MLM
procedure used to pre-train RoBERTa base initially. During MLM in each epoch a random sample of tokens from
the input sequence is selected and replaced by the special token [MASK]. Uniformly 15% of the input tokens
are selected for possible replacement. Of these selected tokens, 80% are replaced with [MASK], 10% are left
unchanged and 10% are replaced by a randomly selected vocabulary token. For MLM a language modelling head
predicts the masked tokens of the input. The MLM objective is a cross-entropy loss on predicting the masked
tokens [2, 3]. For the downstream hierarchical product classification the language modelling head is replaced by
one of the task-specific classification heads introduced in Section B.

E.4 Experimental Setup

For pre-training the RoBERTabase models on the different product corpora, the chosen hyperparameters are a
batch size of 4, a learning rate of 5e-5 and a linear weight decay of 0.01. All models are pre-trained for 5
epochs. The downstream hierarchical product classification follows the same settings as the baseline experiments
described in Section D. In this setting the average results on the test set over three randomly initialized runs for
each experimental setup are reported. Based on their usefulness for the baseline models both attributes title and
description are used as input for hierarchical product classification on the MWPD task. For the Icecat/WDC222
task only the title is used as input. Since the collection of the product corpora focuses on the MWPD task,
the conducted experiments with an extended domain-specific MLM focus on the MWPD task, too. The best
performing pre-trained model on the MWPD task is transferred to the Icecat/WDC222 task. Table ?? and Table
?? show the experimental results of an extended domain-specific MLM for hierarchical product classification.
To reference the different models the same encoding as in Section D is used. For <transformer model> the
identifiers rel_s for pre-training on the Small Large corpus, rel_l for pre-training on the Related Large corpus and
rand_l for pre-training on the Random Large corpus are added. Experiments with the same capital letter in the
column "Same Error Rate" share the same error proportion on the test set according to McNemar’s significance
test. Otherwise the experiment’s error proportion is significantly different.

21



Model Product Attribute Head wF1 ∆ wF1 hF1 ∆ hF1 Same Error
Corpus Combination Rate
MLM MLM

2-base-flat None None Flat 87.52 87.62 4.94 B
2-rel_l-flat Large Related Title-Cat-Desc Flat 87.61 0.09 87.70 0.08 B
2-rel_s-rnn Small Related Title-Cat-Desc RNN 88.31 0.79 88.47 0.85 C
2-rel_l-rnn Large Related Title-Cat-Desc RNN 88.74 1.22 88.80 1.18
2-rand_l-rnn Large Random Title-Cat-Desc RNN 88.19 0.67 88.34 0.72
2-rel_l-hierar. Large Related Title-Cat-Desc Hierar. 88.44 0.92 88.60 0.98
2-rel_snocat-rnn Small Related Title-Desc RNN 88.27 0.75 88.41 0.79 C
2-rel_sext-rnn Small Related Title-Cat/ RNN 88.74 1.22 88.98 1.36

Title-Desc

Table 7: Experimental results with Language Modelling - MWPD Task

Model Product Attribute Head wF1 ∆ wF1 hF1 ∆ hF1 Same Error
Corpus Combination Rate
MLM MLM

1-base-rnn None None Flat 86.56 85.58 D
1-rel_l-rnn Large Related Title-Cat-Desc RNN 86.38 -0.18 85.61 +0.03 D

Table 8: Experimental results with Language Modelling - Icecat/WDC222 Task

E.5 Effect of Using Different Product Corpora

Table ?? shows that the baseline model 2-base-flat is outperformed by all other models on the MWPD task. Our
best model 2-rel_l-rnn outperforms the baseline model 2-base-flat by 1.22 wF1 and 1.18 hF1 points. According to
the significance test this performance difference is significant. This demonstrates the positive impact of domain-
specific MLM on hierarchical product classification. The performance increase of the model 2-rel_l-rnn compared
to the models 2-rel_s-rnn and 2-rand_l indicates that a large number of related product offers improves the
model’s performance the most. Among the classification heads, the results of the models 2-rel_l-flat, 2-rel_l-hier
and 2-rel_l-rnn show that the RNN profits most from domain-specific pre-training. Table ?? reveals that the
models 1-rel_l-rnn and 1-base-rnn have the same performance on the Icecat/WDC222 task. This underlines that
the pre-training corpus has to be as similar as possible to the hierarchical product classification task to gain a
significant performance boost from pre-training.

E.6 Effect of Using Web Shop Categories

The results in Table ?? indicate a slightly positive effect of using the heterogeneous categorization information
from the original web shops during pre-training. A comparison of the models 2-rel_snocat-rnn and 2-rel_s-
rnn shows that disregarding the web shop categories has a negative but not significant impact on the model’s
performance. In the extended scenario of model 2-rel_sext-rnn, the model’s performance improves up to the
performance level of the model 2-rel_l-rnn and significantly outperforms the baseline model 2-base-flat by 1.22
wF1 and 1.36 hF1 points on the MWPD task. A reason for these results might be that doubling the product
representations during pre-training has a positive impact, because it almost doubles the amount of available text
for pre-training. This effect is comparable to doubling the number of training epochs, which might improve
the performance results, too. Another reason might be the length of the different attributes. The values of the
attributes title and category are rather short compared to the attribute values of the description as shown by the

22



median number of characters in Table 2. If the product offer is represented by a single line, the generated masked
tokens during MLM are more likely part of the description than part of title or category. If mainly tokens from
the description are masked, the model learns to better represent these long descriptions. At the same time, it can
be assumed that the title is more informative than the lengthy description. By presenting the product offers twice
with different attribute combinations to the model during pre-training the disturbing effect of long descriptions is
reduced. This allows the model to better exploit the heterogeneous categories and the title. From our results we
can conclude that the heterogeneous categories from the web shops have a slightly positive but not significant
impact on the model’s performance.

F Related Work

This section discusses related work on the domain adaptation of transformer models and gives an overview of the
state of the art concerning hierarchical product classification using transformer models.

F.1 Domain Adaptation

The technique of pre-training transformer models on large text corpora and fine-tuning them for downstream
tasks has proven successful in NLP [2, 3, 12]. BERT is one of these transformer models and was pre-trained
on publicly available text corpora consisting such as the text of books and the English Wikipedia [2]. Through
pre-training the model obtains the ability to encode natural language [13]. This knowledge about natural language
is then transferred to downstream tasks. Pre-trained domain-specific models have shown that pre-training on
domain-specific text improves the performance on downstream domain-specific tasks [4, 5, 7, 23]. E-BERT for
example uses adaptive masking on a product and a review corpus during pre-training to learn e-Commerce
knowledge on phrase-level and on product-level. Pre-training enables E-BERT to outperform a BERT based
model on different downstream tasks related to e-commerce [5]. Comparing the effects of adaptive masking and
random masking using the product offer corpora that were created for this paper is an interesting direction for
future work.

F.2 Hierarchical Product Classification

Related work shows that exploiting the hierarchical structure can improve classification results [6, 8, 14–16]. The
participants of the MWPD challenge show that in addition to exploiting the hierarchy, pre-trained transformer
models can boost the results of hierarchical product classification tasks [11]. Team Rhinobird, the winners of the
MWPD challenge, combine a pre-trained transformer model BERT with a hierarchical classification head [14].
Their Dynamic Masked Softmax classification head sequentially predicts the categories of different levels in the
product hierarchy by actively restricting the classes, which can be predicted on the lower levels based on the
predicted parent level node. Through different BERT based representations an ensemble of classifiers with the
Dynamic Masked Softmax head enables Rhinobird to reach a wF1 score of 88.08 on the MWPD task that is used
in this paper. Additionally, Rhinobird [14] applies pseudo labelling on the unlabeled test data to further improve
the performance of their model. This procedure might leak information about the test set into the training process.
Thus, we compare our models to the Rhinobird results without pseudo labelling. Our best model based on a
domain-specifically pre-trained RoBERTa model and a RNN classification head achieves a performance of 88.74
wF1 points. This is an improvement of +0.66 points over Rhinobird’s results. Given that Rhinobird achieves
this good performance using an ensemble of models, future work could examine how an ensemble consisting of
differently pre-trained and differently fine-tuned transformers can further improve the performance of our model.
Team ASVinSpace uses a CNN based approach for language modelling with a multi-output classification head
that predicts the categories of the different levels in the product hierarchy [18]. Our best model outperforms
ASVinSpace’s approach by +2.14 wF1 points.

23



G Conclusion

Our results show that the performance of transformer models on hierarchical product classification tasks can be
improved through domain-specific pre-training on a corpus of related product offers. All domain-specifically
pre-trained and fine-tuned models outperform the baseline model, which relies on general pre-training and task-
specific fine-tuning. Our experiments with three different domain-specific corpora of product offers demonstrate
that a large corpus of related product offers leads to the highest performance gain. If we adjust the product offer
representation during pre-training to exploit the special characteristics of the attributes title, description and
category, the result on the hierarchical product classification task is further improved even though only a small
corpus of related products is used for pre-training. With this approach and a task-specific classification head our
best model outperforms the baseline model by 1.22 wF1 points and 1.36 hF1 points.

References

[1] A. Joulin, E. Grave, P. Bojanowski and T. Mikolov. Bag of Tricks for Efficient Text Classification. 15th Conference of
the European Chapter of the Association for Computational Linguistics, 2:427–431, 2017.

[2] J. Devlin, M. Chang, K. Lee and K. Toutanova. BERT: Pre-training of Deep Bidirectional Transformers for Language
Understanding. Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT), 4171–4186, 2019.

[3] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer and V. Stoyanov. RoBERTa: A
Robustly Optimized BERT Pretraining Approach. arXiv:1907.11692 [cs], 2019.

[4] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. So and J. Kang. BioBERT: a pre-trained biomedical language
representation model for biomedical text mining. Bioinformatics, 36:1234–1240, 2019.

[5] D. Zhang, Z. Yuan, Y. Liu, Z. Fu, F. Zhuang, P. Wang, H. Chen and H. Xiong. E-BERT: A Phrase and Product
Knowledge Enhanced Language Model for E-commerce. arXiv:2009.02835 [cs], 2020.

[6] D. Gao, W. Yang, H. Zhou, Y. Wei, Y. Hu and H. Wang. Deep Hierarchical Classification for Category Prediction in
E-commerce System. 3rd Workshop on e-Commerce and NLP (ECNLP), 64–68, 2020.

[7] I. Beltagy, K. Lo and A. Cohan. SciBERT: A Pretrained Language Model for Scientific Text. Conference on Empirical
Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), 3615–3620, 2019.

[8] C. Silla and A. Freitas. A survey of hierarchical classification across different application domains. Data Mining and
Knowledge Discovery, 22:31–72, 2011.

[9] R. Meusel, A. Primpeli, C. Meilicke, H. Paulheim and C. Bizer. Exploiting Microdata Annotations to Consistently
Categorize Product Offers at Web Scale. International Conference on Electronic Commerce and Web Technologies,
83–99, 2015.

[10] S. Kiritchenko, S. Matwin and A. Famili. Functional Annotation of Genes Using Hierarchical Text Categorization.
ACL Workshop on Linking Biological Literature, Ontologies and Databases: Mining Biological Semantics, 2005.

[11] Z. Zhang, C. Bizer, R. Peeters and A. Primpeli. MWPD2020: Semantic Web challenge on Mining the Web of
HTML-embedded product data. CEUR Workshop Mining the Web of HTML-embedded Product Data, 2720:2–18,
2020.

[12] Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov and Q. Le. XLNet: Generalized Autoregressive Pretraining
for Language Understanding. 33rd Conference on Neural Information Processing Systems (NeurIPS), 2020.

[13] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li and P. Liu. Exploring the Limits of
Transfer Learning with a Unified Text-to-Text Transformer. Machine Learning Research, 21:1–67, 2020.

[14] L. Yang, E. Shijia, S. Xu and Y. Xiang. Bert with Dynamic Masked Softmax and Pseudo Labeling for Hierarchical
Product Classification. CEUR Workshop Mining the Web of HTML-embedded Product Data, 2720:2020.

24



[15] J. Wehrmann, R. Cerri and R. Barros. Hierarchical Multi-Label Classification Networks. 35th International Conference
on Machine Learning, 5075–5084, 2018.

[16] R. You, Z. Zhang, Z. Wang, S. Dai, H. Mamitsuka and S. Zhu. AttentionXML: Label Tree-based Attention-Aware
Deep Model for High-Performance Extreme Multi-Label Text Classification. 33rd Conference on Neural Information
Processing Systems (NeurIPS), 32:11, 2019.

[17] Z. Zhang and M. Paramita. Product Classification Using Microdata Annotations. International Sematic Web Conference
(ISWC), 716–732, 2019.

[18] J. Borst, E. Krner and A. Niekler. Language Model CNN-driven similarity matching and classification for HTML-
embedded Product Data. CEUR Workshop Mining the Web of HTML-embedded Product Data, 2720:11, 2020.

[19] L. Dong, N. Yang, W. Wang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou and H. Hon. Unified Language Model
Pre-training for Natural Language Understanding and Generation. 33rd Conference on Neural Information Processing
Systems (NeurIPS), 2019.

[20] A. Primpeli, R. Peeters and C. Bizer. The WDC Training Dataset and Gold Standard for Large-Scale Product Matching.
International World Wide Web Conference (WWW), 381–386, 2019.

[21] T. Dietterich Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural
Computation, 10:1895–1923, 1998.

[22] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma and R. Soricut. ALBERT: A Lite BERT for Self-supervised
Learning of Language Representations. International Conference on Learning Representations (ICLR), 2020.

[23] S. Gururangan, A. MarasoviÄ‡, S. Swayamdipta, K. Lo, I. Beltagy, D. Downey and N. Smith. Don’t Stop Pretraining:
Adapt Language Models to Domains and Tasks. 58th Annual Meeting of the Association for Computational Linguistics,
8342–8360, 2020.

25



Deep Hierarchical Product Classification Based on Pre-Trained
Multilingual Knowledge

Wen Zhang
wenzhaw@amazon

Yanbin Lu
luyanbin@amazon

Bella Dubrov
belladub@amazon

Zhi Xu
xuzhi@amazon

Shang Shang
shashang@amazon

Emilio Maldonado
emilim@amazon

Abstract

The customer experience of online shopping is largely contingent on the accuracy of product classification.
Considering the amount of products and all the possible categories, it is desirable to construct a framework
to auto-assign products into correct categories at scale. Machine learning based systems often suffer
from poor data quality, such as incomplete item descriptions, adversarial noise in the training data, etc.,
causing low precision/recall of predictions. To overcome these difficulties, we propose a deep hierarchical
product classifier based on BERT pretrained knowledge. Additionally, we propose several learning
strategies, e.g., bootstrap learning, negative sampling, soft label and semantic augmentation, to capture
consistent knowledge hidden behind noisy data to prevent overfitting. Experiments on a large data set
with different data configurations prove the effectiveness of the proposed model.

A Introduction

Online retailers provide a wide choice of commodities on their websites and a human curated taxonomy that
allows customers to browse and discover products of interest. It is a challenging problem to be able to classify
product into correct categories at scale. There are two main sources of information involved in the classification
process: description of product and definition of categorization. However, considering large amount of products
and the number of categories, catalog data are very often to be noisy. For example, product descriptions provided
by content providers might be incomplete or misleading, and the multi-functionality of certain products might
result in confusion between taxonomy categories. Human labeling is expensive. Hence, it is desirable to have an
auto-product classification algorithm that can efficiently handle noisy data and make correct prediction.

The task defined in this study is to effectively extract the semantic representation of a large corpus of
data for downstream classification tasks, i.e. large scale product classification. Learning semantic distributed
representation has been well explored in recent years from the level of character representation to document
representation, with the majority of the work initially focused on word/token embedding and later on sentence
representation [3–5]. Recently, substantial work has shown benefits of using pre-trained models (PTMs) to
better understand universal language representations and significantly reduce training time of new models. Two
representative research projects, OpenAI GPT-1/2/3 (Generative Pre-training) [6–8] and BERT (Bidirectional

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

26



Encoder Representation form Transformer) [9], designed very deep network structures with various pre-training
tasks and achieved SOTA performance in many NLP benchmarks. In this study, we leverage a pre-trained
version of BERT for multilingual understanding, named multilingual BERT (mBERT)1. It is a masked language
model [10] trained with shared vocabulary and weights on Wikipedia text from the top 104 languages. We hope
that product classification for multiple locales (marketplaces, most of time are referred by countries, where online
retailers want to operate) with different languages can benefit from this pre-trained model’s ability for multilingual
understanding.

Generally, machine learning based systems, e.g. deep learning models, have been found to be vulnerable to
various types of noise in the training data, such as corruptions or adversarial samples. Without proper configuration,
models with large parameters easily converge to a poor local optimum that overfit to the noise/outliers. The
backbone BERT model applied in this research carries millions of parameters, hence proper training strategies to
overcome data noise are crucial to the success of the classification tasks. Learning from the task domain and
data structures, we explore and design several training strategies to leverage product classification. For example,
we create pseudo labels by self-justified learning and smooth model predictions via temperature scaling. These
two mechanisms can adaptively prevent model from over-confidence. Accounting for multilabel learning with
incomplete data source, negative sampling is also added during training. The performance of these strategies shed
lights on model fine-tuning over the noisy data and provide hints for the designation of the next generation of
model architectures.

The major contribution of this study can be summarized in 3 folds: 1) We discuss the basic types of data
noises existing in practical product data sources; 2) We design a deep hierarchical classifier to efficiently predict
product categories in both department and leaf category levels; 3) We propose several training strategies to further
improve classification accuracy. To validate the proposed method, we conduct extensive experiments on 2 large
independent datasets and also discuss the roles of each training strategy through an ablation study.

Figure 1: product item and category taxonomy

B Product Data Quality and Noises

In this section, we will briefly introduce the common types of data noises that affect our classification model.
The models of this study are based on natural language processing. Here, we only focus on the noise in text

1https://github.com/google-research/bert/blob/master/multilingual.md

27



information, e.g. descriptions of items and semantic definitions of their categories. These types of noise are also
prevalent in multi-modal data but differ in their manifestation and noise distribution.

The text data of a product generally contains descriptions of the item properties. The product title information
includes the major properties and functions of the item as a single sentence. Sometimes, the item’s category name
is already provided in the title. A more detailed description of the product, its various functions and properties
is usually found in the item description in the form of several sentences or bullet points. Thus, sentence-level
semantic understanding is crucial to extract the full value of this information. It is worth noting that all of the
aforementioned data noise comes from the large raw data mostly provided by sellers, hence manual cleaning
requires significant cost and time.

Item categories are predefined by online retailers according to catalog selection. The structure of categories,
also termed as taxonomy, is the label space that we are targeting during classification. Hence, given different
taxonomies, the accuracy of classification models varies due to changes in the complexity and dimension of the
label space. In general, a taxonomy is manually curated by taxonomists as a hierarchical tree. Its granularity
decides the size of item categories and learning logic from a given root node to its leaf children. Due to the
selection are localized, taxonomy trees are not consistent across locales, thus a model capable of handling various
label spaces is needed.

B.1 Incomplete and Misleading Item Descriptions

Incompleteness and misleading product description make the classification task challenging. In this study, we
focus on three item text features: item title, item description and item bullet points. The information necessary for
a correct classification might exist in each of them or across features. For example, in pet supplies, an aquarium
mat, that should be classified as an aquarium decoration, might be confused with a dog bed mat, if the keyword
”aquarium” is missing in the title. It is a common case, especially in a new locale where low quality data samples
are abundant. Sometimes, incomplete item description comes with misleading information, which results in
additional confusion for the model. In the previous case, the item bullet points of the aquarium mat focus on how
to clean this item, misleading the classifier on the product usage instead of what the product is, and classify it as
an aquarium cleaner. This problem might be severe if the other features are short or noisy. Another example is
a fish tank which contains several aquarium decorations as gifts. The model needs adaptive ability to focus on
important descriptions of the main product in a bundle.

B.2 Adversarial Item Information

This type of data noise is generated by the sellers who might change item descriptions to depict different product
aspects, intentionally or not, leading to products potentially depicted for a different category. We can further
characterize the noise into soft adversarial noise and hard adversarial noise. The soft adversarial noise emphasizes
some peripheral properties of the item, while the hard adversarial noise contains mendacious item descriptions.
In the former scenario, to increase the visibility of their products, some sellers tend to describe multiple functions
or properties of the item in detail, which obscures its inherent purpose. It is analogous to the case of misleading
item description discussed before. This noise increases the difficulties of a stable learning. In the latter scenario,
item description is totally irrelevant to the actual selling item. For instance, a TV mount frame can camouflage
as a TV with various sizes as long as the seller removes the keyword ”mount” from the title. Interestingly, this
type of adversarial noise sometimes couples with a correct item image, which suggests opportunities to introduce
multimodal learning (such as using product images) during product classification.

B.3 Definition of Noise in Label Space

Another important yet hard to eliminate data noise is label noise. Unlike in the unsupervised setting, where
the label space can be inferred during feature learning, we train our classifier with supervised knowledge. This

28



label space is constructed by taxonomists from a selected group of samples over a period of time, or inherited
or migrated from an established stable ontology, e.g. item categories of a new locale is a child tree of a mature
locale on an international online retailer. As data accumulates, the amount of items with previously unseen
labels increases and thus the current taxonomy fails to capture the true label complexity. On the other hand,
defined labels are not necessarily mutually exclusive, resulting in a multi-label learning problem. However,
incomplete label space is inevitable in this setting. Confusing labels present additional difficulties for supervised
classification.

C Deep Hierarchical Product Classification Framework (DHPC)

The proposed model for product classification is a two-stage classifier, making the whole pipeline work as a
hierarchical classifier. There are two main reasons. First, the label space of target product categories contains
thousands of labels, which are sometimes confusing. Some techniques termed as extreme multilabel classifica-
tion/ranking (XML/XMR) are designed to deal with this type of learning tasks with large label space. However,
effective information mining from the large noisy dataset poses numerous challenges to reach high accuracy.
The other reason for hierarchical classification is that taxonomy structure defined by internal taxonomists is a
hierarchical tree. It is straightforward to incorporate this structure into our model. Besides, from the business
perspective, a hierarchical classifier can help to identify departments with low accuracy and then to fine-tune them
separately in the order of priority. In this paper, we denote the first level classifier as the department classifier,
which assigns products to a department, e.g., electronics, fashion etc. Each locale generally contains dozens of
departments. The second level classifier, called a leaf classifier, predicts items further into granular categories of
each department. The number of categories ranges from hundreds to tens of thousands.

The whole pipeline is shown in Fig. 2. First, item text information including item title, description and bullet
points are preprocessed to remove nonalphabetic characters and resample for balanced category distribution.
Since the number of categories in department and leaf classifiers are distinct, we shall wisely select sampling
threshold values. For department classifier, we randomly select hundreds of items per leaf node and combine all
leaf node samples in a given department. For leaf classifier, we randomly select thousands of items per leaf node
without replacement. After data preprocessing, the department and leaf classifiers are trained independently with
an identical deep network structure. Details of the model structure will be presented in the next section.

The inference pipeline differs from the training schedule. Rather than independent querying, it works in
cascade from department prediction down to leaf node prediction. As indicated in Fig. 2, the department classifier
predicts the source item into the electronics department. The leaf classifier of the electronics department further
predicts that item as a iPhone case. That is, we rank model prediction scores to find suggested department and
then infer a leaf node within that department. During this process, a set of department prediction scores and the
corresponding set of leaf prediction scores is generated. The two scores are then multiplied as confidence score
for thresholding and model calibration.

C.1 Deep Neural Network Classifier

Considering model ability to handle multiple languages for various locales, we select a state-of-the-art multi-
lingual model as the backbone structure. Specifically, we choose to use the pre-trained Bidirectional Encoder
Representations from Transformers (BERT) in a multilingual setting. Our model is then fine-tuned on top of
this architecture with an additional feed-forward neural network (FFNN) as the non-linear classifier. The model
architecture is shown in Fig. 3 and consists of 4 important components: an embedding component, an transformer
encoder, a feature pooled network and a non-linear multi-layer classifier. Parameters of the embedding component
and transformer encoder are pre-trained on a large corpus of multilingual text.

In the first step, item text information is tokenized by a trained multilingual dictionary (contains 30522
words). Then, the embedding layer projects these tokenized words into a latent space. WordPiece embedding is

29



Model

Model

Leaf Nodes

Departments

Locale 
Taxonomy Locale

Department 1

BrowseNode i BrowseNode j

Department N

BrowseNode i

OtterBox Prefix Series Case for 
iPhone 12 & iPhone 12 Pro - Clear

Item Text Information

Train Inference

Electronics

iPhone
Case

Department 
Matching 

Leaf Matching 

Department/Leaf Data 
Preprocessing

Department/Leaf Data 
Classifiers

Hierarchical Label Space

…

…

Figure 2: Hierarchical product classification framework (DHPC). The blue arrow and green arrow streams
respectively indicate training and inference processes.

used here instead of the usual practice word embedding. During this process, segment embedding and position
embedding are also concurrently encoded and added to the token embedding. It allows the model to understand
sentence-wise sequential order. In our case, we use segment embedding to indicate whether words belong to item
title, description or bullet points. The output of this embedding layer is a sequence of high dimensional symbol
representations.

The transformer encoder maps the output of the embedding layer to a sentence/paragraph level semantic
embedding vector,E[CLS]. The original BERT transformer encoder contains 12 identical bidirectional transformer
layers. Each layer has two sub-layers. The first is a multi-head self-attention mechanism, and the second is
a simple, position-wise fully connected FFNN. A residual connection is employed around each of the two
sub-layers, followed by layer normalization. That is, the output of each sub-layer is LayerNorm(x+Sublayer(x)).

Knowledge Skip. Generally, supervised classification tasks use the first embedding vector E[CLS] of outputs of
the transformer layer as the semantic representation. During experiments, we observed that keywords of product
categories frequently exist in the title information, which is relatively easier to catch by attention than statement
understanding. Therefore, in our model, we consider both deep and shallow encoded knowledge to enhance
classification accuracy. E[CLS] from every other intermediate transformer layer are pooled together with the last
one and then undergo a feature pooling network. There are several options for feature pooling, e.g., maxpool,
meanpool or concatenation.

The last part of our model is a two-layer fully-connected network with BatchNorm and Dropout layers inside.
The classification loss is binary cross entropy allowing for multi-label learning.

C.2 Model Accuracy and Coverage

Model accuracy and coverage are two essential evaluation metrics we use to quantitatively assess the model
performance in a product classification system. Since the ground truth distribution of product categories is
unequal, and the importance of categories is determined by business purposes, the preferred model must combine
high accuracy with high coverage.

30



𝐸["#$]𝐸["#$]

𝐸[$&'(&] 𝐸)* 𝐸+* 𝐸[$,-] 𝐸)) 𝐸.)

Tok 1 Tok N Tok 1 Tok M

… …

……

Item Title Item Description/Bullet Point

…

…

𝐸["#$]

𝐸["#$] Trm Trm Trm Trm Trm

Trm Trm Trm Trm Trm

Pooling Layer
(Max/Mean/Concat)

N*768
768

1024

BatchNorm/
Dropout Categories

Embedding
Features

Confidence
Vector

FFN Classifier

Pre-Trained BERT

Figure 3: Deep hierarchical product classifier with pre-trained BERT knowledge

D Training Strategy

Training a deep neural network on large noisy data, e.g. classifying millions of items with thousands of target
labels, would easily result in overfitting and get trapped in a false local optimum, i.e. overconfidence. Especially
in our cases, the product’s text information contains mixed types of noise mentioned in the Sec. B. To overcome
these difficulties during the training process, general training strategies, such as early stopping, dropout, weight
regularization/decay etc., are employed. Moreover, to further improve the model as well, we adopt the following
training strategies.

D.1 Bootstrap Learning

The first training strategy is a self-justified learning mechanism accounting for knowledge consistency during
training [1]. It augments the usual prediction objective with a notion of perceptual consistency, e.g. consistency
of model predictions in each batch training. More specifically, it allows the model to disagree with a perceptually-
inconsistent training label and effectively relabel the data while training. The assumption behind this idea is
that incorrect labels are likely to be inconsistent with other data points predicted to the same label by the model.
Therefore, it acts in a manner of self label clean-up and bootstraps itself until convergence to a stable knowledge.
Here, we incorporate this idea into the cross-entropy training loss. Recalling the binary cross-entropy (BCE) loss:

LBCE(p, q) = −
N∑
k=1

pklog(qk) + (1− pk)log(1− qk), (5)

where pk, qk are ground truth label and model prediction, respectively. N is the size of target labels. To allow for
differentiability of the proposed bootstrap loss, the label consistency is defined by predicted category probabilities
qk, hence the above BCE loss is modified as:

31



LBootstrap(p, q) = −
N∑
k=1

βpklog(qk) + β(1− pk)log(1− qk) + (1− β)qklog(qk), (6)

where parameter 0 ≤ β ≤ 1 balances bootstrap learning and supervised classification. It is empirically set in
the range [0.8, 0.95]. Due to the large batch training steps (tbatch), we can set a delta activation β̂ that adaptively
turns on/off the bootstrap loss at a given global step Tgate:

β̂ =

{
1, if tbatch < Tgate

β, if tbatch ≥ Tgate
(7)

D.2 Negative Sampling

It is common that a product possess multiple functions, but we have limited knowledge of their complete category
labels in the training data. The label tags are provided by sellers based on their limited knowledge of category
taxonomy. Generally, one or a few positive labels will be allocated for a given item in the training set and the rest
of labels are assumed to be negatively associated with it. However, in such a setting, negative samples outnumber
positive samples dramatically, leading to a high precision but low recall. To avoid quick convergence to a false
local optimum, we adopt negative sampling in the learning objective. Suppose, in Eq. 8, N = Npos +Nneg, i.e.,
Npos positive labels and Nneg negative labels. Eq. 6 is updated as:

Lnegsamp(p, q) = −
Npos∑
k=1

β̂pklog(qk)−
Nneg

σN

Nneg∑
j∼P (σ)

β̂(1− pk)log(1− qk)−
N∑
k=1

(1− β̂)qklog(qk), (8)

where P (σ) is a probability function to select soft negative samples, and σ controls their contribution in the loss.

D.3 Soft Label with Temperature Scaling

Label smoothing is a way to make our model more robust so that it generalizes well, which is especially useful in
big data mining. It was first introduced by Szegedy et al. [2] for multi-class supervised learning tasks in computer
vision. It is originally designed for the last classifier layer with softmax function to prevent overconfidence. The
mathematical formulation is simple:

pk = (1− ε)pk + εu(k), (9)

by mixing the ground truth label pk with a scaling term u(k). u(k) is a distribution function in the label space
and the simplest choice is a fixed scaling value, e.g. 1

N . Hence, it prevents the largest logit (output of last layer)
from becoming much larger than all others. We use a similar idea to scale prediction scores instead of the ground
truth labels. In Eq. 8, qk is the sigmoid output of logit, qk = sigmoid(logitk). Therefore, following the same
logic, we modify qk as :

qk = sigmoid(
logitk
ε(tbatch)

), (10)

where ε > 0 can be a fixed value or a function of global batch training step tbatch allowing for adaptive scaling as
we did in β̂. It is worth noting that ε > 1 and ε < 1 carries quite different roles during training, forcing the model
towards the opposite converging status. Setting ε > 1 in the early training stage can help to explore potential
local optima while setting ε < 1 makes the model quickly converge to a local optimum.

32



D.4 Augmentation with Label Semantic Information

Label semantic information plays an essential role in product classification, since this knowledge is predefined
to perceptively group items with their inherent properties. We also observe that, if text information of an item
contains key words having a similar morphology of label name, it has a greater chance to be correctly predicted.
Hence, we believe it is beneficial to incorporate the label information into our training data and force the model
to understand these patterns. Specifically, we randomly chose a small portion of training data per leaf node and
shuffling their title information by words. Then, we insert their labels’ name in any place of the shuffled title.
Their item description and bullet points are removed. Because, comparing with item title, other text information
tend to follow the logic of natural language in sentences. Shuffling would destroy these properties.

E Experiments

In this section, we include several experiments to validate the effectiveness of the proposed framework in two
large datasets. We also conduct an analysis of product classification with different data settings, model structures,
supervised learning goals and training strategies. Since these factors might positively affect our supervised
learning tasks, we explore their potential and use cases. All experimental details are given below and results are
reported with discussions.

E.1 Product Classification in 2 Large Datasets

This experiment is designed to evaluate the proposed model in real use cases. We try to understand how it
performs under different language environments and data qualities.

E.1.1 Experimental Settings

Two independent datasets are sampled from two European locales (two countries, L1 and L2, using distinct
languages from an online retailer) which contain millions of product items with text information in a newly build
online shopping site. L1 data contains 50% of golden data source, i.e. positive labels of items were human-audited
and hence high quality, and 50% general data, i.e., samples of original product data source with noise. L2 data is
all general data which means it is noisier than L1 data. The major challenge of learning with these two datasets is
that we do not have complete positive/negative label information for each item, e.g. labels are not fully explored.
Discussion of data collections and label process can be found in Sec. B and Sec. D.2. The training data contains
several hundreds of millions of items with thousands of labels. The test set for each locale is sampled from
catalog based on importance. It contains thousands of items distributed in thousands of labels. For these datasets,
the text information is mixed with incomplete data source (i.e. missing item description or bullet point) that are
deliberately constructed to assess practical use cases.

We chose a deep neural network (DNN) model as the baseline comparison. It encodes multi-view text inputs
through an embedding layer and then pools the embeddings before a Multilayer Perceptron Classifier (MPC).
The MPC consists of a few fully connected layers. This simple yet effective model successfully classify product
item with high accuracy. It worth noting that the DNN model is trained from scratch for each dataset using the
same set of hyper-parameters.

Accuracy score is calculated from the human assessment of the model prediction. The final prediction score
is the multiplication of department confidence score and leaf confidence score, reflecting how much confidence a
model has in the final leaf node predictions. This score is then used to threshold model prediction in order to
reach a given accuracy demand. Please note, all of the assessment is weighted by the importance of departments.

33



Table 9: Comparison with DNN baseline model for department/leaf classification in the L1 data.
Improvement(+)/Downgrade(-) of the department/leaf level accuracy is reported.

Department Name Department Acc Improve Leaf Acc Improve

Department 1 -0.0377 -0.0427
Department 2 -0.1230 +0.0258
Department 3 -0.0254 +0.0317
Department 4 +0.0065 -0.0433
Department 5 -0.0506 +0.0148
Department 6 -0.0578 +0.0599
Department 7 -0.0262 +0.0520
Department 8 +0.0016 +0.0819
Department 9 -0.0249 +0.0253
Department 10 -0.0658 -0.0067
Department 11 +0.0182 +0.0173
Department 12 +0.0321 +0.0771

E.1.2 Results

L1 Dataset. Hierarchical classification results of product items in L1 are shown in Tab. 9. Compared with
the DNN baseline, the overall accuracy predicted by the proposed model is improved by 3.4% for leaf node
predictions but slightly worse (drops 1%) for department predictions. Considering the chain effect in the
hierarchical classification, within some departments, DHPC possesses a significantly better accuracy than the
DNN model. For example, in Department 11 (the largest department) and Department 12 (the 3rd largest), DHPC
is better in both department and leaf classifiers. However, we also observe that, in the 2nd largest department
(Department 4), although the department classification beats DNN model, DHPC has an obvious worse accuracy
in leaf node classification. After investigation, we found the discrepancy is caused from resampling strategies
during data prepossessing since category distribution in this department is less balanced than in the other 2 largest
departments.

L2 Dataset. L2 data is generally noisier than L1 data, hence the overall classification accuracies in the department
and leaf level are lower than that of L1 product classification. In comparison, DHPC improves leaf node accuracy
by 2% while the department level accuracy remains the same. Similarly, we further compare them in Department
3, 4, 6 (the top-3 largest departments). Except for the department classification of Department 3, all of the other
department/leaf classifications indicate superior performance of the proposed model. Overall, DHPC excels in
most department and leaf classifications in the L2 dataset.

Accuracy VS. Coverage. In addition to the accuracy assessed with the whole dataset, we attempt to evaluate the
confidence of the proposed model, providing insights for model fine-tuning. To this end, we threshold model
predictions based on confidence scores to allow at least 90% accuracy. For L1 dataset, DHPC outperforms DNN
model by 13% more coverage after thresholding. For L2 dataset, we observe 13% more coverage at 90% accuracy
compare to the DNN model.

E.2 Ablation Study of Proposed Training Strategies

In this section, we conduct several ablation studies to evaluate our proposed training strategies and discover their
potentials. Parameter exploration in these experiments provides hints for future model design.

34



Table 10: Comparison with DNN baseline model for department/leaf classification in L2 data.

Department Name Department Acc Improve Leaf Acc Improve

Department 1 -0.1516 +0.0345
Department 2 +0.0324 +0.0231
Department 3 -0.0338 +0.0252
Department 4 +0.0091 +0.0259
Department 5 +0.0511 +0.1128
Department 6 +0.0085 +0.0441
Department 7 -0.0477 -0.0630
Department 8 +0.0909 +0.0489
Department 9 -0.0607 -0.0643
Department 10 +0.0417 +0.0913

E.2.1 Evaluation of Active Bootstrap Learning

Active bootstrap learning helps the model to capture the most consistent knowledge (self-confidence) during
training and overcome overfitting issues. We explore various parameter choices for the L1 department classifier.
β controls the strength of self-confidence. Tgate indicates at which global training step we will turn on this
strategy, otherwise the model uses the traditional binary cross-entropy loss. From results in Tab. 11, we find early
initialization of bootstrap learning, e.g. Tgate = 0 with a weak self-confidence setting, e.g. β = 0.9, offers the
best performance. Hence, we argue that, for product classification, consistent knowledge captured at the very
early stage of training contributes to high accuracy predictions.

Table 11: Influence of bootstrap learning in L1 department classification. Improvement (+) or Downgrade (-).

β 0.9 0.8 0.7 0.6

Tgate = 0 +0.0148 -0.0016 +0.0047 +0.0029
Tgate = 1000 +0.0007 -0.0015 -0.0023 -0.0038
Tgate = 3000 -0.0011 -0.0020 -0.0024 -0.0038

E.2.2 Model Pruning

We prune the original BERT model structures by using shallow embedding features for product classification.
Specifically, we extract E[CLS] of the first 2 layers and then pooling (PruneBert2), first 4 layers (PruneBert4)
and first 6 layers (PruneBert6). We follow the same hyper-parameter settings for all pruned models and test their
prediction power in two L1 product classification tasks, e.g., department classification and leaf node classification
of Department 10. In this experiment, we do not add any noise handling training strategies introduced in Sec. D.
The prediction accuracy is reported in Tab. 12, which indicates a very close performance to the original BERT
when using its first 4 layers. Considering that the original BERT has 110 MM parameters, this experiment
suggests a simple structure of BERT with shallow encoding layers (half of total parameters) while effectively
captures categorical information in our tasks.

E.2.3 Evaluation of Negative Sampling

Defining a suitable P (σ) in Eq. 8 is challenging given the complex confusion patters across departments. In this
preliminary study, we randomly select a portion of unlabeled categories (σ) as soft negative labels. Here, we
explore σ settings from 0 to 60% with step size 10% for department and leaf classifiers respectively. As shown in

35



Table 12: Changes of department/leaf prediction accuracy after model pruning.

Model PruneBERT2 PruneBERT4 PruneBERT6

Department Classifier (L1) -0.012 -0.004 -0.003
Leaf Classifier (Department 10, L1) -0.015 -0.001 -0.003

Parameters 40MM 54MM 67MM

Table 13: Influence of negative sampling in department/leaf classification. Improvement (+) or Downgrade (-).

σ 0.9 0.8 0.7 0.6

Department Classifier (L1) -0.013 -0.019 -0.011 -0.019
Leaf Classifier (Department 10, L1) +0.006 +0.001 +0.010 +0.005

Tab. 13, the department classifier exerts the best performance when negative sampling is turned off, but the leaf
node classifier embraces a large σ value, e.g. σ = 0.7 for leaf classifier of Department 10 in L1 data.

E.2.4 Evaluation of Soft Labels

We search smoothing factor ε in a wide range [1.5, 0.7] to provide a comprehensive understanding of soft labels
for noisy data. We turn on this strategy at the very beginning of the training process since we do not found any
opportunities if we delay it. The result in Tab. 14 shows that making smoothed soft labels, e.g., ε < 1, helps our
model towards high accuracy but it has to be carefully chosen to prevent from over-smoothing, e.g. downgrade if
ε < 0.7. We also find the necessity of more training epochs to allow a complete convergence (20% more training
epochs).

Table 14: Influence of soft label in department/leaf classification. Improvement (+) or Downgrade (-).

ε 1.5 1.2 0.9 0.7

Department Classifier (L1) -0.002 -0.001 +0.015 +0.005
Leaf Classifier (Department 10, L1) -0.010 +0.001 +0.010 -0.002

F Conclusions and Future Work

In this study, we propose a deep hierarchical classification framework for text-based product classification
based on the pre-trained multilingual BERT model. We address typical types of data noises in the product data
source and design several learning strategies to handle them. Experiments on two large datasets demonstrate the
effectiveness of the proposed model. The additional ablation study further provides domain knowledge of optimal
choices of training strategies under different data and task settings.

There are several interesting directions for further investigation. For example, we can improve classification
accuracy by using a pre-trained model designed for languages of the targeting locale. Besides, multimodal
information such as product images can be complementary sources as a feature. In addition, we can further
upgrade the proposed training strategies by adding/replacing them with self-adaptive selection functions, such as
label-semantic-based negative sampling.

References

[1] Reed, Scott, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Erhan, and Andrew Rabinovich.
"Training deep neural networks on noisy labels with bootstrapping." arXiv preprint arXiv:1412.6596 (2014).

36



[2] Szegedy, Christian, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. "Rethinking the
inception architecture for computer vision." In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2818-2826. 2016.

[3] Pennington, Jeffrey, Richard Socher, and Christopher D. Manning. "Glove: Global vectors for word
representation." In Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pp. 1532-1543. 2014.

[4] Bojanowski, Piotr, Edouard Grave, Armand Joulin, and Tomas Mikolov. "Enriching word vectors with
subword information." Transactions of the Association for Computational Linguistics 5 (2017): 135-146.

[5] Peters, Matthew E., Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. "Deep contextualized word representations." arXiv preprint arXiv:1802.05365 (2018).

[6] Radford, Alec, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. "Improving language understanding
by generative pre-training." (2018).

[7] Radford, Alec, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. "Language
models are unsupervised multitask learners." OpenAI blog 1, no. 8 (2019): 9.

[8] Brown, Tom B., Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan et al. "Language models are few-shot learners." arXiv preprint arXiv:2005.14165 (2020).

[9] Devlin, Jacob, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. "Bert: Pre-training of deep bidirec-
tional transformers for language understanding." arXiv preprint arXiv:1810.04805 (2018).

[10] Taylor, Wilson L. "“Cloze procedure”: A new tool for measuring readability." Journalism quarterly 30, no.
4 (1953): 415-433.

[11] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv
preprint arXiv:1503.02531 (2015).

[12] Liu, Jingzhou, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. "Deep learning for extreme multi-label
text classification." In Proceedings of the 40th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 115-124. 2017.

[13] Jain, Himanshu, Yashoteja Prabhu, and Manik Varma. "Extreme multi-label loss functions for recommen-
dation, tagging, ranking & other missing label applications." In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 935-944. 2016.

[14] Goldberg, Yoav, and Omer Levy. "word2vec Explained: deriving Mikolov et al.’s negative-sampling
word-embedding method." arXiv preprint arXiv:1402.3722 (2014).

37



Graph Neural Networks for Inconsistent Cluster Detection in
Incremental Entity Resolution

Robert A. Barton, Tal Neiman, Changhe Yuan

Abstract

Online stores often utilize product relationships such as bundles and substitutes to improve their catalog
quality and guide customers through myriad choices. Entity resolution using pairwise product matching
models offers a means of inferring relationships between products. In mature data repositories, the
relationships may be mostly correct but require incremental improvements owing to errors in the original
data or in the entity resolution system. It is critical to devise incremental entity resolution (IER) approaches
for improving the health of relationships. However, most existing research on IER focuses on the addition
of new products or information into existing relationships. Little research has been done for detecting low
quality within current relationships and ensuring that incremental improvements affect only the unhealthy
relationships.

This paper fills the void in IER research by developing a novel method for identifying inconsistent
clusters (IC), existing groups of related products that do not belong together. We propose to treat the
identification of inconsistent clusters as a supervised learning task which predicts whether a graph of
products with similarities as weighted edges should be partitioned into multiple clusters. In this case, the
problem becomes a classification task on weighted graphs and represents an interesting application area
for modern tools such as Graph Neural Networks (GNNs). We demonstrate that existing Message Passing
neural networks perform well at this task, exceeding traditional graph processing techniques. We also
develop a novel message aggregation scheme for Message Passing Neural Networks that further improves
the performance of GNNs on this task. We apply the model to synthetic datasets, a public benchmark
dataset, and an internal application. Our results demonstrate the value of graph classification in IER and
the ability of graph neural networks to develop useful representations for graph partitioning.

A Introduction

Entity resolution, the problem of grouping related entities together, is an important problem in computer science
with many application domains, such as databases (when linking records from different databases that represent
the same object) or natural language processing (disambiguating nouns that refer to the same entity) [2, 6, 12].
Much of the research in entity resolution focuses on static systems where the resolution is performed as a one-time
exercise. In many applications, however, a large repository of existing relationships must be continually updated
in order to maintain correct groupings of entities. Incremental entity resolution, or dynamic entity resolution,
studies the problem of how to update repositories of existing relationships over time [15, 24, 33]. Studies of
incremental entity resolution typically focus on how to adapt to new entities and information as they are received.

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

38



However, another important goal in practice is to make the resolved entities incrementally better while not
decreasing quality [32]. Where cluster quality is important, we must detect incorrect clusters of relationships
with high precision to ensure that healthy clusters are maintained. Incorrect clusters of related entities can arise,
for example, from poor quality in the original data, prior incorrect clustering decisions, changing item data,
or malicious actors that fool existing entity resolution systems. We refer to clusters or families of incorrectly
resolved entities as inconsistent clusters (IC).

As an example of where Inconsistent Cluster detection is important, consider entity resolution in the domain
of e-commerce products. Stores such as Amazon, AliExpress, WalMart, and eBay provide huge selections of
products for customers. These platforms often utilize product relationships to link relevant products together
or link them to customers. Examples of product relationships include duplicates, complements, substitutes,
and accessories. Many entity resolution approaches have been proposed for these product matching problems
[21, 23, 27]. Another useful but less researched relationship is product variations, which refer to families of
products that are functionally the same but differ in specific attributes. As an example, shoes that are identical in
all aspects other than size and/or color are variations of one another and are shown to customers on a single page
to simplify selection. In this case, the entire resolved cluster is shown to the customer, and the inclusion of any
shoe that does not belong will make the whole family inconsistent. In this case, IC defects are directly visible to
customers and are critical to fix. More generally, inconsistent clusters of items can be detrimental in any entity
resolution system.

Conventional entity resolution methods were not developed to detect ICs with high precision for IER. In the
conventional approach, a matching step generates the probability for a relationship between all pairs of items.
Matching is followed by a clustering step, wherein clusters are formed by applying a graph processing algorithm
such as transitive closure to all edges above a threshold value [2, 19]. To determine whether existing clusters
should be divided, one could apply matching and clustering within all existing families. However, it is possible
for pairwise scores to conflict [26], leading to incorrect cluster formation and preventing existing Inconsistent
Families from being detected. It has been observed that different clustering algorithms have different strengths
and weaknesses [19]. We propose instead a classification task to evaluate cluster quality that generates a score
for any given cluster being inconsistent. In addition to allowing us to escape the weaknesses of any particular
graph processing algorithm, this approach has the benefit that the score can be tuned to ensure high precision
identification of ICs. Before either forming a new cluster or disaggregating an existing cluster, IC detection can
be used to ensure high confidence that every cluster is incrementally improved. This ability is especially useful
when the quality of each individual cluster is important such as in the product variations problem above.

We formulate the IC detection problem as a graph classification problem on weighted undirected graphs,
where edges represent the similarities between each node. We then develop a binary graph classifier to predict
whether the candidate items jointly form a consistent cluster. Although we have motivated it from an entity
resolution perspective, the problem represents a rich area of study for graph classification since the data are well
represented in graph form with node features associated with entities and pairwise similarity scores associated
with edges. We apply graph neural networks [5, 14, 16, 20, 30] to the problem of scoring a group of entities for
whether they belong together. We demonstrate that existing Graph Neural Network architectures perform well
at graph classification on weighted graphs, and we develop a novel message representation that concatenates
multiple node aggregation functions together to improve performance. We tested our methods in a variety of
problems, including an e-commerce application, open data, and synthetic datasets, and demonstrate the general
superiority of the proposed Graph Neural Network approach.

To summarize, we make the following major contributions in this work. First, we introduce the Inconsistent
Cluster detection problem as an important problem in Incremental Entity Resolution and demonstrate its usefulness
on a real-world product variations dataset. Second, we develop a Graph Neural Network-based binary classifier
for solving the Inconsistent Cluster detection problem. We demonstrate a novel message aggregation scheme that
significantly improves the performance of a GNN classifier on this task, and show that its performance exceeds
state of the art. Third, our extensive evaluations shed light on the superior performance of the proposed method

39



against several existing methods. The results show that existing methods may still work well when positive and
negative edges are reasonably separated. But when the scores become more mixed and noisy, the advantage of
our graph classifier is clear. Finally, we demonstrate that Graph Neural Networks can learn robust representations
of weighted graphs for reasoning about partitioning decisions, which we believe will be a valuable area of study
for graph representation learning.

B Background

In this section, we review several areas of research that are closely related to this work.

B.1 Product matching

Much existing research on product relationships in e-commerce focuses on product matching, e.g., duplicates,
complements and substitutes. Product matching is usually formulated as an entity resolution problem [6, 12].
Konda et al. described an end-to-end entity resolution system that includes steps from data preprocessing
to product matching [21]. More recently, many deep learning-based methods have been developed for entity
resolution. Mudgal et al. evaluated several deep learning-based approaches for entity matching and found that deep
learning-based methods do not outperform existing approaches in more structured domains, but can significantly
outperform them on textual and noisy data [23]. Shah et al. discussed two approaches for product matching,
including a classification-based shallow neural network and a similarity-based on deep siamese network [28].
Ristoski et al. used both word embeddings from neural language models and image embeddings from a deep
convolutional neural network for product matching [27]. Li et al. studied using product titles and attributes for
product matching and evaluate their method in two application scenarios, either as a classification problem or as
a ranking problem [22]. Datasets that are specifically targeted for product matching have been published. For
example, a WDC dataset has been published by [25] for large-scale product matching. Its English language subset
consists of 20 million pairs of duplicate products that were extracted from 43 thousand e-commerce websites.

Another closely related area of research is product graphs [9, 18]. A product graph is a framework to capture
all aspects of entities in a unified representation, including both product attributes and the relations between
them. Such a unified view is beneficial because identifying relevant entity attributes and learning relationships are
tightly coupled and can benefit from being treated jointly.

B.2 Incremental entity resolution (IER)

IER has been studied previously with different objectives. [33, 34] address the problem from the perspective of
evolving matching rules, and point out that the IC problem arises in cases where a stricter matching rule requires
all existing clusters to be reevaluated. [15] discusses IER following record insertion, deletion, and change and
allows existing clusters to split apart in response to these operations. The main difference between these works
and our own is that we focus on the precision of updates to individual clusters rather than relying on the ER
clustering algorithm to cluster optimally. These goals are important in an IER system that may already have
relatively high cluster quality that needs to be preserved.

Repairing existing relationships has also been studied from an ER perspective [32] via the creation of a
provenance index that tracks how clustering has changed over time. In this work, we identify clusters that need
repairs with high precision when the provenance may not be known.

B.3 Collective entity resolution

Collective entity resolution, broadly defined, treats clusters of products jointly in entity resolution [2]. Many
existing approaches to collective entity resolution can be described as a two-step process: matching and clustering.

40



The matching step can be solved with the methods reviewed in the previous section and outputs scores of all
edges in a cluster. The clustering step can also be solved using many methods. One popular method is transitive
closure (TC) [2,19]. In this method, edges below a critical threshold t are removed and connected components are
computed for remaining edges. K-Core is another common method for the clustering step. In graph theory, k-cores
of the graph are connected components that remain after all vertices with degrees less than k are recursively
removed. These methods can be evaluated on our task by whether they split a cluster into more than one partition
after their application.

Finally, a more recent method called SuperPart is a cluster scoring model [26]. SuperPart directly formulates
classification of a weighted graph as having one or multiple partitions as a binary classification problem. The
SuperPart model featurizes a graph of pairwise edge scores by calculating graph-level features such as the mean
external edge (mean of the edges removed by transitive closure at a fixed threshold), the average edge score in the
cluster, and the number of connected components after filtering out edges below various thresholds. A random
forest is used to extract a cluster-level score from the table of features that represents a likelihood for the cluster
to remain as a single partition. To our knowledge, SuperPart is the only prior algorithm that assigns scores to
evaluate cluster quality. We will use it as a baseline algorithm in this work.

B.4 Graph neural networks

Graph neural networks (GNNs) have been an increasingly active research area in recent years [17]. GNNs
represent relationships between a set of entities as a graph, allowing the incorporation of both entity-level
features as well as edge-level features. Many real-world problems can be represented as graphs, such as social
networks [20], chemical and biological compounds [10, 13, 30] and product graphs [5]. One widely applicable
formulation of graph neural networks, Message Passing Neural Networks [13], uses message propagation to
iteratively update embedding representations of nodes, such that the embeddings capture the common patterns
between node features directly communicated via edge features. Graph representation learning has been studied
extensively, e.g., [5, 14, 16, 20, 30]; however, GNN research has focused more on learning node embeddings than
on graph classification. Gilmer et al. performed graph-level regression to predict 13 chemical properties on a large
graph dataset, whereas here we have a graph-level classification task related to the graph partitioning [13] . Chen
et al. perform graph partitioning at the node level given a fixed number of partitions [5]. This task is similar to the
classification task described here in that it involves graph partitioning, but is dissimilar in that we have weighted
rather than binary edges and are classifying entire graphs rather than nodes. Graph Neural Networks have been
explored for entity linkage in knowledge bases in Neural Collective Entity Linking (NCEL) [4], wherein the best
candidate edge for a given node is found using an existing clustering. Overall, graph neural network models are
particularly compelling for entity resolution because of their flexibility: they can learn from both node features
and edge features and make predictions for nodes, edges, or entire graphs. To our knowledge, graph neural
networks have not yet been applied to evaluating clusters in entity resolution, for which many applications still
use the traditional approach of calculating similarity scores followed by algorithmic clustering approaches.

C Method

C.1 Problem

Product variations are increasingly used by e-commerce websites to group similar products into families so that
each family can be shown on a single detail page. Again taking shoes as an example, the shoes that share key
aspects such as brand and style would be displayed on the same page; non-key aspects such as size and color are
shows as selectable (dropdown) options. Such aggregated views of products allow customers to select specific
products much more easily. Since all varied items are shown together, even a single item incorrectly grouped
with others creates a visibly inconsistent family. Importantly, stores such as WalMart, Amazon, and Shopify offer

41



Figure 1: (a) Example of an IC in the context of product variations. Two items representing animal-themed
slippers should be separated from traditional Womens’ slippers. (b) Generic binary graph classification problem.
Existing fully connected graphs of items contain both correct relationships (solid green lines), and incorrect
relationships (dotted red lines) according to auditor labels. The edge labels encode a partitioning of the graph into
one subgraph in the case of healthy families (y = 0) or multiple subgraphs in the case of IC (y = 1). The goal of
the classifier is to find the correct graph label y without knowing the true partitioning. The classifier relies on
a probability for edge existence p derived from pairwise item similarity. As in the IC family in (b), the task is
challenging for algorithmic approaches because p might vary across two true clusters.

sellers the opportunity to upload information about variations directly, allowing for the possibility that incorrect
clusters can arise as a result of input data rather than as the output of an entity resolution system.

In this paper, we focus on the problem of detecting whether a family of items form a true cluster, which
we define as the Inconsistent Cluster (IC) problem. Due to the need to treat product families collectively, IC
detection can be much more challenging than simple pairwise entity matching. Imagine a family of products with
10 members, and only one of them does not belong. The family as a whole is clearly defective. However, if we
consider the problem as pairwise product matching, a majority of the 45 product pairs (10 choose 2) are correct
matches, with only 9 of them as mismatches. Although we can add a clustering step to further decide whether the
family is defective or not, classic clustering approaches such as transitive closure or k-core may not work well for
real world problems where noisy data are prevalent [26]. For example, one or two of the 9 scores for mismatched
edges may be high.

Importantly, because we use an independent algorithm to classify clusters into consistent and inconsistent
clusters, our method can detect errors in the decision made by an entity resolution system. This is an important
contrast with other IER approaches because, as our data will show, clustering methods used in entity resolution
do not always make correct decisions. Even in this context of noisy pairwise scores, our method can be used to
enforce high precision for resolved clusters.

C.2 Formulation

We solve the IC detection problem by formulating it as a binary graph classification problem. Given an input
graph G(V,E), a signal y ∈ {0, 1} is to be reported for each graph (Figure 1). A graph with a negative label
corresponds to a healthy family and a positive label corresponds to an IC. As noted before, this graph classification
task arises not only in finding existing families that are IC, but in confirming that items to be combined have a
healthy score. The nodes represent items and all candidate families of items are fully connected with edge scores
pij that represent item similarity between items i and j.

For maximum generality, in this work, we assume only that there is a means available to produce the pairwise

42



node similarity feature p between all candidate related items. We create these pairwise edge scores for an internal
e-commerce application, the inconsistent variation family detection problem, by using a random forest on edge
features generated from each pair of records; these edge features are generated by a general record matching
platform similar to [8]. We also test the method on open data from [26] which contains weighted graphs with
ground truth partitionings. Finally, we can test our method on synthetic data. For this purpose, we adopt the
Weighted Stochastic Block Model [1], wherein scores between two partitions come from one exponential family
distribution, and scores within a given partition come from another.

C.3 Baseline Methods

One common method for making partitioning decisions in entity resolution is transitive closure (TC). In this
method, edges below a critical threshold t are removed and connected components are computed for remaining
edges. When enough edges fall below t to divide a candidate family into two or more connected components,
we predict y = 1 for the family-level label; otherwise, we predict y = 0. Unlike other models studied here, this
method does not provide a continuous score for how the cluster is likely to be classified. However, we note that at
a given threshold t, TC is a binary classifier which considers more families to be inconsistent as t increases. We
can therefore create a precision-recall curve for the purpose of comparing to other graph classifiers by sweeping t.
To do this, we construct a family-level score sTCi ≡ 1− tmini where tmini is minimum pairwise threshold at which
family i will have multiple connected components. If tmini is low (sTCi is high), then the cluster breaks apart
easily; however, if tmini is high (sTCi is low), even edges with high scores must be filtered out to divide the cluster.
We use the score sTCi as a binary graph classification score for the purpose of constructing a precision / recall
curve, where only families with score greater than or equal to a family-level threshold tf will be considered IC.

For k-core, we allow tunable k ∈ [3, 9], which is chosen in the validation job to optimize the F1 metric we
report. The k-core algorithm recursively prunes nodes with degree less than k. As for TC, we can calculate a
PR-curve for k-core using the minimum pairwise threshold at which k-core would separate or reduce the size of a
family.

We also implement the SuperPart algorithm from [26], which explicitly solves the classification task of
deciding whether a weighted graph should be broken into multiple partitions. To our knowledge, SuperPart is
the only existing graph classification method intended to classify clusters according to whether they should be
partitioned.

C.4 Proposed Model

Going beyond prior work, we propose to solve the graph classification problem by applying graph neural network
models (GNNs). In particular, we adopt the message passing neural network (MPNN) framework outlined
in [13] but propose a new message aggregation scheme that significantly improves the classification performance.
MPNNs can be described by their message passing, update, and readout functions. Given a graph G with node
features xv and edge features evw, the MPNN works by aggregating (AGG) messages Mt at each node v from
neighboring nodes N(v) at each timestep t. These collected message mt

v can depend both on the neighboring
node features as well as the edges. The messages are then used to update the hidden state hv of the node according
to an update function Ut. Finally, after T timesteps, the graph label is read from all node states according to a
readout function R:

mt+1
v = AGGw∈N(v)[Mt(h

t
v, h

t
w, evw)] (11)

ht+1
v = Ut(h

t
v,m

t+1
v ) (12)

ŷ = R({hTv |v ∈ G}) (13)

43



Table 15: Performance on real and synthetic data.

Dataset TC K-Core SuperPart GCN-E MAG-GCN (Ours)
Softlines 0.716 (0.006) 0.624 (0.014) 0.721 (0.005) 0.705 (0.005) 0.721 (0.009)
Hardlines 0.873 (0.008) 0.663 (0.002) 0.880 (0.004) 0.877 (0.003) 0.887 (0.003)
IC-Stratified 0.725 (0.012) 0.746 (0.026) 0.754 (0.023) 0.757 (0.003) 0.774 (0.003)
Beta(1,1), Beta(3,1.5) 0.375 (0.047) 0.433 (0.041) 0.619 (0.071) 0.576 (0.061) 0.687 (0.061)
Beta(2.5,4), Beta(4,2) 0.706 (0.057) 0.640 (0.067) 0.819 (0.04) 0.737 (0.039) 0.843 (0.039)
Beta(1,2), Beta(4,1.5) 0.624 (0.051) 0.762 (0.051) 0.914 (0.028) 0.813 (0.048) 0.932 (0.029)
Beta(1.5,4), Beta(3,1) 0.907 (0.03) 0.856 (0.04) 0.95 (0.016) 0.825 (0.037) 0.967 (0.014)
Beta(1.5,4), Beta(4,1) 0.936 (0.035) 0.924 (0.028) 0.976 (0.019) 0.907 (0.036) 0.973 (0.009)
Beta(1,4), Beta(4,1) 0.979 (0.01) 0.972 (0.016) 0.981 (0.02) 0.93 (0.025) 0.989 (0.014)
We report mean F1 score with parentheses enclosing standard error.

Of the MPNNs, we draw on the design of the Graph Convolutional Network (GCN) [20] and ideas from [35]
to produce an architecture that performs well at the task of deciding whether a weighted graph should be divided
into one or more partitions. The message passing function for our proposed approach, the MAG-GCN (Mixture
AGgregation Graph Convolutional Network), is

mt+1
v = (MEAN(hw, evw),MAX(evw),MIN(evw)), (14)

where (·, ·) denotes concatenation. We found the concatenation of the edge feature to the node features be
important, as observed in [11]. Moreover, the inclusion of the min and max aggregation represents a significant
departure from the message passing function of the GCN: mt+1

v ∼ MEAN(hw). We found that for reasoning
about partitioning in a weighted graph, it was helpful for the message passing function to carry more information
about the distribution of incoming edge weights than just the mean. To demonstrate these points, we compare the
MAG-GCN to an architecture that we refer to as GCN-E [11], which is the same but with message passing

mt+1
v = MEAN(hw, evw). (15)

We also tried adding a sum aggregator to our mixed aggregation, but found that this did not yield any benefit.
We also note that for the graphs studied here, where all of the information is contained in the edge weights, it is
not obvious how to adopt a vanilla GCN architecture such as that in [20], where the focus is on learning from
node features. After completion of this work, we became aware of [7], which demonstrates that a similar mixed
aggregation scheme enhances GNN performance in a broad array of applications.

For all of the GNN architectures we studied, the update function consists of a fully connected neural network
fU with ReLU activation, and the readout function consists of a fully connected network that operates on the
mean of the hidden states h̄v, R = fR(h̄v). Following readout the loss is calculated with binary cross-entropy.
We utilized learning rates between 10−2 and 10−3. Initial node features were set to a vector of zeros and the
edge weights evw were set to the pairwise edge similarity. Hyperparameters were tuned on synthetic datasets.
Our graph neural network models were built with Deep Graph Library [31], a general framework for building
Message Passing Neural Networks.

D Results

D.1 Experimental design

To evaluate model performance, we choose transitive closure, k-core, and SuperPart as baseline methods. For
evaluating performance on a test set, we use F1 score. For the F1 score metric, a threshold is first chosen to

44



Figure 2: Performance of cluster scoring on: (a) Softlines , (b) Hardlines, (c) An open dataset introduced in [26]
and referred to in that work as IC-Stratified. F1 scores for the same datasets can be found in Table 15.

maximize F1 score on a validation set, and the F1 score is evaluated on a test set.
We first evaluated all of the methods in an internal application. Several audited datasets are created as follows.

A group of items was shown to auditors on a single page, and the auditors were given the task of partitioning it into
one or more Variation families. One audited dataset consists of approximately 8,500 such families from a Softlines
product line containing 76,000 items which have been partitioned according to auditor labels; approximately
3,800 of these families were split by the auditors and are therefore IC. The second audited dataset consists of
approximately 6,500 families from a Hardlines product line containing 124,000 items; 2,700 families are IC.

We also use a publicly available dataset released in [26] called IC-Stratified; this dataset contains a training
set with 2649 nodes and a test set with 2424 nodes with ground truth partitionings into one or more families.

Finally, we evaluated our methods on synthetic datasets. When generating the datasets, we tested different
degrees of separation between positive and negative pairs, as well as the specific distributions for generating the
weights of these pairs. The systematic study on synthetic datasets allow us to gain deep insights on the advantages
and disadvantages of the different methods under different conditions. We generate synthetic data by creating
graphs of 1 or 2 ground truth families, where the latter is an IC example. Each node had probability of 0.97 to be
part of the first true family and 0.03 to from the second. All edges within true families were drawn from one Beta
distribution, and all edges between true families were drawn from another.

D.2 Real-World Datasets

For the Softlines and Hardlines datasets, we trained and tested the models on a fixed training, validation, and
test set 5 times, each with a different random seed for the pairwise classifier training. For IC-Stratified, pairwise
scores are provided and we split the training set into training and validation 5 different ways. A comparison of
the cluster scoring models can be found in Table 15, with PR-AUC curves shown in Figure 2. Overall, we find
that a model-based cluster scoring mechanism helps with the task of identifying inconsistent clusters, with both
SuperPart and MAG-GCN outperforming the TC baseline. We find that the MAG-GCN model performs the best
overall in Softlines, Hardlines, and the public dataset IC-Stratified from [26]. The GNN model is particularly
effective at improving recall at high precisions, an important metric for applications. An example precision-recall
comparison between the MAG-GCN and the TC baseline can be found in Figure 2.

To understand the origin of the improved performance, we plot the GNN score against the TC score in
Figure 3. We observe that the MAG-GCN derives its improved performance by boosting the scores of TC’s false
negatives more than reducing the scores of false positives. We also observe that larger families tend to benefit
more often from the GNN than their smaller counterparts. This pattern can be better understood by examining
some examples. The lower portion of Figure 3 shows example families that were correctly labeled positive by the
GCN but incorrectly by transitive closure. We see that while the pairwise model correctly drew low-probability
edges between clusters in many cases, there is often a structural component in the graph that makes it difficult to

45



Figure 3: Study of improved performance. Upper: MAG-GCN score is displayed against the TC score for (a)
Softlines, (b) Hardlines, (c) IC-Stratified. Blue points are ground truth negative ICs, red points are ground truth
positive ICs, and size represents the number of items in the family. The upper left hand corner of the graph
represents the area where the GCN increased the score compared to TC. The primary effect of the GCN is to
boost the scores of positive examples more than negative examples. Lower: example families of products that
were classified as non-IC by TC but were correctly classified as IC by MAG-GCN. The red points represent items,
black edges represent true positive edges, and blue dotted lines represent true negative edges. The width of the
line is proportional to the pairwise model prediction p. For example, in the rightmost plot, owing to a single edge
with weight 0.85 between two true clusters, TC did not suggest partitioning into two families with high likelihood
(score = 0.15); however, MAG-GCN correctly did (score was 0.78, true label was 1.0)

partition by transitive closure. For example, in the example from Softlines (a), there is a central node that holds
three separate clusters together. In the examples from Hardlines (b) and IC-Stratified (c) there are widely varying
edges between two true clusters.

D.3 Synthetic datasets

A study of synthetic data is shown in Figure 4. As mentioned previously, we produced artificial families of
items ranging from size 5 to 15 using a different distribution for true positive edges and true negative edges. By
varying the parameters of the distribution, we were able to determine how methods of cluster scoring perform
across different levels of difficulty. The distributions and corresponding performances are shown in Figure 4
and Table 15. We find that MAG-GCN consistently outperforms or is competitive with the other methods, with
particular performance increases for noisy data. For example, when positive edges are drawn from Beta(3, 1.5)
and negative edges are drawn from a uniform distribution – a noisy setting – MAG-GCN has an F1-score of
0.687 vs. 0.375 for TC and 0.619 for Superpart - an 83% and 11% improvement over the baselines, respectively.
However, when both positive and negative distributions are well-separated, most methods do well. This points to
the usefulness of our method in the noisy data setting, which is common in applied settings such as our internal
task.

46



Figure 4: Performance on synthetic data. Top: beta distributions used generate synthetic data. Negative edges are
drawn from the red distributions while positive edges are drawn from the blue distribution. Bottom: different
cluster scoring techniques are applied to each distribution. We utilize the synthetic datasets from Table 15 (N =
1000).

We also tested all methods against the GCN-E, which is similar to MAG-GCN but uses only mean node
aggregation rather than the mixture of mean, min, and max. We note that the concatenation of the edge feature
into a GCN alone is insufficient to learn this task as successfully as our method.

E Discussion

As in previous work [26], we find that by applying an additional cluster scoring model we can improve performance
on the joint task of classifying an entire family as inconsistent. Of the cluster scoring mechanisms we tested, we
find that the MAG-GCN is most effective, outperforming its immediate competitor SuperPart. We also found
that the benefit of the MAG-GCN is most dramatic for recall in the high precision regime, which is a relevant
metric for production use cases where we wish to fix only high-confidence IC families. The performance of
the MAG-GCN in comparison to SuperPart was also interesting. We noticed that when little data was available,
SuperPart performed well and once better than MAG-GCN (second to last plot in Figure 4), suggesting that
the SuperPart model may be better regularized. However, MAG-GCN appears to be more flexible and able to
learn effective representations of a wide variety of weighted graphs. Understanding the power of Graph Neural
Networks relative to featurized representations of graphs is an interesting topic for further study.

47



We also make note that MAG-GCN is significantly better than GCN-E, where the edge feature is simply
concatenated and the aggregation function is the mean. Xu et al. [35] note the mean aggregation function is
effective at learning the distribution of its surroundings while the max aggregation function is more effective at
distinguishing outliers. We note that the mean aggregation function provides information about the center of the
distribution of incoming edges, while the min and max aggregation functions provide some sense of its spread.

To frame the results in terms of our IC detection application, the decision at the cluster level, rather than
pairwise, appears to add value over TC primarily by increasing model score for families that would be false
negatives under TC because they are tied together by outlier edges. In Figure 3, the benefit of the GNN score
appears to increase for larger families, where there is more opportunity to have an outlier edge. We suspect that in
real-world applications of inconsistent family detection to product graphs, where there may be hundreds or even
thousands of products linked together, the benefits of this technique will grow.

Despite the performance enhancements achieved by the MAG-GCN, further work including raw node features
such as images and text is needed to take full advantage of the graph neural network paradigm for product
relationships. For the use case of automatically cleaving high confidence families, further work is recommended
on using GNNs to learn the correct partitioning within the IC. Models whose loss depends on the categorization
of each node such as the Line Graph Neural Network [5] might be well suited for this task.

F Conclusions

Using graph neural networks that leverage graph structure, we are able to significantly improve the ability of
cluster scoring models to detect Inconsistent Clusters for e-commerce applications. More generally, we show
that graph neural networks can learn robust graph representations of weighted graphs for partitioning decisions.
Future work will focus on incorporating additional node and edge features, as well as studying graph neural
network structures that partition the graph explicitly rather than classify the entire graph as either consistent or
inconsistent. For the binary classification problem, we hypothesize that methods allowing learnable coarsening
of the graph [3, 29] could be useful. Graph neural networks offer an interesting path forward for other entity
resolution problems because node features can be included along with the edge weights studied here.

In terms of incremental entity resolution, focusing on the IC problem allows us to handle the important case
where we want to enforce that cluster quality does not degrade with ER updates. Having an Inconsistent Cluster
detection mechanism is an efficient way to accomplish this regardless of the quality of pairwise scores, since
precision and recall for cluster-level updates can be tuned along the curves shown in Figure 2. In this paper, we
mainly studied the IC detection problem in the context of existing clusters prior to splitting, but the same cluster
quality checks can be applied to clusters prior to being merged or split. Future work will include evaluating how
to combine merging and splitting to optimize the IER in the general case.

References

[1] Christopher Aicher, Abigail Z Jacobs, and Aaron Clauset. Learning latent block structure in weighted networks.
Journal of Complex Networks, 3, 2 221–248, 2015.

[2] Indrajit Bhattacharya and Lise Getoor. 2007. Collective entity resolution in relational data. ACM Transactions on
Knowledge Discovery from Data (TKDD) 1, 1 (2007), 5–es.

[3] Cătălina Cangea, Petar Veličković, Nikola Jovanović, Thomas Kipf, and Pietro Liò. 2019. Towards sparse hierarchical
graph classifiers. arXiv preprint arXiv:1811.01287 (2019).

[4] Yixin Cao, Lei Hou, Juanzi Li, and Zhiyuan Liu. 2018. Neural collective entity linking. arXiv preprint
arXiv:1811.08603 (2018).

[5] Zhengdao Chen, Lisha Li, and Joan Bruna. 2019. Supervised Community De- tection with Line Graph Neural
Networks. In 7th International Conference on Learning Representations (ICLR).

48



[6] William W Cohen and Jacob Richman. 2002. Learning to match and cluster large high-dimensional data sets for data
integration. In Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data
mining. 475–480.

[7] Gabriele Corso, Luca Cavalleri, Dominique Beaini, Pietro Liò, and Petar Veličković. 2020. Principal Neighbourhood
Aggregation for Graph Nets. Advances in Neural Information Processing Systems 33 (2020).

[8] J De Bruin. 2019. Python Record Linkage Toolkit: A toolkit for record linkage and duplicate detection in Python.
https://doi.org/10.5281/zenodo.3559043

[9] Xin Luna Dong. 2018. Challenges and innovations in building a product knowledge graph. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2869–2869.

[10] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell, Timothy Hirzel, Alán Aspuru-Guzik,
and Ryan P Adams. 2015. Convolutional networks on graphs for learning molecular fingerprints. In Advances in
neural information processing systems. 2224–2232.

[11] Vijay Dwivedi, Chaitanya Joshi, Thomas Laurent, Yoshua Bengio, and Xavier Bresson. 2020. Benchmarking Graph
Neural Networks. arXiv preprint arXiv:2003.00982 (2020).

[12] Ivan P Fellegi and Alan B Sunter. 1969. A theory for record linkage. J. Amer. Statist. Assoc. 64, 328 (1969),
1183–1210.

[13] Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. 2017. Neural message
passing for quantum chemistry. In Proceedings of the 34th International Conference on Machine Learning-Volume 70.
JMLR. org, 1263–1272.

[14] Marco Gori, Gabriele Monfardini, and Franco Scarselli. 2005. A new model for learning in graph domains. In
Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., Vol. 2. IEEE, 729–734.

[15] Anja Gruenheid, Xin Luna Dong, and Divesh Srivastava. 2014. Incremental record linkage. Proceedings of the VLDB
Endowment 7, 9 (2014), 697–708.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation learning on large graphs. In Advances
in neural information processing systems. 1024–1034.

[17] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning on graphs: Methods and applications.
arXiv preprint arXiv:1709.05584 (2017).

[18] Richard Hammack, Wilfried Imrich, and Sandi Klavžar. 2011. Handbook of product graphs. CRC press.

[19] Oktie Hassanzadeh, Fei Chiang, Hyun Chul Lee, and Renée J Miller. 2009. Framework for evaluating clustering
algorithms in duplicate detection. Proceedings of the VLDB Endowment 2, 1 (2009), 1282–1293.

[20] Thomas N Kipf and Max Welling. 2016. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907 (2016).

[21] Pradap Konda, Sanjib Das, Paul Suganthan GC, AnHai Doan, Adel Ardalan, Jeffrey R Ballard, Han Li, Fatemah
Panahi, Haojun Zhang, Jeff Naughton, et al. 2016. Magellan: Toward building entity matching management systems.
Proceedings of the VLDB Endowment 9, 12 (2016), 1197–1208.

[22] Juan Li, Zhicheng Dou, Yutao Zhu, Xiaochen Zuo, and Ji-Rong Wen. 2020. Deep cross-platform product matching in
e-commerce. Information Retrieval Journal 23, 2 (2020), 136–158.

[23] Sidharth Mudgal, Han Li, Theodoros Rekatsinas, AnHai Doan, Youngchoon Park,Ganesh Krishnan, Rohit Deep,
Esteban Arcaute, and Vijay Raghavendra. 2018. Deep learning for entity matching: A design space exploration. In
Proceedings of the 2018 International Conference on Management of Data. 19–34.

[24] Markus Nentwig and Erhard Rahm. 2018. Incremental clustering on linked data. In 2018 IEEE International Conference
on Data Mining Workshops (ICDMW). IEEE, 531–538.

[25] Anna Primpeli, Ralph Peeters, and Christian Bizer. 2019. The WDC training dataset and gold standard for large-scale
product matching. In Companion Proceedings of The 2019 World Wide Web Conference. 381–386.

49



[26] Russel Reas, Stephen Ash, Rob Barton, and Andrew Borthwick. 2018. SuperPart: Supervised graph partitioning for
record linkage. In International Conference on Data Mining. ICDM.

[27] Petar Ristoski, Petar Petrovski, Peter Mika, and Heiko Paulheim. 2018. A machine learning approach for product
matching and categorization. Semantic web 9, 5 (2018), 707–728.

[28] Kashif Shah, Selcuk Kopru, and Jean David Ruvini. 2018. Neural network based extreme classification and similarity
models for product matching. In Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 3 (Industry Papers). 8–15.

[29] Pawel Swietojanski and Steve Renals. 2015. Differentiable pooling for unsu- pervised speaker adaptation. In 2015
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 4305–4309.

[30] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. 2017. Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017).

[31] Minjie Wang, Lingfan Yu, Da Zheng, Quan Gan, Yu Gai, Zihao Ye, Mufei Li, Jinjing Zhou, Qi Huang, Chao Ma, Ziyue
Huang, Qipeng Guo, Hao Zhang, Haibin Lin, Junbo Zhao, Jinyang Li, Alexander J Smola, and Zheng Zhang. 2019.
Deep Graph Library: Towards Efficient and Scalable Deep Learning on Graphs. ICLR Workshop on Representation
Learning on Graphs and Manifolds (2019). https: //arxiv.org/abs/1909.01315

[32] Qing Wang, Jingyi Gao, and Peter Christen. 2016. A clustering-based frame- work for incrementally repairing entity
resolution. In Pacific-Asia Conference on Knowledge Discovery and Data Mining. Springer, 283–295.

[33] Steven Euijong Whang and Hector Garcia-Molina. 2010. Entity resolution with evolving rules. PVLDB (2010).

[34] Steven Euijong Whang and Hector Garcia-Molina. 2014. Incremental entity resolution on rules and data. The VLDB
journal 23, 1 (2014), 77–102.

[35] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826 (2018).

50



Optimizing Email Marketing Campaigns in the Airline Industry
using Knowledge Graph Embeddings

Amine Dadoun
EURECOM, Sophia Antipolis, France

Amadeus SAS, Biot, France
amine.dadoun@eurecom.fr

Raphaël Troncy
EURECOM, Sophia Antipolis, France
raphael.troncy@eurecom.fr

Michael Defoin Platel
Amadeus SAS, Biot, France

michael.defoinplatel@amadeus.com

Riccardo Petitti
Amadeus SAS, Biot, France

riccardo.petitti@amadeus.com

Gerardo Ayala Solano
Amadeus SAS, Biot, France

gerardo.ayalasolano@amadeus.com

Abstract

The use of email marketing campaigns in e-commerce is an essential aspect for driving sales and
establishing or maintaining good customer service. However, ensuring their success in the airline
industry is challenging, and the risk is high that the marketing campaign content is not suited to the needs
of specific travelers. The traveler may rapidly feel spammed and the offer content promoted via emails
may even be no longer accessed. Consequently, the use of personalised recommender systems for email
marketing campaigns becomes essential to build user loyalty and to increase offer conversion. Recently,
the use of knowledge graphs has proven to be an effective way to recommend products. In this work, we
propose an approach that leverages knowledge graph embeddings to better target the right audience in
email marketing campaigns for airline products recommendation. We conduct extensive experiments to
compare our approach with the currently in-production rule-based system used by airline marketers and
a supervised machine learning model based on handcrafted features as another baseline. The results
suggest that the use of knowledge graph embeddings is the most effective approach.

A Introduction

With the digital transformation of retail commerce from physical sale points to virtual stores, recommender
systems have shown their value in easing the search and purchase decision process of customers who are facing
an ever increasing amount of products [1]. In order to embrace e-commerce techniques and boost their revenues,
some airlines are using the so-called Amadeus Anytime Merchandizing (AAM) Notification System 1 which is an
IT solution that allows airline marketers to effectively define, deploy, monitor and adjust airline email marketing

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1https://amadeus.com/en/portfolio/airlines/anytime-merchandising

51

https://amadeus.com/en/portfolio/airlines/anytime-merchandising


campaigns sent to the travelers in real-time. Customized notifications can be defined and sent to travelers, after
booking a flight, to suggest them additional services to buy (e.g. extra baggage, specific meal, preferred seat)
called ancillaries. The solution acts as a bridge between the travelers retailing touchpoints and the airline’s
service and delivery system. As shown on the left side of Figure 1, when using this solution, the airline marketer
can choose the appropriate time when to send the notification (e.g. 5 days before departure), what product to
recommend (e.g. Leg Space Seat), how to send the offer (e.g. via an Email) and to whom this offer should be
sent (matching targeting criteria).

Despite all the functionalities included in the AAM Notification System, it is difficult for an airline to find
the optimal audience to target for a given offer. We conducted an analysis of historical sales triggered by some
notification campaigns during the period 14 May 2019 - 17 Dec 2019 ran by one of our partner airlines and
we observed a poor conversion of the notification offers (Section C.3). This is partly due to the challenging
decision-making process that an airline marketer faces when it comes to deciding which values (belonging to
broad ranges) are appropriate for the criteria to be used (e.g. sending time, flight itineraries, flight departure point,
etc.). Targeting customers with unsolicited notifications can be counter-productive and lead to adversarial effects
on customer loyalty if done incorrectly. It is therefore critical to identify the customers that we expect to react
positively to an advertised service in order to avoid spamming them with non-personalized emails. This problem
can be seen as an inverse recommendation scenario, i.e. recommending a user to an item.

Figure 1: On the left side: AAM Notification System. On the right side: Flowchart of our proposed TKE
framework. Notification dataset used in this study is generated from the AAM Notification system. Contextual
features include booking context (e.g. number of passengers, date of departure, etc.), notification information
(e.g. media used to send the notification, time of notification, etc.).

Inspired by recent works that have illustrated the effectiveness of using knowledge graph embeddings [2–4]
and gradient boosting algorithms [5, 6] for item recommendation, we propose the Travel Knowledge Graph
Embeddings for email marketing campaigns (TKE) framework to better target the audience for a service the
airline wishes to recommend through email marketing campaigns (Figure 1). In this paper, we made the following
contributions:

1. We design and develop a Knowledge Graph using Semantic Web technologies to represent the travelers
past trips as well as to semantically enrich airline products.

2. We learn vector representations of travel entities via knowledge graph embedding algorithms and we
leverage gradient boosting algorithms to compute prediction scores to better target the audience in email
marketing campaigns.

3. We perform an empirical comparison of our approach with the current in-production rule-based system as
well as with an hypothetical classical machine learning approach using handcrafted features on a real-world
production dataset.

52



The paper is organized as follows. Section B provides a literature review of the related work. Section C
introduces some preliminary concepts, the recommendation problem, the dataset and the knowledge graph used
to conduct this work. In Section D, we describe both our TKE approach as well as a machine learning model
using handcrafted features as another baseline. In Section E, we present the experiments we carried out and we
demonstrate the effectiveness of our approach. Finally, in Section F, we give some conclusions and we outline
some future works.

B Related Work

This section provides a literature review of the research conducted on email marketing campaigns in the e-
commerce and tourism domains. We also present state-of-the-art methods of knowledge graph embedding
algorithms and the use of gradient boosting algorithms for recommender systems.

B.1 Email Marketing Campaigns

Emails allow marketers to send messages to their customers at very low cost. They generally generate faster
responses and create an opportunity for interactive communication with customers [7]. In [8], the authors analyze
70 randomized field experiments and find that email promotions not only increase customers’ average purchase
spending during the promotion window but also carry over to the week after the promotion expires. In our study,
we will focus on personalized email marketing campaigns. In [9], the authors performed an empirical comparison
of supervised machine learning models based on decision tree and logistic regression algorithms in order to
improve the open rate and conversion rate of email marketing campaigns. In [10], the authors propose to use
transactional features and instant messaging metadata to train a boosting tree regression algorithm to timely
anticipate the needs of consumers in order to increase their level of engagement as well as the rate at which they
repurchase products.

In the tourism domain, even if widely used, limited research is conducted on email marketing campaigns.
In [11], the authors found that customers’ favourite emails contain special offers, discounts and coupons as well
as real-time communication tools. When customers perceived these emails as meeting their personal preferences,
they developed a strong relationship with the sender. In [12], the authors demonstrated that the personalization,
interactivity and price were important predictors of the possibility of revisiting the same accommodation. To the
best of our knowledge, we are the first to propose a supervised machine learning approach to enable personalized
email marketing in the airline travel industry.

B.2 Knowledge Graph Embeddings

A knowledge graph embedding (KG embedding) is a representation of a knowledge graph (KG) component
into a continuous vector space. The objective of learning those embeddings is to ease the manipulation of graph
components (entities, relations) for prediction tasks such as entity classification, link prediction or recommender
systems.

In [13], the authors classified the learning algorithms into two main categories namely translational distance
models and semantic matching models.

For the first category, TransE [14] is often mentioned as the most used translational distance model. TransE
represents both entities and relations vectors in the same space Rd. Given a fact (h, r, t), the relation is interpreted
as a translation vector r so that the embedded entities h (head) and t (tail) can be connected by r with low error,
i.e., h+ r ≈ t when (h, r, t) holds. TransH [15] introduces relation-specific hyperplanes, each relation r being
represented on a hyperplane as wr its normal vector. TransR [16] follows the same idea as TransH, but instead of
projecting the relations into a hyperplane, it proposes to create a specific space per relation.

53



In the second category, semantic matching models exploit similarity-based scoring functions. In [17], the
authors associate each entity with a vector to capture its latent semantics. Each relation is represented as a matrix
that models pairwise interactions between latent factors. The score of a fact (h, r, t) is defined by a bi-linear
scoring function minimized through tensor factorization based on ALS optimization technique.

Palumbo et al. [18] propose to use property-specific KG embeddings generated from node2vec algorithm [19]
in order to compute relatedness scores between items and users. Similarly, we propose to use translational
distance and semantic matching models to generate embeddings and to use them as latent features of a gradient
boosting algorithm.

B.3 Gradient Boosting Algorithms

Gradient boosting is a machine learning technique for regression and classification problems, which produces a
prediction model in the form of an ensemble of weaker prediction models.

In [5], the authors used multiple additive Regression Trees (Dart) which is an ensemble model that uses
boosted regression trees and handles the overspecialization. Their approach for online accommodation recom-
mendation ranked 1st in the famous RecSys 2019 Challenge2. In [6], the authors used XGBoost [20] which is
an implementation of gradient boosting decision trees to predict tweet engagement, they have intensively used
exploratory data analysis to extract and compute relevant features to feed XGBoost algorithm. Their solution
ranked 1st in the RecSys 2020 Challenge3. In our work, we use XGBoost algorithm as a supervised machine
learning algorithm to better target the audience in email marketing campaigns based on the computed embeddings
and contextual features (Figure 1).

C Data & Problem Formulation

In this section, we first provide definitions of some useful concepts. Then, we define the problem and research
questions addressed in this work. Finally, we present the dataset and the design of the knowledge graph used for
the experiments.

C.1 Preliminaries

We define a Knowledge Graph (KG) similarly to what is done in [21].

Definition 1: A knowledge graph is a set K = (E,R,O), where E is the set of entities, R ⊂ E × Γ× E is a
set of typed relations between entities and O is an ontology. The ontology O defines the set of relation types
(’properties’) Γ.

Definition 2: Travelers are a subset of the entities of the KG, t ∈ T ⊂ E .

Definition 3: Ancillaries are all products offered by the airline beyond air tickets. They can be flight-related (e.g.
extra baggage, preferred seat, etc.) or standalone (e.g. lounge access) services. Ancillaries are advertised in the
email marketing campaigns. Ancillaries are a subset of the entities of the KG, a ∈ A ⊂ E .

Definition 4: A notification campaign is a set of notifications sent to an audience of travelers within a given
period of time and under some criteria to recommend an ancillary product.

2https://recsys.acm.org/recsys19/challenge/
3https://recsys.acm.org/recsys20/challenge/

54

https://recsys.acm.org/recsys19/challenge/
https://recsys.acm.org/recsys20/challenge/


Definition 5: We define the conversion rate of a notification campaign as follows:

CR =
1

No

No∑
i=1

hit(Ni) (16)

where No is the number of notifications sent through the notification campaign, and hit(Ni) is equal to 1 if the
notification Ni triggers a purchase. In our work, we focus on optimizing the conversion rate.

C.2 Problem Formulation

Given a notification campaign aimed at a large audience of travelers who have already booked a flight in a given
context, we aim to target the relevant travelers among all the travelers that the notifications will reach. More
specifically, we address the following research questions:

RQ 1: How to extract the relevant sample of travelers to target for a given notification campaign?.
RQ 2: How does a supervised machine learning approach perform compared to a rule-based approach to

target the relevant audience for a notification campaign?
RQ 3: How does the use of KG embeddings compare to the use of handcrafted features as input of a

supervised machine learning model trained to target the relevant audience for a notification campaign?

C.3 Notification Campaign Analysis

We analyzed three notification campaigns summing up to approximately 8.2 million notifications sent by one
of our partner airlines to its travelers between 14 May 2019 and 17 December 2019 in order to understand the
behavior of travelers in response to the notification campaigns, and to compute the conversion rates of these
notification campaigns.

As shown in Table 16, there are three different types of ancillaries that are advertised in three notification
campaigns. By analyzing airline sales data over the same period, we can see that only 3 out of 34 different types
of purchased ancillaries were offered in the notification campaigns. This shows an untapped sales potential.
Moreover, we observed that 50% of sales triggered by a notification happens on the same day (< 24 hours) after
receiving the notification. This demonstrates the effect of a notification on the purchases.

Table 16: Conversion rates of notification campaigns: rule-based approach

Notification Campaign Notification time Date Range Number of
Notifica-
tions

Sales CR

Extra leg room seat 5 days before Departure 19 May - 23 December 2019 ∼355 K ∼2.8K 0.8%
Prepaid baggage 2 days before Departure 14 May - 17 December 2019 ∼7.5 M ∼11K 0.15%

Lounge Right after air ticket purchase 16 October - 17 December 2019 ∼338 K 104 0.03%
All Notifications - - - ∼13.8K 0.18%

While the prepaid baggage notification campaign was aimed at all travelers who booked a flight during the
period indicated in Table 16, the notification campaigns for Lounge access and Extra leg room seat contain
a number of filtering criteria that explain the large discrepancy in terms of the number of notifications sent
out. Indeed, for these two notification campaigns, the airline marketer chose to send the notification to a quite
restrictive audience by combining a number of criteria (fare family, aircraft type, no chargeable seat in their
booking, etc.)

55



C.4 Airline Travel Notification Dataset

We conducted experiments on a real-world production dataset of bookings from the T-DNA database4. Each
booking contains one or several air ticket purchases, and is stored using Passenger Name Record (PNR) informa-
tion. The PNR is created at reservation time by airline reservation system and contains information about the
purchased air ticket (e.g. travel itinerary, payment information), traveler demographics and ancillaries information
if purchased (comprised in the EMD ticket). The considered dataset contains approximately 2.33 million bookings
for approximately 2.85 million unique travelers.

The Airline Travel Notification (ATN) dataset is produced by joining the notification dataset and the historical
bookings dataset from T-DNA. This dataset contains information about the shopping and booking context (e.g.
search date, number of passenger, departure date, etc.) and information about travelers (e.g. demographics and
loyalty membership information). In total, the dataset contains 42 columns and ∼ 8.2 million rows. For our
experiments, the dataset was broken down into three different sub-datasets that correspond to the three different
notification campaigns (Table 16).

C.5 Airline Travel Knowledge Graph

The Airline Travel KG is constructed from the T-DNA database. We develop an ontology which is avail-
able in the Turtle format at https://gitlab.eurecom.fr/amadeus/tke4rec/-/blob/master/
ontology/ams_ontology.ttl. To design the KG, we have defined 7 classes corresponding to top level
entities and based on the various tables available in the T-DNA database:

• Traveler: A traveler is identified by a T-DNA id. A traveler has a booking history (PNRs) that contain
purchase history (air tickets, EMD tickets). An instance of traveler is a schema:Person5.

• Trip Reservation: A trip reservation (PNR) represents the booking of all travelers contained in the PNR.
It contains information such as the number of passengers, the destination, etc.

• Journey: A journey is linked to a trip reservation. Each journey has a stay duration, departure and arrival
airports.

• Air Ticket: An air ticket is contained in a PNR and contains flight and transactional information. A PNR
can have multiple air tickets because of the different flight legs (e.g. Nice-Paris, Paris-New York) or/and
the number of passengers.

• EMD Ticket: An Electronic Miscellaneous Document (EMD) ticket is linked to an air ticket. It contains
information on the ancillary purchased by the traveler (e.g. ancillary type, ancillary price, etc.).

• Ancillary: An ancillary is a service purchased by a traveler (associated to a flight) in addition to the air
ticket. It is identified by a sub-code (RFISC), labelled by a commercial name, defined by ATPCO6. It
belongs to a group of ancillaries (Group, RFIC). We propose to model the different ancillaries as SKOS
concepts and we create an ancillary thesaurus represented as a concept scheme.

• Airport: It represents the airport where the traveler travels to. An airport serves one or several cities.

The KG used to tackle our use case contains 41 different properties (Figure 2), ∼ 80 million edges and ∼ 9
million nodes.

We present in Table 17 some statistics about the Airline Travel KG. In Figure 3, an excerpt of the KG is
4T-DNA: Traveler DNA is a database that contains bookings of travelers over a dozen of airlines
5The prefix schema is used for concepts defined by https://schema.org
6ATPCO Ancillary description: https://www.atpco.net/resource/optional-services-industry-sub-codes

56

https://gitlab.eurecom.fr/amadeus/tke4rec/-/blob/master/ontology/ams_ontology.ttl
https://gitlab.eurecom.fr/amadeus/tke4rec/-/blob/master/ontology/ams_ontology.ttl
https://schema.org
https://www.atpco.net/resource/optional-services-industry-sub-codes


Figure 2: Distribution of #relations of properties in the Airline Travel KG. All prefixes can be found in the
ontology definition.

Table 17: Statistics of subgraphs

Subgraph #Edges #Nodes #travelers #PNRs
Extra leg room seat 7M 800K 67K 205K

Prepaid baggage 64M 7.6M 572K 2.2M
Lounge 6.7M 789K 42K 203K

depicted, where a Malaysian traveler identified by T21354, born on "1988-05-05" has booked a one way flight for
two people from Kuala lumpur to Melbourne. The EMD ticket identified by 23143 and linked to the air ticket
21563 represents the purchase of an ancillary (a seat).

D Approach

Our proposed framework TKE can be seen as a two-stage approach as presented in Figure 1. In the first stage, we
extract contextual features from the ATN dataset and compute KG embeddings of travelers and trip reservations
from the Airline Travel KG. In the second stage, contextual features and KG embeddings are used as input of an
XGBoost classifier in order to predict, for a given user, whether the notification should be sent or not.

We also propose a supervised machine learning model that includes as input contextual features and additional
handcrafted travelers’ features that capture travelers’ preferences which we think could be particularly significant
for model accuracy (hypothesis proven in the ablation study) as another baseline to compare with. We describe
below the handcrafted travelers’ features as well as the KG embeddings used in TKE:

• Handcrafted travelers’ features: Features designed to capture travelers’ preferences for ancillaries,
destinations, points of sale, etc. and also customer lifetime value (Section D.1).

57



Figure 3: Excerpt of the knowledge graph representing the travelers included in a Trip reservation through
the property schema:underName, as well as other properties and relations to other entities. Literals are
represented in blue rectangle, whereas other entities are represented in blue circle. In this depiction, some
properties that links travelers, trip reservations, air tickets and emd tickets are represented as an example, but
more properties are included in the graph.

• Knowledge graph embeddings: Latent features representation of travelers and trip reservations computed
based on KG embedding algorithms such as TransE [14] (Section D.2).

D.1 Handcrafted Travelers Features

In this section, we present the handcrafted travelers features designed to compare their use with that of KG
embeddings. We compute several features based on travelers purchase history, such as preferred ancillary,
preferred destination, etc. We list below the features computed that leverage travelers’ history:

• Bookings count: Number of bookings already purchased by the traveler with the airline.

• Average flight revenue: The average booking price tickets for all historical bookings of the traveler.

• Preferred ancillary: This feature corresponds to the most sold ancillary to the traveler.

• Preferred destination: This feature corresponds to the most visited destination (airport) by the traveler.

• Preferred seat characteristic: This feature represents the seat characteristic that is the most purchased by
the traveler. There are three types of seat characteristic namely Upper deck, Exit Row, Leg Space.

• Extra leg room seat already purchase: For each seat characteristic, we create a binary feature that represents
if a traveler has already purchased an Extra leg room seat or not.

• Seat sales count: This feature represents the number of times a seat has been purchased by the traveler.

• Prepaid baggage sales count: This feature represents the number of times a prepaid baggage has been
purchased by the traveler.

• Lounge sales count: This feature represents the number of times a lounge access has been purchased by the
traveler.

58



• Notification response rate: This feature is equal to the number of sales divided by the number of notifications
sent to the traveler (regardless of the recommended service).

The handcrafted features and the features available in the ATN dataset are used as input of a gradient boosting
decision tree classifier. We use the official implementation7 of XGBoost [20] to train a binary classifier to predict
if the notified travelers will convert or not. In Section E, we give more details about the hyper-parameters used in
XGBoost.

D.2 TKE Features

In this section, we explain how the KG embeddings used in TKE are computed. We use translational distance
models to compute travelers and trip reservations embeddings as shown in Figure 1. More formally, we learn the
KG embeddings based on a link prediction task, where some links of ancillary purchases and seat products are
hidden in the training set, and put in the test set. Translational distance models are trained under the closed world
assumption [13] using a pairwise loss that penalizes negative instances. More concretely, ancillaries that were not
purchased by a traveler are considered as negative instances under the closed world assumption. Translational
distance models are evaluated using ranking metrics such as hit rate or mean reciprocal rank. Hence, these models
will return a high similarity score (low euclidean distance) for the ancillaries that are close in the graph embedding
space to the embeddings of the ancillaries historically purchased by the travelers. As an example, we obtain a hit
rate of ∼ 0.42 with the TransE algorithm on the Airline Travel KG. In addition to translational distance models,
we implemented a single-hidden multi-layer perceptron (MLP) as proposed in [22], where each relation (as well
as entity) is associated with a single vector. More specifically, given a fact (h, r, t), the vector embeddings of h, r,
and t are concatenated in the input layer, and mapped to a non-linear hidden layer. The score is then generated
by a linear output layer. The generated embeddings are used as input of XGBoost classifier in addition to the
contextual features as shown in Figure 1. We carry out a thorough empirical comparison of the aforementioned
KG embedding algorithms and select the KG embeddings that allow the classifier to predict with the highest
accuracy.

E Experiments

The objective of the experiments is to compare the use of handcrafted features (a) with the use of KG embeddings
(b). (a) helps in interpreting the results and predictions obtained by the algorithm, while (b) lacks interpretation
(latent features), but is easier to compute and maintain. We publish our code as open source in order to ease
reproducibility8.

E.1 Experimental Setup

In this section, we present the different settings and the evaluation protocol (evaluation metrics and split of the
dataset) used to conduct the experiments.

Dataset: We experiment both approaches (a) and (b) with the three datasets presented in Table 16. We use the
Airline Travel KG presented in Section C.5 to generate the KG embeddings useful for our main approach TKE.

Training & Test Sets: The three datasets corresponding to the three notification campaigns are split using
the same strategy. Each dataset is sorted temporally, and 80% of the first rows of each dataset are used as
training/validation sets. We use a cross-fold validation to train and validate all models (k=5, a split of 80% for
training and 20% for validation). The remaining 20% are used as test set to evaluate the model. The split between
training and validation set is performed randomly in order to avoid a seasonality effect that is usually occurring in

7XGBoost:https://XGBoost.readthedocs.io/
8https://gitlab.eurecom.fr/amadeus/tke4rec

59

XGBoost: https://XGBoost.readthedocs.io/
https://gitlab.eurecom.fr/amadeus/tke4rec


Table 18: Evaluation results of the different approaches. (a) represents the results of XGBoost for different inputs;
(b) represents the results of the TKE approach for different KG embedding algorithms. The average standard
deviation (by varying the seed when splitting the dataset) of each metric is as follows: AUC −ROC : ±0.02,
TPR : ±3%, TNR : ±2%, CR : ±0.1%

Model
Extra leg room seat Prepaid baggage Lounge

AUC-
ROC

TPR TNR CR AUC-
ROC

TPR TNR CR AUC-
ROC

TPR TNR CR

Rule-based - - - 0.8% - - - 0.15% - - - 0.03%
(a) ADS 0.75 78% 58% 2.2% 0.83 80% 71% 0.38% 0.76 80% 62% 0.18%
(a) HDS 0.79 81% 60% 2.37% 0.85 82% 74% 0.4% 0.84 86% 67% 0.22%
(a) AHDS 0.83 85% 65% 2.8% 0.88 86% 74% 0.56% 0.89 88% 65% 0.36%
(b) TransE 0.85 86% 69% 3.1% 0.91 92% 65% 0.6% 0.90 89% 78% 0.35%
(b) TransH 0.84 85% 67% 3% 0.90 91% 65% 0.59% 0.95 96% 85% 0.59%
(b) TransR 0.84 85% 67% 2.9% 0.90 91% 65% 0.6% 0.92 92% 80% 0.52%
(b) MLP 0.87 88% 69% 3.2% 0.92 94% 65% 0.62% 0.91 90% 81% 0.56%

the travel industry. KG embedding algorithms are often designed to solve a link prediction task. We consider it is
appropriate to split the KG by removing some edges that are included in the set of properties that link travelers
with ancillaries and consider them as test sets, in order to evaluate the quality of the computed embeddings.

Evaluation metrics: The output of our approach is the probability of purchasing the recommended ancillary
a included in the notification N :

P (purchase = a|N) = P (purchase|Context, TE,RE) (17)

where, TE and RE are the Traveler and Trip reservation embeddings.
To evaluate and compare, the different approaches implemented, we used the conversion rate defined at

definition 5 and the three metrics defined as follows:

• TPR: The true positive rate is the percentage of correct positive predictions. It represents the ratio of
travelers that the algorithm suggests to send the notification and effectively purchase the ancillary. TPR is
defined as follows:

TPR =
TP

(TP + FN)
(18)

• TNR: The true negative rate is the percentage of correct negative predictions. It represents the ratio of
travelers that the algorithm suggest to not send the notification and effectively do not purchase the ancillary.
TNR is defined as follows:

TNR =
TN

(TN + FP )
(19)

• ROC-AUC: The area under ROC curve (FPR, TPR) helps to choose what is the optimal probability
threshold that maximizes the CR and TPR and is defined as follows:

ROC-AUC =

∫ 1

0
TPR d(FPR) (20)

where, FPR = 1− TPR is the false positive rate

It is noteworthy that the conversion rate was measured offline as well as all the metrics based on the test set.
According to equation 16, No represents the number of predicted positives and each hit hiti corresponds to a true
positive prediction.

60



Implementation Framework & Parameter Settings: For KG embedding algorithms, we use the deep
learning framework pytorch9 to implement MLP [22] and the library pykg2vec [23] for all the other KG
embedding algorithms. The hyper-parameters of all the models were tuned using a combination of random-search
and grid-search algorithms. We apply grid-search algorithm on the implemented algorithms using the following
values: the embedding size k ∈ {32, 64, , 96, 128, 256}, the batch size ∈ {128, 256, 512, 1024}, the number of
epochs ∈ {50, 100, 200}, the learning rate lr ∈ {0.001,
0.003, 0.01, 0.03, 0.1, 0.3} and negative samples Ns ∈ [2, 10] for MLP algorithm. We also optimize the following
hyper-parameters of XGBoost classifier: the max depth of a tree ∈ [5, 50], the number of trees ∈ [10, 100],
the sub-sample of each tree ∈ [0.65, 0.85] and the col-sample of each tree ∈ [0.65, 0.85]. In addition to these
hyper-parameters, we compute a weighted score (ratio of number of negative class to the positive class) that we
use in XGBoost to approach the problem as a cost-sensitive learning problem due to the high class imbalance
between positive (purchase) and negative (no purchase) classes (Table 16).

E.2 Results and Discussion

In this section, we discuss the results obtained from the experiments. Results of the experiments conducted
are presented in table 18. TPR, TNR and ROC-AUC metrics are not provided for the rule-based approach
implemented in AAM Notification System. The reason behind this is that the dataset used in the experiments is
generated by the AAM notification system, which is different from the original dataset that contains all travelers
used for the rule-based approach to identify the travelers matching the targeting criteria.

Ablation Study: Table 18 shows that using the features from the ATN dataset in addition to the travelers
handcrafted features (AHDS: ATN + Handcrafted features) as input of XGBoost performs better than using only
one of them (ADS: ATN features or HDS: Handcrafted features) as input for all notification campaigns. We also
observe that using only travelers handcrafted features as input information of XGBoost gives better results than
using the entire ATN dataset for all notification campaigns. We compute the most important features of the model
(a) AHDS for each notification campaign and we report below the three most important ones with their respective
information gain:

• Extra Leg Room Seat: {Preferred Seat Characteristic: 0.31, Preferred ancillary: 0.12, Ticket amount:
0.08}.

• Prepaid Baggage: {Preferred destination: 0.21, Destination: 0.12, Prepaid Baggage sales Frequency:
0.10}.

• Lounge: {Average Flight Revenue: 0.22, Destination: 0.20, Age: 0.15}.

Knowledge graph embeddings: We observe in Table 18 that using KG embeddings (concatenation of
traveler and reservation KG embeddings) with contextual features as input of XGBoost performs better than using
travelers handcrafted features regardless of the algorithm used to compute the embeddings or the notification
campaign. Moreover, KG embeddings computed from MLP shows to perform better than KG embeddings
computed from translational distance models except for the lounge notification campaign, where the use of KG
embeddings computed from TransH model gives the best results.

F Conclusions and Future Work

In this work, we have presented a two stage approach to address the problem of audience targeting for email
marketing campaigns: first, we compute KG embeddings of travelers and reservations; second, we use these

9Pytorch:https://pytorch.org/

61

Pytorch: https://pytorch.org/


embeddings in addition to contextual features as input of a XGBoost classifier to learn what is the relevant
audience to target for a given notification campaign. We conducted several experiments to address our research
questions:

RQ 1: The results of the experiments presented in Table 18 show that extracting the relevant audience for
a given notification campaign is not an easy task. Indeed, despite the fact that the conversion rate increases
significantly with our approach, it remains relatively small. However, thanks to our approach, notification
campaigns are better targeted and we manage to avoid recommending an unsuitable service to at least 65% of
passengers.

RQ 2: Experiments have shown that the handcrafted features based supervised machine learning approach
(a) gives better results than the rule-based one. Indeed, in Table 18, we can observe that the conversion rate is
multiplied by more than 3 for Extra Leg Room Seat, almost 4 for Prepaid Baggage, and 12 for Lounge. Hence, we
prove the benefit of using supervised machine learning over a simpler rule-based approach while it is the currently
adopted mechanism used by airline marketers. It should be noted that the list of possible criteria available in
AAM Notification System (Figure 1) is the same as the list of features used in the supervised machine learning
approach.

RQ 3: Experiments show that regardless of the KG embedding algorithm tested, the KG embedding approach
is better than the handcrafted features approach. This is very interesting from a scientific point of view, as it shows
the added value of having a KG in the travel domain that could be used not only for ancillary recommendation
task, but also other recommendation tasks (e.g. Trip recommendation) as the same KG embeddings could be
used. It is worth noticing that when dealing with a cold-start problem (new user or item) for on-line usability, a
rule-based approach is more appropriate.

Finally, as future work, we expect to tackle the task of personalized ancillary ranking in email marketing
campaigns. More specifically, the goal of our future work will be to answer what is the most appropriate service
to recommend in a notification campaign. In addition to addressing and optimizing what to recommend to a
traveler, it would be interesting to optimize the time when to send the notification as it is an important decision
making factor, especially in the airline travel industry [1].

References

[1] A. Dadoun, T. Fiig, M. Defoin-Platel, C. Landra, and R. Troncy, “How recommender systems can transform
airline offer construction and retailing,” Journal of Revenue and Pricing Management, Special issue on AI,
2021.

[2] E. Palumbo, G. Rizzo, R. Troncy, E. Baralis, M. Osella, and E. Ferro, “Translational models for item
recommendation,” in The Semantic Web: ESWC 2018 Satellite Events, A. Gangemi, A. L. Gentile, A. G.
Nuzzolese, S. Rudolph, M. Maleshkova, H. Paulheim, J. Z. Pan, and M. Alam, Eds. Cham: Springer
International Publishing, 2018, pp. 478–490.

[3] Z. Sun, J. Yang, J. Zhang, A. Bozzon, L.-K. Huang, and C. Xu, “Recurrent Knowledge Graph Embedding
for Effective Recommendation,” in 12th ACM Conference on Recommender Systems. New York, NY,
USA: ACM, 2018, pp. 297–305.

[4] E. Palumbo, D. Monti, G. Rizzo, R. Troncy, and E. Baralis, “entity2rec: Property-specific knowledge graph
embeddings for item recommendation,” Expert Syst. Appl., vol. 151, p. 113235, 2020.

[5] P. Jankiewicz, L. Kyrashchuk, P. Sienkowski, and M. Wójcik, “Boosting algorithms for a session-based,
context-aware recommender system in an online travel domain,” in Proceedings of the Workshop on ACM
Recommender Systems Challenge, ser. RecSys Challenge ’19. New York, NY, USA: Association for
Computing Machinery, 2019.

62



[6] B. Schifferer, G. Titericz, C. Deotte, C. Henkel, K. Onodera, J. Liu, B. Tunguz, E. Oldridge, G. De Souza
Pereira Moreira, and A. Erdem, “Gpu accelerated feature engineering and training for recommender
systems,” in Proceedings of the Recommender Systems Challenge 2020, ser. RecSysChallenge ’20.
New York, NY, USA: Association for Computing Machinery, 2020, pp. 16–23. [Online]. Available:
https://doi.org/10.1145/3415959.3415996

[7] L. Chittenden and R. Rettie, “An evaluation of e-mail marketing and factors affecting response,” Journal of
Targeting, Measurement and Analysis for Marketing, vol. 11, pp. 203–217, 2003.

[8] N. S. Sahni, D. Zou, and P. K. Chintagunta, “Do targeted discount offers serve as advertising? evidence
from 70 field experiments,” Manage. Sci., vol. 63, no. 8, pp. 2688–2705, Aug. 2017. [Online]. Available:
https://doi.org/10.1287/mnsc.2016.2450

[9] R. Abakouy, E. M. En-Naimi, and A. El Haddadi, “Classification and prediction based data mining
algorithms to predict email marketing campaigns,” in Proceedings of the 2nd International Conference on
Computing and Wireless Communication Systems, ser. ICCWCS’17. New York, NY, USA: Association
for Computing Machinery, 2017. [Online]. Available: https://doi.org/10.1145/3167486.3167520

[10] A. Deligiannis, C. Argyriou, and D. Kourtesis, “Predicting the optimal date and time to send personalized
marketing messages to repeat buyers,” International Journal of Advanced Computer Science and
Applications, vol. 11, no. 4, 2020. [Online]. Available: http://dx.doi.org/10.14569/IJACSA.2020.0110413

[11] K. Y. Tam and S. Y. Ho, “Web personalization as a persuasion strategy: An elaboration likelihood
model perspective,” Info. Sys. Research, vol. 16, no. 3, pp. 271–291, Sep. 2005. [Online]. Available:
https://doi.org/10.1287/isre.1050.0058

[12] K. Yang, J. H. Min, and K. Garza-Baker, “Post-stay email marketing implications for the hotel industry: Role
of email features, attitude, revisit intention and leisure involvement level,” Journal of Vacation Marketing,
vol. 25, no. 4, pp. 405–417, 2019.

[13] Q. Wang, Z. Mao, B. Wang, and L. Guo, “Knowledge graph embedding: A survey of approaches and
applications,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 12, pp. 2724–2743,
Dec 2017.

[14] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko, “Translating embeddings
for modeling multi-relational data,” in Advances in Neural Information Processing Systems
26, C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger, Eds.
Red Hook, NY, USA: Curran Associates, Inc., 2013, pp. 2787–2795. [Online]. Available:
http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf

[15] Z. Wang, J. Zhang, J. Feng, and Z. Chen, “Knowledge graph embedding by translating on hyperplanes,” in
Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, ser. AAAI’14. Québec City,
Québec, Canada: AAAI Press, 2014, pp. 1112–1119.

[16] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation embeddings for knowledge graph
completion,” in Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, ser. AAAI’15.
Austin, Texas: AAAI Press, 2015, pp. 2181–2187.

[17] M. Nickel, V. Tresp, and H.-P. Kriegel, “A three-way model for collective learning on multi-relational data,”
in Proceedings of the 28th International Conference on International Conference on Machine Learning, ser.
ICML’11. Madison, WI, USA: Omnipress, 2011, pp. 809–816.

63

https://doi.org/10.1145/3415959.3415996
https://doi.org/10.1287/mnsc.2016.2450
https://doi.org/10.1145/3167486.3167520
http://dx.doi.org/10.14569/IJACSA.2020.0110413
https://doi.org/10.1287/isre.1050.0058
http://papers.nips.cc/paper/5071-translating-embeddings-for-modeling-multi-relational-data.pdf


[18] E. Palumbo, G. Rizzo, and R. Troncy, “Entity2rec: Learning user-item relatedness from knowledge graphs
for top-n item recommendation,” in Eleventh ACM Conference on Recommender Systems. New York, NY,
USA: ACM, 2017, pp. 32–36.

[19] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in 22Nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. New York, NY, USA: ACM, 2016,
pp. 855–864.

[20] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,” in 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD). San Francisco, California, USA: Association
for Computing Machinery, 2016, pp. 785–794.

[21] A. Dadoun, R. Troncy, O. Ratier, and R. Petitti, “Location Embeddings for Next Trip Recommendation,”
in 9th International Workshop on Location on the Web (LocWeb). San Francisco, USA: Association for
Computing Machinery, 2019, pp. 896–903.

[22] X. Dong, E. Gabrilovich, G. Heitz, W. Horn, N. Lao, K. Murphy, T. Strohmann, S. Sun, and W. Zhang,
“Knowledge vault: A web-scale approach to probabilistic knowledge fusion,” in Proceedings of the 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, ser. KDD ’14.
New York, NY, USA: Association for Computing Machinery, 2014, pp. 601–610. [Online]. Available:
https://doi.org/10.1145/2623330.2623623

[23] S.-Y. Yu, S. R. Chhetri, A. Canedo, P. Goyal, and M. A. A. Faruque, “Pykg2vec: A python library for
knowledge graph embedding,” Journal of Machine Learning Research, vol. 22, no. 16, pp. 1–6, 2021.
[Online]. Available: http://jmlr.org/papers/v22/19-433.html

64

https://doi.org/10.1145/2623330.2623623
http://jmlr.org/papers/v22/19-433.html


Interpretable Attribute-based Action-aware Bandits for
Within-Session Personalization in E-commerce

Xu Liu1, Congzhe Su2, Amey Barapatre2, Xiaoting Zhao2, Diane Hu2, Chu-Cheng Hsieh2, Jingrui He3
1 Arizona State University, 2 Etsy Inc., 3 University of Illinois at Urbana-Champaign

xliu338@asu.edu, {csu, abarapatre, xzhao, dhu, chsieh}@etsy.com, jingrui.he@gmail.com

Abstract

When shopping online, buyers often express and refine their purchase preferences by exploring different
items in the product catalog based on varying attributes, such as color, size, shape, and material. As
such, it is increasingly important for e-commerce ranking systems to quickly learn a buyer’s fine-grained
preferences and re-rank items based on their most recent activity within the session. In this paper, we
propose an Online P ersonalized Attribute-based Re-ranker (OPAR), a light-weight, within-session
personalization approach using multi-arm bandits (MAB). As the buyer continues on their shopping
mission and interacts with different products in an online shop, OPAR learns which attributes the buyer
likes and dislikes, forming an interpretable user preference profile and improving re-ranking performance
over time, within the same session. By representing each arm in the MAB as an attribute, we reduce the
complexity space (compared with modeling preferences at the item level) while offering more fine-grained
personalization (compared with modeling preferences at the product category level). We naturally extend
this formulation to weight attributes differently in the reward function, depending on how the buyer
interacts with the item (e.g. click, add-to-cart, purchase). We train and evaluate OPAR on a real-world
e-commerce search ranking system and benchmark it against 4 state-of-the-art baselines on 8 datasets
and show an improvement in ranking performance across all tasks.

A Introduction

When buyers shop online, they are often faced with thousands, if not millions, of products to explore and
potentially purchase. In recent years, we’ve seen a growing interest in industrial applications of ranking systems
as they help minimize distractions for the buyer and surface a digestible number of products that are most relevant
to their shopping mission. These ranking systems take the form of search or recommendation systems, where
products are ranked in descending order of relevance to the buyer [13, 17, 21, 31, 33, 37].

Just as a shopper might browse the aisles of a shop, online shoppers also spend time on a retailer’s website
searching and clicking on items before they decide what they want to buy. This process is an attempt to refine
their purchase intent as they learn more about the product catalog. For example, a buyer might be interested
in purchasing a ring; however, they often must click on a number of different rings before they understand
possible styles, shapes, colors, and materials that are available. Eventually, the buyer might decide that they have
a preference for an emerald gemstone, with a circular shape, and a gold band. Shifting to looking for a necklace,

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

65



Millions 
of Items

Relevance Optimization OPAR
Hundreds 
of Items

Dozens 
of Items

Figure 1: The first two components show a typical 2-stage ranker, where the first-pass narrows down the product
catalog to relevant items, while the second-pass performs fine-grained re-ranking to optimize for a business
metric. The proposed model, OPAR, is responsible for within-session, online personalization that can be effective
on its own or as a third-pass ranker on top of a 2-stage ranking system.

the buyer must refine their preference again. Often the buyer’s preference for attributes like colors and materials
changes quickly over the course of one visit. An intelligent ranking system must continually serve content that
stays relevant to the buyer’s changing preference, a capability we refer to as within-session personalization.

Many production ranking systems today have multiple goals to balance: online retailers not only surface
content that is relevant to the shopper’s buying mission (for example, a search query for “wristwatc" must
produce wrist watches), but they also aim show content that is likely to improve a business metric (eg. conversion
rate, or GMV). In order to balance these goals, many production ranking systems leverage a 2-stage ranking
process (Figure 1): the first pass (commonly referred to as candidate set selection) narrows hundreds of millions
of items from the product catalog down to a few hundred relevant items [14, 21, 36]; the second pass then
re-ranks the top few hundred relevant items in a way that optimizes for specific user action (such as a click
or purchase) [9, 10, 22, 31]. In order to maximize prediction accuracy, these systems often train on billions of
historical data points that may span over the course of months or years and thus cannot react quickly enough to
the buyer’s changing preference within a shopping visit.

In this paper, we propose an Online P ersonalized Attribute-based Re-ranker (OPAR) that can respond quickly
to the changing preferences of a buyer within their immediate shopping session, while still reaping the benefits of
a traditional 2-stage system. In the MAB literature, it is common to address this problem by treating each arm in
the bandit to represent a single item [37], product category [28, 33] or a context [13, 15, 16]. In contrast, OPAR
decomposes each product into a descriptive set of attributes (such as its color, texture, material, and shape), and
represents each arm as an attribute. As the buyer interacts with different products in an online shop, the bandit
learns which attributes the buyer likes and dislikes, forming an interpretable user preference profile that is used
to re-rank products in real-time in a personalized manner. By representing each arm as an attribute, we reduce
the complexity of the space, while allowing more fine-grained personalization within a product category. We
naturally extend this formulation to weight attributes differently in the reward function, depending on how the
user interacts with that item (e.g. attributes from a clicked item will be weighted less than attributes from an
add-to-cart item).

In our example of searching for a ring, we see in Figure 2 that initially, the same 12 items are shown to
two different users. While user 1 might click on items that contain the attributes crystal, gemstone, ruby, rose
gold (outlined in green), user 2 might have different preferences and click on items that contain the attributes
diamond, engagement, oval cut, 14K gold (outlined in blue). At this point, OPAR will begin to differentiate the
diverging preferences of these two users based on the different attributes that each user has shown interest in. On
a subsequent search page, OPAR will rank gemstone rings higher for user 1, while user 2 will see diamond rings
at the top of the list. Furthermore, because the learned weights of each attribute can be observed for each user,
our model is extremely interpretable.

While OPAR can be used as a stand-alone algorithm, we find it to be most effective when deployed as a

66



Figure 2: Example of attribute and action-aware re-ranking by OPAR. From left to right: (1) shows search results
for the query “Ring”. User 1 clicked on two gemstone rings (outlined in green), while User 2 adds a diamond
ring to their cart (outlined in blue) (2) The attribute of the clicked items are “Crystal”, “Gemstone”, “Ruby” and
“Rose Gold”, while the add-to-cart item has the attributes “Diamond”, “Engagement”, “Oval-Cut” and “14k Gold”
(3) On a subsequent search page, OPAR re-ranks items based on each user’s diverging preferences.

third-pass ranker on top of a traditional two-stage ranking system (see Figure 1). This allows us to leverage the
power of traditional 2-pass systems that learn from long-term data aggregated over billions of user and item
preferences, while still being nimble enough to personalize a buyer’s experience by taking into account their most
recent activity.

In the following, we will introduce the proposed model, OPAR, and show how we apply it to a search ranking
problem on a popular e-commerce platform. Our contributions are as follows:

• Attribute-level personalization: OPAR performs real-time personalized re-ranking based on user’s prefer-
ences at the attribute level and reduces the space complexity while offering more fine-grained personaliza-
tion.

• Light-weight, online re-ranker: OPAR improves ranking performance with little data and requires us to
track a minimal number of variables as arms and can be added on top of the traditional 2-pass ranking
systems.

• Interpretable user preferences: The learned attribute weights give visibility into attributes that the user
likes and dislikes. Top-weighted ones can be used for down-stream personalization tasks.

• Evaluation on real-world datasets: OPAR is trained and evaluated on real-world e-commerce data and
is compared to baselines on 8 datasets from a production e-commerce ranking system. We describe a
session-level ranking metric to understand ranking improvements within a session.

B Related Work

In this section, we summarize the related work from literature and categorize them into two aspects: (1) Session-
based Ranking System, and (2) Multi-armed Bandit Ranking System.

67



B.1 Within-Session Ranking

The within-session ranking task tries to predict what action the user will take next within the current shopping
session, leveraging the temporal nature of their browsing behavior from within the same session [17, 34].
Significant breakthroughs in deep learning (i.e, batch normalization and dropout), have led to its wide adoptions
in various communities and applications [35]. In [11], recurrent neural networks (RNNs) were proposed for
this within-session ranking task and gained significant attraction given its superior predictive performance for
the next-item recommendation. This has been an active research area with various enhancements proposed
specifically for predicting short-term user behavior within the same shopping session [11, 12, 24, 27, 34].

Given that a long-term memory models are insufficient to address drift in user interests, [18] proposed a short-
term attention priority model to capture users’ general (long-term) interest in addition to the users’ within-session
interest via a short-term memory model based on the recent clicks. In parallel, [17] studied the behavior-intensive
neural network for personalized next-item recommendation by considering both users’ long-term preference
as well as within-session purchase intent. As RNNs have shown and emerged as the powerful technique to
model sequential data for this task, [20] argued for an alternative model, inspired by machine translation, by
proposing an encoder-decoder neural architecture with an attention mechanism added to capture user session
intents and inter session dependencies. In addition to sequential models, [23] leverages graph neural networks by
constructing a session graph and then modeling a weighted attention layer when predicting user’s preference in
session. To tackle uncertainty that arises in a user’s within-session behavior, authors in [8] proposed a Matrix
Factorization-based attention model to address large-volume and high-velocity session streaming data and [19]
handles the missing value issue for the matrix factorization.

Most previous work cited above do not aim for interpretability of its results. In contrast, the model we
propose specifically leverages item attributes from the product catalog, resulting in a simple algorithm that learns
interpretable user profiles that aid in within-session personalization. The closest related work is [4] that proposes
the attribute-aware neural attentive model for the next shopping basket recommendation but does not seem to
easily adapt for the real-time scenario due to its complexity.

B.2 Multi-Armed Bandits Ranking System

Requiring a responsive and scalable ranking system that can adapt to the dynamic nature of shifting user
preferences (especially in the cold start setting) has led to increasingly wider industry adoption of multi-armed
bandit (MAB) in modern day ranking systems. The theoretical foundation and analysis of MABs have been well-
studied, with popular approaches include ε-greedy [26], Upper Confidence Bounds [2], Thompson sampling [7],
EXP3 [3], and others [26]. In the e-commerce [37] setting, the goal is to maximize user satisfaction (i.e.,
exploitation), while quickly learning (i.e., exploration) users preferences by exploring unseen content.

Hu et al. in [13] proposed to use reinforcement learning to learn an optimal ranking policy that maximizes the
expected accumulative rewards in a search session. Yan et al. from [33] built a scalable deep online ranking system
(DORS) with MABs as the last pass to dynamically re-rank items based on user real-time feedback and showed
significant improvement in both users satisfaction and platform revenue. Furthermore, authors from [25] proposed
a multi-armed nearest-neighbor bandit to achieve collaborative filtering for the interactive recommendation, by
modeling users as arms and exploring the users’ neighborhood. [29] proposed an interactive collaborative topic
regression model that infers the clusters of arms via topic models [5] and then utilizes dependent arms for the
recommendation.

In this literature, it is common to address this problem by treating each arm in the bandit to represent a single
item [37], product category [33] or a context [13, 15, 16]. In contrast, OPAR decomposes each product into its
descriptive set of attributes (such as its color, texture, material, and shape), represents each arm as an attribute
and provides great explainability in addition to its performance.

68



(a) (b)

(c) (d)

Figure 3: Top attribute-value pairs for top categories: (a) Jewelry; (b) Clothing; (c) Craft Supplies and Tools, (d)
Home and Living.

C Problem Formulation

In this section, we provide definitions for commonly used terms such as sessions and attributes. We then explain
our model in two parts: (1) how to represent within-session attribute preferences, and (2) how to re-rank items
based on these preferences.

C.1 Definitions

Definition 1: A session is a sequence of actions that the buyer takes while engaging with an e-commerce platform
in trying to fulfill a shopping mission (e.g. search, click, add-to-cart). The session typically ends when the buyer
leaves the site with a purchase or abandons after a significant duration of inactivity (e.g., 30 minutes). Note that
we focus on product search here but should be generally applicable to other ranking or recommendation problems.

Let us define a session S = {[Qt, It, At]}Tt=1 that is a sequence of T user actions within a session, in which
T can vary across sessions. The session starts at t = 1 and ends at T with a purchase (or becomes inactive). At
each time step, item list It ∈ RM×1 contains M candidate items to be re-ranked for query Qt, and then how the

69



user engages with the list of items is represented by At:

At(xi) =


0, no action on xi
1, xi is purchased
2, xi is added to cart
3, xi is clicked

, ∀xi ∈ It. (21)

Definition 2: An attribute is a basic unit (e.g. size, color) that describes the product characteristics of an item.
The attributes are determined by taxonomists based on the product category while the value of the attributes
(e.g. large, green) are volunteered by the seller, or inferred by machine-learned classifiers. These attribute-
value pairs help buyers efficiently navigate through an overwhelmingly large inventory. Thus, each item xi is
represented as the composition of its attributes, with Hxi denoting the total number of attributes associated with
xi : xi = {atr1, atr2, . . . , atrHxi

}.
Figure 3 shows four category-specific word clouds of attributes-value pairs exhibited in items from top

categories at Etsy, one of the largest e-commerce platform for handmade, vintage, and craft supplies. Some of
the most common attributes are universal: size, color, and material. Others are category specific: sleeve length,
earring location, and craft type. Lastly, some attributes (e.g. holiday, occasion, recipient) describe how or when
the item can be used.

C.2 Problem Statement

Our goal is to (1) formulate each user’s within-session preference for product attributes and (2) re-rank a list of
candidate items based on the user’s inferred within-session preference on item attributes.
Part 1: How to formulate users’ in-session attribute preferences?
Input: For session S, (1) item lists {It}Tt=1 with each item xi = {atrHxi

} as composition of product attributes;
and (2) session-level record of user actions on shown items, {At}Tt=1.
Output User’s preference Θ on attributes as beta-distributed: Θ = {θatrn}Nn=1 ∼ {Beta(αatrn , βatrn)}Nn=1,
where N denotes the total number of attributes encountered in session S.

For a user, we model their within-session preference on an attribute as a latent value θatrn ∈ [0, 1] denoting
the probability that they would like the attribute exhibited in the item. Motivated by Thompson Sampling [1], let
θatrn be beta-distributed, with αatrn , βatrn be the two parameters of the distribution. In Section E.2 we show a
method on estimating the parameters of attributes from historical data. From the list of shown items It, the user
engages on a subset of items (denoted in At) to express their preference for item attributes according to Θ. Given
the feedback, we propagate rewards from the user actions to the associated attributes with increments, δAt(xi),
and update the posterior distribution of Θ, with rewards normalized at xi by its cardinality (number of associated
attributes on that item).
Part 2: How to sequentially re-rank It based on user preference Θ to optimize in-session personalization?
Input: At time t, (1) Candidate list of items It, and (2) user in-session preference Θ.
Output: Sequentially learn ft : It ×Θ→ Ĩt.

Below we will present the OPAR algorithm to address the problem statement discussed here.

D Proposed Algorithm, OPAR

In this section, we present the details of the proposed OPAR model and its extension OPARw which differentiates
different user actions.

70



Algorithm 1: OPAR Algo: Re-Ranking & Parameter Update
Input:

Given a session S = {[Qt, It, At]}Tt=1

{δi}i: actions: action-aware increments on attribute parameters
γ: hyper-parameter to control intensity on negatives
Ut, Vt: the associated attributes from engaged items; the associated attributes from impressed items
| · |0: cardinality operator

for [Qt, It, At] ∈ S do
(1) Rerank on the Item List f : It → Ĩt

sample satrh ∼ Beta(αatrh , βatrh), ∀atrh ∈ NS

for xi ∈ It do
Given xi = {atrh}

Hxi
h=1 as associated attributes in xi, set score(xi) =

∑
atrh∈xi g(satrh)

end
Ĩt = sorted([score(xi)]xi∈It)
(2) Update attribute parameters given At
Let Ut = ∪{atrh : ∀atrh ∈ xi if At(xi) 6= 0, ∀xi ∈ It}
Let Vt = ∪{atrh : ∀atrh ∈ xi ∀xi ∈ It}
for xi ∈ It do

if At(xi) 6= 0, item xi has positive actions then
αatrh+ = δAt(xi) × {1− Exp (−|Ut|0)}, ∀atrh ∈ xi

else if At(xi) = 0, no action on item xi then
βatrh+ = δAt(xi) × {1− Exp (−γ|Vt\Ut|0)}, ∀atrh ∈ xi

end
end

end
Output: All re-ranking results [Ĩt]

T
t=1

D.1 Scoring and Re-ranking Item List

Given attribute-level bandits with each arm as an item attribute, we describe below our approach on how we score
and re-rank items, motivated by the Thompson Sampling approach on [1].

Let N denote the number of attributes associated with item list It. For each attribute in {atrh : atrh ∈
xi, ∀xi ∈ It}, we randomly sample θatrh from its corresponding distribution, denoting the probability that the
user is interested in the attribute, atrh, at time t:

θatrh ∼ Beta(αatrh , βatrh). (22)

Then, each item xi ∈ It is scored and ranked by:

score(xi) =
∑

atrh∈xi

g(θatrh), (23)

where g(θatrh) = 1
rank(θatrh )

is a harnomic function of the index that θatrh is ranked among [θatrh ]
Hxi
h=1, with a

tie-breaker uniformly at random. A larger score(xi) indicates higher satisfication with item xi given users’ short
in-session preference on the attributes. Lastly, we present the user Ĩt, which is reranked list of the items based on
[score(xi)]xi∈It .

71



D.2 Attribute Parameter Updates

With the feedback gathered from the user action At, we do the following updates for the attribute parameters. Let
Ut denote the set of attributes associated from items with positive actions (i.e., click, add-to-cart, purchase), and
Vt be union of all attributes exist in xi ∈ It:

Ut = ∪{atrh : ∀atrh ∈ xi ifAt(xi) 6= 0, ∀xi ∈ It}, Vt = ∪{atrh : ∀atrh ∈ xi, ∀xi ∈ It}.

For a given atrh, let Ỹt,atrh and Z̃t,atrh denote the set of items associated with positive user action and no-action,
respectively,

Ỹt,atrh = {xi ∈ It : atrh ∈ xi and atrh ∈ Ut}, Z̃t,atrh = {xi ∈ It : atrh ∈ xi and atrh ∈ Vt\Ut}.

Then, the Beta distribution of each attribute is updated as follows:

αatrh+ =
∑
Ỹt,atrh

δAt(xi)

(
1− e−|Ut|0

)
,∀atrh ∈ Ut,

βatrh+ =
∑
Z̃t,atrh

δAt(xi)

(
1− e−γ|Vt\Ut|0

)
,∀atrh ∈ Vt\Ut,

(24)

where | · |0 denotes the cardinality operator and γ controls intensity on implicit no-actions.

D.3 OPAR algorithm Procedure

In summary, given a session S = {[Qt, It, At]}Tt=1, OPAR can be summarized with the following steps, with the
pseudo code of OPARw shown in Algorithm 1.

1. Initialize attribute dictionary atrDic ∈ RN×2, which contains N pairs of parameters for attributes, where
each row of atrDic denotes the Beta distribution parameter set (αatr, βatr) for a given attribute. Different
initializations have been experimented, including uniform, random or estimated based on held-out historical
datasets (shown in Section E.2).

2. At time t, we score each item xi ∈ It based on Eq. (23): it first aggregates over the associated attribute
preferences sampled in Eq. (22), and then re-rank items based on scores in Eq. (23) and present as Ĩt. More
details in Section D.1.

3. At time t, we receive the obervation At on It, and then update the distribution of all attributes associated
with item xi in the atrDic based on the Eq. (24) described in Section D.2.

OPAR: attribute-based bandits with equal action-weighting for actions in {click, add-to-cart, purchase}.
This means that for positive actions, δclick = δadd-to-cart = δpurchase.

OPARw: extend OPAR to weight action-aware updates as follows, δclick 6= δadd-to-cart 6= δpurchase, and
hypertune them.

4. We iterate step (2) and (3) until the end of the session.

E Experiments

In this section, we show how OPAR performs on a real-world e-commerce ranking system and benchmark
it against 4 baselines on 8 datasets. While OPAR can be applied to any content that requires re-ranking, we

72



Table 19: Etsy Real-world Session-based Dataset Over 3 weeks

ID Category |Session (User)| |Query| |Item| |Attributes| |Actions|

1 Clothing 4642 46091 1100040 2495 58932
2 Home & Living 9073 103959 2282542 2455 134416
3 Paper & Party Supplies 4419 35132 691919 1666 55037
4 Craft Supplies & Tools 10913 123662 2536492 2799 171363
5 Accessories 5813 38215 897533 2419 49342
6 Electronics & Accessories 1638 10505 216860 1302 14354
7 Jewelry 5585 67507 1530285 2266 79874
8 Overall Category 26442 474594 9295453 3363 624882

specifically chose to train, evaluate, and analyze the model performance on a search ranking system, as the
explicit search queries issued by a user shows higher purchase intent, allowing us to better evaluate OPAR’s
ranking and interpretation capabilities. Our experimentation seeks to answer the following questions:
Experiment #1: What is the ranking performance of the proposed OPAR model? (Answered in subsection E.4.1)
Experiment #2: How does OPAR perform as an action-aware model? (Answered in subsection E.4.2)
Experiment #3: How does OPAR help to understand users’ short-term, in-session shopping preference? (An-
swered in subsection E.4.3)

E.1 Data Collection

The dataset is collected and sampled from a month of user search logs at Etsy, one of the largest e-commerce
platforms for handmade, vintage items, and craft supplies. To avoid bot traffic, filters are added to include sessions
with at least 10 search events (i.e., queries, browses, clicks, add-to-carts) and at least one purchase to focus on
sessions with strong shopping missions. Using an existing query classifier, we predict the most probable category
(e.g. jewelry, home and living) associated with the first query of each session, and then bucket the entire session
into one of 7 categories. This helps us understand shopping behaviors within each category. Table 19 shows
statistics of each data set, representing nearly 500k search queries from 26k sessions and 620k user actions
combined on nearly ten million items, with cardinalities computed within each dataset. We do not perform the
evaluation on existing public datasets, because (to the best of our best knowledge) there is no existing dataset that
includes all meta-data needed for our study (e.g. query, item attribute, user interaction logs).

E.2 Experimental Set-up

We split each of the 8 datasets into 2 parts (with sessions ordered chronologically). The first two-thirds of the
data is a held-out dataset. Because we are focused on online learning, using only within-session data, the
held-out dataset is mainly used for estimating the parameters of the Beta distributions, {(αatr, βatr)}∀atr, and to
aggregate attribute counts associated with engaged items to determine attribute popularity, powering the “Atr-POP”
algorithm in Section E.3. The remaining data is the testing dataset, on which we report re-ranking performance
for OPAR and other baseline algorithms on in Table 20.

While OPAR can function as a stand-alone ranking algorithm, we evaluate OPAR (as well as other baselines)
on top of an existing 2-pass ranking system (as described in Figure 1). More formally, each session in the
testing dataset, S = {[Qt, It, At]}Tt=1 contains a sequential list of query content Qt, a candidate set It of items
to be re-ranked, and logged user actions At on It (e.g. click, purchase). In our experiments, It is a truncated
list of the top 48 items returned by an existing 2-pass ranker, indicating that this list comprises of the most

73



relevant items to the query. As we will see in experimental results, applying OPAR adds an effective layer of
attribute-based personalization in real-time that was not feasible with the underlying system. In order to simulate
an online environment, only within-session user interactions leading up to the current time step are used for
ranking predictions.

E.3 Evaluation Metrics and Baselines

Below, we describe the offline metrics we use to evaluate OPAR on the testing dataset, as well as the baselines we
benchmark.

E.3.1 Evaluation Metrics

Following the general ranking metric Normalized Discounted Cumulative Gain (NDCG) [30], we propose a set
of session-level ranking metrics to evaluate our model.

1. Click-NDCG: For each query Qt issued in S that has at least one click in At (i.e, clicks as relevances),
click-NDCGt measures the re-ranking performance of the item list Ĩt (after re-ranking It) shown to the user
at t. For all timestamp with at least a click, we first compute stepwise sequential re-ranking performance
click-NDCGt as:

click-NDCGt = click-DCGt/IDCGt,∀t = 1, ...T, (25)

and click-NDCG of a session S is the average of click-NDCGt over events that have at least one click:

click-NDCG = Average(click-NDCGt). (26)

2. Purchase-NDCG: Following the above methodology, we compute the session-level re-ranking performance
limit to search events with attributed purchases. A session on a shopping site is defined as a sequence of
events ending with a purchase or a significant duration of inactivity. Given that, Purchase-NDCG given a
session is essentially purchase-NDCGT .

For each re-ranking algorithm reported in Table 20, we compute Click-NDCG @k and Purchase-NDCG@k
for k = {4, 12, 24, 48} by averaging click-NDCGs @k and purchase-NDCGs@k given session s over all sessions
in each dataset. Note that k is a multiple of 4 as that this shopping site displays 4 items per row on desktops.

E.3.2 Baselines

We compared OPAR’s ranking performance with 4 state-of-the-art baselines:

1. LambdaMART [32] is the boosted tree version of LambdaRank [6], which introduces the use of gradient
boosted decision trees for solving a ranking task and won Track 1 of the 2010 Yahoo! Learning To Rank
Challenge. A personalized search re-ranker is trained based on long-term user historical data to optimize
for the user’s purchasability on an item given the query issued and the user’s historical preference.

2. Atr-KNN is derived from Item-KNN [11]. Each item is presented by n-hot-encoding of associated attributes
with n being the cardinality of all attributes. That is, its ith entry equals to 1 if the referred attribute presents
in the item, otherwise 0. Items in the list It+1 are re-ranked based on their euclidean-distance from the last
engaged item(s) in It. Note that the items xi ∈ It with no-action has no impact on this re-ranking.

3. Atr-POP reranks the candidate set, It, of items based on the attributes’ popularity estimated with held-out
historical records. This baseline is one of the most common solutions derived from [11] given its simplicity
and efficacy.

74



Table 20: Re-ranking performance comparison on over all data sets (top-left) and 7 category-specific data sets.

Over All Category Clothing
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase
NDCG

@4 0.1795 0.0130 0.0749 0.0618 0.2994 0.3042 0.1948 0.0103 0.0516 0.0551 0.2384 0.2494
@12 0.2629 0.0412 0.1323 0.1425 0.3505 0.3607 0.2670 0.0348 0.1269 0.0824 0.2685 0.2744
@24 0.3162 0.1260 0.2112 0.2018 0.3718 0.3900 0.3019 0.0090 0.2193 0.1434 0.3209 0.3263
@48 0.3724 0.2554 0.2861 0.2518 0.4512 0.4578 0.3774 0.2462 0.2784 0.2157 0.3976 0.4030

Click
NDCG

@4 0.1459 0.0816 0.0705 0.0701 0.3120 0.3158 0.1328 0.0067 0.0690 0.0691 0.3058 0.3197
@12 0.2265 0.1456 0.1264 0.1354 0.3213 0.3229 0.2137 0.0228 0.1224 0.1414 0.3126 0.3257
@24 0.2955 0.2157 0.2021 0.1922 0.3318 0.3489 0.2821 0.0658 0.2045 0.1844 0.3274 0.3424
@48 0.3815 0.3245 0.2813 0.2689 0.4047 0.4051 0.3711 0.2309 0.2807 0.2613 0.3988 0.4061

Home & Living Paper & Party Supplies
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase
NDCG

@4 0.1755 0.0131 0.0649 0.0571 0.2920 0.2952 0.1822 0.0010 0.1255 0.0684 0.2828 0.2965
@12 0.2670 0.0396 0.1226 0.1281 0.3391 0.3436 0.2667 0.0406 0.1692 0.0941 0.3367 0.3497
@24 0.3218 0.0936 0.2066 0.1752 0.3838 0.3879 0.3276 0.1297 0.2469 0.1542 0.3796 0.3905
@48 0.3874 0.2543 0.2789 0.2164 0.4462 0.4491 0.3876 0.2550 0.3216 0.1943 0.4291 0.4399

Click
NDCG

@4 0.1481 0.0054 0.0601 0.0944 0.3201 0.3219 0.1585 0.0052 0.1084 0.0839 0.2825 0.2874
@12 0.2294 0.0213 0.1175 0.1416 0.3244 0.3256 0.2394 0.0247 0.1586 0.1367 0.2931 0.2973
@24 0.2978 0.0598 0.1973 0.1843 0.3485 0.3491 0.3103 0.0644 0.2300 0.1742 0.3383 0.3189
@48 0.3835 0.2278 0.2746 0.2288 0.4032 0.4086 0.3911 0.2306 0.3104 0.2007 0.4017 0.4072

Craft Supplies & Tools Accessories
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase
NDCG

@4 0.1912 0.0135 0.0739 0.0741 0.3101 0.3268 0.1954 0.0251 0.0683 0.0511 0.2166 0.2178
@12 0.2735 0.0407 0.1296 0.1125 0.3673 0.3781 0.2828 0.0741 0.1431 0.0849 0.2835 0.2930
@24 0.3272 0.1208 0.1970 0.1644 0.4084 0.4188 0.3324 0.1406 0.2510 0.1222 0.3304 0.3361
@48 0.3844 0.2577 0.2820 0.2214 0.4366 0.4750 0.3869 0.2693 0.2917 0.1641 0.3962 0.4020

Click
NDCG

@4 0.1458 0.0055 0.0749 0.0994 0.3118 0.3166 0.1502 0.0105 0.0673 0.0712 0.2495 0.2605
@12 0.2262 0.0513 0.1290 0.1279 0.3241 0.3293 0.2324 0.0439 0.1358 0.1331 0.2656 0.2708
@24 0.2955 0.2042 0.1953 0.1935 0.3525 0.3521 0.3006 0.1091 0.2398 0.1800 0.3155 0.3212
@48 0.3811 0.2278 0.2815 0.2277 0.4080 0.4078 0.3848 0.2391 0.2885 0.2312 0.3548 0.4029

Electronics & Accessories Jewelry
LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw LambdaMART Atr-KNN Atr-POP GRU4Rec OPAR OPARw

Purchase
NDCG

@4 0.2136 0.0501 0.0715 0.0814 0.2847 0.2995 0.1661 0.0060 0.0576 0.0718 0.3051 0.3285
@12 0.3014 0.1109 0.1546 0.1223 0.3386 0.3782 0.2534 0.0766 0.1074 0.1142 0.3484 0.3854
@24 0.3519 0.0176 0.2652 0.1674 0.4257 0.4152 0.3087 0.1470 0.1668 0.1847 0.3866 0.3973
@48 0.4060 0.2965 0.2981 0.2416 0.4516 0.4656 0.3814 0.2460 0.2663 0.2367 0.4425 0.4598

Click
NDCG

@4 0.1530 0.0267 0.0805 0.0641 0.2074 0.2051 0.0701 0.0027 0.0621 0.0614 0.3314 0.3892
@12 0.2324 0.0703 0.1580 0.0939 0.2487 0.2622 0.1314 0.0106 0.1141 0.1021 0.3783 0.3963
@24 0.3029 0.1410 0.2657 0.1345 0.3158 0.3120 0.1989 0.1276 0.1762 0.1647 0.3956 0.4162
@48 0.3880 0.2560 0.3026 0.1667 0.3978 0.4078 0.3119 0.2192 0.2700 0.2144 0.4190 0.4475

Table 21: Multiple Purchase Intents within One Session

Timestamp Query Query Taxonomy Engaged Attributes

1st
Purchase

Intent

0 ’flower girl basket’ paper and party supplies (NO ACTION) Browsing

1-4 ’flower girl basket wedding’ paper and party supplies (CLICK)
’Prime Color: White’, ’Occasion: Wedding’, ’Holiday: Christmas’,
’Wedding theme: Beach & tropical’, ’Craft type: Floral arranging’

5-9 ’flower girl basket beach wedding’ paper and party supplies (CLICK)
’Prime Color: Blue’, ’Occasion: Wedding’, ’Holiday: Christmas’,
’Wedding theme: Beach & tropical’, ’Secondary color: White’, ’Craft type: Floral arranging’

10-11 ’two flower girl and one pillow’ paper and party supplies Browsing

Purchase Intent Change

2nd
Purchase

Intent

12-15 ’hat for beach wedding’ clothing.women_clothing (CLICK) ’Prime Color: Blue’, ’Occasion: Wedding’
16-22 ’turquoise petals’ accesories (CLICK) ’Prime Color: Blue’, ’occasion: Bridal shower’, ’Wedding theme: Fairytale & princess’

23 ’bride hair decoration beach theme’ clothing.women_clothing (NO ACTION) Browsing

Final Purchase 24 ’turquoise petals’ accesories (PURCHASE) ’Prime Color: Blue’, ’Occasion: Bridal shower’, ’Wedding theme: Fairytale & princess’

4. GRU4Rec [11] applies recurrent neural networks (RNN) on short session-based data of clicked items to
achieve session-based next-item recommendation. Each session is encoded as a 1-of-N vector, in which the
ith entry is 1 if the corresponding item is clicked else 0, with N denoting the number of items. While the
user’s consecutive clicks on items are used in the next item prediction, it is attribute-agnostic.

While it is common for each arm in the bandits to represent a single item or product category, we skip it as a
baseline here as this would incur higher exploration cost with potential latency bottleneck when scaling up to an
inventory of hundred millions of items and also lose interpretability of product attributes.

75



E.4 Experimental Results

In this section, we describe experimentation results for evaluating three kinds of performance: (1) ranking
performance, (2) impact of differentiating between user action types, and (3) interpretability.

E.4.1 Overall Re-ranking Performance

Table 20 shows experiment results of our model (OPARs) against 4 baselines described in Section E.3. The
results can be categorized into two parts: (1) performance on the aggregated datasets over all categories (top-left);
and (2) performance on each of the 7 category-specific datasets, representing different shopping missions and
behaviors across categories (i.e, “Clothing”, “Home & Living”). Across all 8 datasets for the re-ranking task,
OPARw outperform against all 4 baselines, including LambdaMART, Atr-KNN, Atr-POP, and GRU4Rec in both
purchase-NDCG and click-NDCG.

For the overall dataset (top-left), OPARw shows over 6% lift in click-NDCG@48 compared to the best baseline,
and over 20% increase in purchase-NDCG@48. Similar results are observed in each category-specific re-ranking.
For k, the best improvement for OPARw is achived at k = 4, ordering by @4 >> @12 >> @24 >> @48. With
attribute-based bandits, interactive feedbacks from the in-session user actions, even just fewer clicks, efficiency
propagate rewards to associated attributes and quickly learns preferred attributes that matter the most to the user,
thus optimize user purchase intent.

E.4.2 Effectiveness of Action-aware MABs

To explore users’ in-session activity with different types of actions (i.e, click, add-to-cart), we run experiments
with the action-aware bandit model, with OPARw hypertuned rewards from clicks vs add-to-carts, to differentiate
types of user actions. The results in Table 20 are reported from a tuned model that assigns larger weights to clicks
than add-to-carts, with an intuition that there is a high topical drift observed in the user’s browsing intent after
items are added to carts. As shown in Table 20, collectively OPARw outperforms OPAR by 1.6% and 1.1% in
purchase NDCG@4 and click NDCG@4, respectively. When segmenting by categories, OPARw also outperforms
OPAR in almost all categories, except Electronics & Accessories and Craft Supplies & Tools on purchase NDCG.

E.4.3 Interpretability of Within-Session Shopping Mission

It is often observed that a user exhibits multiple purchase intents with diverse preferences within a session. Table
21 presents a record of a user’s in-session activities. Figure 4 (top) shows the sequential improvement of OPAR in
session-level click-NDCG over time compared to the baseline, and Figure 4 (bottom) shows how OPAR captures
user’s preference, θatrh , on 5 attributes over time. The “Engaged Attributes” column in Table 21 maps out all
attributes associated with the clicked items for the corresponding query.

As shown in Table 21, the user is interested in three categories as his/her purchase intents: first in “paper &
party supplies”, then drift to “women clothing” and “accessories”, and lastly converted in “accessories” with a
purchase. After the browsing period from timestamp t = 0 with no user actions, βatr for the attributes associated
with the browsing-only items are incremented while no attributes have been updated with positive rewards for
the given user. OPAR launches from a lower click-NDCG at the beginning, while obtains better re-ranking
performance compared with baseline by learning that the user is interested in white prime color and is looking
for the wedding occasion theme by the end of t = 4. From then OPAR outperforms the baseline in click NDCG
while activated more attributes related to wedding themes in beach and tropical and expanded to floral crafting
type and blue for prime color. The re-ranking performance continues to improve from t = 5, .., 9 as more items
related to these attribute themes are discovered.

Starting from t = 12, the user starts to explore the 2nd categorical purchase intent, pivoting from “paper and
party supplies” to “clothing” and “accessories”. However, the latest activated attributes based on the engaged

76



items on the first set of shopping queries still relevant. The user has a consistent preference in attributes, such
as “Prime Color: Blue”, “Occasion: Wedding”, and “Wedding theme: Fairytale & princess” as she is searching
for a “hat for beach wedding” and/or “bride hair decoration beach theme”. Thus, for the second purchase intent
starting at t = 12, we observe a high jump start in OPAR’s click NDCG at t = 12 comparing to the first intent at
t = 1 and the metric continues to stepwise improve. As demonstrated in Figure 4 (bottom), “wedding theme” and
“primary color: blue" are the top two performant attributes that OPAR learned and identified over time.

(a)

(b)

Figure 4: In-session OPAR re-ranking performance.

F Conclusion

This paper proposes an interpretable Online Personalized Attributed-based Re-ranker (OPAR) as a light-weight
third-pass, followed by the normal 2-stage ranking process, to personalize a buyer’s in-session experience based
on product attributes. Given the important presence of attributes in the product category with its simplicity
in explainability, we propose attribute-based multi-armed bandits to quickly learn the buyer’s fine-grained
preferences and re-rank items based on the recent activities within the session to achieve in-session personalization.
We then extend the reward function of the attribute-based bandits to weight based on the type of actions the buyer
interacts with the item (i.e, click, add-to-cart, purchase). Lastly, we train and evaluate OPAR on the real-word
e-commerce search ranking system, and show its superior performance against the baselines across multiples
datasets. For future works, we could consider bias correction (i.e, position) in parameter updates to reduce self
reinforcing, and model interactions between query and attributes to capture user preferences on attributes beyond

77



engaged items.

78



References

[1] S. Agrawal, N. Goyal. Analysis of thompson sampling for the multi-armed bandit problem. Conference on learning
theory, 2012.

[2] P. Auer, N. Cesa-Bianchi, P. Fischer. Finite-time Analysis of the Multiarmed Bandit Problem. Machine Learning,
2002.

[3] P. Auer, N. Cesa-Bianchi, Y. Freund, R-E. Schapire. The Nonstochastic Multiarmed Bandit Problem. Society for
Industrial and Applied Mathematics, 2003.

[4] T. Bai, Ting, J-Y. Nie, W-X. Zhao, Y. Zhu, P. Du, J-R. Wen, Ji-Rong. An Attribute-Aware Neural Attentive Model
for Next Basket Recommendation. The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval (SIGIR ’18), 2018.

[5] D-M. Blei, A-Y. Ng, M.I. Jordan. Latent Dirichlet Allocation. Journal of Machine Learning Research, 2003.

[6] C-J. Burges, R. Ragno, Q-V. Le. Learning to rank with nonsmooth cost functions. Advances in Neural Information
Processing Systems, 2007.

[7] C. Olivier, L. Li. An Empirical Evaluation of Thompson Sampling. Advances in Neural Information Processing
Systems 24, 2011.

[8] L. Guo, H. Yin, Q. Wang, T. Chen, A. Zhou, N. Quoc Viet Hung. Streaming Session-Based Recommendation.
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

[9] R. Guo, X. Zhao, A. Henderson, L. Hong, H. Liu. Debiasing Grid-based Product Search in E-commerce. Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD ’20), 2020.

[10] M. Haldar, P. Ramanathan, T. Sax, M. Abdool, L. Zhang, A. Mansawala, S. Yang, B. Turnbull, J. Liao. Improving
Deep Learning for Airbnb Search. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’20), 2020.

[11] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk. Session-based Recommendations with Recurrent Neural Networks.
arXiv: 1511.06939, 2015.

[12] L. Hu, L. Cao, S. Wang, G. Xu, J. Cao, Z. Gu. Diversifying Personalized Recommendation with User-Session Context.
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI’17), 2017.

[13] Y. Hu, Q. Da, A. Zeng, Y. Yu, Y. Xu. Reinforcement Learning to Rank in E-Commerce Search Engine: Formalization,
Analysis, and Application. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD ’18), 2018.

[14] J-T. Huang, A. Sharma, S. Sun, L. Xia, D. Zhang, P. Pronin, J. Padmanabhan, G. Ottaviano, L. Yang. Embedding-
Based Retrieval in Facebook Search. Proceddings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’20), 2020.

[15] L. Shuai, K. Purushottam. Context-Aware Bandits. arXiv: 1510.03164, 2015.

[16] S. Li, B. Wang, S. Zhang, W. Chen, Wei. Contextual Combinatorial Cascading Bandits. Proceedings of the 33rd
International Conference on International Conference on Machine Learning - Volume 48 (ICML’16), 2016.

[17] Z. Li, H. Zhao, Q. Liu, Z. Huang, T. Mei, E. Chen. Learning from History and Present: Next-Item Recommendation
via Discriminatively Exploiting User Behaviors. Proceedings of the 24th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2018.

[18] Q. Liu, Y. Zeng, R. Mokhosi, H. Zhang. STAMP: Short-Term Attention/Memory Priority Model for Session-Based
Recommendation. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2018.

[19] X. Liu, J. He, S. Duddy, L. O’Sullivan, Liz. Convolution-consistent collective matrix completion. Proceedings of the
28th ACM international conference on information and knowledge management, p:2209–2212, 2019.

[20] P. Loyola, C. Liu, Y. Hirate. Modeling User Session and Intent with an Attention-Based Encoder-Decoder Architecture.
Proceedings of the Eleventh ACM Conference on Recommender Systems, 2017.

79



[21] P. Nigam, Y. Song, V. Mohan, V. Lakshman, W. Ding, A. Shingavi, H. Teo, H. Gu, B. Yin. Semantic Product Search.
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

[22] P. Pobrotyn, T. Bartczak, M. Synowiec, R. Białobrzeski, J. Bojar. Context-Aware Learning to Rank with Self-Attention.
arXiv:2005.10084, 2020.

[23] R. Qiu, J. Li, Z. Huang, H. Yin. Rethinking the Item Order in Session-Based Recommendation with Graph Neural
Networks. Proceedings of the 28th ACM International Conference on Information and Knowledge Management
(CIKM ’19), 2019.

[24] M. Quadrana, A. Karatzoglou, B. Hidasi, P. Cremonesi. Personalizing Session-Based Recommendations with
Hierarchical Recurrent Neural Networks. Proceedings of the Eleventh ACM Conference on Recommender Systems
(RecSys ’17), 2017.

[25] J. Sanz-Cruzado, P. Castells, E. López. A Simple Multi-Armed Nearest-Neighbor Bandit for Interactive Recommenda-
tion. RecSys, 2019.

[26] R-S. Sutton, A-G. Barto, Andrew G. Reinforcement learning: An introduction. MIT press, 2018.

[27] Y-K. Tan, X. Xu, Y. Liu. Improved Recurrent Neural Networks for Session-Based Recommendations. Proceedings of
the 1st Workshop on Deep Learning for Recommender Systems (DLRS’16), 2016.

[28] C-H. Teo, H. Nassif, D. Hill, S. Srinivasan, M. Goodman, V. Mohan, S-V-N. Vishwanathan. Adaptive, Personalized
Diversity for Visual Discovery. Proceedings of the 10th ACM Conference on Recommender Systems (RecSys ’16),
p:35–38, 2016.

[29] Q. Wang, C. Zeng, W. Zhou, T. Li, S-S. Iyengar, L. Shwartz, G-Y. Grabarnik. Online Interactive Collaborative
Filtering Using Multi-Armed Bandit with Dependent Arms. IEEE Transactions on Knowledge and Data Engineering,
2019.

[30] Y. Wang, L. Wang, Y. Li, D. He, W. Chen, T-Y. Liu. A theoretical analysis of NDCG ranking measures. COLT:
Proceedings of the 26th annual conference on learning theory, volume 8, page 6, 2013.

[31] L. Wu, D. Hu, L. Hong, H. Liu. Turning clicks into purchases: Revenue optimization for product search in e-commerce.
The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, 2018.

[32] Q. Wu, C. Burges, S. JC and K-M. Svore, J. Gao. Adapting boosting for information retrieval measures. Information
Retrieval Journey, 2010.

[33] Y. Yan, Z. Liu, M. Zhao, W. Guo, W-P. Yan, Y. Bao. A practical deep online ranking system in e-commerce
recommendation. Springer: Joint European Conference on Machine Learning and Knowledge Discovery in Databases,
p:186–201, 2018.

[34] F. Yu, Q. Liu, S. Wu, L. Wang, T. Tan, Tieniu. A Dynamic Recurrent Model for Next Basket Recommendation.
Proceedings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’16), 2016.

[35] S. Zhang, L. Yao, A. Sun, Y. Tay. Deep Learning Based Recommender System: A Survey and New Perspectives.
ACM Comput. Surv., 2019.

[36] X. Zhao, R. Louca, D. Hu, L. Hong. The Difference Between a Click and a Cart-Add: Learning Interaction-Specific
Embeddings. Companion Proceedings of the Web Conference, 2020.

[37] Y. Zhao, Y-H. Zhou, M. Ou, H. Xu, N. Li. Maximizing Cumulative User Engagement in Sequential Recommendation:
An Online Optimization Perspective. Proceedings of the 26th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2020.

80



Using Product Meta Information For Bias Removal In
E-Commerce Grid Search

Apoorva Balyan
Walmart Global Tech India
Apoorva.Balyan@walmart.com

Atul Singh
Walmart Global Tech India
Atul.Singh@walmart.com

Praveen Reddy Suram
Walmart Global Tech India
Praveen.Suram@walmart.com

Deepak Arora
Walmart Global Tech India
Deepak.arora1@walmart.com

Varun Srivastava
Walmart Global Tech India

varun.srivastava@walmart.com

Abstract

In e-commerce, product search plays a crucial role in helping customers discover and purchase products.
Most IR algorithms focus on creating a relationship between product and customer intent. These
techniques stand on two pillars of information primarily- first, what information the seller provides about
a product i.e description, title, taxonomy etc, and second, the implicit feedback data that is collected
from the search logs which comprises of millions of user activity events. This data is inherently biased
in nature as the user activity is not only dependent on the quality of query-item match but also on how
probable the user is to observe that item in the first place. In the IR theory and past research efforts,
discounting based on position in evaluation methods have been introduced to address this bias. However,
these bias reduction methods cannot be applied efficiently to e-commerce cases because of the difference
in the search results displayed to the user. The user behaviour in the list view search differs from that in
the grid view search and is composed of three major factors- (1) middle bias (2) slower decay (3) row
skipping. There have been efforts to model the user attention probability in a grid-based search. However,
these efforts have not been considered item meta-information hence, we propose a method to incorporate
the item attributes in the user attention estimation model. The idea is to add a non-positional aspect in
the propensity model of the user behaviour patterns. This is based on a simple argument that the user
attention is not only dependent on the row and column of the item(aka position) but also on the features
of product tile. These features can be shipping promise, price, reviews, ratings etc. Some of these feature
tags have been designed to attract the attention of customers. Through various experiments on Walmart
search logs data, We show that the proposed framework outperforms the debias baseline algorithms. The
results reflect better on how different taxonomies, product categories can impact the user behaviour in
grid-based product search.

Copyright 2021 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

81



A Introduction

There is an inherent difference between traditional search engines and e-commerce or product search engines. In
traditional search engines like Google, the search results are displayed in a list view whereas in the e-commerce
search engines like www.walmart.com, the results are displayed in a grid view. The difference in the display
of search results can impact the customer’s attention and behaviour. Researchers in a previous study [5] were
able to show that in the Image Search Engine Result Pages(SERPs), the user’s attention can be defined by three
factors: (1) User’s attention within a row is more in the middle, so there is a bias towards the products in the
middle (2) Users tend to skip rows while scrolling on a SERP (3) The decay of user attention is slower in a grid
view compared to list view, where the decay happens drastically. This idea was further applied in the e-commerce
search [6] and developed an inverse propensity bias model to correct the learning to rank algorithm. While
position/presentation of the products on a SERP has been considered in the modelling of the bias, the impact of
the product’s meta-information on the user attention has still not been addressed.

Intuitively, the SERPs of the e-commerce search engines are not only different in the presentation but also
in the fact that e-commerce is a marketplace which has a direct monetary benefit for the sellers maintaining
the product information on the page. Thus, the information present for each product tile such as ’Top Picks’,
’Reviews’ and ’Ratings’ would have a very strong impact on the customers navigating this web space to get the
best product suited for their requirements. Figure 1 and 2 shows the difference in results displayed in list vs grid
view on walmart web and application.

The impact of these qualitative product features on bias would be different for different categories of products.
For example : On a category of Milk with clear intent, the new customer might not be exploring so much on the
view presented whilst on a category of clothing, the user’s attention would be influenced by these product tile
tags as discussed above. Hence, we extend the framework to model the product meta-information like Ratings,
Reviews, Shipping Promise in the propensity model. Incorporating these features into the model will show the
impact on the features displayed on the product tile. To model these features, we use a scoring algorithm to assign
a score to each product and this score in modelled with the propensity scoring model. Our aim is to learn a ranker
and evaluate the impact of the model using an evaluation metric. We also look at the different product taxonomies
like Entertainment, Fashion etc because the customer’s intent is different in each product taxonomy.
We organize the rest of the paper in the following way: Section 2 contains related work on grid based e-commerce
search, Section 3 contains our proposed framework with details on how the item feature scores are calculated
and how the propensity score for modelling is derived, Section 4 mentions the experimental settings, evaluation
metric and the results, along with the dataset description, and Section 5 presents the conclusion and the future
work. Each section is further divided into subsections.

B RELATED WORK

We will start with a brief introduction of the background and knowledge on the prior research work for analyzing
the differences in the user behavior patterns in the list view vs the grid view search, and how this behaviour
pattern is used in the propensity score modelling with a brief introduction to LambdaMART ranker.

B.1 GRID SEARCH USER BEHAVIOUR PATTERNS

Products in an e-commerce are placed in different view as compared to the majority of search engines that
show the list view for the results. The different placement of products leads to a change in the interaction
mechanisms of items. Previously, a number of studies have been done on the user behaviour on image or grid
search engines [5, 8, 9]. All these studies focused on comparing the user interaction behaviour in grid search
setting to list view display setting by using search logs and eye tracking methods. Important differences in user
behaviour, user being more exploratory and more time spent by the user are some of the findings that were

82



Figure 1: List view on Walmart App

Figure 2: Grid view on Walmart web

observed. We list the major findings in grid based search as follows:
(a) Middle Bias: There exists a "middle position bias" in the user’s examination behaviour. Customers allocate
their attention more to the items placed in middle positions in a row. The probability of the user examining items
placed on left and right corner in a grid search is less compared to the items in the center. In [5], the researchers
consider the dwell time as the factor which is defined as the examination duration of an image and they confirm
the middle bias phenomenon. Also, the user behaviour at each position in a row follows normal distribution.
Researchers have not used this phenomenon in Learning to rank models of e-commerce yet, and we do not
consider it in this research because in the dataset that we use, the number of columns is less than 4 or 5, and our
hypothesis is that there are other details in e-commerce search that draw the user attention. So, the middle bias
phenomenon is not very effective here.
(b) Row Skipping: The customers do not examine each and every product in a grid from top to bottom, they

83



tend to skip some rows. Users ignore particular rows and directly jump to some distant rows. The probability of
the users skipping the first row is very low as compared to the other rows. In [6], row skipping bias in the user
behavior was considered in getting an Unbiased Learning to rank model. The probability of the user skipping a
particular row was considered as a bias factor when calculating the lambda gradient for a query. The observation
was that the row skipping models performed better in taxonomies where user intent was very clear and users were
looking for specific set of items. In such cases, users were probable to skip the rows.
(c) Slower Decay: In a list-view web SERP, the attention of the customer decays in monotonically decreasing
fashion and is also dramatic but in grid-view, the decay is much slower. The user behavior in the grid search is
more exploratory and there is more browsing as there are a lot of items displayed in a page and users don’t have
to go to next page to view the next set of items as in the list-view. This leads to the user spending more time in
the grid search, concentrating on the items, and thus the decay is slow. In [6], the slower decay user behaviour
bias was considered in training unbiased learning to rank models.
These findings are incorporated and Normalized Discounted Cumulative Gain(NDCG) evaluation method is also
changed based on grid view search user behaviour.

B.2 Click Models

A lot of prior work has been done on-click modelling in the web search by extracting useful information from
search logs of any search engine, mainly the click data. Cascade click model is one of the widely adopted
technique in list based search that takes multiple types of user feed backs into account and models the user
behavior as a sequence of actions [7, 10]. There are different types of biases in the click-models, mainly the
position bias. Learning from biased data without taking them into consideration leads to a less effective ranking
function. In another study, unbiased learning to rank model was introduced where position bias was considered.
Inverse propensity weighting is a well known technique adopted to address any kind of bias and is used for
unbiased learning [7]. Most of the work in this area assumes that the propensity scores are present in the logs
and they study how to reduce the model variance while remaining unbiased. The unbiased learning-to-rank
framework is different, because in that, the propensity is not explicitly logged and is buried in the user behavior
data implicitly. Unbiased learning to rank does debiasing of the click data and uses it to train the ranker. Unbiased
LambdaMART framework [4] was introduced for training an unbiased ranker by jointly estimating the biases at
click positions and the biases at non-click positions.

B.3 LambdaMART Ranker

LambdaMART is a widely used Learning to rank algorithm to solve ranking problems in search engines.
LambdaMART [2, 3, 11] uses gradient boosting and the gradient function of the loss function is called lambda
function. The minimization of the objective function is performed using the lambda function on the training
dataset. In LambdaMART, the lambda gradient of any document is calculated as

λi =
∑

j:(di,dj)

λij −
∑

j:(dj ,di)

λji (27)

λij is defined as following :

λij =
−2

1 + exp(2(f(xi)− f(xj)))

∣∣∆ij

∣∣
where λij is the lambda gradient defined on a pair of documents di and dj , σ is a constant,f(xi) and f(xj) are

the scores of the two documents given by LambdaMART, ∆ij denotes the difference between NDCG scores if
documents di and dj are swapped in the ranking list.

84



C Item Propensity Scoring Model

We will start with a brief introduction of the background and knowledge on propensity estimation and joint
optimization within the learning to rank models. Then we provide description of the changes to the proposed
propensity scoring model using item features.

C.1 Estimating Propensity using Product Meta Information

We hypothesize that the user is not only influenced by the presentation of search query results but also with
certain attributes or tags that have been designed to get customer’s attention by sellers.
We consider four such attributes about an item which can impact user attention:
(1) Two Day Shipping: In the fast paced world that we are in currently, every user wants their favorite products
to be delivered at the earliest. Users tend to compare delivery options with other online competitors and place
their order accordingly. Thus, to get user attention on items that are eligible for super fast delivery, a message is
shown on product tile that this item is eligible for delivery within 2 days. Fig 3,4 shows a two day shipping tag
for products in the result set.
(2) Ratings: Ratings are given by previous users to the products on any e-commerce platform to indicate how
satisfied or dissatisfied previous customers were for that product. This attributes tells what their experience was
like and how they rate that experience on a scale of 1 to 5. Fig 3,4 shows the rating tag for products in the result
set.
(3) Reviews: Reviews is the number of reviews a product has received till date. Reviews is a factor in fetching
the rating score for an item. Users are attentive towards number of reviews as well along with rating, as an item
with a high rating and very low number of user reviews is highly biased. Products with significant number of
reviews gains user trust for that products rating.
(4) Relative Price: Price is an important information displayed to the user on the product tile. A set of expensive
items for a query may not attract user attention and user may not look in details with much attention. This will
counter the slower decay factor. With relative price score, we try to get the expensive and cheap products for a
query that is displayed to user. This feature is the relative score among price of all products fetched in the recall
set for a particular query.

Based on the above features, we estimate a score and experiment with it in the propensity model. In scor-
ing method, We assign a binary value in the scoring functions for 2-day shipping, ratings and reviews.

According to the formulation:

S(I) = γ
3∑
i=0

Ki (28)

where Kiε[−1, 1] represents binary vote of the item property.
How to assign the vote for score estimation of an item? To assign a vote for scoring, we look at the quantiles for
item features in the data. The threshold for assigning a positive vote or a negative vote is decided using quantile
values and then the final score is estimated by the summation of all the votes. The scoring algorithm is mentioned
in Algorithm 1.
For example:
If ratings >= 75th quantile-value, we assign a +1 score to the item or If ratings <= 25th quantile-value, we assign

85



Figure 3: SERP with 4-column view with product meta information like Ratings, Reviews, Two day shipping

Figure 4: SERP with 5-column view with product meta information like Ratings, Reviews, Two day shipping

a -1 score to the item etc. In this similar fashion, we compute a score for each item based on these features.

Algorithm 2: Score estimation using product meta information
1: Initialize scorei as 0
2: if twoDayShippingi > 0.0 then
3: scorei ← scorei + 1
4: end if
5: if ratingi >= 75thQuantileV alue then
6: scorei ← scorei + 1
7: end if
8: if ratingi <= 25thQuantileV alue then
9: scorei ← scorei − 1

10: end if
11: if reviewsi >= 75thQuantileV alue then
12: scorei ← scorei + 1
13: end if
14: if reviewsi <= 25thQuantileV alue then
15: scorei ← scorei − 1
16: end if
17: return scorei

C.2 Changing the Slower Decay Model

As mentioned before, in a SERP with a grid view the user attention decreases more slowly when compared to the
results in a list view. According to the earlier work [6], the probability of examination of an item at position, i is

86



estimated as:

P (oi = 1) =
i−1∏
j=0

min(βrow(j) ∗ α), 1.0) (29)

where row(i) is the row-number for the item at position i, α is likeness of customer browsing the next item, β
models the customer’s patience in grid view. As we can see, the probability does not account for item meta-
information shown on the item tile in SERP. If an user finds any item attractive in SERP, the user tends to spend
more time on it and the probability of examination is more. There are multiple details shown on search page
that may attract user attention viz. image quality or attractiveness, user ratings of that particular item, number of
reviews on it, special offer tag, price of the product or the delivery date of the product. These factors will also
contribute to the probability of user examining any particular product in Grid based SERP. Considering this, the
decay factor will change accordingly. Based on this hypothesis, we model the estimated score above into the
probability of examination at position, i as:

P (oi = 1) =
i−1∏
j=0

min(βrow(j)+S(I) ∗ α), 1.0) (30)

We train a ranker f based on loss function L with the propensity score of slower decay model computed using α,
β and γ hyper parameters. We use LambdaMART with the ranker, gradient boosting trees as explained before.
Following on the same lines, we calculate the lambda gradients by applying inverse propensity scoring. Hence,
the lambda gradient for kth product can be re-written as:

δL

δxk
= λk =

∑
q

( ∑
yiq=k∩(i,j)εIq

λij
P (oi)

−
∑

yiq=k∩(j,i)εIq

λij
P (oj)

)
(31)

where i, j are the positions on the SERP, xq is the feature vector for query-product pair, yiq means that the kth

product is at position, i and λij is defined as following :

λij =
−2

1 + exp(2(f(xiq)− f(xjq)))

∣∣∆ij

∣∣
∆ij is the value difference in the NDCG evaluation metric if i and j are to be swapped.

Relative Price Feature : Price is another information displayed on the product tile in an E-commerce search.
Most of the users have a budget in mind when they visit to shop any product. If ,for a particular query, most of the
items in search results are expensive compared to the range user is looking for, the user may not spend much time
on that query viewing the results thus the decay will be comparatively faster. Among the set of items displayed,
if there is a relatively cheaper product that also has other attractive tile meta-information, the probability of
examining it will be higher. As a part of this work, we consider relative price feature separately to observe the
impact of the price on the user behaviour and to check if there is any price bias . Relative price calculation is
done as follows:

relp(i) = 1.0− k ∗ abs(func(log(x/mean_price))) (32)

where relp(i) is the relative price score for an item i and x is the price of that particular item , k is a constant
and mean_price is the mean of prices of all items in the recall set of the query, abs is the absolute function to get
the absolute value, func can be any activation function [14] like tanh or sigmoid . For example , tanh is defined as

tanh(x) =
2

1 + e−2x
− 1

87



Sigmoid is defined as

sig(x) =
1

1 + e−x

Thus, in our dataset, we have the relative price score for all query-item pairs. Based on this, we redefine the
probability of examination at position i in a GRID based SERP as

P (oi = 1) =
i−1∏
j=0

min(βrow(j)+S(I)+η∗relp(i) ∗ α), 1.0) (33)

where η is the hyper-parameter introduced to tune the relative price feature in the slower decay model.
For training slower decay model including price feature, we calculate the lambda gradient in the gradient

function of LambdaMART as above in (7).

D Experiments

In this section, we conduct a series of experiments to compare our proposed method with the baseline methods
for the removal of bias in grid-based e-commerce search. First, we explain our experimental settings, the datasets
that we used, how we prepared them, and the metrics we used to evaluate the models. We then report the results
obtained in our unbiased learning to rank setting.

D.1 Datasets

In this subsection, we provide a brief overview of the search log datasets that we used for our experiments.
We used the data from the search logs of e-commerce website at Walmart, an American multinational retail
corporation with a significant online presence. In particular, we use the data from three product taxonomies
viz. Fashion, Entertainment (ENT), and Every Day Living (EDL), and by considering them for capturing and
understanding the user behaviour and we eventually obtain four datasets, one for each category. Our datasets
included queries, items, positions, and item features. The item features include raw features like item title match,
item popularity, partial match score, along with engagement features like click rates, ‘add to cart’ rates, order
rates and attribute features like the number of reviews, ratings, the relative price of the products among the recall
set, and shipping promise.

D.2 Experimental Settings

In this subsection, we describe the experimental setup. The most common way to evaluate the learning to rank
model is by its performance on a holdout set that has unseen data. We perform experiments on each product
taxonomy, as mentioned in the subsection above. In our datasets, we perform a random split into a training set
(80%), validation set (10%), and test set (10%). We carry out a fast grid search to obtain the best hyper-parameter
values for the models. To keep the probability value in a reasonable range, we search alpha in {0.8, 0.85 , 0.9 ,
0.95}, beta in {1.05 , 1.1 , 1.15. 1.2}, and gamma in {0.001 , 0.003 , 0.005 , 0.007 , 0.01 , 0.03 , 0.05 , 0.07 ,
0.1}. For the LAMBDAMART ranker, we search for the learning rate in {0.01 , 0.05 , 0.1}, the maximum depth
in {3 , 5, 7}, and the minimum data in leaf in {20 , 30 , 40 , 50 , 60}. We also tune for boosting fraction and
feature fraction values in the range 0.7, 0.8, 0.9, 1.0 and 0.8, 0.9, 1.0 respectively. The other parameters are the
default settings of Unbiased LambdaMART, while we keep the settings consistent for all the baseline and feature
models. We consider the slower decay model[25] as the baseline method. Here, we optimize for the position 10
and consider the metric on the validation set to get the optimal parameter values.

88



D.3 Evaluation Metrics

Here, we explain the evaluation metric considered for the experiment. We consider the traditional evaluation
method of Information Retrieval Systems, Normalized Discounted Cumulative Gain (NDCG) as the evaluation
metric [1, 12, 13]. Experiments are performed in offline settings and we obtain the NDCG metric at different
positions to compare the proposed framework with the baseline method.

NDCGk =
DCGk
IDCGk

(34)

where

IDCGk =

|REL|∑
i=1

2reli − 1

log2(i+ 1)

Here, IDCG@K is the normalizer and |REL| is the list of documents ordered by engagement in the set up to
position k. To explain the slower decay of user attention we consider K = 1, 3, 5, 10 for the NDCGs.

On the held-out dataset of Walmart Search logs, we calculate the prediction scores of our models. Using
the prediction labels, we apply this evaluation method to get the metrics at different positions across different
categories.

D.4 Experimental Results

In this section, we provide an overview of the experimental results that we obtain. We share insights on: (1) how
e-commerce search results get better with the proposed framework, and (2)how the user behaviour varies across
the product taxonomies. We mention the results in Table 2 and summarize our observations as follows:

• Our proposed method for slower decay using product tile information outperforms the baseline method in
Fashion vertical by significant margin. This clearly shows the effectiveness of our proposed framework and
assumption that user attention decay is slower when user is attracted by any of the item features.

• Performance of our proposed framework in Fashion affirms our initial assumption that users are more
inclined on item tile information when shopping for clothing accessories and decay is much slower in such
a case as user looks for detailed information.

• The proposed framework of using item attributes in slower decay probability computation shows improve-
ment in Entertainment and Every Day living category too compared to the baseline method of slower decay.
Performance improvement is not much compared to Fashion, and this may be because the users have a
specific intent when they shop in such categories.

• Adding relative price feature in slower decay probability computation for fashion gave slight improvement
over the proposed framework model without price feature. This suggests that price is not a major factor in
the users’ attempt to click on that product and view the details.

Taxonomy α β γ

Fashion 0.8 1.05 0.01
EDL 0.95 1.15 0.001
ENT 0.9 1.15 0.03

Table 22: Tuned hyperparameters for item propensity scoring model for different taxonomies

89



Taxonomy Framework NDCG@1 NDCG@3 NDCG@5 NDCG@10

Fashion (w/o price)
Benchmark Slower Decay
Proposed framework

0.408
0.419

0.486
0.492

0.535
0.539

0.584
0.590

Fashion (with price)
Benchmark Slower Decay
Proposed framework(with price)

0.408
0.420

0.486
0.494

0.534
0.540

0.583
0.590

Every Day Living
Benchmark Slower Decay
Proposed framework

0.553
0.553

0.627
0.628

0.669
0.669

0.711
0.711

Entertainment
Benchmark Slower Decay
Proposed framework

0.503
0.503

0.580
0.581

0.624
0.624

0.669
0.670

Table 23: Experimental Results on different taxonomies using held-out dataset.

We train separate models for different taxonomies to show that the user behaviour patterns differ across categories
and the users react differently to the product tile features.

Hyper Parameter Values: Here, we report the values that we obtain for the hyper parameters ( α , β , γ
) and that achieve the optimal performance for the proposed framework. For the Fashion category, the proposed
slower decay model with α = 0.8, β = 1.05 and γ = 0.01 outperforms the others. Similarly, for the Every Day
Living category, the proposed slower decay model with α = 0.95, β = 1.15 and γ = 0.001 works best. α = 0.9, β
= 1.15 and γ = 0.03 are the optimal hyper-parameter values for the Entertainment category with the proposed
slower decay framework. We experimented on Fashion with the price feature and α = 0.95 , β = 1.15 , γ = 0.05 ,
η = 0.01 are the optimal hyper-parameter values for our dataset.

E Conclusion and Future work

In this paper, we tried to understand the impact of meta-information on the products displayed on the SERPs for
user attention. We extended the solution of debiasing the grid product search by modelling the meta-information
of the products, like rating, reviews, shipping promise, price in the propensity model. We showed through
extensive experimentation how the different product taxonomies have different user behaviour.

As part of future work, we plan to extend this work to incorporate more product tile features and also use
the image quality feature to model the user attention in Grid-based E-commerce search engines. We plan to try
out different scoring methods as well for tile features score calculation and model middle bias , row skipping
behaviour based on product tile features.

References

[1] K. Järvelin and J. Kekäläinen. Cumulated Gain-Based Evaluation of IR Techniques. ACM Trans. Inf. Syst,
10.1145/582415.582418, 2002.

[2] C. JC Burges. From RankNet to LambdaRank to LambdaMART: An Overview. https://www.microsoft.com/en-
us/research/publication/from-ranknet-to-lambdarank-to-lambdamart-an-overview/, MSR-TR-2010-82, 2010.

[3] Z. Cao, T. Qin, T.Y. Liu, M.F. Tsai and H. Li. Learning to Rank: From Pairwise Approach to Listwise Approach.
Proceedings of the 24th International Conference on Machine Learning, 10.1145/1273496.1273513, 2007.

[4] Z. Hu, Y. Wang, Q. Peng and H. Li. Unbiased LambdaMART: An Unbiased Pairwise Learning-to-Rank Algorithm.
The World Wide Web Conference, 10.1145/3308558.3313447, 2019.

[5] X. Xie, J. Mao, Y. Liu, M. de Rijke, Y. Shao, Z.-Ye, M. Zhang, S. Ma. Grid-Based Evaluation Metrics for Web Image
Search. The World Wide Web Conference, 10.1145/3308558.3313514, 2019.

90



[6] R. Guo, X. Zhao, A. Henderson, L. Hong and H. Liu. Debiasing Grid-Based Product Search in E-Commerce.
AProceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,1
0.1145/3394486.3403336, 2020.

[7] X. Wang, N. Golbandi, M. Bendersky, D. Metzler and M.-Najork. Position Bias Estimation for Unbiased Learning to
Rank in Personal Search. Association for Computing Machinery, 10.1145/3159652.3159732, 2018.

[8] B. Geng, L. Yang, C. Xu, X.S. Hua and S.-Li. CThe Role of Attractiveness in Web Image Search. AProceedings of
the 19th ACM International Conference on Multimedia, 10.1145/2072298.2072308, 2011.

[9] X. Xie, J. Mao, Y. Liu, M. de Rijke, H. Chen, M. Zhang, S. Ma. Preference-Based Evaluation Metrics for Web Image
Search. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, 10.1145/3397271.3401146, 2020.

[10] N. Craswell, O. Zoeter, M. Taylor and B. Ramsey. CAn Experimental Comparison of Click Position-Bias Models.
Proceedings of the 2008 International Conference on Web Search and Data Mining, 10.1145/1341531.1341545, 2008.

[11] S K. K.Santu, P. Sondhi and C. Zhai. On Application of Learning to Rank for E-Commerce Search. Proceed-
ings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval,
10.1145/3077136.3080838, 2017.

[12] Sham. S. Discounted Cumulative Gain. https://machinelearningmedium.com/2017/07/24/discounted-cumulative-gain/,
2017.

[13] Chandekar. Pranay. Evaluate your Recommendation Engine using NDCG. ttps://towardsdatascience.com/evaluate-
your-recommendation-engine-using-ndcg-759a851452d1, 2020.

[14] A. Sharma V. Understanding Activation Functions in Neural Networks. https://medium.com/the-theory-of-
everything/understanding-activation-functions-in-neural-networks-9491262884e0, 2017.

91



Letter from the Impact Award Winner

Higher, Faster, Stronger: A Research Journey

Earlier this year, I received an email from the TCDE Awards Committee Chair informing me that I was the
recipient of the 2021 IEEE TCDE Impact Award, with the citation “for contributions to deductive databases,
streaming algorithms, and data integration.” My first thought upon receiving this email was “Wow, this is a great
honor!” My second thought was “Who on earth remembers my contributions to deductive databases?”

To put my cited contributions into the context of my research journey over the past three decades, and explain
my use of “Higher, Faster, Stronger”1 in the title of this letter, I summarize my cited contributions below.

Higher: My research in Deductive Databases had the goal of elevating query functionality in databases.

Faster: My research on Streaming Algorithms focused on quickly analyzing data streams in one pass.

Stronger: My research on Data Integration sought to make data combined from multiple web sources robust.

Deductive Databases: Ph.D. Studies I joined the University of Wisconsin–Madison to do my Ph.D. studies
in 1987 after completing my B.Tech. in Computer Science & Engineering from IIT Bombay, India. Raghu
Ramakrishnan had just joined the faculty there and he offered me the opportunity to work with him as a Research
Assistant on a new deductive database system, CORAL, which he had started to build.

Deductive databases seek to enhance relational databases by adding the power of recursion to a relational
query language with selection, projection, join, union and aggregation. This elevated declarative query language
allows easy expression of a variety of natural problems, including shortest paths in graphs and bill of materials to
assemble complex products. This enhanced query language expressiveness calls for time- and space-efficient
query processing strategies, Along with Raghu and my fellow Ph.D. student, S. Sudarshan, we proposed and
implemented many efficient and innovative strategies in CORAL. My Ph.D. thesis on “Representing and Querying
Complex Information in the CORAL Deductive Database System” emerged from this body of work. I would like
to thank Raghu for giving me the intellectual freedom to work on a research topic of my choice and Sudarshan
for the many collaborations during our Ph.D. studies.

Since its heydays in the early 1990s, recursive query languages used in deductive databases have seen
a resurgence in recent years, with diverse uses ranging from data integration and information extraction to
networking, program analysis and security. It is intellectually satisfying to see research that I had done find new
and interesting uses 2-3 decades later!

Streaming Algorithms: Processing Network Data at Scale After completing my Ph.D. from the University
of Wisconsin–Madison in 1993, I joined AT&T Bell Labs in Murray Hill, New Jersey as a research scientist.
When AT&T Bell Labs split up into AT&T Labs and Bell Labs in 1996, my affiliation changed to AT&T Labs,
but my email address stayed the same, possibly offering a solution to the metaphysical identity problem of the
Ship of Theseus. A few years later, I became the Head of Database Research at AT&T, with the good fortune of
managing and working with a team of outstanding researchers.

Around the year 2000, many of us at AT&T were inspired by the idea of monitoring and analyzing streams of
IP network packet headers using SQL-style declarative query languages, even though the high volume and velocity
of the data precluded the possibility of persistently storing all the data flowing through AT&T’s IP network. This
idea inspired many of us to do a significant body of algorithms and systems research in the nascent area of data
stream management systems over the next two decades, and it continues to be an active research topic even
today. Since the data could not be persisted, it had to be processed and analyzed quickly in a single pass, using a

1Adapted from the Olympic Games motto, Citius - Altius - Fortius.

92



limited amount of memory. A variety of natural queries (such as finding quantiles of the distribution of round-trip
times in the IP network) could be answered with approximation guarantees, but not exactly in the data stream
model. The key researchers working on this topic were Graham Cormode, Lukasz Golab, Theodore Johnson, Flip
Korn, S. Muthukrishnan, Vladislav Shkapenyuk and Oliver Spatscheck. We designed and implemented a large
variety of streaming algorithms for fundamental query primitives, which were included in the GS data stream
management system developed at AT&T and used to monitor network traffic. I would like to thank all of them for
the fruitful collaborative research that we have engaged in over the years and decades.

Our ability to deploy streaming algorithms in a live system and tune their performance to operate at scale on
AT&T’s network data streams was crucial to make sure that these algorithms were both theoretically elegant and
practically useful. These algorithms are now widely used to process data in a single pass in databases, networking,
finance, e-commerce, and other domains.

Data Integration: Dealing with Web-Scale Heterogeneity Around the time that I joined AT&T Bell Labs in
1993, the World Wide Web was taking off – the first website was published in 1991 and the first web browser
was released in 1992. With websites being built and independently populated with heterogeneous content, the
challenge of building global information systems that could integrate data from multiple web sources and deal
with web-scale heterogeneity inspired a new generation of researchers.

Web-scale heterogeneity comes in many flavors, ranging from schematic heterogeneity (where different
web sources use different schemas to represent information) to syntactic data heterogeneity (where the same
data values might be represented in different ways across web sources, e.g., typographical errors) to semantic
data heterogeneity (where the web sources might even disagree on the correct values of data items). Robustly
dealing with this range of web-scale heterogeneity has kept the data integration community busy for 25+ years
now. Again, I have been extremely fortunate to work with very smart researchers on this challenging topic
over the years. With Alon Halevy, we did some early work on resolving schematic heterogeneity, using the
idea of “Local as View” mappings and answering queries using views in virtual data integration. With Marios
Hadjieleftheriou, H.V. Jagadish and Nick Koudas, we developed efficient algorithms and tools for effectively
dealing with syntactic data heterogeneity in data integration. With Laure Berti-Équille and Xin Luna Dong, we
have conducted foundational research on resolving semantic data heterogeneity to perform truth discovery. I
would like to thank all of them for the enjoyable and productive research collaborations over the last 25 years.

This body of data integration research has had considerable impact in academia and industry. As one example,
the work on resolving semantic data heterogeneity to perform truth discovery influenced research on knowledge
fusion and identifying trustworthy web sources at Google.

Research Journey: What is Next? Much of my current research is focused around data technologies for
responsible data science and engineering. As society increasingly relies on data-driven decisions, we need to
make sure that this decision making is trustworthy. Ongoing research ranges from timely, responsible data
collection and data sharing, robust data curation for data to be fit for use, and responsible, transparent data use.
There are enough important challenges here to keep me busy for a while!

In conclusion, I would like to thank those who nominated and endorsed me for this award as well as the
TCDE Awards Committee. But most of all, I would like to thank my many collaborators over the years for
making this research journey exciting and productive, and AT&T for giving me the opportunity and freedom to
engage in curiosity-driven research!

Divesh Srivastava
AT&T, USA

93



Letter from the Rising Star Award Winner

I am delighted and honored to receive this award “for designing and deploying data analytics systems powered by
innovative machine learning and artificial intelligence algorithms.” I am thankful to my nominator, letter writers,
and the award committee, as well as my students, mentors, and colleagues who helped me in my work. This
letter lays out my research worldview at the exciting intersection of DB+ML systems. My hope is to rouse more
interest in this intersection, which is fast growing in importance within the wider computing landscape.

Past Waves of DB+ML Systems Work. The DB world has studied ML systems issues for over 20 years. I
have seen, and contributed to, three waves. The first wave (late 1990s to late 2000s) saw the rise of in-RDBMS
data mining tools. Their main focus was to scale ML algorithms to DB-resident data without modifying RDBMS
internal code. A key example is Oracle Data Mining. The second wave (late 2000s to mid 2010s) saw the rise of
unified ML system templates. Their main focus was to simplify ML implementation on RDBMSs and dataflow
systems. Key examples are MADlib, the Bismarck system from Wisconsin, and Spark MLlib.

What is New Now? The third wave, from mid 2010s, is a much bigger tidal wave. What changed? First, ML
and AI have now become a ubiquitous business-critical need, not some arcane academic curiosity. Second, “Big
Data” and cloud computing have expanded the variety, complexity, and scale of DB+ML problems. Third, deep
learning has revolutionized ML itself, unlocking unstructured data for analytics. And last but not least, this third
wave is characterized by “thinking outside the DBMS box” to study problems in contexts that matter for more
ML users, viz., bringing DB ideas to ML systems and applications, not just bringing ML to DBMSs.

The New DBfication of ML/AI. I have interacted with over three dozen data/ML practitioners across enterprise
companies, Web companies, and domain sciences, as well as many DBMS and cloud vendors, both to help
deploy my research to practice and to learn about new problems and bottlenecks. In my opinion, this third wave
is not a one off but a historic tectonic realignment in computing: ML/AI is being fundamentally re-imagined
as DB-style workloads. This requires new science to more deeply understand the phenomena, processes, and
tradeoffs involved, as well as new technology rooted in that science to raise ML user productivity, reduce resource
needs and costs, enable new applications, ensure compliance with laws and societal values, etc. The closest
analogy is how the “RDBMS research community” formed around the relational model and SQL c. 1980s.

DB problems exist across the entire end-to-end lifecycle of ML/AI applications. Based on my conversations
I split that lifecycle into three main stages: Sourcing of data for ML, Building of prediction functions, and
Deployment of such prediction functions. Let me give a few key examples of DB problems in each stage. In the
Sourcing stage, we need new tools for easier data acquisition for ML on data lakes, less manual data preparation
tools for ML, and higher throughput data labeling tools. In the Building stage, we need new model+data debugging
schemes and query optimization techniques to improve resource efficiency of ML systems. In the Deploy stage,
we need less manual monitoring of predictions and orchestration of complex data+ML pipelines.

Becoming a DBesque ML/AI “Savior.” The above problems are not “pure ML” problems or “pure DB”
problems’ but “DB+ML problems.” But ML folks cannot tackle them on their own without painfully reinventing
ideas already familiar to DB folks, e.g., metadata management, query optimization, provenance, etc. If the DB
world fails to help the ML/AI world, is it not a shirking of our intellectual responsibility to the computing field, to
science itself, and to broader society? Of course, other computing communities (e.g., systems, HCI, and PL) are
also studying some of these problems. But the DB community has a unique expansive role to play due to two
major reasons: (1) it has the most successful track record in commodification of data-centric software, and (2)
it is a vertical slice of all of computing to study data-centric software in an eclectic and holistic way spanning
systems, theory, algorithmics, empiricism, hardware, interfaces, applications, and benchmarking.

94



In conclusion, I hope this letter gave you a new perspective on DB+ML systems work. My own work,
recognized by this award, is but one part of this tidal wave. It will take a whole research community to unlock the
full potential of data-centric computing for our modern data-driven world. I hope the DB community can rise to
this occasion, reach out with humility to the ML/AI world to learn and engage deeply with ML/AI applications,
build solid systems, work with practitioners, and translate our research to impact on practice.

Arun Kumar
UCSD, USA

95



96





IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

Non-profit Org.
U.S. Postage

PAID
Los Alamitos, CA

Permit 1398


