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Abstract

Computational division of labor addresses the design and analysis of algorithms for division of labor
problems and will be one of the key issues in Future of Work. The problems deal with interactions among
multiple worker and task classes in task decomposition, worker recruitment and education, and task
assignments to AI and humans, for efficiently completing given tasks. We survey some of the related
literature and discuss challenges and open problems.

1 Introduction

Division of Labor is known as an essential factor for achieving wealth of human beings. In division of labor,
individuals and organizations acquire specialised capabilities and play different roles in a system, and either form
combinations or trade to take advantage of their and others’ capabilities.

In the recent years, more and more information on tasks is being circulated on the Internet, and there are
many labor resources accessible through it. This allows us to take the computational approach to division of
labor, in which AI and algorithm agents assign appropriate tasks to workers to achieve specific goals. There
are many studies that address topics related to division of labor. For example, many papers on crowdsourcing
address algorithms for task assignment considering given objective functions, such as price and required time.
However, division of labor is different from just “decomposing into microtasks.” Task decomposition itself does
not necessary cause division of labor, if we obtain a set of tasks each of which requires workers to have the
same set of capabilities represented by their attributes (such as skills and locations of workers). We need task
classes that require different capabilities and worker classes that have workers with different capabilities. For
example, assume that we have a set of sentences in English that needs to be translated into Braille in Japanese.
Decomposing into a set of tasks each of which translates one sentence into Braille does not cause a division of
labor, because we have only one task class that require the same skills. In contrast, decomposing them into a set
of translation tasks from English to Japanese and another set of translation tasks from Japanese into Japanese
Braille result in division of labor; then we have two task classes that require different specialized capabilities for
translation. In addition, we may be able to further decompose the obtained task classes. For example, we can find
a subclass under the English-Japanese translation task class in which the sentences require detailed knowledge
of a particular domain (e.g., Japanese pop stars). Then, workers who have the knowledge can be assigned to
the tasks in the subclass. Note that how to decompose task classes depends on the availability of workers in the
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Figure 1: Whether decisions in particular areas should be made by humans or AI [4]. The x-axis is the
predictability by AI. The y-axis is the cost per mistake. This figure states that decisions can be made by AI if it
has high predictability and low cost per mistake. We already have many things for which we can use AI (dots)
and we expect to have more things as we have improvement in predictions and algorithms (horizontal arrows),
and regulations or liability changes (vertical arrows) in the near future.

worker pool. If we had a lot of people who are good at translating English Braille into Japanese Braille, we would
have different subclasses: Translating English into Braille and translating it into Japanese one.

Adam Smith pointed out that the efficiency of division of labor comes from the following benefits: Increase
of workers’ capabilities, lower switching cost of tasks, and machines taking place of manual labor [27]. Taking
different roles and trading or combining their abilities and products has a dramatic effect; it would be impossible
for us to obtain many things today, let’s say a smartphone, in exchange for the work for several to tens of hours,
if each of us made our smartphone ourselves, without having a large amount of people who produce materials
and semiconductor chips, design the electronic circuit and user interface, develop software, etc. Computational
division of labor will be one of the important issues in Future of Work [1]. However, as we will show, this area is
still in its infancy and there are a lot of things we can do.

While we have an environment that makes us ready to pursue the computational division of labor today, there
is the demand for the computational approach. We recently noticed that worker availability can be changed in a
disease pandemic. However, one of the most important factors is the rapid growth of AI. Figure ?? shows whether
decisions in particular areas should be performed by humans or AIs at present and the potential changes in the
near future. It depends not only the predictability but also cost per mistake. As shown in the figure, we already
have a lot of things we can rely on AI, and there will be more and more in the near future, as we see improvement
to predictions and better algorithms, and regulations or liability changes. Many new kinds of commercial services
that employ new combinations of AI and human resources are emerging at a great speed. This means that AI
is important not only for implementing solutions of computational division of labor, but also as AI workers,
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Figure 2: Framework for computational division of labor

that work in collaboration with human workers. In addition, the change spreads world wide in a short period
of time; we see accelerating technology change [16] and new services and industries are deployed at a large
scale internationally. Such a scale and speed of change caused by the rapid growth of AI technology requires the
computational approach to the division of labor problems.

Note that there are a variety of tasks beyond decision tasks, which often require other capabilities than high
predictability such as flexible response, some of which are difficult for the AI today, although the situation
may change in the near future. For example, think about a conveyor belt sushi restaurant which is popular in
Japan. Although making oval-shaped rices for sushi used to be considered as an expert task that is allowed to be
performed by experienced staff members only, the advance of technology allowed machines to make the rices
in conveyor belt sushi restaurants. Even fish slices to be put onto the rice are being made by machines with AI.
However, there are many other tasks that are being performed by humans workers. They develop and teach AI,
communicate with customers, cook special kinds of sushi, and deal with non-routine issues, all of which are
difficult tasks for AI today.

In this article, we investigate problems on computational division of labor and look at the current status of
research on crowdsourcing and human-in-the-loop systems on the Internet from the division-of-labor perspective.
We chose these areas because in the near future, we expect that many jobs will be supplied by human-in-the-loop
online job platforms [8].

Paper Outline. The rest of the paper is organized as follows. In Section 2, we explain what computational
division of labor problems deal with and introduce a set of dimensions and terms to classify existing solutions for
problems related to computational division of labor. In Section 3, we look into some of existing literature and
investigate the current status. Section 4 discusses challenges and open problems.

2 Computational Division of Labor

The “computational division of labor” is not a new concept, and has been addressed in many related areas, notably
in crowdsourcing research, although the state is still in its infancy as we will show in the next section.

Figure 1 shows the framework for computational division of labor. It has two key components: task classes
and worker classes. A task class defines a set of task instances that require a specific set of capabilities in order to
perform them. A worker class defines a set of workers having a specific set of capabilities. The task and worker
classes have mutual dependence; i.e., good task decomposition results in

arg max
T∈T

~f(M(W,T )),

where W is a set of workers, T is the collection of feasible task decompositions for W ,M is the appropriate
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Figure 3: Example of dividing tasks and workers into multiple classes. If we know we have software developers
in the worker pool, we can decompose the original task into a set of tasks consisting of AI development task,
AI labeling task, and human labeling task. Since the tasks include tasks for AI workers, we recruit software
developers so that AI workers are added to the worker pool.

assignment from tasks to qualified workers, and ~f is the multi objective functions that define what is good
assignment. The functions may include a variety of things, including the result quality, the expected cost due to
mistakes, and human factors related to workers [2]. In the opposite direction, what skills workers should obtain
and what kinds of AI workers should be developed are described by

arg max
W∈W

~f(M(W,T )),

whereW is the collection of sets of workers augmented by T , i.e., each W ∈ W can be a set of workers with
new or better skills, or an extended set of workers with newly developed AI workers. In addition, the set of skills
the decomposed tasks require will affect how we should recruit workers.

Figure 3 gives an example process of computational division of labor for labeling tasks. If we know that we
have software developers in the worker pool, we can decompose the original task into a set of tasks consisting of
AI development tasks, easy labeling tasks (to be assigned to AI workers) and hard labeling tasks (assigned to
human workers). Since the tasks include tasks for AI workers, we recruit software developers so that AI workers
are added to the worker pool.

Assignment of workers to tasks is often determined by considering not only short-term benefits (such as time,
quality, cost) for requesters, but long-term benefits, such as social sustainability and inclusion, with the three
important benefits (skill improvement, low switching cost, and AI utilization) of division of labor considered.

The essential part of division of labor in the framework is that there must be a variety of task classes, each of
which requires different expertise or abilities to complete them. Division of labor can lead to efficient society by
exploiting the following advantages [27]:

Increase of Workers’ Capabilities Some tasks may require special expertise and workers need to have experi-
ences or be trained for doing a good job on the task. This sometimes requires long-term commitment of
workers to a set of tasks that require particular capabilities.
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Figure 4: Two views of a solution space of computational division of labor and the current status of solutions in
related topics. On the left is the view with instnace-level mutability class dimentions. On the right is one with
class-level dynamicity dimensions. Underlined Topics deal with both of human and AI workers, while the others
deal with human workers only.

Lower Switching Cost Cost for switching into completely new tasks is generally high for humans. Taking into
this factor when assigning tasks to human workers increase the efficiency of manual labor.

Machine (AI) Taking Place of Manual Labor Dividing the task into sub-tasks can increase the opportunities
for machines (AI workers) to do the task, if the task is appropriately extracted so that the AI worker is
capable of doing the task. In order to achieve this, we need to address meta-level algorithms that explicitly
deal with capabilities of available AI workers.

3 Related Research and Current Status

There is a lot of research done related to computational division of labor. This section tries to organize relevant
topics especially in the area of human-in-the-loop database systems, crowdsourcing and machine learning.
Although crowdsourcing research generally focuses on the case where workers are human workers and the
objective functions are given in terms of each workflow (e.g., quality, time, money), there are papers that address
important components of division of labor such as task and worker classes and the three benefits. Human-in-
the-loop database systems combine human and AI workers in the way that human workers collect data that are
not stored in the current snapshot of database. Regarding the division of labor between humans and AI workers,
machine learning plays an essential role in some division of labor problems. Some studies such as supervised
learning focus on addressing how to replace human labor by teaching AIs via a dynamic interaction between AIs
and human workers.

3.1 Dimensions and Overview

Existing solutions for problems related to computational division of labor can be seen from the division of labor
perspective by placing them in a space with the dimensions related to task and worker classes, such as follows:
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Figure 5: Active learning from the perspective of computational division of labor. The active learner is a colleague
AI worker of human workers, who controls the task assignment.

A. Instance level mutability of Task and Worker Classes. The dimentions represents the interaction between
task (or worker) classes and their instances with the three categories:

Known Immutable The solution assumes that we already know which class each task or worker belongs to, and
the instance-of relationship does not change.

Unknown Immutable The solution does not know which class each task or worker belongs to at first, but the
instance-of relationship does not change once it decides the membership.

Mutable The solution changes the instance-of relationship according to a change of situation. Thus the number
of instances of each class changes.

For example, some research papers classify crowd workers into novice and expert workers. Other papers
classify them into groups each of which contains similar workers in terms of accuracy per labels. If a method
assumes that we know who are novice and expert workers in advance, it is labeled with “Known Immutable.” If a
method measures the workers’ skills and put them into classes only once, it is labeled with “Unknown Immutable.”
If a method regularly checks the skills and changes the memberships accordingly, it is labeled with “Mutable.” An
example with task classes is as follows: If a complex workflow is required in an application, the workflow may
contain different kinds of tasks, such as find, fix and verification tasks [3], which are connected to each other in
the workflow. If the solution takes as input such a workflow and does not decompose it, it is labeled with “known
Immutable.” If a method decomposes the tasks into smaller ones, it is labeled with “Mutable.” Another example
is the case where we have a set of data labeling tasks and find a subset of the data labeling tasks appropriate
for training AI workers. Then the set of tasks will be a new task class. A method to find such a subset is either
“Unknown Immutable” or “Mutable” depending on whether it updates it during the execution or not.

B. Class-level Dynamicity of Task and Worker Classes. The dimensions represent the interaction between
task and worker classes with the three categories:

Fixed The solution assumes that the set of task or worker classes is fixed and always contains their instances.

Independent The solution allows that task (or worker) classes can be added or deleted during the execution, and
such operation is done independent of worker (or task) classes.

Responsive The solution adds or deletes tasks or worker classes during the execution, and the action is affected
by the situation in their counterpart (e.g., changes in worker classes cause the division of task classes).

For example, a task decomposition method may not look at available workers at all. Such a method is labeled
with “Independent.” Another may consider the current availability of workers before the task decomposition.
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Such a method is labeled with “Responsive.” Responsiveness is definitely the potential benefit of computational
division of labor, which will be useful in situations such as COVID-19 pandemic where we encounter a sudden
change in labor resources.

Figure 4 puts some of the related topics (details will be shown in Figure 6) in the three dimension space.
The results show that, at this moment, there are a limited number of studies that deal with responsive class
generation. They deal with the two cases where (1) they assume human workers only and do not deal with
automatic task decomposition and workflow optimization, and (2) they deal with human and AI workers for
simple data labeling tasks. In contrast, there are few studies that deal with dynamic task and worker classes
containing AI workers. Many studies focus on dynamicity of either worker or task classes only. Among the three
benefits of division of labor, few studies focus on the problem of lowering switching cost. Some address the
problem of improving workers’ skills, and having Machine (AI) take place of manual labor, but the they addressed
the problems independently. Most of the objective functions are defined in terms of short-term, requester-centric
views on each workflow.

C. Controller of Division of Labor. In addition, there are different approaches on who controls the division of
labor. The followings are potential subjects that control the division of labor process.

Boss There are approaches that assume a subject other than workers, who mainly takes care of the task decom-
position, assignment, recruitment, etc. The boss can be a human, an AI agent, or a human-in-the-loop
algorithm.

Colleague There are some cases where one of the workers decides who perform what tasks. For example, we
can view active learning methods in the division of labor perspective as follows. We have two types of
workers (a machine learner and humans), where the decision maker who assigns tasks for data labeling is
the learner (Figure 5).

No one There is nobody who explicitly controls the division of labor. Rather, how it goes is incorporated in the
design of the framework, such as incentive design, to implement “invisible hands.” The task decomposition,
assignment, education, recruitment, etc. are implemented as the result of every participant’s action in the
process of pursuit of their own gain.

3.2 Computational Division of labor View of Existing Studies

Figure 6 shows some of the related works that satisfy one of the following conditions: (1) The work deals with
more than one task or worker classes (2) the work addresses issues related to benefits of division of labor -
increasing workers’ capabilities, lower switching cost, and AI workers taking place of manual labor.
Quality-Aware Microtask Assignment. For finite pool data categorization, there are approaches to assign
appropriate tasks to different classes of workers to improve the result quality. For example, [18] discusses how to
assign the categorization tasks to two categories of human workers, namely, experts and crowd workers, and an
AI worker (a classifier model), in order to achieve high quality results. In the method, the AI worker is considered
as a worker that responds to all the tasks that have been assigned to no human workers when the budget is run out.
The method dynamically estimates the result quality in a situation that we train the AI worker with tasks labeled
by humans and assign the rest of tasks to the trained AI worker. In terms of class-level dynamicity, it does not
change task or worker classes during the execution. Furthermore, it always assumes to use a particular AI worker
whose algorithm is known and does not accept AI workers that are developed by crowd workers.
Spatial Crowdsourcing. In spatial crowdsourcing, tasks and workers are associated to locations. Logically, we
can think of many subclasses of each of the task and worker class, defined by their locations. The (sub-)class
of each task or worker is known because we know their locations. In some settings, workers move thus the the
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Topic Examples Task Classes and Re-
lationship with their
Instances

Worker Classes and
Relationship with
their Instances

Class-level Dynamicity and In-
teraction

Objective Functions
and Constraints

Controller

Quality-
Aware
Microtask
Assignment

[18] Three subclasses
(Crowd, Expert, AI)
of a data labeling
task class. Mutable

Three classes
(Crowd, Expert, AI).
Known Immutable

No change at task and worker
class levels.

Better quality with a
limited budget

Boss (AI)

Spatial
Crowdsou-
cring Task
Assignment

[29] Subclasses of a spa-
tial task class with
different locations.
Known Immutable

Classes for human
workers in different
locations. Known
Immutable or Muta-
ble

Task and Worker classes can be
added and deleted dynamically,
but independent of each other.

Maximizing total
number of assign-
ments, Optimized for
average performance,
Maximizing total
payoff, etc.

Boss (AI)

Active Learn-
ing

[31, 22,
32, 9]

Subclasses (easy and
hard) of a data label-
ing task. Mutable

Two classes (AI and
Human) known Im-
mutable.

No change at task and worker
class levels.

Better machine learn-
ing models

Colleague
(AI)

Working
with a Large
Number of
Data La-
beling AI
Workers

[13] Subclasses of a data
labeling task class for
human and AI work-
ers. Mutable

One human worker
class and many
AI worker classes
for different skills.
Unknown Immutable

Automatic subclass generation
and assignment triggered by
dynamic estimation of AI
worker performance

Quality and speed of
task completion

Boss (AI)

[11] Two classes for easy
and hard labeling
tasks. Unknown
Immutable.

Two classes for AI
and Human. Known
Immutable

Task classes are computed
once based on a task prioriti-
zation algorithm before assign-
ment

Better performance
of AI Workers

Boss (AI)

Task Decom-
position

[14] Many dynamically-
generated classes.
Mutable.

One (human work-
ers). Known im-
mutable.

Task classes are dynamically
generated, according to work-
ers’ judgement.

Completing tasks
with the crowd. Each
task must be done for
a fixed price

Boss
(human
workers)

Team Forma-
tion

[30] Many classes with
different roles. Any-
one can propose new
role and edit role
structure. Mutable.

Two (Team leader
and team members).
Known Immutable

Task classes are first defined by
the leader, but can be reconfig-
ured manually by anyone dur-
ing the execution.

Organizing the teams
to accomplish com-
plex work with dead-
line of six weeks and
budget.

Colleague
(Human)
and Boss
(Human)

[21] Complex workflow
consists of several
tasks that require
different capabilities.
Known Immutable

Many classes with
different capabilities
and wage expecta-
tion. Known Im-
mutable

No change at task and worker
class levels. The algorithm
optimally forms groups with
available workers pool

Worker-worker affin-
ity and upper critical
mass with skill and
cost constraint

Boss (AI)

Human-
Factor Aware
Microtask
Assignment

[15] One for speech tran-
scription. Known Im-
mutable

N subclasses. Work-
ers are divided into
each subclass based
on current skill distri-
bution. Mutable

No change at task and worker
class levels.

Skill, Psychological
Stress

Boss (AI)

[28] Each task will be bro-
ken down by the men-
tor into several sub-
tasks only once. Un-
known Immutable.

Two (Mentor and In-
tern worker). Known
Immutable.

No change at task and worker
class level.

Better learning of in-
tern worker

Boss
(Human)

[20] Many: each task has
different content and
requirements asso-
ciated to keywords.
Known Immutable

Many: each worker
has different inter-
ests associated to
keywords. Known
Immutable

No change at task and worker
class level. However, corre-
spondences between task and
worker classes are dynamically
changed.

Worker Motivation,
Task relevance, and
Task diversity

Boss (AI)

Educational
Process
between
Human and
AI

[24, 17,
5, 10]

Two classes (tasks
for education and
not) of data labeling
tasks. They are
Known Immutable in
[10], and Mutable in
the others.

Two classes (Human
and teaching AI).
Known Immutable.

No change at task and worker
class level.

AI learns effective
teaching schemes
and humans get
higher ability to the
task.

Colleague
(AI)

Crowd
Databases

[6, 19] Many Tasks (filter-
ing, join, etc.). Muta-
ble

Two (Humans and
DBMS). Known Im-
mutable

Task classes are determined in
the optimization phase based
on the data statistics and fixed
before the execution.

Monetary cost, Qual-
ity

Colleague
(AI)

Figure 6: Division-of-Labor view of some of related research topics that deal with at least more than one worker
or task class or address issues related to benefits of division of labor
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Figure 7: The method proposed in [13]. Each AI worker is assumed to cluster tasks, regardless of how it is
implemented (left). The method conducts statistical tests to find whether all tasks in each task cluster is associated
to a particular label, by looking at the labels given by human workers (Right). Here, Twi,j means the jth task
cluster of AI worker i. a and b are labels given by human workers.

worker classes they belong to are mutable. The task (worker) classes can be added and deleted dynamically as
their instances appear and disappear, independently of workers (tasks).
Active Learning. Active learning interacts with human workers to (i) ask humans to make training data for data
instances specified by an AI worker and (ii) receive the training data from humans to better learn the way to work
[26]. Some active learning methods are aware of the performance of each worker and assign tasks to specific
workers [22, 31]. In this discussion, we need to clearly distinguish the two roles of AI workers; a controller of task
allocation to task classes and a task executor. The task allocation controller is a subject that organizes the dynamic
allocation of data labeling tasks to the task class for human workers (i.e., hard task class), while a task executor is
a subject that accomplishes data labeling tasks that could be assigned to human workers. From the viewpoint of
the division of labor between humans and AIs, it is helpful to recognize that these active learning systems play
two different roles because we potentially can find more flexible way to design AI components, e.g., working
with a large number of task executor AIs, which we explain later. While the typical goal of active learning is
to take over the human labor on data labeling tasks as a task executor, the allocation function is elaborated in
some active learning models proposed so far. For example, Fang et al. [5] proposed an active learning model that
encourages human learning by selecting a pair of workers having different skills to work together on the same
data labeling task. Another example can be found in active learning that dynamically estimates the difficulty of
tasks and assign only difficult tasks to workers of domain expert for minimizing the labor cost [9, 18, 32]. In
terms of class-level dynamicity, no change happens on the task an dworker classes in active learning systems.
Working with a Large Number of Data Labeling AI Workers. There are studies on labeling a finite number
of data items with not only human workers but also a large number of AI workers. The paper [13] proposes
HACTAP (Human+AI Crowd Task Assignment Problem) that allows black box AI workers to join the workflow
during its execution and assigns tasks to them if the high quality result is expected. Figure 7 shows the proposed
method shown in [13]. Their method does not assume any particular model implemented in each AI worker.
Rather, they assume that each AI worker outputs task clusters (which correspond to task (sub) classes in this
paper) (Figure 7(left)). A task cluster will be meaningful if all tasks in each task cluster are associated to the same
label. Therefore, the method conducts statistical tests to know whether each cluster corresponds to a particular
label, by looking at the labels given by human workers. If the task cluster passes the test, all tasks in the cluster
will be assigned to the AI worker. The method allows dynamic task assignment according to the available AI
workers at each time, but the workflow is limited to a simple labeling task. The paper [11] presents a batch
prioritization of data labeling tasks that allows a large number of black box AI workers to be efficiently trained.
It statically assigns tasks to humans in advance before the task execution so that it effectively train AI workers
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independent of their underlying models. Thus, it can train a large number of blackbox AI workers with different
underlying models in parallel. In terms of class-level dynamicity, there are only two fixed classes for tasks and
workers. However, their hard labeling tasks are carefully chosen so that the tasks are effective for training AI
workers with any underlying models.
Task Decomposition. There are studies to ask human workers to do task decomposition. For example, [14]
proposes the PDS (Price-Divide-Solve) algorithm to ask crowd workers to decomposed tasks into smaller ones.
The result workflow contains a diverse set of microtasks whose results are merged to produce the final product.
Worker classes are not explicitly dealt with in the algorithm, but they assume that each task is done with the fixed
payment (20 cents, in their implementation). This implies that it assumes that the task is easy enough so that we
can easily find workers that do the task with the payment in crowdsourcing platforms.
Team Formation. There are studies on how to configure teams to solve complex problems. [30] proposed
flash-organization which enables us to hire expert crowd workers into role structures and dynamically reconfigure
the structure via version control. [21] proposed an optimization model for task assignment in a collaborative
crowdsourcing environment and proposed optimization algorithms with theoretical guarantees. From the aspect
of the computational division of labor, [30] allows human workers to change task classes, but it is not automatic,
while [21] performs automatic task assignment at class-level, but does not allow dynamic change at the class
level. Assignment to AI workers is not discussed in both of them.
Human-Factor Aware Microtask Assignment. While many crowdsourcing studies have assumed that anony-
mous workers have the same role, every human being is different, i.e. what tasks the workers are good at, what
motivates them, and what they are doing the task for, are different for each person. Thus, considering the human
rights of workers, it is natural to take into account the worker’s perspective, in other words, it is important to
consider who, when, and which task should be performed by whom. Therefore, the number of worker class is
usually plural in this topic. Recently, the importance of human-factor in crowdsourcing has been argued [2],
and task assignment research has been addressed in line with this perspective. For example, [36] considers
psychological stress, [20] considers motivation, and [28] considers worker’s learning. Class-level dynamicity is
not addressed in this topic.
Educational Process between Humans and AI. Assigning a task to workers with appropriate ability is important
for efficient problem solving. Increasing workers’ skills is an important issue in division of labor, from the
viewpoint of obtaining high-quality task results in the long term. For this problem, there are studies dealing
with the interactive educational process between humans and AI. In this process, the AI learns the optimal task
assignment to maximize the learning effect for human workers. These researches give us new insight into the task
division from the viewpoint of the cultivation of expert human workers. However, the existing studies discuss
improving skills within a particulars task class. From the division of labor view, it is important to address the
problem of improving skills across task classes in different workflows.
Crowd Databases. Crowd Databases such as CrowdDB[6] and Deco[19] employ human workers to obtain data
that are not stored in the current snapshot of database in the storage. The workflow contains a variety of tasks
such as data entry, selections, join, ordering, while it does not explicitly deal with worker classes and attributes.
The optimization of workflow is based on the data statistics, rather than worker availability and their skills.

4 Challenges and Open Problems

As shown in Section 3, although there have been many studies that address topics relevant to computational
division of labor, this area is still in its infancy. In most studies, problems such as task decomposition, worker
recruitment and education, are discussed with particular assumptions on available workers and decomposed tasks.
There are only a few studies that deal with dynamic interactions between the skills of available workers and task
decomposition, and that focus on benefits of division of labor in their objective functions. Given the current status,
this section discusses challenges and some of open problems in computational division of labor with human and
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AI workers.

4.1 Workers to Tasks

Knowing Relevant and Qualified AI Workers. The decomposed tasks include those to be performed by human
and AI workers. However, AI workers are more diverse to each other in the skills than human workers. If a task
is given, finding AI workers that we can be employed in its decomposed tasks will be a challenge.
Worker-Conscious Task Decomposition. In the existing research, the task decomposition is conducted once
before the execution, assuming the simple assumption on workers (e.g., there are enough number of workers in
the worker pool who are able to perform every task). Task decomposition schemes that are more conscious of
the available workers in the pool will be an interesting issue. Another interesting issues is the tailor-made task
extraction schemes; if a worker shows an interested in the project, the system extracts a task for him considering
her skills and other constraints. If we include AI workers in the worker pool, workers will be more diverse in
their speed, skills, and appropriate interfaces. An AI worker handles a bundle of tasks better than performing
each task one by one. We need to deal with such a diversity.
On-the-Fly Workflow Switch without Stopping Its Execution. The situation of worker pool sometimes
changes as time goes. For example, workers in Japan usually sleep at night in Japan Time and there will be a lower
number of workers who can process Japanese. If a pandemic happens, worker distributions will dramatically
change. Reassembling tasks and switch to new ones should be done without stopping its execution, while keeping
a certain service level. When workers change, it would be inefficient to calculate the optimal solution from scratch
each time a change occurs. Therefore, optimization mechanism that adapts to changes of workers and tasks, e.g.,
incremental algorithm, is becoming more important than before. As a preceding study, an incremental algorithm
for finding an optimum worker assignment when a worker set changes is proposed [23].

4.2 Tasks to Workers

Incentive Design for Recruiting and Developing AI Workers. Tasks registered in the task pool for human
workers do not necessarily require human workers and sometimes can be processed by AI workers. For example,
active learners that are appropriately trained with crowdsourced labels sometimes output good quality results [31].
In some cases, we may be able to ask AI workers to performs most of a tremendous number of tasks. If we gave a
good incentive to people, they would search for or develop their AI workers to perform the available tasks. The
open question is how to design such an incentive. Effective and fair payment framework for AI developers needs
to be investigated.
Psychological Stress Management of Human Workers. Job change is one of the things that give psychological
stress to people [7]. Therefore, the responsiveness introduced by computational division of labor may cause
additional psychological stress. We need to take into consideration the skill of workers, the types of tasks they
have done so far, and their long-term career plans.
Matching of Supply and Demand of Skills. Mismatch of supply and demand of skills cause problems in lack
and excess in labor resources. Developing ways to make the demand of the required skills visible will affect
workers on choosing skills to learn and designing their long-term career for their future.
Education Strategies for Human and AI Workers. Most existing research for educating people in crowdsourc-
ing settings all targets a particular set of microtasks. Extracting common skills from the task markets and provide
educations for workers will be indispensable for the efficient learning and education strategies.

4.3 Holistic Perspective

Integration of Human and AI Worker Results. We naturally obtain diversity with human workers. Therefore,
many existing studies on integrating results from crowd workers assumes the diversity. In contrast, a set of AI
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workers may implement similar algorithm and we may not able to consider them to make completely independent
decisions.
Human-in-the-Loop Division of Labor Algorithms. Division of labor itself can be implemented with AI and
human computation. Many problems in computational division of labor themselves can be regarded as “tasks.”
Thus, they can be implemented with AI and human computation. For example, “optimization algorithm for task
decomposition” in which workers contribute their computational power to some part of optimization would be an
algorithm design of great interest.
Social-Level Objective Functions. Most of related literature that address optimization problems has objective
functions at a requester or a worker level. However, optimization focusing on the project-level efficiency only
often concludes that working with only a few high performers is the best solution. In addition, platform-based
recruitment of workers often cause price discrimination and exclusion of particular groups of workers [25].
Taking care of social-level objective functions, such as achieving inclusive labor markets, will be an important
open problem.

5 Conclusion

In the recent years, more and more information on tasks is being circulated on the internet, and there are many
labor resources accessible through it. In addition, we see the rapid growth of AI technology that allows us to have
them workers for our tasks. This motivates us to take the computational approach to division of labor, in which
we use AI agents that implement algorithms to assign appropriate tasks to human and AI workers to achieve
specific goals. This paper investigated problems on computational division of labor around crowdsourcing and
data-centric human-in-the-loop systems research. We explained what computational division of labor problems
deal with and introduced a set of dimensions and terms to classify existing solutions for problems related to this
topic. We identified the current status of this topic and showed that there are a number of interesting research
challenges.
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