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Abstract

Scientific data management has become an increasingly difficult challenge. Modern experiments and
instruments are generating unprecedented volumes of data and their accompanying dataflows are be-
coming more complex. Straightforward approaches are no longer applicable at the required scales and
there are few reports on long-term operational experiences. This article reports on our experiences in
this field: we illustrate challenges in operating the exascale dataflows of the high energy physics exper-
iment ATLAS, we detail the concepts and architecture of the data management system Rucio that was
purposely built to take up these challenges, we describe how other experiments evaluated, modified, and
adopted the Rucio system for their own needs, and we show how Rucio will evolve to cope with the ever
increasing needs of the community.

1 Introduction

Many large scale scientific experiments are reaching a breaking point where the growth rate of the collected data
greatly exceeds the growth rate of the infrastructure behind them. In the next few years, large instruments similar
in scale to the Large Hadron Collider (LHC) [1] and its High-Luminosity upgrade HL-LHC [2] are coming
online, such as the Deep Underground Neutrino Experiment (DUNE) [3], or the Square Kilometre Array (SKA)
radio observatory [4]. Throughout their lifetimes, these collaborations anticipate massive increases both in the
number of data objects they need to handle as well as the total volume of data they need to store. Additionally,
increasingly complex computational workflows result in similarly complex dataflows to support them, which can
rapidly lead to science-inhibiting complications. Examples include congestion on networks, disorderly space
allocations on storage, or erratic transfer schedules. At the same time, there are many smaller communities and
experiments who do not want to lose efficient access to the same shared storage and network resources but do
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not possess a similar level of effort to ensure their sustainability. This brings a variety of challenges to the field
of data management as a whole to ensure fair use of all available resources, leading to the need to orchestrate
and synchronize dataflows across multiple experiments with potentially competing characteristics.

In this article we address four topics relevant to these challenges: in Section 2 we describe first-hand ex-
periences developing and operating an exascale data management system for high energy physics, in Section
3 we describe the data management system that was used to tackle these challenges, in Section 4 we discuss
how a diverse set of scientific communities evaluated, modified, and adopted the system for their own needs,
and in Section 5 we propose possibilities how to integrate and interconnect widely distributed data management
solutions as a cooperating ensemble. We conclude in Section 6 with a summary and an outlook on future work.

2 The data challenge in High-Energy Physics

The LHC at CERN hosts four major experiments, ATLAS [5], CMS [6], ALICE [7], and LHCb [8]. Both AT-
LAS and CMS are general-purpose particle physics experiments and are designed to exploit the full discovery
potential and the huge range of physics opportunities that the LHC provides, whereas ALICE and LHCb focus
on detailed precision studies in their respective fields. All experiments are run by large international collabora-
tions. The experiments track and identify particles to investigate a wide range of physics topics, from the study
of the Higgs boson [9] to the search for supersymmetry [10], quark-gluon plasma [11], b-physics [12], extra
dimensions [13], or potential particles that make up dark matter [14].

For the remainder of the article, we will focus on the data management aspects of the ATLAS experiment,
as it presents the most diverse dataflow requirements across the LHC experiments. As such, many of the expe-
riences presented are similarly applicable to the other experiments, scaled to their respective experiment sizes.
At its current scale, ATLAS is currently managing more than 1 billion files in active use comprising almost 500
Petabytes of data. For scientific integrity and reproducibility, the experiment also needs to keep track of data that
has been deleted, which amounts to an additional 1.5 billion historical files. The interaction rate of operations
with the data management system are typically beyond 200 Hz and reach up to 500 Hz. This includes diverse
operations such as registering new files, searching for data, scheduling old files for deletions, or removing un-
wanted datasets. The experiment utilizes 120 data centers globally, including 5 supercomputing centers (HPCs),
and connects to scientific and commercial cloud storage. There are more than 1000 active users, who in turn
require data transfer and deletion rates at 500 Petabytes/year, plus an additional 2.5 Exabytes/year of data access
for their ongoing analyses.

Figure 1 shows the cumulative data volume from ATLAS starting from 2008, when the distributed computing
infrastructure was commissioned. The data growth in high energy physics is not exponential, rather there are
linear growth intervals at varying intensities. It can be seen that the data growth of LHC Run 1 from April 2011
until September 2012 is distinctively higher than the following LHC shutdown period until April 2015, during
which only simulation data was produced. The first major deletion campaign to free up space on the available
storage marks the beginning of the four-year-long LHC Run 2. The vastly increased data rate after 2015 reflects
the higher intensity of the LHC. Notably, the growth rate of the simulated data also increased, which required a
second major deletion campaign at the beginning of the current LHC shutdown period. We anticipate a similar
deletion campaign in late 2020 before the start of LHC Run 3.

Figure 2 shows the weekly ATLAS data transfers and downloads. The transfers between data centers are
enacted whenever required by the computational workflow, and the downloads subsequently occur from the
storage to the node which does the actual computation. Users downloading data directly to their workstations
accounts for roughly 12 percent of the overall download volume. The colors indicate the 12 geographical regions
of the experiment, out of which 4 larger regions are responsible for half of the total capacity. The global weekly
transfer volume is typically more than 50 Petabytes, but can burst significantly above 70 Petabytes. There is a
prominent dip at the end of the year which corresponds to the two-week closure of the CERN facilities during

10



2010 2012 2014 2016 2018 2020

0
10
0

20
0

30
0

40
0

50
0

Years

To
ta

l v
ol

um
e 

in
 P

et
ab

yt
es

2010 2012 2014 2016 2018 2020

Figure 1: The cumulative ATLAS data volume approaches 500 Petabytes in early 2020. Growth has been linear
with respect to the scale of the experiment, with considerable data deletion before longer observation periods.

the festive season. The number of files transferred per week is typically beyond 50 million. The number of file
deletions is equivalent to roughly 10 Petabytes per week, arising from the needs of the embarrassingly parallel
computational workflow, which results in many temporary intermediate files. The number of files deleted per
week is typically more than 20 million. In terms of transfer failures, the typical rate is more than 4 million
failures per week, mostly due to faulty hardware such as broken disks or electrical problems. Deletion failures
are typically rarer, below 1 million per week, mostly due to the implementation of the WebDAV-based deletion
protocol in the storage systems. Scheduled deletion of files which were already removed from storage do not
count as failures. Major deletion failures occur rarely, on the order of once per quarter, which typically points
to hardware failures at a data center with massive data loss. One of the major successes of the ATLAS data
management system is that it can handle a large variety of these failures transparently, that is recover and restore
data from alternative, pristine sources to ensure global data safety.

We now highlight three examples from data management operations in ATLAS, which help to achieve the
experiment’s needs: the data lifetime model [15], sliding window processing [16], and data recovery [17]. As
the first example, the lifetime model works as follows. If left unchecked, the creation of new data within the
experiment would quickly exhaust all available storage space. Members of the operations team, together with
other groups from the collaboration, need to spend considerable effort to identify and delete datasets that are no
longer needed, mostly via consensus across scientific groups. Multiple procedures have been developed over
the years to alleviate this, however the most prominent and effective is the lifetime model. Within ATLAS, each
dataset is annotated with a wide variety of metadata. Policies are defined based on these metadata that dictate
when they are expected to expire. For example, raw data coming out of the ATLAS detector are kept forever,
whereas data in analysis object formats are kept for two years and log files are kept for only one year. These
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Figure 2: ATLAS data transfers and downloads are regularly above 50 Petabytes per week throughout 2019.
The prominent dip during the festive season is due to CERN closure. Colors indicate geographical regions.

Figure 3: The green and red arrows indicate the application of the lifetime model for scheduled deletion of
unused data on pledged disk resources in ATLAS. Green arrows are rule-based deletion, red arrows are file-
based deletion. Black lines indicate data center pledges, the red line actual available storage. The yellow data
volume indicates primary data, the green data volume is cached data.

policies allow for the lifetime of the dataset to be further extended based on the last access date, which is based
on a distributed data access tracing system. This allows the deletion of data to be postponed beyond its expected
lifetime as long as it is in constant use. The lifetime model itself does not however initiate the deletion of the
expired datasets. Instead, a procedure is set where an announcement is made which datasets are scheduled for
expiry, and users are given a period to submit exception requests. These requests are reviewed by the operations
team, and the final selection is then scheduled for deletion. Applications of the lifetime model are shown in
Figure 3, indicated by the green and red arrows. Typically multiple iterations are necessary per year to keep
enough storage space available for distributed processing given the available storage capacity of the data center.
Originally, only rules enforcing dataset distribution would be removed, that is the files themselves would remain
as cached copies on storage and would be deleted only when the data center they were stored at was running
out of space. In late 2018, the execution of the lifetime model was adjusted such that the rules were removed
and that the files were immediately purged. The reason for this was to reduce the latency between the deletion
requests and the space being made available for new data. This can be seen by the gradual decrease of the yellow
primary data volume, with no correlating increase of the green cached data volume.

The second example is the sliding window process, internally called the Data Carousel. In ATLAS, typical
processing workflows meant recalling all necessary data from tape onto disk, and then starting the processing.
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Figure 4: Data Carousel tape recall rate. On the left, measurements from the 2019 exercise with slow ramp-up
and 5 GB/s throughput. On the right, the 2020 exercise with fast ramp-up and doubling of throughput.

These recalls might take from many days up to several weeks but were necessary to ensure constant high CPU
utilization. With recent advances in the workflow management system and data management system, a new pro-
cessing method was developed which allows the use of a sliding window process to ensure only data necessary
for a particular step in the processing was recalled while still maintaining high CPU utilization. The main ben-
efit is in the cost reduction for data centers, because instead of purchasing expensive disk-based storage a large
fraction of funding can now be shifted to tape with a significantly lower cost per byte ratio. Figure 4 shows the
improvements in the process from 2019 to 2020. On the left hand side, the first iteration of the process showed
a significant ramp-up time of more than one day before stabilizing at 5 MBps. This functional test demonstrated
that the process is feasible but required significant improvements in terms of throughput performance. During
the next months, several strategies were developed, including tuning of the tape systems by the data centers,
latency reduction in communication, and most importantly the exploitation of the dataset namespace to schedule
the tape-writing and their recalls in groups beneficial to the computation. As seen on the right hand side, these
improvements caused immediate ramp-up and a doubling of throughput capacity. At the time of writing, the
process is now in use in production by ATLAS and has already been used in a significant reprocessing cam-
paign. In this campaign, which involves the processing of 5.7 Petabytes of data, never more than 1 Petabyte is
resident on disk and several hundred Terabytes are processed and removed in daily cycles.

The third example is the data recovery process. Given the number of files registered in the data management
system and the number of ongoing transfers, data corruption or loss is unavoidable. The reasons can vary
from corrupted network packets to faulty disk and tape drives, or even natural disasters, such as flooding of
data centers. The data management system is flexible and easily allows multiple file replicas to be stored in
different countries and on different storage media. For the long-term archival of raw data, experience has shown
that maintaining two copies on tape storage in two different locations, one of which is at CERN, is sufficient.
Each file registered in the system has a defined checksum, typically Adler-32. The reason for using Adler-32
is the algorithm’s performance and cumulative property, which allows in-flight calculation. The checksum is
propagated to the transfer mechanism so that if a file is corrupted, either at the source or the destination, then
the transfer will immediately fail. These transfer failures can occur for a variety of different reasons, so pattern
matching is applied to the error message to provide an indication where corruption occurs. Should the source
file appear to be corrupted, then the replica is marked as suspicious. The data management interface collects
and lists these suspicious replicas and providers a simple mechanism for operators to declare them lost. If there
are other replicas of a file then a transfer will be automatically scheduled to recover it. The process is partially
automated: if a file has multiple transfer failures and more than one replica, then it will be automatically declared
as lost. The data management system provides configurable thresholds to fine-tune this process. The patterns
themselves are also configurable. The same treatment also applies to missing files: the mechanism can trigger
the files to be declared as suspicious and potentially lost. However, automated consistency checks are also
conducted as a proactive measure, using periodic extracts from the data management system catalog. These are
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Figure 5: The namespace is organized via dynamic collections of three different types, called Data Identifiers
(DIDs): containers, datasets, and files. Only datasets can contain files, but files can be in multiple datasets. All
operations can be enacted on all DIDs, regardless the type, and are respectively resolved.

compared against periodic extracts from the storage systems in the data centers. If a file exists in the former but
is missing from the latter, then it is marked as suspicious. If a file exists in the latter but not in the former, then
it is marked as dark data, which means it is occupying space without being able to be used by the experiment.
The data management system ensures that such files are deleted from the data centers. This is a crucial process,
which aims to prevent the accumulation of non-addressable data and in turn loss of available storage space.

3 The Rucio system for scientific data management

The ATLAS experiment has developed the Rucio system to handle all its distributed data needs. An extensive
summary article describes Rucio in great detail [17], therefore we only give an overview here.

Rucio manages location-aware data in a heterogeneous distributed environment, including creation, location,
transfer, deletion, and annotation. Declarative orchestration of dataflows with both low-level and high-level
policies is the main mode of operation. The software is free and open-source, licensed under Apache v2.0, and
makes use of established open-source toolchains. In terms of functionality, Rucio provides a mature and modular
scientific data management federation, including seamless integration of scientific and commercial storage and
their corresponding network systems. Data is stored in files, but can contain any potential payload. The storage
facilities can be distributed at multiple locations belonging to different administrative domains, which makes
it particularly useful for large collaborations. It was designed following more than a decade of operational
experience in large-scale data management [18] and has dataflow automation as its guiding principle.

Rucio is organized in a scoped namespace of Data Identifiers (DIDs). DIDs are unique and can be files or
collections. Collections can be datasets which then contain files, or containers which consist of other containers
and datasets. Figure 5 shows an example namespace of several DIDs, notably the possibility to have overlapping
contents across collections. Datasets and containers are logical units which usually share some scientific context,
for example, files with results from a specific study, or data taken in during a specific interval. These collections
also enable the user to execute certain bulk operations such as transfers or downloads in a convenient way, as
Rucio correctly interprets operations on DIDs depending on their type.
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Figure 6: Rucio is loosely-coupled, with its catalog and state persisted in a transactional database. Daemons
coordinate their work in shared queues, external systems are notified via message queues, and analytics storage
is kept separately. The storage and and transfer tools are modular and integrated vertically across the layers.

The logical representation of storage in Rucio is called a Rucio Storage Element (RSE). An RSE is a de-
scription of network-accessible storage with certain attributes, such as hostname, port, protocols and priorities.
An RSE is only a logical abstraction of storage space, there is no need to run any Rucio software at a data center.
Simply providing the RSE configuration to Rucio is sufficient and thus allows to federate a wide variety of het-
erogeneous storage systems. Interaction with the physical storage is orchestrated via the published protocols, for
example gsiftp, WebDAV, root, S3, and many more. Thus RSEs can be any type of storage, typically disk or tape
systems, scientific and commercial cloud providers, or even supercomputers. The physical representations of
files on storage are called replicas. A replica is always associated to a specific RSE. Files can have one, or many
replicas depending on the policies and access patterns of the organization. Files without replicas are marked as
deleted and are kept in the historical namespace for reference. The orchestration of dataflows in Rucio is done
via a descriptive concept called replication rules. These rules define policies on DIDs to ensure that a certain
number of replicas are made available on RSEs matching a defined policy for a certain amount of time. Thus
replication rules serve the purpose of transferring data to an RSE but also to protect the data from deletion until
the lifetime of the rule expires.

The Rucio architecture, as shown in Figure 6, is based on a distributed design split into a multiple layers,
each with their own set of components: the clients, server, core, daemons, and persistence layer. While details of
this architecture are discussed in the summary article it is noteworthy that the architecture is fully horizontally
scalable while at the same time responsive to the required work. The system can thus be used from single
data center deployments up to globally distributed federations. Starting from the most basic data cataloging
requirements, more advanced features can be activated selectively depending on the needs of the experiment.
For example, the system supports dynamic schema-free and schema-based metadata collection and queries,
data transfers between heterogeneous facilities, diverse authentication and authorization mechanisms, web user
interfaces, API and CLI integrations, extensive monitoring of dataflows, and expressive high-level and low-level
data policy engines. As previously mentioned, automatic data corruption identification and recovery is one of
the most appreciated features of the system.
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4 Establishing a community

As the scientific community has become more aware of the success of Rucio within ATLAS, several experiments
asked if it would be possible to evaluate and potentially adopt the system for their needs. This section distills
the reports from a variety of sciences from the corresponding article [19].

The first scientific experiment adopting Rucio as a data management system was the AMS-02 [20] collab-
oration. AMS is a particle detector attached to the International Space Station measuring antimatter in cosmic
rays. There are many scientific goals of AMS, but one of the major objectives is the search for evidence of dark
matter. The Rucio system was installed and managed by the Taiwanese Academy of Science (ASGC). This was
done in collaboration and support of the core Rucio team at CERN. ASGC team members spent many weeks at
CERN to learn from the direct operational experience of Rucio at CERN and to work together with the devel-
opers to adapt the system to scientific usecases beyond high energy physics. During this collaboration multiple
features were added to the Rucio code base and the ASGC team developed a powerful web interface extension
serving their local community. The Rucio system at ASGC is now in use not only for AMS, but a variety of
smaller experiments hosted at their institute.

The XENON dark matter experiment [21] is operated in the underground research facility Laboratory Na-
tional del Gran Sasso (LNGS) in Italy. It is aiming to directly detect weakly interacting massive particles
(WIMPs). The first stage are raw data, which are distributed with Rucio among grid computing facilities within
the European Grid Infrastructure (EGI) and the Open Science Grid (OSG) in the US, including SDSC’s Comet
Supercomputer and the HPC campus resources. Second and third stage are processed data which are kept at
the Research Computing Center (RCC) in Chicago, which is also its main data analysis center. XENON1T has
taken 800+ TB of raw data and ran multiple re-processing campaigns for improving data quality in ongoing data
analysis tasks [22]. The upcoming XENONnT upgrade will take 1 Petabyte per year. Processing and Monte
Carlo simulation campaigns are planned at the major infrastructures of EGI and OSG. A newly developed tool
integrates Rucio in the XENONnT data flow and data product locations are registered. All data products will be
distributed within Rucio to the connected grid computing facilities for storage. Tape storage will be integrated
in Rucio this time and dedicated grid locations are reserved to store the raw data product. XENONnT is the first
hard Python3 dependency on Rucio. For analysts, the RCC in Chicago is again the main data analysis centre
and provides user access to high level data products at a nearby location. Analysts can also define and produce
own data products for analysis purposes outside the run database or grid storage at any time.

CMS performed an evaluation of data management systems from early 2018 through summer 2018, and
eventually selected Rucio. The plan is to have Rucio deployed and ready for LHC Run 3: The transition period
will last from 2018-2020, and the CMS team has expressed excitement about participating in a sustainable
community project. The production infrastructure is based on Docker, Kubernetes, Helm, and OpenStack, with
the official Rucio Helm charts customized with minimal configuration changes for CMS. The zero-to-operating
cluster timing including dependencies is in the order of tens of minutes which allows fast and easy integration
with CMS software and infrastructure; Rucio upgrades are nearly instantaneous. This also allows CMS to have
its production and Rucio testbed on a shared set of resources. The developer’s environment is identical to various
flavors of central clusters, which makes integration easy. In 2019, the first full-fledged test distributed 1 million
files between all CMS T1 and T2 data centers. The critical factor for data management scalability is the number
of files, not the actual volume of data to be moved. The entire successful test took 1.5 days, and was purely
driven by dataset injection rate. It ran in parallel to regular experiment activity.

The Deep Underground Neutrino Experiment (DUNE) is a neutrino experiment under construction, com-
prising a near detector at Fermilab and a far detector at the Sanford Underground Research Facility (SURF) that
will observe neutrinos produced at Fermilab. DUNE’s data management challenges are unique because they
have multiple geographically separated detectors asynchronously collecting data, at an expected rate of tens of
Petabytes per year. DUNE is also sensitive to supernovae, which potentially produce hundreds of Terabytes
over a 100 second period. It is a large collaboration that intends to store and process data at many data centers
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worldwide, and the current ProtoDUNE prototype detector has already recorded 6 Petabytes of reconstructed
data. The next test beam run for both single and dual phase prototypes is expected in 2021-22. DUNE has
a Rucio instance at Fermilab with a PostgreSQL backend, and has contributed several database extensions to
Rucio. So far, 1+ million files have been cataloged from ProtoDUNE, including raw and reconstructed data.
Rucio is being used to distribute ProtoDUNE data from CERN and FNAL to other data centers for analysts.
The replication rules make this easy; making a rule for a dataset and data center or group of data centers elim-
inates operational overhead for DUNE. The current integration plan is to progressively replace the legacy data
management system, and transition to a purely Rucio based solution. The main challenge is that DUNE intends
to make significant use of HPC resources, and the data management system needs to integrate with many very
heterogeneous supercomputing data centers. This is in line with the global HEP move towards using more HPC
resources. Additionally DUNE data will benefit from fine grained object store style access, however it is not
clear how to combine this with the traditional file based approach. The DUNE community has expressed that
they are interested to contribute to these developments in the near future.

The Square Kilometre Array (SKA) is an intergovernmental radio telescope project to be built in Australia
and South Africa. With receiving stations extending out to a distance of more than 3’000 kilometers from a
concentrated central core, it will allow astronomers to create the most sensitive images of the Universe. The SKA
Regional Centers will provide a platform for transparent data access, data distribution, post-processing, archive
storage, and software development. Up to 1 Petabyte will be ingested from each telescope, and made available
for access and post-processing around the globe. SKA will therefore need a way to manage data in a federated
way across many physical data centers transparent to the user. SKA has begun evaluating Rucio for SRC data
management. Data has been uploaded, replicated, and deleted from storage systems using custom replication
rules and sustained data transfers have already been demonstrated from South Africa to the United Kingdom. A
full mesh functional test has been put in place and is demonstrating connectivity. Tests were conducted using
data from the LOFAR telescope, an SKA pathfinder instrument. Currently, the Elasticsearch/Logstash/Kibana
(ELK) monitoring stack [23] is being set up up, and already 8M data operation events over more than one year
of testing have been ingested. The evaluation experience using Rucio has been positive and is now formalized
through the H2020 ESCAPE project, the European Science Cluster for Astronomy and Particle Physics ESFRI
research infrastructures [24]. The main findings from the test include the arduous need for X.509 certificates
across storage systems, which is now being addressed via alternatives such as token-based authentication and
authorization. In addition, an in-depth look at the ELK monitoring and dashboards will be performed to see
where they still need to be extended. Another major point is the integration with the DIRAC [25] workflow
management system, matching the Belle II experiment needs, for a full end-to-end use case. Another use case
will be similar to LHC Tier-0 processing with event-driven data management and processing. The inclusion of
Australian storage for long-distance tests with a focus on network optimization is also upcoming.

The Laser Interferometer Gravitational-Wave (LIGO) Observatory [26], based in the US, is a large-scale
observatory to detect cosmic gravitational waves and to develop gravitational-wave observations as an astro-
nomical tool. Virgo [27] is the European equivalent interferometer, based in Italy at the European Gravitational
Observatory (EGO). LIGO and Virgo are building the International Gravitational Wave Network (IGWN), with
a combined 20 Terabytes of astrophysical strain data and 1 Petabyte of raw data per instrument per observing
year. A data management solution is needed for offline deep searches and parameter estimation, as well as
support for dedicated and opportunistic resources, as well as archival data. Rucio now enhances the IGWN data
management through a large choice of protocols, an accessible catalog, comprehensive monitoring and support
for detector data flows. This includes domain-specific daemons that register new dataframes in the Rucio catalog
and then create rules to trivially implement dataflow to the archives and resources. IGWN has stated that they
will investigate many opportunities beyond this, as well as being happy to update to a modern, high-availability
version of existing functionality. Rucio is now being used in production for limited frame data replication to
volunteering data centers, and a transition away from LDR is expected over the coming months. Upcoming work
includes integration of existing data discovery services and remote data access, for example, enhanced database
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redundancy, and management of new data products, for example, analysis pipeline data products. A mountable
Rucio POSIX namespace is under development as an alternative for gravitational wave software distribution.

The Belle II experiment [28] is a particle physics experiment designed to study the properties of B mesons.
The data requirements include 70 storage systems with around 200 Petabytes of data expected by the end of
data-taking, with 2 replicas distributed over 6 data centers. Physics data taking started in 2019. Belle II’s current
distributed data management uses a bespoke design with adequate performance and supports up to 150’000
transfers/day. Some scalability issues in the system were addressed, but others are inherent to the design of the
data management system, most importantly the lack of automation: this means that data distribution and deletion
are done by experts at a very fine granularity. The Belle II team at Brookhaven National Laboratory (BNL) are
evaluating Rucio as an alternative and all studies so far look promising. Most importantly, the performance on
the PostgreSQL database at BNL shows capabilities beyond the Belle II requirements. Integration of Rucio with
the rest of the Belle II distributed computing system, based on DIRAC, is planned in two stages. In the first stage
the current data management APIs are replaced with an implementation that uses Rucio under the hood. This is
mostly transparent to the rest of Belle II and allows bi-directional transition between the two implementations.
However, this still relies on a legacy file catalog, and does not take full advantage of Rucio and its functionalities,
being limited to the current APIs by definition. Nevertheless this stage allows the BNL team to gain experience
in a production environment of using the DIRAC WFMS with Rucio. The second stage integration leads to
an eventual migration that will use Rucio as the master file catalog, using a new DIRAC plugin to remove the
dependency on the legacy file catalog.

5 Towards a common approach

During the evaluation together with these communities, Rucio has established a fully community-driven de-
velopment process. Requirements and issues are publicly discussed via weekly development meetings, on
GitHub [29], and group messaging based on Slack [30]. The project also hosts a yearly community workshop
for developers and users to meet and to discuss the evolution of the software stack. The core development team
provides guidance on design, architecture, as well as tests, and integration and evolves the development envi-
ronment and continuous integration framework. Whereas packaging and high-level release planning is done by
members of the core development team, the development is largely driven by contributors from the community.
Contributions are reviewed by both the community as well as the core development team. Recent improve-
ments in containerization and testing frameworks have significantly lowered the barrier to entry for newcomers.
However, while contributing to the project has gotten simpler the project is specifically looking for maintained
feature developments, thus sustainability is an important factor discussed with every contribution. One interest-
ing aspect is that communities have started to help each other without the involvement of the core team, leading
to a self-sustaining process that has been effective across time zones due to multi-continent involvement.

Although recent developments with containers and Kubernetes has made the deployment of Rucio very
simple, the operation and maintenance of a data management system is still a significant effort for smaller
scientific communities, which very often operate with very little personpower but still have significant data
requirements. The UK Science and Technology Facilities Council (STFC) has been developing an enhancement
to offer a data management service for multiple communities based on a single Rucio instance. This feature
enables one Rucio instance to be virtually partitioned to serve multiple organizations, thus enabling communities
to benefit from Rucio services while keeping the operational footprint low.

The need for operational cooperation has been acknowledged by many experiments, and a cross-experiment
Operational Intelligence [31] effort has been started. Thousands of tickets are filed in the issue tracking system
per year, which have to be followed by the operations teams of the various systems. In the context of Rucio, this
effort seeks to exploit the wealth of dataflow traces to increase the level of automation. The first proposed models
apply to the prediction of intelligent data placements and access patterns, time-series analyses to estimate of the
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Figure 7: On the left, the estimated total disk resources from ATLAS in Petabytes needed for the years 2018
to 2032. On the right, the equivalent plot from CMS for the years 2017 to 2027. The expected data rates from
HL-LHC will exceed funding capabilities even with reduced storage models after 2026.

time needed to complete transfers, or anomaly detection techniques to predict network failures. Recording and
analyzing operator actions can be used to automate tasks and to suggest possible solutions to repeated issues.

Another oft-requested feature from the data centers was support for cloud storage to allow more dynamic
possibilities for capacity increases. This was developed within the Data Ocean project [32], which was an R&D
effort between ATLAS and Google. The idea of the project was to enable ATLAS to explore the use of different
computing models by using Google resources, to allow ATLAS users to benefit from the Google infrastructure,
and at the same time give Google real science use cases to improve their cloud platform. The project has been
highly successful and follow-up developments enhanced the Rucio interfaces to be cloud provider agnostic. Now
Rucio can serve as an enabler for scientific experiments who want transparent access to a multitude of diverse
cloud storage providers.

Finally, the two major topics in scientific data management in the next years are the immediate growth rates
of single experiments, and the resulting contention across experiment infrastructures on a limited set of shared
storage and network resources. As shown in Figure 7 for ATLAS and CMS, the data growth at the HL-LHC
beyond 2026 is significantly above any potential infrastructure growth. Therefore, the high energy physics
community has prepared a white paper [33] to lay out the plans to tackle this challenge. At its core, it employs
multiple strategies for data organization, management and access (DOMA) [34] that include mechanisms such
as analysis model changes, dynamic use of storage quality of service, transparent distributed caching, network
flow control using SDNs, and much more. Many of these strategies rely on having Rucio as a common data
management system, with the objective to help steer dataflows across multiple experiments as a cooperating
ensemble. The development of the exchange of dataflow state as well as cross-experiment namespace and
scheduling will be crucial.

6 Conclusions

The LHC data needs have been driving a variety of data management developments for more than two decades.
Throughout many attempts, the collected experiences led to the development of the Rucio system, which has
proven flexible, efficient, and robust. The openness of the system, the autonomous declarative way of handling
dataflows, the transparent handling of data incidents, and the capability to monitor the flows in detail have
all contributed the success of Rucio. Many communities have now joined and are actively contributing. In
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conclusion, Rucio is a successful collaborative open source project that is rapidly developing into a common
standard for scientific data management.
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