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Abstract

An essential ingredient of successful machine-assisted decision-making, particularly in high-stakes
decisions, is interpretability –– allowing humans to understand, trust and, if necessary, contest, the
computational process and its outcomes. These decision-making processes are typically complex: carried
out in multiple steps, employing models with many hidden assumptions, and relying on datasets that are
often used outside of the original context for which they were intended. In response, humans need to be
able to determine the “fitness for use” of a given model or dataset, and to assess the methodology that
was used to produce it.

To address this need, we propose to develop interpretability and transparency tools based on the
concept of a nutritional label, drawing an analogy to the food industry, where simple, standard labels
convey information about the ingredients and production processes. Nutritional labels are derived
automatically or semi-automatically as part of the complex process that gave rise to the data or model
they describe, embodying the paradigm of interpretability-by-design. In this paper we further motivate
nutritional labels, describe our instantiation of this paradigm for algorithmic rankers, and give a vision
for developing nutritional labels that are appropriate for different contexts and stakeholders.

1 Introduction

An essential ingredient of successful machine-assisted decision-making, particularly in high-stakes decisions, is
interpretability –– allowing humans to understand, trust and, if necessary, contest, the computational process and
its outcomes. These decision-making processes are typically complex: carried out in multiple steps, employing
models with many hidden assumptions, and relying on datasets that are often repurposed — used outside of the
original context for which they were intended.1 In response, humans need to be able to determine the “fitness for
use” of a given model or dataset, and to assess the methodology that was used to produce it.

To address this need, we propose to develop interpretability and transparency tools based on the concept of a
nutritional label, drawing an analogy to the food industry, where simple, standard labels convey information about
the ingredients and production processes. Short of setting up a chemistry lab, the consumer would otherwise
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have no access to this information. Similarly, consumers of data products cannot be expected to reproduce the
computational procedures just to understand fitness for their use. Nutritional labels, in contrast, are designed to
support specific decisions by the consumer rather than completeness of information. A number of proposals for
hand-designed nutritional labels for data, methods, or both have been suggested in the literature[9, 12, 17]; we
advocate deriving such labels automatically or semi-automatically as a side effect of the computational process
itself, embodying the paradigm of interpretability-by-design.

Interpretability means different things to different stakeholders, including individuals being affected by
decisions, individuals making decisions with the help of machines, policy makers, regulators, auditors, vendors,
data scientists who develop and deploy the systems, and members of the general public. Designers of nutritional
labels must therefore consider what they are explaining, to whom, and for what purpose. In the remainder of this
section, we will briefly describe two regulatory frameworks that mandate interpretability of data collection and
processing to members of the general public, auditors, and regulators, where nutritional labels offer a compelling
solution (Section 1.1). We then discuss interpretability requirements in data sharing, particularly when data is
altered to protect privacy or mitigate bias (Section 1.2).

1.1 Regulatory Requirements for Interpretability

The European Union recently enacted a sweeping regulatory framework known as the General Data Protection
Regulation, or the GDPR [30]. The regulation was adopted in April 2016, and became enforceable about two
years later, on May 25, 2018. The GDPR aims to protect the rights and freedoms of natural persons with regard
to how their personal data is processed, moved, and exchanged (Article 1). The GDPR is broad in scope, and
applies to “the processing of personal data wholly or partly by automated means” (Article 2), both in the private
sector and in the public sector. Personal data is broadly construed, and refers to any information relating to an
identified or identifiable natural person, called the data subject (Article 4).

According to Article 4, lawful processing of data is predicated on the data subject’s informed consent, stating
whether their personal data can be used, and for what purpose (Articles 6, 7). Further, data subjects have the right
to be informed about the collection and use of their data. 2 Providing insight to data subjects about the collection
and use of their data requires technical methods that support interpretability.

Regulatory frameworks that mandate interpretability are also starting to emerge in the US. New York City
was the first US municipality to pass a law (Local Law 49 of 2018) [32], requiring that a task force be put
in place to survey the current use of “automated decision systems” (ADS) in city agencies. ADS are defined
as “computerized implementations of algorithms, including those derived from machine learning or other data
processing or artificial intelligence techniques, which are used to make or assist in making decisions.” The task
force is developing recommendations for enacting algorithmic transparency by the agencies, and will propose
procedures for: (i) requesting and receiving an explanation of an algorithmic decision affecting an individual
(Section 3 (b) of Local Law 49); (ii) interrogating ADS for bias and discrimination against members of legally
protected groups, and addressing instances in which a person is harmed based on membership in such groups
(Sections 3 (c) and (d)); (iii) and assessing how ADS function and are used, and archiving the systems together
with the data they use (Sections 3 (e) and (f)).

Other government entities in the US are following suit. Vermont is convening an Artificial Intelligence Task
Force to “... make recommendations on the responsible growth of Vermont’s emerging technology markets, the use
of artificial intelligence in State government, and State regulation of the artificial intelligence field.” [33]. Idaho’s
legislature has passed a law that eliminates trade secret protections for algorithmic systems used in criminal
justice [31]. In early April 2019, Senators Booker and Wyden introduced the Algorithmic Accountability Act of
2019 to the US Congress [6]. The Act, if passed, would use “automated decision systems impact assessment”
to address and remedy harms caused by algorithmic systems to federally protected classes of people. The act

2https://gdpr-info.eu/issues/right-to-be-informed/
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empowers the Federal Trade Commission to issue regulations requiring larger companies to conduct impact
assessments of their algorithmic systems.

The use of nutritional labels in response to these and similar regulatory requirements can benefit a variety of
stakeholders. The designer of a data-driven algorithmic method may use them to validate assumptions, check
legal compliance, and tune parameters. Government agencies may exchange labels to coordinate service delivery,
for example when working to address the opioid epidemic, where at least three sectors must coordinate: health
care, criminal justice, and emergency housing, implying a global optimization problem to assign resources to
patients effectively, fairly and transparently. The general public may review labels to hold agencies accountable
to their commitment to equitable resource distribution.

1.2 Interpretability with Semi-synthetic Data

A central issue in machine-assisted decision-making is its reliance on historical data, which often embeds results
of historical discrimination, also known as structural bias. As we have seen time and time again, models trained
on data will appear to work well, but will silently and dangerously reinforce discrimination [1, 7, 13]. Worse
yet, these models will legitimize the bias — “the computer said so.” Nutritional labels for data and models are
designed specifically to mitigate the harms implied by these scenarios, in contrast to the more general concept of
“data about data.”

Good datasets drive research: they inform new methods, focus attention on important problems, promote a
culture of reproducibility, and facilitate communication across discipline boundaries. But research-ready datasets
are scarce due to the high potential for misuse. Researchers, analysts, and practitioners therefore too often find
themselves compelled to use the data they have on hand rather than the data they would (or should) like to
use. For example, aggregate usage patterns of ride hailing services may overestimate demand in early-adopter
(i.e., wealthy) neighborhoods, creating a feedback loop that reduces service in poorer neighborhoods, which
in turn reduces usage. In this example, and in many others, there is a need to alter the input dataset to achieve
specific properties in the output, while preserving all other relevant properties. We refer to such altered datasets
as semi-synthetic.

Recent examples of methods that produce semi-synthetic data include database repair for causal fairness [25],
database augmentation for coverage enhancement [4], and privacy-preserving and bias-correcting data release [21,
23]. A semi-synthetic datasets may be altered in different ways. Noise may be added to it to protect privacy, or
statistical bias may be removed or deliberately introduced. When a dataset of this kind is released, its composition
and the process by which it was derived must be made interpretable to a data scientist, helping determine fitness
for use. For example, datasets repaired for racial bias are unsuitable for studying discrimination mitigation
methods, while datasets with bias deliberately introduced are less appropriate for research unrelated to fairness.
This gives another compelling use case for nutritional labels.

2 Nutritional Labels for Algorithmic Rankers

To make our discussion more concrete, we now describe Ranking Facts, a system that automatically derives
nutritional labels for rankings [36]. Algorithmic decisions often result in scoring and ranking individuals — to
determine credit worthiness, desirability for college admissions and employment, and compatibility as dating
partners. Algorithmic rankers take a collection of items as input and produce a ranking – a sorted list of items – as
output. The simplest kind of a ranker is a score-based ranker, which computes a score for each item independently,
and then sorts the items on their scores. While automatic and seemingly objective, rankers can discriminate
against individuals and protected groups [5], and exhibit low diversity at top ranks [27]. Furthermore, ranked
results are often unstable — small changes in the input or in the ranking methodology may lead to drastic changes
in the output, making the result uninformative and easy to manipulate [11]. Similar concerns apply in cases where

15



Figure 1: Ranking Facts for the CS departments dataset. The Ingredients widget (green) has been expanded
to show the details of the attributes that strongly influence the ranking. The Fairness widget (blue) has been
expanded to show the computation that produced the fair/unfair labels.

items other than individuals are ranked, including colleges, academic departments, and products.
In a recent work, we developed Ranking Facts, a nutritional label for rankings [36]. Ranking Facts

is available as a Web-based tool3, and its code is available in the open source 4. Figure 1 presents Ranking
Facts that explains a ranking of Computer Science departments. The data in this example was obtained from CS
Rankings5, augmented with attributes from the NRC dataset 6. Ranking Facts is made up of a collection of visual
widgets, each with an overview and a detailed view. Each widget addresses an essential aspect of transparency
and interpretability, and is based on our recent technical work on fairness [3, 35], diversity [8, 27, 28, 34], and
stability [2] in algorithmic rankers. We now describe each widget in some detail.

2.1 Recipe and Ingredients

These two widgets help to explain the ranking methodology. The Recipe widget succinctly describes the ranking
algorithm. For example, for a linear scoring formula, each attribute would be listed together with its weight. The

3http://demo.dataresponsibly.com/rankingfacts/
4https://github.com/DataResponsibly/RankingFacts
5https://github.com/emeryberger/CSRankings
6http://www.nap.edu/rdp/
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Ingredients widget lists attributes most material to the ranked outcome, in order of importance. For example,
for a linear model, this list could present the attributes with the highest learned weights. Put another way, the
explicit intentions of the designer of the scoring function about which attributes matter, and to what extent, are
stated in the Recipe, while Ingredients may show attributes that are actually associated with high rank. Such
associations can be derived with linear models or with other methods, such as rank-aware similarity in our prior
work [27]. The detailed Recipe and Ingredients widgets list statistics of the attributes in the Recipe and in the
Ingredients: minimum, maximum and median values at the top-10 and over-all.

2.2 Stability

The Stability widget explains whether the ranking methodology is robust on this particular dataset. An unstable
ranking is one where slight changes to the data (e.g., due to uncertainty and noise), or to the methodology (e.g.,
by slightly adjusting the weights in a score-based ranker) could lead to a significant change in the output. This
widget reports a stability score, as a single number that indicates the extent of the change required for the ranking
to change. As with the widgets above, there is a detailed Stability widget to complement the overview widget.

An example is shown in Figure 2, where the stability of the ranking is quantified as the slope of the line that
is fit to the score distribution, at the top-10 and over-all. A score distribution is unstable if scores of items in
adjacent ranks are close to each other, and so a very small change in scores will lead to a change in the ranking.
In this example the score distribution is considered unstable if the slope is 0.25 or lower. Alternatively, stability
can be computed with respect to each scoring attribute, or it can be assessed using a model of uncertainty in the
data. In these cases, stability quantifies the extent to which a ranked list will change as a result of small changes
to the underlying data. A complementary notion of stability quantifies the magnitude of change as a result of
small changes to the ranking model. We explored this notion in our recent work, briefly discussed below.

In [2] we develped methods for quantifying the stability of a score-based ranker with respect to a given dataset.
Specifically, we considered rankers that specify non-negative weights, one for each item attribute, and compute
the score as a weighted sum of attribute values. We focused on a notion of stability that quantifies whether the
output ranking will change due to a small change in the attribute weights. This notion of stability is natural for
consumers of a ranked list (i.e., those who use the ranking to prioritize items and make decisions), who should be
able to assess the magnitude of the region in the weight space that produces the observed ranking. If this region is
large, then the same ranked order would be obtained for many choices of weights, and the ranking is stable. But
if this region is small, then we know that only a few weight choices can produce the observed ranking. This may
suggest that the ranking was engineered or “cherry-picked” by the producer to obtain a specific outcome.

2.3 Fairness

The Fairness widget quantifies whether the ranked output exhibits statistical parity (one interpretation of fairness)
with respect to one or more sensitive attributes, such as gender or race of individuals [35]. We denote one or
several values of the sensitive attribute as a protected feature. For example, for the sensitive attribute gender, the
assignment gender=F is a protected feature.

A variety of fairness measures have been proposed in the literature [38], with a primary focus on classification
or risk assessment tasks. One typical fairness measure for classification compares the proportion of members of
a protected group (e.g., female gender or minority race) who receive a positive outcome to their proportion in
the overall population. For example, if the dataset contains an equal number of men and women, then among
the individuals invited for a job interview, one half should be women. A measure of this kind can be adapted to
rankings by quantifying the proportion of members of a protected group in some selected set of size k (treating
the top-k as a set).

In [35], we were the first to propose a family of fairness measures specifically for rankings. Our measures are
based on a generative process for rankings that meet a particular fairness criterion (fairness probability f ) and
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Figure 2: Stability: detailed widget.

are drawn from a dataset with a given proportion of members of a binary protected group (p). This method was
subsequently used in FA*IR [37] to quantify fairness in every prefix of a top-k list. We also developed a pairwise
measure that directly models the probability that a member of a protected group is preferred to a member of the
non-protected group.

Let us now return to the Fairness widget in Figure 1. We select a binary version of the department size
attribute DeptSizeBin from the CS departments dataset as the sensitive attribute, and treat the value and “small”
as the protected feature. The summary view of the Fairness widget in our example presents the output of three
fairness measures: FA*IR [37], proportion [38], and our own pairwise measure. All these measures are statistical
tests, and whether a result is fair is determined by the computed p-value. The detailed Fairness widget provides
additional information about the tests and explains the process.

2.4 Diversity

Fairness is related to diversity: ensuring that different kinds of objects are represented in the output of an
algorithmic process [8]. Diversity has been considered in search and recommender systems, but in a narrow
context, and was rarely applied to profiles of individuals. The Diversity widget shows diversity with respect to a
set of demographic categories of individuals, or a set of categorical attributes of other kinds of items [8]. The
widget displays the proportion of each category in the top-10 ranked list and over-all, and, like other widgets, is
updated as the user selects different ranking methods or sets different weights. In our example in Figure 1, we
quantify diversity with respect to department size and to the regional code of the university. By comparing the pie
charts for top-10 and over-all, we observe that only large departments are present in the top-10.

This simple diversity measure that is currently included in Ranking Facts can be augmented by, or replaced
with, other measures, including, for example, those we developed in our recent work [28, 34].

3 Learning Labels

The creation of nutritional labels is often cast as a design problem rather than a computational problem [9, 12].
Standard labels with broad applicability can amortize the cost of design, but the diversity of datasets, methods,
and desirable properties for nutritional labels suggest a learning approach to help develop labels for a variety
of situations. Since opaque automation is what motivated the need for labels in the first place, automating their
creation may seem like a step backwards. But there are several benefits:
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Figure 3: Draco can be used to re-implement existing visualization systems like CQL by hand-tuning weights
(left) or be used to learn weights automatically from preference data (right). The visualizations selected can vary
significantly, affording customization for specific applications. A similar approach can be used when generating
nutritional labels for data and models.

• Coverage: some information provided in (nearly) all cases is preferable to all information provided in some
cases, as there are many models and datasets being deployed.

• Correctness: Hand-designed labels imply human metadata attachment, but curation of metadata is essen-
tially an unsolved problem. Computable labels reduce reliance on human curation efforts.

• Retroactivity: Some information can only be manually collected at the time of data collection (e.g.,
demographics of authors in a speech corpus to control for nationality bias). This opportunity is lost for
existing datasets. However, inferring relevant properties based on the content of the data may be “better
than nothing.”

We now consider two approaches to the problem of learning labels, one based on the visualization recommen-
dation literature, and one based on bin-packing optimization.

3.1 Learning as Visualization Recommendation

Moritz et al. proposed Draco [19], a formal model that represents visualizations as sets of logical facts, and
represents design guidelines as a collection of hard and soft constraints over these facts, following an earlier
proposal for the VizDeck system [14]. Draco enumerates the visualizations that do not violate the hard constraints
and finds the most preferred visualizations according to the weights of the soft constraints. Formalized visual-
ization descriptions are derived from the Vega-Lite grammar [26] extended with rules to encode expressiveness
criteria [16], preference rules validated in perception experiments, and general visualization design best practices.
Hard constraints must be satisfied (e.g., shape encodings cannot express quantitative values), whereas soft
constraints express a preference (e.g., temporal values should use the x-axis by default). The weights associated
with soft constraints can be learned from preference or utility data, when available (see example in Figure 3).

Draco implements the constraints using Answer Set Programming (ASP) semantics, and casts the problem
of finding appropriate encodings as finding optimal answer sets [10]. Draco has been extended to optimize for
constraints over multiple visualizations [22], and adapted for use in specialized domains.

Using Draco (or similar formalizations), the specialized constraints governing the construction of nutritional
labels can be developed in the general framework of ASP, while borrowing the foundational constraints capturing
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general visualization design principles. This approach can help reduce the cost of developing hundreds of
application-specific labels by encoding common patterns, such as including descriptive statistics in all labels, or
only showing fairness visualizations when bias is detected.

3.2 Learning as Optimization

Sun et al. proposed MithraLabel [29], focusing on generating task-specific labels for datasets to determine
fitness for specific tasks. Considering the dataset as a collection of items over a set of attributes, each widget
provides specific information (such as functional dependencies) about the whole dataset or some selected part
of it. For example, if a data scientist is considering the use of a number-of-prior-arrests attribute to predict
likelihood of recidivism, she should know that the number of prior arrests is highly correlated with the likelihood
of re-offending, but it introduces bias as the number of prior arrests is higher for African Americans than for other
races due to policing practices and segregation effects in poor neighborhoods. Widgets that might appear in the
nutritional label for prior arrests include the count of missing values, correlation with the predicted attribute or a
protected attribute, and the distribution of values.

4 Properties of a nutritional label

The database and cyberinfrastructure communities have been studying systems and standards for metadata,
provenance, and transparency for decades [20, 18]. We are now seeing renewed interest in these topics due to the
proliferation of data science applications that use data opportunistically. Several recent projects explore these
concepts for data and algorithmic transparency, including the Dataset Nutrition Label project [12], Datasheets for
Datasets [9], and Model Cards [17]. All these method rely on manually constructed annotations. In contrast, our
goal is to generate labels automatically or semi-automatically.

To differentiate a nutritional label from more general forms of metadata, we articulate several properties:

• Comprehensible: The label is not a complete (and therefore overwhelming) history of every processing
step applied to produce the result. This approach has its place and has been extensively studied in the
literature on scientific workflows, but is unsuitable for the applications we target. The information on a
nutritional label must be short, simple, and clear.

• Consultative: Nutritional labels should provide actionable information, rather than just descriptive meta-
data. For example, universities may invest in research to improve their ranking, or consumers may cancel
unused credit card accounts to improve their credit score.

• Comparable: Nutritional labels enable comparisons between related products, implying a standard. The
IEEE is developing a series of ethics standards, known as the IEEE P70xx series, as part of its Global
Initiative on Ethics of Autonomous and Intelligent Systems.7 These standards include “IEEE P7001:
Transparency of Autonomous Systems” and “P7003: Algorithmic Bias Considerations” [15]. The work on
nutritional labels is synergistic with these efforts.

• Concrete: The label must contain more than just general statements about the source of the data; such
statements do not provide sufficient information to make technical decisions on whether or not to use the
data.

Data and models are chained together into complex automated pipelines — computational systems “consume”
datasets at least as often as people do, and therefore also require nutritional labels! We articulate additional
properties in this context:

7https://ethicsinaction.ieee.org/
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• Computable: Although primarily intended for human consumption, nutritional labels should be machine-
readable to enable specific applications: data discovery, integration, automated warnings of potential
misuse.

• Composable: Datasets are frequently integrated to construct training data; the nutritional labels must be
similarly integratable. In some situations, the composed label is simple to construct: the union of sources.
In other cases, the biases may interact in complex ways: a group may be sufficiently represented in each
source dataset, but underrepresented in their join.

• Concomitant: The label should be carried with the dataset; systems should be designed to propagate
labels through processing steps, modifying the label as appropriate, and implementing the paradigm of
transparency by design.

5 Conclusions

In this paper we discussed work on transparency and interpretability for data and models based on the concept of a
nutritional label. We presented Ranking Facts, a system that automatically derives nutritional labels for rankings,
and outlined directions for ongoing research that casts the creation of nutritional labels as a computational
problem, rather than as purely a design problem.

We advocate interpretability tools for a variety of datasets and models, for a broad class of application
domains, and to accommodate the needs of a variety of stakeholders. These tools must be informed by an
understanding of how humans perceive algorithms and the decisions they inform, including issues of trust and
agency to challenge or accept an algorithm-informed decision. These tools aim to reduce bias and errors in
deployed models by preventing the use of an inappropriate dataset or model at design time. Although the extent
of data misuse is difficult to measure directly, we can design experiments to show how well nutritional labels
inform usage decisions, and design the tools accordingly. More broadly, we see the review of human-curated
and machine-computed metadata as a critical step for interpretability in data science, which can lead to lasting
progress in the use of machine-assisted decision-making in society.
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