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Letter from the Editor-in-Chief

Machine learning and artificial intelligence, fueled by big data, fast communication channels, and information
openness, are shaping our future. What is the role of data management in this trend? The September issue of the
Data Engineering Bulletin takes a look at the big promise and challenge of the technology, and the ongoing work
of the data management community.

Christian Jensen envisions a future where massive volumes of data that capture vehicle movements become
available. How will we use the data for better routing solutions that save travel costs, such as travel time? Beng
Chin Ooi et al look into 5G, one of the most important enabling technologies for a future that will be defined by
the internet of things, and analyzes the impact of 5G technologies on the landscape of computing, in particular,
data management.

While setting our eyes on the potential benefits of data-driven technologies, we must not overlook the risks
and dangers when humanity hand over decision making to AI systems. In recent years, fairness has become one
of the most popular topics in machine learning. Alexandra Meliou, the associate editor of this issue, has put
together an exciting collection of recent and ongoing work that focuses on the problems of fairness, diversity, and
transparency in data-driven systems.

I would also like to congratulate the 2019 TCDE awards winners. The awards committee chaired by Johannes
Gehrke presents the TKDE impact award, service award, and rising star award to Christian Jensen, David Lomet,
and Viktor Leis, respectively. The letters from the awards winners share their personal reflection and vision based
on the great work they have accomplished.

Haixun Wang
WeWork Corporation
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Letter from the Special Issue Editor

The big data revolution and advancements in machine learning technologies have revolutionized decision making,
advertising, medicine, and even election campaigns. Data-driven software now permeates virtually every aspect
of human activity and has the ability to shape human behavior: it affects the products we view and purchase,
the news articles we read, the social interactions we engage in, and, ultimately, the opinions we form. Yet,
data is an imperfect medium, tainted by errors, omissions, and biases. As a result, discrimination shows up in
many data-driven applications, such as advertisements, hotel bookings, image search, and vendor services. In
this issue, we bring together an exciting collection of recent and ongoing work that focuses on the problems of
fairness, diversity, and transparency in data-driven systems. This collection highlights the central role that the
data management research community can play in detecting, informing, and mitigating the effects of bias, skew,
and misuse of data, and aims to create bridges with work in related communities.

We start with “Nutritional Labels for Data and Models”, by Stoyanovich and Howe. This paper argues for
informational and warning labels for data, akeen to nutritional labels, that specify characteristics of data and how
it should be consumed. These nutritional labels help humans determine the fitness of models and data, aiding the
interpretability and transparency of decision-making processes.

The second paper, “Data Management for Causal Algorithmic Fairness”, by Salimi, Howe, and Suciu,
provides a brief overview of fairness definitions in the literature, and argues for the use of causal reasoning
in defining and reasoning about fairness. The paper exposes a vision of the opportunities of applying data
management techniques, such as integrity constraints, query rewriting, and database repair to enforcing fairness,
detecting discrimination, and explaining bias.

In the third paper, “A Declarative Approach to Fairness in Relational Domains”, Farnadi, Babaki, and Getoor
focus on notions of fairness that capture the relational structure of a domain, and propose a general framework
for relational fairness. Fairness-aware probabilistic soft logic includes a language for specifying discrimination
patterns, and an algorithm for performing inference under fairness constraints.

The next paper, “Fairness in Practice: A Survey on Equity in Urban Mobility”, by Yan and Howe, places its
focus on practical societal implications of fairness in the domain of transportation. The paper presents the findings
of equity studies in mobility systems, such as bike-sharing and ride-hailing systems, and reviews experimental
methods and metrics.

Again motivated by the societal implications of fairness and diversity, Benabbou, Chakraborty, and Zick put
their sights on the allocation of public resources. “Fairness and Diversity in Public Resource Allocation Problems”
focuses on two real-world cases, the allocation of public housing in Singapore and public school admissions in
Chicago, models them as constrained optimization problems, and analyzes the welfare loss in enforcing diversity.

We conclude with “Towards Responsible Data-driven Decision Making in Score-Based Systems”, by Asudeh,
Jagadish, and Stoyanovich. The paper focuses on designing fair and stable rankings, and discusses how these
technologies can assess and enhance the coverage of training sets in machine learning tasks.

Thank you to all the authors for their insightful contributions, which bring into focus new and exciting
challenges, and identify opportunities for data management research to contribute tools and solutions towards
critical societal issues. Thank you also to Haixun Wang for his valuable assistance in putting together the issue. I
hope you enjoy this collection.

Alexandra Meliou
University of Massachusetts, Amherst
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Letter from the TCDE Awards Committee

The IEEE TCDE (Technical Committee of Data Engineering) has established several highly prestigious awards to
encourage innovative long term contributions to the field of data engineering. It is our pleasure to present letters
from the 2019 award winners in this issue.

Rising Star Award. The IEEE TCDE Rising Star Award is based on an individual’s whole body of work in
the first five years after the PhD. The award aims to promote current database researchers as they create their
career. The 2019 IEEE TCDE Rising Star Award goes to Viktor Leis from the Technical University of Munich
for contributions to main-memory indexing and database architectures for NVM.

Impact Award. The IEEE TCDE Impact Award recognizes database researchers whose research resulted in
impact beyond the data engineering field, impact beyond research to industrial practice, and/or impact resulting
in expansion of the data engineering field itself. The 2019 IEEE TCDE Impact Award goes to Christian Jensen
from Aalborg University for contributions to spatial, temporal, and spatio-temporal data management.

Service Award. The IEEE TCDE Service Award recognizes an individual who has contributed significantly to
ICDE, TCDE, and the data engineering community in general. The 2019 IEEE TCDE Service Award goes to
David Lomet from Microsoft for leadership as the Editor-in-Chief of the Data Engineering Bulletin for over 25
years.

Congratulations again to the winners, and we hope you will enjoy reading their letters as much as we did.

The 2019 Awards Committee
Anastasia Ailamaki

Paolo Atzeni
Michael Carey

Xin Luna Dong
Johannes Gehrke (chair)

Sunita Sarawagi
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Value Creation from Massive Data in Transportation – The Case of Vehicle Rout-
ing

Christian S. Jensen
Aalborg University, Denmark

1 Introduction

Vehicular transportation will undergo profound change over the next decades, due to developments such as
increasing mobility demands and increasingly autonomous driving. At the same time, rapidly increasing, massive
volumes of data that capture the movements of vehicles are becoming available. In this setting, the current vehicle
routing paradigm falls short, and we need new data-intensive paradigms. In a data-rich setting, travel costs such
as travel time are modeled as time-varying distributions: at a single point in time, the time needed to traverse a
road segment is given by a distribution. How can we best build, maintain, and use such distributions?

The travel cost of a route is obtained by convolving distributions that model the costs of the segments that
make up the route. This process is expensive and yields inaccurate results when dependencies exist among the
distributions. To avoid these problems, we need a path-centric paradigm, where costs are associated with arbitrary
paths in a road network graph, not just with edges. This paradigm thrives on data: more data is expected to
improve accuracy, but also efficiency. Next, massive trajectory data makes it possible to compute different travel
costs in different contexts, e.g., for different drivers, by using different subsets of trajectories depending on the
context. It is then no longer appropriate to assume that costs are available when routing starts; rather, we need
an on-the-fly paradigm, where costs can be computed during routing. Key challenges include how to achieve
efficiency and accuracy with sparse data. Finally, the above paradigms assume that the benefit, or cost, of a path
is quantified. As an alternative, we envision a cost-oblivious paradigm, where the objective is to return routes that
match the preferences of local, or expert, drivers without formalizing costs.

2 Background

Vehicular transportation is an inherent aspect of society and our lives: many people rely on vehicular transportation
on a daily basis, we spend substantial time on transportation, and we are often forced to arrange our lives around
traffic. As a reflection of this, society spends very substantial resources on enabling safe, reliable, clean, and
inexpensive transportation. Due to a combination of interrelated developments, transportation will undergo
profound changes in the years to come.

First, a range of key enabling technologies have reached levels of sophistication that make (semi-)autonomous
vehicles possible. For example, Tesla cars already come with an autopilot that is a pre-cursor to autonomous
driving, and virtually all major vehicle manufacturers are working to make autonomous cars. The state of affairs
is similar to the one that applied to personal computing when Apple and Microsoft were created and the one that
applied to the Internet when Google was founded. Second, the sharing economy trend is also gaining traction
in relation to vehicular transportation, thus enabling better exploitation of under-utilized vehicles. For example,
Uber enables transportation in private vehicles by private drivers. Online ridesharing services such as Lyft enable
the sharing of trips. A large number of similar services exist across the globe. Next, other developments such as
urbanization and the needs to combat air pollution and greenhouse gas emissions will also impact transportation.
Many large cities are facing air quality problems, and the transportation sector is the second largest contributor to
GHG emissions, trailing only the energy sector.

These increasingly pressing developments promise a perfect storm for transportation: While it is not clear
exactly how this will play out, it is clear that transportation faces profound change. For example, Uber and similar
services may eventually do away with under-paid drivers. When a person goes to a movie theater and cannot
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find parking, the driver may instead let the car serve as a self-driving taxi, thus making money instead of paying
money for parking while watching a movie.

We are also witnessing a digitalization trend that is unprecedented in the history of humanity: We are increas-
ingly instrumenting societal and industrial processes with networked sensors. As a result, we are accumulating
massive volumes of data that capture the states of processes and that may be used for enabling rational, data-driven
processes and data-driven decision making. This also applies to transportation. Vehicles are increasingly online,
via smartphones or built-in connectivity, and they are equipped with global navigation satellite system (GNSS)
positioning capabilities, e.g., Galileo, GPS, and Glonass, via smartphones or in-vehicle navigation systems. As a
result, rapidly increasing volumes of vehicle data are becoming available. This data includes vehicle trajectory
data, i.e., sequences of GNSS records that record time and location. This new data source captures transportation
at a level of detail never seen before.

With the diffusion of smartphones and in-vehicle navigation devices, routing is now available to a very large
fraction of the population on Earth. Indeed, the availability of routing is now taken for granted, and routing is
used widely. Further, the advances in autonomous and semi-autonomous vehicles make it a safe bet that more
and more routing decisions will be taken by machines using some form of routing service, rather than by people.
Thus, the importance of routing will increase over the coming years.

The foundation for traditional routing was built at a time where little data was available. We contend that
given the above observations, new foundations are needed to enable routing capable of effectively exploiting
available data to enable efficient and accurate, high-resolution routing services.

3 New Routing Paradigms

Traditional Routing The setting that underlies traditional routing services is one where a road network is
modeled as a weighted graph and where the weight of an edge captures the cost of traversing the road segment
modeled by the edge. In this setting, a graph with real-valued edge weights, capturing, e.g., travel distance, is
given and some routing algorithm is applied to identify a route from a source to a destination with the minimum
sum of edge weights. More advanced edge weights that capture travel time are also considered. While many
different routing algorithms exist for such weighted road-network graphs, the prototypical algorithm is Dijkstra’s
algorithm [1]; hence, we call this Dijkstra’s paradigm. This paradigm is well suited for settings were little
travel data is available. Notably, by assigning weights to the atomic paths, i.e., individual graph edges, the
paradigm makes the best possible use of available data. However, we contend that this simple edge-centric
paradigm is obsolete and hinders progress in settings were travel costs are extracted from trajectories. Dijkstra’s
paradigm falls short when it comes to exploiting massive volumes of trajectory data for enabling more accurate
and higher-resolution routing.

Given a (source, destination)-pair and a departure time, a typical routing service computes one or more paths
from the source to the destination with the fastest travel time as of the departure time. “High resolution” implies
that travel times in a road network are modeled (i) at a fine temporal granularity, as traffic changes continuously
and affects travel time, and (ii) as distributions, as different drivers may have different travel times even when
driving on the same path at the same time, and as traffic is inherently unpredictable. Further high resolution
implies that routing takes into account the particular context, e.g., the driver, yielding personalized routing, or
weather conditions [2, 3, 4].

We envision three new routing paradigms that are capable of exploiting massive trajectory data to enable
more accurate and higher-resolution routing services.

Path-centric paradigm In this paradigm, costs are associated with arbitrary paths in a road network graph,
rather than just with edges. This avoids unnecessary fragmentation of trajectories and automatically enables
detailed capture of dependencies as well as turning and waiting times at intersections. This paradigm thrives
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on data: the more trajectory data, the better the accuracy and resolution of the routing. Further, more data also
promises more efficient routing, which is less intuitive. With this paradigm, the cost, e.g., travel time, of an
arbitrary path is estimated from available costs of paths that intersect the path. Fewer costs have to be assembled
than in the edge-centric paradigm. For example, with costs being probability distributions and a path containing
100 edges, convolution must be applied 99 times to assemble 100 distributions into one in Dijkstra’s paradigm.
With sufficient trajectory data, a path may be covered by a few long paths with costs in the path-centric paradigm.
Thus, computing the path’s cost will require only a few convolutions. Thus, this paradigm holds the potential to
enable more efficient routing the more trajectory data that is available. In the extreme, computing the cost of an
arbitrary path can be achieved by means of a lookup, with no need for convolution. Next, when using Dijkstra’s
algorithm, intuitively, when a search has reached a graph vertex, the lowest-cost path to reach that vertex is known
and fixed; thus, all other paths for reaching the vertex can be disregarded, or pruned. In the new paradigm, the
cost of reaching a vertex can change when the search proceeds from the vertex because a different set of path
costs that reach into the past may be used. It may happen that the cost of the path used for reaching the vertex
increases and that a lower-cost path now exists.

In the path centric-paradigm, the underlying data structure is no longer just a graph, as path weights need to
be maintained, and the correctness of Dijkstra’s algorithm is no longer guaranteed. In initial work [5, 6], we have
taken first steps to define and explore some aspects of the path-centric paradigm. These studies confirm that the
paradigm holds substantial promise and is “the right” paradigm when massive trajectory data is available.

On-the-fly paradigm Next, massive trajectory data makes it possible to compute different travel costs in
different contexts, e.g., for different drivers, by using different subsets of trajectories depending on the context.
In this setting, it is no longer appropriate to assume that precomputed costs are available when routing starts,
which is the standard assumption. There are simply too many costs to compute and store, most of which will
never be used. Instead, we need an on-the-fly paradigm, where costs can be computed during routing. When,
during routing, we need to determine the cost distribution of an edge or a path, we need to retrieve the relevant
parts of the available trajectories that contain useful cost information given the particular context considered.
These parts are then used to form an accurate cost distribution. The retrieval task takes a path, the time-of-arrival
at the path, and contextual information such as a user identifier and weather information as arguments. Then
the task is to retrieve sub-trajectories that contain information relevant to these arguments. As a routing query
should preferably take less than 100 milliseconds, it is very difficult to achieve the necessary efficiency, and
indexing techniques are needed that go beyond existing techniques [7, 8, 9]. Another challenge is to determine
which trajectories to actually use when computing the most accurate weight distributions. We have conducted
preliminary studies focused on achieving better indexing [10] and understanding the accuracy problem [11, 12].
The studies indicate that the challenges are substantial.

Cost-oblivious paradigm The above paradigms rely on the same underlying assumption as does Dijkstra’s
paradigm: We use trajectory data for computing costs, and then we apply a routing algorithm to find lowest-cost
paths. In essence, these paradigms only use trajectories for extracting costs such as travel time and GHG emissions
[13]. However, trajectories contain much more information that could potentially be utilized for achieving better
routing: Trajectories tell which routes drivers follow and seemingly prefer. This paradigm is behavioral in the
sense that it aims to exploit this route-choice behavior. An earlier study [14] indicates that historical trajectories
are better at predicting the route a driver will take from a source to a destination than is the route returned by a
cost-based routing service. This study thus confirms that the cost-oblivious paradigm holds potential for enabling
better routing. And again, this is a paradigm that is shaped to thrive on data: If enough data is available to cover
all (source, destination)-pairs with trajectories, routing could be achieved by means of a lookup, with no need for
a travel-cost based routing algorithm. We have already proposed a simple route-recommendation solution and
have compared it with existing solutions [15]. These solutions do not contend well with sparse data. In addition,
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we have proposed a first attempt at making better use of sparse data [16] for path recommendation within this
paradigm.

Synergies It is important to observe that specific routing solutions can be composed of elements from Dijkstra’s
paradigm and all three new paradigms. For example, a predominantly on-the-fly solution may rely on pre-
computed edge weights as a fall-back; and if insufficient data is available to a cost-oblivious solution, some
limited form of routing may be applied. Beyond this, the fleshing out of the three paradigms relies on the same
experimental infrastructure, encompassing computing capabilities, software pipelines, data, and methodologies.

4 Summary

In a world with more than 2.5 billion smartphone users and about 1 billion cars, and where routing decisions are
increasingly being made by machines, the line of research outlined here has the potential for very large societal
impact. It literally holds the potential to make a difference for on the order of a billion users. High-quality routing
has significant benefits. It can make transportation more predictable, an important property of a transportation
system that reduces the need to “leave early” and thus the time spent on transportation. In addition, it may
increase the capacity of an existing infrastructure by making each trip more efficient, making room for more trips,
and by incentivizing drivers to “spread out” their trips, e.g., by quantifying the time saved by traveling before or
after rush hour. Routing also holds the potential to reduce the GHG emissions per trip [17, 18]. Finally, the above
coverage of problems related to the use of massive trajectory data for value creation in transportation is by no
means exhaustive.

Acknowledgments I would like to thank the many hard-working colleagues with whom I have worked and am
working to make progress on the topics described here.
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5G: Agent for Further Digital Disruptive Transformations

Beng Chin Ooi, Gang Chen, Dumitrel Loghin, Wei Wang, Meihui Zhang
National University of Singapore, Zhejiang University, Beijing Institute of Technology

1 Introduction
The fifth-generation (5G) mobile communication technologies are on the way to be adopted as the next standard
for mobile networking. It is therefore timely to analyze the impact of 5G on the landscape of computing, in
particular, data management and data-driven technologies. With a predicted increase of 10-100× in bandwidth
and 5-10× decrease in latency, 5G is expected to be the main enabler for edge computing which includes accessing
cloud-like services, as well as conducting machine learning at the edge. In this paper, we examine the impact of
5G on both traditional and emerging technologies, and discuss research challenges and opportunities.

5G specifications are handled by the 3rd Generation Partnership Project (3GPP), while the actual implementa-
tion is done by big networking hardware players, such as Nokia, Ericsson, Huawei, Qualcomm, among others.
Compared to the current 4G technologies which are widely-spread all over the world, 5G is supposed to have a
higher bandwidth of up to 10 Gbps, lower latency of 1 ms and a higher device density of up to one million devices
per square kilometer [1, 2]. 5G operates in a high-frequency band between 28 GHz and 95 GHz, also known
as the millimeter wave spectrum (mmWave) [1, 2]. While this spectrum allows for larger bandwidths, 5G also
employs massive multiple-input and multiple-output (MIMO) [1] technology to further increase the bandwidth.
MIMO uses large antenna arrays in both the base station and the device to allow for parallel data streams and to
direct the radio wave such that it avoids interference and achieves superior spectral efficiency [1]. Consequently,
5G is supposed to be more energy-efficient compared to current wireless technologies.

5G does not bring only improved communication speeds, but also a series of technologies that have the
potential to change the computing landscape in a disruptive way. Among these technologies, we distinguish
Software Defined Networking (SDN), Network Function Virtualization (NFV), Network Slicing (NS), and
Device-to-Device communications (D2D) [3]. SDN represents methods to separate the data plane, which is
responsible for handling and forwarding networking packets, and the control plane, which is responsible for
establishing the route of the packets. NFV represents the usage of commodity hardware running virtualized
services to replace custom networking hardware. For example, a commodity server could run firewall services
instead of using a specialized physical firewall. Network Slicing enables several logical networks to share a single
physical network infrastructure. D2D communication is a feature of 5G that allows devices to communicate
directly, with minimum help from a central authority. For example, the base station may help only with device
pairing and authentication, while subsequent steps, including data transfers, are performed without its involvement.
In this paper, we group SDN, NFV, and NS into 5G virtualization, while D2D is a distinct feature.

2 Digital Disruptive Transformations
Among different domains that are going to be significantly impacted by the adoption of 5G [1], we discuss three
key areas related to data management and data-driven technologies, as highlighted in Figure 1.

2.1 Distributed and Federated Data Processing
With the increasing number of data breaches and awareness of the General Data Protection Regulation (GDPR)
and value of data, the demand for having full control of the data by the user is on the rise. For example, the
healthcare records of a patient may be stored in the individual’s mobile device instead of being fragmented and
stored only in hospital databases. 5G has the potential to bring to reality the concept of millions of micro-databases
with each being kept in an individual edge device, in the form of distributed and federated micro-databases, as
shown in Figure 1. GDPR and federated data processing in dynamic networks due to node churning and joining
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Figure 1: The impact of 5G on different domains. Some 5G features have higher impact on each domain.

introduce many new challenges such as accuracy, completeness, fairness, and representativeness, in addition to
performance issues.

The key characteristics of 5G that could help with the implementation of federated micro-databases are high
device density, low latency, energy efficiency, and D2D communications. For instance, a 5G deployment is
expected to be able to support one million devices in a square kilometer [2]. With a few millions of interconnected
devices, a smart city becomes the playground of federated micro-databases. Low latency and D2D communication
allow nodes to communicate fast and directly, in a setup that may prove to be superior even to datacenters with
Gigabit Ethernet links. Compared to these datacenters, a distributed 5G setup has a few advantages, such as
improved networking, higher energy efficiency, and mobility.

First, D2D communication without direct base station involvement is reducing the risk of network partitioning
due to faulty centralized infrastructure. In comparison, a datacenter that depends on a few switches and routers is
more prone to partitioning. Second, 5G terminals are predicted to be more energy-efficient [2]. This, together
with the low-power nature of smartphones and IoT devices, could help in reducing the energy consumption by up
to 10× compared to a classic datacenter based on high-performance servers [1].

In the context of increased enthusiasm for blockchain technologies, we analyze the impact of 5G in this
domain which is closely-connected with distributed databases [4]. A blockchain ledger represents a database
distributed across thousands or millions of physical nodes, in a Byzantine environment where peers do not trust
each other since some of them may be malicious. Currently, mobile networks are not involved in blockchains
because the nodes are most likely connected via wired or optical links. At most, some clients interacting with
blockchain peers may use mobile devices. But with the increasing scalability issue of the blockchain, and the
adoption of solutions involving sharding [5] or second-tier, sub-blockchains [6], 5G has the potential to impact
the performance of these systems [1]. Shards or second-tier blockchains may run at the edge of the network and
include both fixed and mobile nodes and clients and peers may also run on the same physical node at the edge.

2.2 Federated Learning
The explosion of mobile and IoT devices at the edge requires a new approach towards efficient machine learning
(ML). These devices act as both data consumers (e.g. actuators) and data producers (e.g. sensors). As data
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consumers, these devices run model inference on their own collected data. As data producers, these devices push
data to higher network levels, where more powerful systems run ML model training [7]. But the explosion of
edge devices exerts too much pressure on the networking connections to the cloud, and on cloud’s computation
and storage resources [1]. A solution to this problem is federated learning.

Federated learning [8] entails the building of a model on multiple devices that contribute their data to the
training process. A coordinator gets the learned parameters from the devices to build an aggregated model, as
shown in Figure 1. This approach is directly addressing the issue of isolated data islands, where data is found in
different locations, under different organizations, and it cannot be merged or aggregated.

We envision that 5G is going to accelerate the adoption of federated learning. With high bandwidth and
low latency, local model parameters and the aggregated model can be shared much faster between the devices
and the coordinator. D2D communication could relieve some pressure from the device-coordinator connections
by sharing intermediate parameters directly. However, this D2D communication introduces security risks in
environments with malicious devices. On the other hand, network virtualization could help in solving the security
and privacy issues by creating isolated slices for the task of federated learning.

2.3 Security
The adoption of 5G is going to create new security challenges. We analyze these challenges based on the 5G
characteristics involved. First, we discuss the higher device density, higher bandwidth and lower latency that
could create the ideal environment for launching massive distributed denial of service (DDoS) attacks [9]. It is
well known that IoT devices are relatively easier to compromise compared to servers, due to factors such as low
system performance that does not allow running complex anti-virus solutions on the device, software immaturity
and bad security practices which are adopted to get faster time-to-market. With 5G allowing more IoT devices to
be connected to the Internet, the attack surface is going to increase significantly. One of the biggest attacks to
date was done using infected IoT devices with a botnet called Mirai [9] which targeted Dyn DNS servers and
took down many websites, especially on the East side of the USA.

Secondly, we examine the impact of D2D communications on security. D2D is supposed to reduce the traffic
to base stations, but will require strict security protocols to avoid privacy violations and device hijacking. For
example, D2D communications may require an ad-hoc authentication step to determine the identity of the devices.
Given the scale of 5G networks, a centralized solution is unfeasible. We envision an authentication service
based on the decentralized blockchain to avoid data tempering. However, current blockchains suffer from low
throughput and high latency, hence there is a need for developing novel blockchain platforms.

Thirdly, we analyze the impact of network slicing on security. As a generalization of virtualization, network
slicing allows different applications to share the same physical network by operating across all layers of the
networking stack. At the physical layer, the radio connection is multiplexed through spectrum sharing. At the
networking layer, providers use SDN and NFV to multiplex the network. At the application level, computing
resources are multiplexed using virtual machines (VM), either on the cloud or at the edge. This multitude of
virtualized resources managed by different parties is a challenge for security. The threats could be present at
all layers, as shown in Figure 1 where the honest user (blue) is attacked by malicious actors (red). Achieving
the isolation of the entire slice across all layers poses a significant challenge because there is a need to apply a
cross-layer coordinated security protocol.

3 Conclusions
In summary, the adoption of 5G is expected to accelerate the development of emerging technologies, such as IoT,
edge computing, blockchain, and federated learning. In addition, 5G is going to give rise to new systems, such as
millions of interconnected databases, and generate new use cases, such as remote work, immersive augmented
reality, telemedicine and smart automotive, among others [1]. Security is one of the key challenges of end-to-end
virtualization in 5G networks. It remains to be studied how to ensure security across systems managed by different
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entities and threatened by different security risks. Another key challenge is ensuring data privacy in the context of
millions of interconnected databases and federated learning.
Acknowledgement: This research is supported by Singapore Ministry of Education Academic Research Fund
Tier 3 under MOE’s official grant number MOE2017-T3-1-007.
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Abstract

An essential ingredient of successful machine-assisted decision-making, particularly in high-stakes
decisions, is interpretability –– allowing humans to understand, trust and, if necessary, contest, the
computational process and its outcomes. These decision-making processes are typically complex: carried
out in multiple steps, employing models with many hidden assumptions, and relying on datasets that are
often used outside of the original context for which they were intended. In response, humans need to be
able to determine the “fitness for use” of a given model or dataset, and to assess the methodology that
was used to produce it.

To address this need, we propose to develop interpretability and transparency tools based on the
concept of a nutritional label, drawing an analogy to the food industry, where simple, standard labels
convey information about the ingredients and production processes. Nutritional labels are derived
automatically or semi-automatically as part of the complex process that gave rise to the data or model
they describe, embodying the paradigm of interpretability-by-design. In this paper we further motivate
nutritional labels, describe our instantiation of this paradigm for algorithmic rankers, and give a vision
for developing nutritional labels that are appropriate for different contexts and stakeholders.

1 Introduction

An essential ingredient of successful machine-assisted decision-making, particularly in high-stakes decisions, is
interpretability –– allowing humans to understand, trust and, if necessary, contest, the computational process and
its outcomes. These decision-making processes are typically complex: carried out in multiple steps, employing
models with many hidden assumptions, and relying on datasets that are often repurposed — used outside of the
original context for which they were intended.1 In response, humans need to be able to determine the “fitness for
use” of a given model or dataset, and to assess the methodology that was used to produce it.

To address this need, we propose to develop interpretability and transparency tools based on the concept of a
nutritional label, drawing an analogy to the food industry, where simple, standard labels convey information about
the ingredients and production processes. Short of setting up a chemistry lab, the consumer would otherwise

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This work was supported in part by NSF Grants No. 1926250, 1916647, and 1740996.
1See Section 1.4 of Salganik’s “Bit by Bit” [24] for a discussion of data repurposing in the Digital Age, which he aptly describes as

”mixing readymades with custommades.”
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have no access to this information. Similarly, consumers of data products cannot be expected to reproduce the
computational procedures just to understand fitness for their use. Nutritional labels, in contrast, are designed to
support specific decisions by the consumer rather than completeness of information. A number of proposals for
hand-designed nutritional labels for data, methods, or both have been suggested in the literature[9, 12, 17]; we
advocate deriving such labels automatically or semi-automatically as a side effect of the computational process
itself, embodying the paradigm of interpretability-by-design.

Interpretability means different things to different stakeholders, including individuals being affected by
decisions, individuals making decisions with the help of machines, policy makers, regulators, auditors, vendors,
data scientists who develop and deploy the systems, and members of the general public. Designers of nutritional
labels must therefore consider what they are explaining, to whom, and for what purpose. In the remainder of this
section, we will briefly describe two regulatory frameworks that mandate interpretability of data collection and
processing to members of the general public, auditors, and regulators, where nutritional labels offer a compelling
solution (Section 1.1). We then discuss interpretability requirements in data sharing, particularly when data is
altered to protect privacy or mitigate bias (Section 1.2).

1.1 Regulatory Requirements for Interpretability

The European Union recently enacted a sweeping regulatory framework known as the General Data Protection
Regulation, or the GDPR [30]. The regulation was adopted in April 2016, and became enforceable about two
years later, on May 25, 2018. The GDPR aims to protect the rights and freedoms of natural persons with regard
to how their personal data is processed, moved, and exchanged (Article 1). The GDPR is broad in scope, and
applies to “the processing of personal data wholly or partly by automated means” (Article 2), both in the private
sector and in the public sector. Personal data is broadly construed, and refers to any information relating to an
identified or identifiable natural person, called the data subject (Article 4).

According to Article 4, lawful processing of data is predicated on the data subject’s informed consent, stating
whether their personal data can be used, and for what purpose (Articles 6, 7). Further, data subjects have the right
to be informed about the collection and use of their data. 2 Providing insight to data subjects about the collection
and use of their data requires technical methods that support interpretability.

Regulatory frameworks that mandate interpretability are also starting to emerge in the US. New York City
was the first US municipality to pass a law (Local Law 49 of 2018) [32], requiring that a task force be put
in place to survey the current use of “automated decision systems” (ADS) in city agencies. ADS are defined
as “computerized implementations of algorithms, including those derived from machine learning or other data
processing or artificial intelligence techniques, which are used to make or assist in making decisions.” The task
force is developing recommendations for enacting algorithmic transparency by the agencies, and will propose
procedures for: (i) requesting and receiving an explanation of an algorithmic decision affecting an individual
(Section 3 (b) of Local Law 49); (ii) interrogating ADS for bias and discrimination against members of legally
protected groups, and addressing instances in which a person is harmed based on membership in such groups
(Sections 3 (c) and (d)); (iii) and assessing how ADS function and are used, and archiving the systems together
with the data they use (Sections 3 (e) and (f)).

Other government entities in the US are following suit. Vermont is convening an Artificial Intelligence Task
Force to “... make recommendations on the responsible growth of Vermont’s emerging technology markets, the use
of artificial intelligence in State government, and State regulation of the artificial intelligence field.” [33]. Idaho’s
legislature has passed a law that eliminates trade secret protections for algorithmic systems used in criminal
justice [31]. In early April 2019, Senators Booker and Wyden introduced the Algorithmic Accountability Act of
2019 to the US Congress [6]. The Act, if passed, would use “automated decision systems impact assessment”
to address and remedy harms caused by algorithmic systems to federally protected classes of people. The act

2https://gdpr-info.eu/issues/right-to-be-informed/
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empowers the Federal Trade Commission to issue regulations requiring larger companies to conduct impact
assessments of their algorithmic systems.

The use of nutritional labels in response to these and similar regulatory requirements can benefit a variety of
stakeholders. The designer of a data-driven algorithmic method may use them to validate assumptions, check
legal compliance, and tune parameters. Government agencies may exchange labels to coordinate service delivery,
for example when working to address the opioid epidemic, where at least three sectors must coordinate: health
care, criminal justice, and emergency housing, implying a global optimization problem to assign resources to
patients effectively, fairly and transparently. The general public may review labels to hold agencies accountable
to their commitment to equitable resource distribution.

1.2 Interpretability with Semi-synthetic Data

A central issue in machine-assisted decision-making is its reliance on historical data, which often embeds results
of historical discrimination, also known as structural bias. As we have seen time and time again, models trained
on data will appear to work well, but will silently and dangerously reinforce discrimination [1, 7, 13]. Worse
yet, these models will legitimize the bias — “the computer said so.” Nutritional labels for data and models are
designed specifically to mitigate the harms implied by these scenarios, in contrast to the more general concept of
“data about data.”

Good datasets drive research: they inform new methods, focus attention on important problems, promote a
culture of reproducibility, and facilitate communication across discipline boundaries. But research-ready datasets
are scarce due to the high potential for misuse. Researchers, analysts, and practitioners therefore too often find
themselves compelled to use the data they have on hand rather than the data they would (or should) like to
use. For example, aggregate usage patterns of ride hailing services may overestimate demand in early-adopter
(i.e., wealthy) neighborhoods, creating a feedback loop that reduces service in poorer neighborhoods, which
in turn reduces usage. In this example, and in many others, there is a need to alter the input dataset to achieve
specific properties in the output, while preserving all other relevant properties. We refer to such altered datasets
as semi-synthetic.

Recent examples of methods that produce semi-synthetic data include database repair for causal fairness [25],
database augmentation for coverage enhancement [4], and privacy-preserving and bias-correcting data release [21,
23]. A semi-synthetic datasets may be altered in different ways. Noise may be added to it to protect privacy, or
statistical bias may be removed or deliberately introduced. When a dataset of this kind is released, its composition
and the process by which it was derived must be made interpretable to a data scientist, helping determine fitness
for use. For example, datasets repaired for racial bias are unsuitable for studying discrimination mitigation
methods, while datasets with bias deliberately introduced are less appropriate for research unrelated to fairness.
This gives another compelling use case for nutritional labels.

2 Nutritional Labels for Algorithmic Rankers

To make our discussion more concrete, we now describe Ranking Facts, a system that automatically derives
nutritional labels for rankings [36]. Algorithmic decisions often result in scoring and ranking individuals — to
determine credit worthiness, desirability for college admissions and employment, and compatibility as dating
partners. Algorithmic rankers take a collection of items as input and produce a ranking – a sorted list of items – as
output. The simplest kind of a ranker is a score-based ranker, which computes a score for each item independently,
and then sorts the items on their scores. While automatic and seemingly objective, rankers can discriminate
against individuals and protected groups [5], and exhibit low diversity at top ranks [27]. Furthermore, ranked
results are often unstable — small changes in the input or in the ranking methodology may lead to drastic changes
in the output, making the result uninformative and easy to manipulate [11]. Similar concerns apply in cases where
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Figure 1: Ranking Facts for the CS departments dataset. The Ingredients widget (green) has been expanded
to show the details of the attributes that strongly influence the ranking. The Fairness widget (blue) has been
expanded to show the computation that produced the fair/unfair labels.

items other than individuals are ranked, including colleges, academic departments, and products.
In a recent work, we developed Ranking Facts, a nutritional label for rankings [36]. Ranking Facts

is available as a Web-based tool3, and its code is available in the open source 4. Figure 1 presents Ranking
Facts that explains a ranking of Computer Science departments. The data in this example was obtained from CS
Rankings5, augmented with attributes from the NRC dataset 6. Ranking Facts is made up of a collection of visual
widgets, each with an overview and a detailed view. Each widget addresses an essential aspect of transparency
and interpretability, and is based on our recent technical work on fairness [3, 35], diversity [8, 27, 28, 34], and
stability [2] in algorithmic rankers. We now describe each widget in some detail.

2.1 Recipe and Ingredients

These two widgets help to explain the ranking methodology. The Recipe widget succinctly describes the ranking
algorithm. For example, for a linear scoring formula, each attribute would be listed together with its weight. The

3http://demo.dataresponsibly.com/rankingfacts/
4https://github.com/DataResponsibly/RankingFacts
5https://github.com/emeryberger/CSRankings
6http://www.nap.edu/rdp/
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Ingredients widget lists attributes most material to the ranked outcome, in order of importance. For example,
for a linear model, this list could present the attributes with the highest learned weights. Put another way, the
explicit intentions of the designer of the scoring function about which attributes matter, and to what extent, are
stated in the Recipe, while Ingredients may show attributes that are actually associated with high rank. Such
associations can be derived with linear models or with other methods, such as rank-aware similarity in our prior
work [27]. The detailed Recipe and Ingredients widgets list statistics of the attributes in the Recipe and in the
Ingredients: minimum, maximum and median values at the top-10 and over-all.

2.2 Stability

The Stability widget explains whether the ranking methodology is robust on this particular dataset. An unstable
ranking is one where slight changes to the data (e.g., due to uncertainty and noise), or to the methodology (e.g.,
by slightly adjusting the weights in a score-based ranker) could lead to a significant change in the output. This
widget reports a stability score, as a single number that indicates the extent of the change required for the ranking
to change. As with the widgets above, there is a detailed Stability widget to complement the overview widget.

An example is shown in Figure 2, where the stability of the ranking is quantified as the slope of the line that
is fit to the score distribution, at the top-10 and over-all. A score distribution is unstable if scores of items in
adjacent ranks are close to each other, and so a very small change in scores will lead to a change in the ranking.
In this example the score distribution is considered unstable if the slope is 0.25 or lower. Alternatively, stability
can be computed with respect to each scoring attribute, or it can be assessed using a model of uncertainty in the
data. In these cases, stability quantifies the extent to which a ranked list will change as a result of small changes
to the underlying data. A complementary notion of stability quantifies the magnitude of change as a result of
small changes to the ranking model. We explored this notion in our recent work, briefly discussed below.

In [2] we develped methods for quantifying the stability of a score-based ranker with respect to a given dataset.
Specifically, we considered rankers that specify non-negative weights, one for each item attribute, and compute
the score as a weighted sum of attribute values. We focused on a notion of stability that quantifies whether the
output ranking will change due to a small change in the attribute weights. This notion of stability is natural for
consumers of a ranked list (i.e., those who use the ranking to prioritize items and make decisions), who should be
able to assess the magnitude of the region in the weight space that produces the observed ranking. If this region is
large, then the same ranked order would be obtained for many choices of weights, and the ranking is stable. But
if this region is small, then we know that only a few weight choices can produce the observed ranking. This may
suggest that the ranking was engineered or “cherry-picked” by the producer to obtain a specific outcome.

2.3 Fairness

The Fairness widget quantifies whether the ranked output exhibits statistical parity (one interpretation of fairness)
with respect to one or more sensitive attributes, such as gender or race of individuals [35]. We denote one or
several values of the sensitive attribute as a protected feature. For example, for the sensitive attribute gender, the
assignment gender=F is a protected feature.

A variety of fairness measures have been proposed in the literature [38], with a primary focus on classification
or risk assessment tasks. One typical fairness measure for classification compares the proportion of members of
a protected group (e.g., female gender or minority race) who receive a positive outcome to their proportion in
the overall population. For example, if the dataset contains an equal number of men and women, then among
the individuals invited for a job interview, one half should be women. A measure of this kind can be adapted to
rankings by quantifying the proportion of members of a protected group in some selected set of size k (treating
the top-k as a set).

In [35], we were the first to propose a family of fairness measures specifically for rankings. Our measures are
based on a generative process for rankings that meet a particular fairness criterion (fairness probability f ) and
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Figure 2: Stability: detailed widget.

are drawn from a dataset with a given proportion of members of a binary protected group (p). This method was
subsequently used in FA*IR [37] to quantify fairness in every prefix of a top-k list. We also developed a pairwise
measure that directly models the probability that a member of a protected group is preferred to a member of the
non-protected group.

Let us now return to the Fairness widget in Figure 1. We select a binary version of the department size
attribute DeptSizeBin from the CS departments dataset as the sensitive attribute, and treat the value and “small”
as the protected feature. The summary view of the Fairness widget in our example presents the output of three
fairness measures: FA*IR [37], proportion [38], and our own pairwise measure. All these measures are statistical
tests, and whether a result is fair is determined by the computed p-value. The detailed Fairness widget provides
additional information about the tests and explains the process.

2.4 Diversity

Fairness is related to diversity: ensuring that different kinds of objects are represented in the output of an
algorithmic process [8]. Diversity has been considered in search and recommender systems, but in a narrow
context, and was rarely applied to profiles of individuals. The Diversity widget shows diversity with respect to a
set of demographic categories of individuals, or a set of categorical attributes of other kinds of items [8]. The
widget displays the proportion of each category in the top-10 ranked list and over-all, and, like other widgets, is
updated as the user selects different ranking methods or sets different weights. In our example in Figure 1, we
quantify diversity with respect to department size and to the regional code of the university. By comparing the pie
charts for top-10 and over-all, we observe that only large departments are present in the top-10.

This simple diversity measure that is currently included in Ranking Facts can be augmented by, or replaced
with, other measures, including, for example, those we developed in our recent work [28, 34].

3 Learning Labels

The creation of nutritional labels is often cast as a design problem rather than a computational problem [9, 12].
Standard labels with broad applicability can amortize the cost of design, but the diversity of datasets, methods,
and desirable properties for nutritional labels suggest a learning approach to help develop labels for a variety
of situations. Since opaque automation is what motivated the need for labels in the first place, automating their
creation may seem like a step backwards. But there are several benefits:
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Figure 3: Draco can be used to re-implement existing visualization systems like CQL by hand-tuning weights
(left) or be used to learn weights automatically from preference data (right). The visualizations selected can vary
significantly, affording customization for specific applications. A similar approach can be used when generating
nutritional labels for data and models.

• Coverage: some information provided in (nearly) all cases is preferable to all information provided in some
cases, as there are many models and datasets being deployed.

• Correctness: Hand-designed labels imply human metadata attachment, but curation of metadata is essen-
tially an unsolved problem. Computable labels reduce reliance on human curation efforts.

• Retroactivity: Some information can only be manually collected at the time of data collection (e.g.,
demographics of authors in a speech corpus to control for nationality bias). This opportunity is lost for
existing datasets. However, inferring relevant properties based on the content of the data may be “better
than nothing.”

We now consider two approaches to the problem of learning labels, one based on the visualization recommen-
dation literature, and one based on bin-packing optimization.

3.1 Learning as Visualization Recommendation

Moritz et al. proposed Draco [19], a formal model that represents visualizations as sets of logical facts, and
represents design guidelines as a collection of hard and soft constraints over these facts, following an earlier
proposal for the VizDeck system [14]. Draco enumerates the visualizations that do not violate the hard constraints
and finds the most preferred visualizations according to the weights of the soft constraints. Formalized visual-
ization descriptions are derived from the Vega-Lite grammar [26] extended with rules to encode expressiveness
criteria [16], preference rules validated in perception experiments, and general visualization design best practices.
Hard constraints must be satisfied (e.g., shape encodings cannot express quantitative values), whereas soft
constraints express a preference (e.g., temporal values should use the x-axis by default). The weights associated
with soft constraints can be learned from preference or utility data, when available (see example in Figure 3).

Draco implements the constraints using Answer Set Programming (ASP) semantics, and casts the problem
of finding appropriate encodings as finding optimal answer sets [10]. Draco has been extended to optimize for
constraints over multiple visualizations [22], and adapted for use in specialized domains.

Using Draco (or similar formalizations), the specialized constraints governing the construction of nutritional
labels can be developed in the general framework of ASP, while borrowing the foundational constraints capturing
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general visualization design principles. This approach can help reduce the cost of developing hundreds of
application-specific labels by encoding common patterns, such as including descriptive statistics in all labels, or
only showing fairness visualizations when bias is detected.

3.2 Learning as Optimization

Sun et al. proposed MithraLabel [29], focusing on generating task-specific labels for datasets to determine
fitness for specific tasks. Considering the dataset as a collection of items over a set of attributes, each widget
provides specific information (such as functional dependencies) about the whole dataset or some selected part
of it. For example, if a data scientist is considering the use of a number-of-prior-arrests attribute to predict
likelihood of recidivism, she should know that the number of prior arrests is highly correlated with the likelihood
of re-offending, but it introduces bias as the number of prior arrests is higher for African Americans than for other
races due to policing practices and segregation effects in poor neighborhoods. Widgets that might appear in the
nutritional label for prior arrests include the count of missing values, correlation with the predicted attribute or a
protected attribute, and the distribution of values.

4 Properties of a nutritional label

The database and cyberinfrastructure communities have been studying systems and standards for metadata,
provenance, and transparency for decades [20, 18]. We are now seeing renewed interest in these topics due to the
proliferation of data science applications that use data opportunistically. Several recent projects explore these
concepts for data and algorithmic transparency, including the Dataset Nutrition Label project [12], Datasheets for
Datasets [9], and Model Cards [17]. All these method rely on manually constructed annotations. In contrast, our
goal is to generate labels automatically or semi-automatically.

To differentiate a nutritional label from more general forms of metadata, we articulate several properties:

• Comprehensible: The label is not a complete (and therefore overwhelming) history of every processing
step applied to produce the result. This approach has its place and has been extensively studied in the
literature on scientific workflows, but is unsuitable for the applications we target. The information on a
nutritional label must be short, simple, and clear.

• Consultative: Nutritional labels should provide actionable information, rather than just descriptive meta-
data. For example, universities may invest in research to improve their ranking, or consumers may cancel
unused credit card accounts to improve their credit score.

• Comparable: Nutritional labels enable comparisons between related products, implying a standard. The
IEEE is developing a series of ethics standards, known as the IEEE P70xx series, as part of its Global
Initiative on Ethics of Autonomous and Intelligent Systems.7 These standards include “IEEE P7001:
Transparency of Autonomous Systems” and “P7003: Algorithmic Bias Considerations” [15]. The work on
nutritional labels is synergistic with these efforts.

• Concrete: The label must contain more than just general statements about the source of the data; such
statements do not provide sufficient information to make technical decisions on whether or not to use the
data.

Data and models are chained together into complex automated pipelines — computational systems “consume”
datasets at least as often as people do, and therefore also require nutritional labels! We articulate additional
properties in this context:

7https://ethicsinaction.ieee.org/
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• Computable: Although primarily intended for human consumption, nutritional labels should be machine-
readable to enable specific applications: data discovery, integration, automated warnings of potential
misuse.

• Composable: Datasets are frequently integrated to construct training data; the nutritional labels must be
similarly integratable. In some situations, the composed label is simple to construct: the union of sources.
In other cases, the biases may interact in complex ways: a group may be sufficiently represented in each
source dataset, but underrepresented in their join.

• Concomitant: The label should be carried with the dataset; systems should be designed to propagate
labels through processing steps, modifying the label as appropriate, and implementing the paradigm of
transparency by design.

5 Conclusions

In this paper we discussed work on transparency and interpretability for data and models based on the concept of a
nutritional label. We presented Ranking Facts, a system that automatically derives nutritional labels for rankings,
and outlined directions for ongoing research that casts the creation of nutritional labels as a computational
problem, rather than as purely a design problem.

We advocate interpretability tools for a variety of datasets and models, for a broad class of application
domains, and to accommodate the needs of a variety of stakeholders. These tools must be informed by an
understanding of how humans perceive algorithms and the decisions they inform, including issues of trust and
agency to challenge or accept an algorithm-informed decision. These tools aim to reduce bias and errors in
deployed models by preventing the use of an inappropriate dataset or model at design time. Although the extent
of data misuse is difficult to measure directly, we can design experiments to show how well nutritional labels
inform usage decisions, and design the tools accordingly. More broadly, we see the review of human-curated
and machine-computed metadata as a critical step for interpretability in data science, which can lead to lasting
progress in the use of machine-assisted decision-making in society.
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Abstract

Fairness is increasingly recognized as a critical component of machine learning systems. However, it is
the underlying data on which these systems are trained that often reflects discrimination, suggesting a
data management problem. In this paper, we first make a distinction between associational and causal
definitions of fairness in the literature and argue that the concept of fairness requires causal reasoning.
We then review existing works and identify future opportunities for applying data management techniques
to causal algorithmic fairness.

1 Introduction

Fairness is increasingly recognized as a critical component of machine learning (ML) systems. These systems are
now routinely used to make decisions that affect people’s lives [11], with the aim of reducing costs, reducing
errors, and improving objectivity. However, there is enormous potential for harm: The data on which we train
algorithms reflects societal inequities and historical biases, and, as a consequence, the models trained on such data
will therefore reinforce and legitimize discrimination and opacity. The goal of research on algorithmic fairness is
to remove bias from machine learning algorithms.

We recently argued that the algorithmic fairness problem is fundamentally a data management problem [43].
The selection of sources, the transformations applied during pre-processing, and the assumptions made during
training are all sensitive to bias that can exacerbate fairness effects. The goal of this paper is to discuss the
application of data management techniques in algorithmic fairness. In Sec 2 we make a distinction between
associational and causal definitions of fairness in the literature and argue that the concept of fairness requires
causal reasoning to capture natural situations, and that the popular associational definitions in ML can produce
misleading results. In Sec 3 we review existing work and identify future opportunities for applying data
management techniques to ensure causally fair ML algorithms.

2 Fairness Definitions

Algorithmic fairness considers a set of variables V that include a set of protected attributes S and a response
variable Y , and a classification algorithmA : Dom(X)→ Dom(O), where X ⊆ V, and the result is denoted O
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advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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Fairness Metric Description
Demographic Parity (DP) [7] S⊥⊥O
a.k.a. Statistical Parity [12]
or Benchmarking [44]
Conditional Statistical Parity [10] S⊥⊥O|A
Equalized Odds (EO) [15] 2 S⊥⊥O|Y
a.k.a. Disparate Mistreatment [47]
Predictive Parity (PP)[9] 3 S⊥⊥Y |O
a.k.a. Outcome Test [44]
or Test-fairness [9]
or Calibration [9],
or Matching Conditional Frequencies [15]

Figure 1: Common associational definitions of fairness.

and called outcome. To simplify the exposition, we assume a sensitive attribute S ∈ S that classifies the population
into protected S = 1 and privileged S = 0, for example, female and male, or minority and non-minority (see
[48] for a survey). The first task is to define formally when an algorithm A is fair w.r.t. the protected attribute S;
such a definition is, as we shall see, not obvious. Fairness definitions can be classified as associational or causal,
which we illustrate using the following running example (see [45] for a survey on fairness definitions).

Example 1: In 1973, UC Berkeley was sued for discrimination against females in graduate school admissions.
Admission figures for the fall of 1973 showed that men applying were more likely than women to be admitted,
and the difference was so large that it was unlikely to be due to chance. However, it turned out that the observed
correlation was due to the indirect effect of gender on admission results through applicant’s choice of department.
It was shown that females tended to apply to departments with lower overall acceptance rates [41]. When
broken down by department, a slight bias toward female applicants was observed, a result that did not constitute
evidence for gender-based discrimination. Extending this case, suppose college admissions decisions are made
independently by each department and are based on a rich collection of information about the candidates, such as
test scores, grades, resumes, statement of purpose, etc. These characteristics affect not only admission decisions,
but also the department to which the candidate chooses to apply. The goal is to establish conditions that guarantee
fairness of admission decisions.

2.1 Associational Fairness

A simple and appealing approach to defining fairness is by correlating the sensitive attribute S and the outcome O.
This leads to several possible definitions (Fig. 1). Demographic Parity (DP) [12] requires an algorithm to classify
both protected and privileged groups with the same probability, i.e., Pr(O = 1|S = 1) = Pr(O = 1|S = 0).
However, doing so fails to correctly model our Example 1 since it requires equal probability for males and females
to be admitted, and, as we saw, failure of DP cannot be considered evidence for gender-based discrimination.
This motivates Conditional Statistical Parity (CSP) [10], which controls for a set of admissible factors A, i.e.,
Pr(O = 1|S = 1,A = a) = Pr(O = 1|S = 0,A = a). The definition is satisfied if subjects in both protected
and privileged groups have equal probability of being assigned to the positive class, controlling for a set of
admissible variables. In the UC Berkeley case, CSP is approximately satisfied by assuming that department is an
admissible variable.

Another popular measure used for predictive classification algorithms is Equalized Odds (EO), which requires
both protected and privileged groups to have the same false positive (FP) rate, Pr(O = 1|S = 1, Y = 0) =
Pr(O = 1|S = 0, Y = 0) , and the same false negative (FN) rate, Pr(O = 0|S = 1, Y = 1) = Pr(O =
0|S = 0, Y = 1), or, equivalently, (O⊥⊥S|Y ). In our example, assuming a classifier is trained to predict
if an applicant will be admitted, then the false positive rate is the fraction of rejected applicants for which
the classifier predicted that they should be admitted, and similarly for the false negative rate: EO requires
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that the rates of these false predictions be the same for male and female applicants. Finally, Predictive
Parity (PP) requires that both protected and privileged groups have the same predicted positive value (PPV),
Pr(Y = 1|O = i, S = 0) = Pr(Y = 1|O = i, S = 1) for i,= {1, 0} or, equivalently, Y⊥⊥S|O. In our example,
this implies that the probability of an applicant that actually got admitted to be correctly classified as admitted
and the probability of an applicant that actually got rejected to be incorrectly classified as accepted should both
be the same for male and female applicants.

An Associational Debate. Much of the literature in algorithmic fairness is motivated by controversies over a
widely used commercial risk assessment system for recidivism — COMPAS by Northpointe [18]. In 2016, a
team of journalists from ProPublica constructed a dataset of more than 7000 individuals arrested in Broward
County, Florida between 2013 and 2014 in order to analyze the efficacy of COMPAS. In addition, they collected
data on arrests for these defendants through the end of March 2016. Their assessment suggested that COMPAS
scores were biased against African-Americans based on the fact that the FP rate for African-Americans (44.9%)
was twice that for Caucasians (23.5%). However, the FN rate for Caucasians (47.7%) was twice as large as
for African-Americans (28.0%). In other words, COMPAS scores were shown to violate EO. In response to
ProPublica, Northpointe showed COMPAS scores satisfy PP, i.e., the likelihood of recidivism among high-risk
offenders is the same regardless of race.

This example illustrates that associational definitions are context-specific and can be mutually exclusive; they
lack universality. Indeed, it has been shown that EO and PP are incompatible. In particular, Chouldechova [9]
proves the following impossibility result. Suppose that prevalence of the two populations differs, Pr(Y = 1|S =
0) 6= Pr(Y = 1|S = 1), for example, the true rate of recidivism differs for African-Americans and Caucasians;
in this case, Equalized Odds and Predictive Parity cannot hold both simultaneously. Indeed, EO implies that
FPi/(1−FNi) is the same for both populations S = i, i = 0, 1, while PP implies that (1−PPVi)/PPVi must
be the same. Then, the identity

FPi

1− FNi
=

Pr(O = 1|S = i, Y = 0)

Pr(O = 1|S = i, Y = 1)
=

Pr(Y = 1|S = i)

Pr(Y = 0|S = i)

Pr(Y = 0|O = 1, S = i)

Pr(Y = 1|O = 1, S = i)
=

Pr(Y = 1|S = i)

Pr(Y = 0|S = i)

1− PPVi
PPVi

for i = 0, 1, implies Pr(Y = 1|S = 0) = Pr(Y = 1|S = 1). We revisit the impossibility result in Sec 2.3.

2.2 Causal Fairness

The lack of universality and the impossibility result for fairness definitions based on associational definitions
have motivated definitions based on causality [17, 16, 25, 37, 13]. The intuition is simple: fairness holds when
there is no causal relationship from the protected attribute S to the outcome O. We start with a short background
on causality.

Causal DAG. A causal DAG G over a set of variables V is a directed acyclic graph that models the functional
interaction between variables in V. Each node X represents a variable in V that is functionally determined by:
(1) its parents Pa(X) in the DAG, and (2) some set of exogenous factors that need not appear in the DAG as long
as they are mutually independent. This functional interpretation leads to the same decomposition of the joint
probability distribution of V that characterizes Bayesian networks [27]:

Pr(V) =
∏
X∈V

Pr(X|Pa(X)) (1)

d-Separation. A common inference question in a causal DAG is how to determine whether a CI (X⊥⊥Y|Z)
holds. A sufficient criterion is given by the notion of d-separation, a syntactic condition (X⊥⊥Y|dZ) that can be
checked directly on the graph (we refer the reader to [26] for details).
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Counterfactuals and do Operator. A counterfactual is an intervention where we actively modify the state
of a set of variables X in the real world to some value X = x and observe the effect on some output Y .
Pearl [27] described the do operator, which allows this effect to be computed on a causal DAG, denoted
Pr(Y |do(X = x)). To compute this value, we assume that X is determined by a constant function X = x
instead of a function provided by the causal DAG. This assumption corresponds to a modified graph with all
edges into X removed, and values of the incoming variables are set to x. For a simple example, consider
three random variables X,Y, Z ∈ {0, 1}. We randomly flip a coin and set Z = 0 or Z = 1 with probability
1/2; next, we set X = Z, and finally we set Y = X . The resulting causal DAG is Z → X → Y , whose
equation is Pr(X,Y, Z) = Pr(Z)Pr(X|Z)Pr(Y |X). The do operator lets us observe what happens in the
system when we intervene by setting X = 0. The result is defined by removing the edge Z → X , whose
equation is Pr(Y = y, Z = z|do(X) = 0) = Pr(Z = z)Pr(Y = y|X = 0) (notice that Pr(X|Z) is
missing), leading to the marginals Pr(Y = 0|do(X) = 0) = 1,Pr(Y = 1|do(X) = 0) = 0. It is important
to know the casual DAG since the probability distribution is insufficient to compute the do operator; for
example, if we reverse the arrows to Y → X → Z (flip Y first, then set X = Y , then set Z = X), then
Pr(Y = 0|do(X) = 0) = Pr(Y = 1|do(X) = 0) = 1/2 in other words, intervening on X has no effect on Y .

Counterfactual Fairness. Given a set of features X, a protected attribute S, an outcome variable Y , and a set
of unobserved exogenous background variables U, Kusner et al. [17] defined a predictor O to be counterfactually
fair if for any x ∈ Dom(X):

P (OS←0(U) = 1|X = x, S = 1) = P (OS←1(U) = 1|X = x;S = 1) (2)

where OS←s(U) means intervening on the protected attribute in an unspecified configuration of the exogenous
factors. The definition is meant to capture the requirement that the protected attribute S should not be a cause of
O at the individual level. However, this definition captures individual-level fairness only under certain strong
assumptions (see [43]). Indeed, it is known in statistics that individual-level counterfactuals cannot be estimated
from data [34, 35, 36].

Proxy Fairness. To avoid individual-level counterfactuals, a common approach is to study population-level
counterfactuals or interventional distributions that capture the effect of interventions at population rather than
individual level [28, 34, 35]. Kilbertus et al. [16] defined proxy fairness as follows:

P (O = 1|do(P = p)) = P (O = 1|do(P = p′)) (3)

for any p,p′ ∈ Dom(P), where P consists of proxies to a sensitive variable S (and might include S). Intuitively,
a classifier satisfies proxy fairness in Eq 3 if the distribution of O under two interventional regimes in which P
set to p and p′ is the same. Thus, proxy fairness is not an individual-level notion. It has been shown that proxy
fairness fails to capture group-level discrimination in general [43].

Path-Specific Fairness. These definitions are based on graph properties of the causal graph, e.g., prohibiting
specific paths from the sensitive attribute to the outcome [25, 22]; however, identifying path-specific causality
from data requires very strong assumptions and is often impractical [4].

Interventional Fairness. To avoid issues with the aforementioned causal definitions, Salimi et al. [43] defined
interventional fairness as follows: an algorithm A : Dom(X) → Dom(O) is K-fair for a set of attributes
K ⊆ V−{S,O} w.r.t. a protected attribute S if, for any context K = k and every outcome O = o, the following
holds:

Pr(O = o|do(S = 0), do(K = k)) = Pr(O = o|do(S = 1), do(K = k)) (4)
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College I
Dept. A Dept. B Total

Admitted Applied Admitted Applied Admitted Applied

Male 16 20 16 80 32 100
Female 16 80 16 20 32 100

College II
Dept. A Dept. B Total

Admitted Applied Admitted Applied Admitted Applied

Male 10 10 40 90 50 100
Female 40 50 10 50 50 100

Figure 2: Admission process representation in two colleges where associational fairness fail (see Ex.2).

An algorithm is called interventionally fair if it is K-fair for every set K. Unlike proxy fairness, this notion
correctly captures group-level fairness because it ensures that S does not affect O in any configuration of the
system obtained by fixing other variables at some arbitrary values. Unlike counterfactual fairness, it does not
attempt to capture fairness at the individual level, and therefore it uses the standard definition of intervention
(the do-operator). In practice, interventional fairness is too restrictive. For example, in the UC Berkeley case,
admission decisions were not interventionally fair since gender affected the admission result via applicant’s
choice of department. To make it practical, Salimi et al. [43] defined a notion of fairness that relies on partitioning
variables into admissible and inadmissible. The former are variables through which it is permissible for the
protected attribute to influence the outcome. This partitioning expresses fairness social norms and values and
comes from the users. In Example 1, the user would label department as admissible since it is considered a
fair use in admissions decisions and would (implicitly) label all other variables as inadmissible, for example,
hobby. Then, an algorithm is called justifiably fair if it is K-fair w.r.t. all supersets K ⊇ A. We illustrate with an
example.

Example 2: Fig 2 shows how fair or unfair situations may be hidden by coincidences but exposed through causal
analysis. In both examples, the protected attribute is gender G, and the admissible attribute is department D.
Suppose both departments in College I are admitting only on the basis of their applicants’ hobbies. Clearly, the
admission process is discriminatory in this college because department A admits 80% of its male applicants and
20% of the female applicants, while department B admits 20% of male and 80% of female applicants. On the
other hand, the admission rate for the entire college is the same 32% for both male and female applicants, falsely
suggesting that the college is fair. Suppose H is a proxy to G such that H = G (G and H are the same); proxy
fairness then classifies this example as fair: indeed, since Gender has no parents in the causal graph, intervention
is the same as conditioning; hence, Pr(O = 1|do(G = i)) = Pr(O = 1|G = i) for i = 0, 1. Of the previous
methods, only conditional statistical parity correctly indicates discrimination. We illustrate how our definition
correctly classifies this examples as unfair. Indeed, assuming the user labels the departmentD as admissible, {D}-
fairness fails because Pr(O = 1|do(G = 1), do(D = ’A’)) =

∑
h Pr(O = 1|G = 1, D = ’A’, H = h)Pr(H =

h|G = 1) = Pr(O = 1|G = 1, D = ’A’) = 0.8, and, similarly Pr(O = 1|do(G = 0), do(D = ’A’)) = 0.2.
Therefore, the admission process is not justifiably fair.

28



Now, consider the second table for College II, where both departments A and B admit only on the basis of
student qualifications Q. A superficial examination of the data suggests that the admission is unfair: department
A admits 80% of all females and 100% of all male applicants; department B admits 20% and 44.4%, respectively.
Upon deeper examination of the causal DAG, we can see that the admission process is justifiably fair because the
only path from Gender to Outcome goes through Department, which is an admissible attribute. To understand
how the data could have resulted from this causal graph, suppose 50% of each gender have high qualifications
and are admitted, while others are rejected, and that 50% of females apply to each department, but more qualified
females apply to department A than to B (80% vs 20%). Further, suppose fewer males apply to department A,
but all of them are qualified. The algorithm satisfies demographic parity and proxy fairness but fails to satisfy
conditional statistical parity since Pr(A = 1|G = 1, D = A) = 0.8 but Pr(A = 1|G = 0, D = A) = 0.2).
Thus, conditioning on D falsely indicates discrimination in College II. One can check that the algorithm is
justifiably fair, and thus our definition also correctly classifies this example; for example, {D}-fairness follows
from Pr(O = 1|do(G = i), do(D = d)) =

∑
q Pr(O = 1|G = i,D = d,Q = q))Pr(Q = q|G = i) =

1
2 . To summarize, unlike previous definitions of fairness, justifiable fairness correctly identifies College I as
discriminatory and College II as fair.

2.3 Impossibility Theorem from the Causality Perspective

From the point of view of causal DAGs, EO requires that the training label Y d-separates the sensitive attribute S
and the outcome of the classifier O. Intuitively, this implies that S can affect classification results only when the
information comes through the training label Y . On the other hand, PP requires that the classifier outcome O
d-separates the sensitive attribute S and the training labels Y . Intuitively, this implies S can affect the training
labels only when the information comes thorough the outcome of classifier O. These interpretations clearly reveal
the inconsistent nature of EO and PP. It is easy to show for strictly positive distributions that the CIs (S⊥⊥O|Y )
and (S⊥⊥Y |O) imply (S⊥⊥Y ) or, equivalently, Pr(Y = 1|S = 0) = Pr(Y = 1|S = 1) (see [43]). Indeed, from
the causality perspective, EO and PP are neither sufficient nor necessary for fairness. In the causal DAG in
Fig 3(b), suppose a classifier is trained on an applicant’s qualifications Q to approximate admission committee
decisions Ô. It is clear that the classifier is not discriminative, yet it violates both EO and PP. The reader can
verify that the causal DAG obtained by further adding an edge from Q to Ô (to account for the classifier outcome)
does not imply the CIs (G⊥⊥O|Ô) and (G⊥⊥Ô|O).

3 Data Management Techniques for Causal Fairness
3.1 Causal Fairness as Integrity Constraints

In causal DAGs, the missing arrow between two variables X and Y represents the assumption of no causal effect
between them, which corresponds to the CI statement (X⊥⊥Y |Z), where Z is a set of variables that d-separates
X and Y . For example, the missing arrow between O and G in the causal DAG in Fig. 2(a) encodes the CI
(O⊥⊥G|H,D). On the other hand, the lack of certain arrows in the underling causal DAG is sufficient to satisfy
different causal notions of fairness (cf. Sec 2.2). For instance, a sufficient condition for justifiable fairness in the
causal DAG in Fig. 2(a) is the lack of the edge from H to O, which corresponds to the CI (O⊥⊥G,H|D). Thus,
fairness can be captured as a set of CI statements. Now to enforce fairness, instead of intervening on the causal
DAG over which we have no control, we can intervene on data to enforce the corresponding CI statements.

Consequently, social causal fairness constraints can be seen as a set of integrity constraints in the form of
CIs that must be preserved and enforced thorough the data science pipeline, from data gathering through the
deployment of a machine learning model. The connection between CIs and well-studied integrity constraints in
data management – such as Multi Valued Dependencies (MVDs) and Embedded Multi Valued Dependencies
(EMVDs) [1] – opens the opportunity to leverage existing work in data management to detect and avoid bias in
data.
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Figure 3: (a) HYPDB’s report on the effect of gender on income (cf. Ex. 1). (b) A compact causal DAG with
O = income, G = gender, M = marital status, C = age and nationality, E = education and W = work class,
occupation and hours per week (cf. Ex. 3).

3.2 Query Rewriting

In data management, query rewriting refers to a set of techniques to automatically modify one query into another
that satisfies certain desired properties. These techniques are used to rewrite queries with views [19], in chase
and backchase for complex optimizations [29], and for many other applications. This section discusses query
rewriting techniques for detecting and enforcing fairness.

3.2.1 Detecting Discrimination

As argued in Sec 2.2, detecting discrimination should rely on performing a hypothesis test on the causal effect of
membership in minority S = 1 or privileged group S = 0 on an outcome of an algorithm O. The gold standard
for such causal hypothesis testing is a randomized experiment (or an A/B test), called such because treatments are
randomly assigned to subjects. In contrast, in the context of fairness, sensitive attributes are typically imputable;
hence, randomization is not even conceivable. Therefore, such queries must be answered using observational
data, defined as data recorded from the environment with no randomization or other controls. Although causal
inference in observational data has been studied in statistics for decades, causal analysis is not supported in
existing online analytical processing (OLAP) tools [41]. Indeed, today, most data analysts still reach for the
simplest query that computes the average of O Group By S to answer such questions, which, as shown in Ex 1,
can lead to incorrect conclusions. Salimi et al. [41] took the first step toward extending existing OLAP tools
to support causal analysis. Specifically, they introduced the HYPDB system, which brings together techniques
from data management and causal inference to automatically rewrite SQL group-by queries into complex causal
queries that support decision making. We illustrate HYPDB by applying it to a fairness question (see [40] for
additional examples).

Example 3: Using UCI adult Census data [20], several prior works in algorithmic fairness have reported gender
discrimination based on the fact that 11% of women have high income compared to 30% of men, which suggests
a huge disparity against women. To decide whether the observed strong correlation between gender and high
income is due to discrimination, we need to understand its causes. To perform this analysis using HYPDB,
one can start with the simple group-by query (Fig. 3(a)) that computes the average of Income (1 iff Income>
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50k) Group By Gender, which indeed suggests a strong disparity with respect to females’ income. While the
group-by query tells us gender and high income are highly correlated, it does not tell us why. To answer this
question, HYPDB automatically infers from data that gender can potentially influence income indirectly via
MaritalStatus, Education, Occupation, etc. (the indirect causal paths from G to O in Fig. 3(b)). Then, HYPDB
automatically rewrites the group-by query to quantify the direct and indirect effect of gender on income. Answers
to the rewritten queries suggest that the direct effect of gender on income is not significant (the effect through
the arrow from G to O in Fig. 3(b)). Hence, gender essentially influences income indirectly through mediating
variables. To understand the nature of this influences, HYPDB provides the user with several explanations. These
show that MaritalStatus accounts for most of the indirect influence, followed by Education. However, the top
fine-grained explanations for MaritalStatus reveal surprising facts: there are more married males in the data than
married females, and marriage has a strong positive association with high income. It turns out that the income
attribute in US census data reports the adjusted gross income as indicated in the individual’s tax forms; these
depend on filing status (jointly and separately), could be household income. HYPDB explanations also show
that males tend to have higher levels of education than females, and higher levels of education is associated
with higher incomes. The explanations generated by HYPDB illuminate crucial factors for investigating gender
discrimination.

Future Extensions. Incorporating the type of analyses supported by HYPDB into data-driven decision support
systems is not only crucial for sound decision making in general, but it is also important for detecting, explaining
and avoiding bias and discrimination in data and analytics. Further research is required on extending HYPDB to
support more complex types of queries and data, such as multi-relational and unstructured.

3.2.2 Enforcing Fairness

Raw data often goes through a series of transformations to enhance the clarity and relevance of the signal used
for a particular machine learning application [3]. Filter transformations are perhaps most common, in which a
subset of training data is removed based on predicates. Even if the raw data is unbiased, filtering can introduce
bias [3, 41]: It is known that causal DAGs are not closed under conditioning because CIs may not hold in some
subset. Hence, filtering transformations can lead to violation of causal fairness integrity constraints. It is also
known that conditioning on common effects can further introduce bias even when the sensitive attribute and
training labels are marginally independent [26]. This motivates the study of fairness-aware data transformations,
where the idea is to minimally rewrite the transformation query so certain fairness constraints are guaranteed to
be satisfied in the result of the transformation. This problem is closely related to that of constraint-based data
transformations studied in [3]. However, fairness constraints go beyond the types of constraints considered in [3]
and are more challenging to address. Note that a solution to the aforementioned problem can be used to enforce
fairness-constraints for raw data by applying a fair-transformation that selects all the data.

3.3 Database Repair

Given a set of integrity constraints Γ and a database instance D that is inconsistent with Γ, the problem of
repairing D is to find an instance D′ that is close to D and consistent with Γ. Repair of a database can be obtained
by deletions and insertions of whole tuples as well as by updating attributes. The closeness between D and D′

can be interpreted in many different ways, such as the minimal number of changes or the minimal set of changes
under set inclusion (refer to [6] for a survey). The problem has been studied extensively in database theory for
various classes of constraints. It is NP-hard even when D consists of a single relation and Γ consists of functional
dependencies [21].

Given a training data D that consists of a training label Y , a set of admissible variables A, and a set of
inadmissible variables I, Salimi et al [43] showed that a sufficient condition for a classifier to be justifiably fair
is that the empirical distribution Pr over D satisfies the CI (Y⊥⊥I|A). Further, they introduced the CAPUCHIN

system, which minimally repairs D by performing a sequence of database updates (viz., insertions and deletions

31



0.0 0.1 0.2 0.5
Bias(ROD)

0.81

0.82

0.83

0.84

0.85

U
til

ity
(A

cc
ur

ac
y)

Classifier: RF

0.0 0.1 0.2 0.5
Bias(ROD)

0.81

0.82

0.83

0.84

0.85

Classifier: MLP

0.0 0.2 0.3 0.5
Bias(ROD)

0.81

0.82

0.83

0.84

0.85

Classifier: LR

Original
Dropped
IC
MF
MS(Hard)
MS(Soft)

Figure 4: Performance of CAPUCHIN on Adult data.

of tuples) to obtain another training database D′ that satisfies (Y⊥⊥I|A). Specifically, they reduced the problem
to a minimal repair problem w.r.t. an MVD and developed a set of techniques, including reduction to the MaxSAT
and Matrix Factorization, to address the corresponding optimization problem. We illustrate CAPUCHIN with an
example.

Example 4: Suppose financial organisations use the Adult data described in Ex 1 to train an ML model to assist
them in verifying the reliability of their customers. The use of raw data for training an ML model leads to a model
that is discriminative against females simply because the model picks up existing bias in data, as described in
Ex 3. To remove direct and indirect effects of gender on income (the red paths from G to Y in Fig. 4(b)) using
the CAPUCHIN system, it is sufficient to enforce the CI (O⊥⊥S,M|C,E,W) in data. Then, any model trained
on the repaired data can be shown to be justifiably fair even on unseen test data under some mild assumptions
[43]. To empirically assess the efficacy of the CAPUCHIN system, we repaired Adult data using the following
CAPUCHINalgorithms: Matrix Factorization (MF), Independent Coupling (IC), and two versions of the MaxSAT
approach: MS(Hard), which strictly enforces a CI, and MS(Soft), which approximately enforces a CI. Then, three
classifiers – Linear Regression (LR), Multi-layer Perceptron (MLP), and Random Forest (RF) – were trained on
both original and repaired training datasets using the set of variables A ∪N ∪ S. The classifier also trained on
raw data using only A, i.e., we dropped the sensitive and inadmissible variables. The utility and bias metrics
for each repair method were measured using five-fold cross validation. Utility was measured by the classifiers’
accuracy, and bias measured by the Ratio of Observational discrimination introduced in [43], which quantifies
the effect of gender on outcome of the classifier by controlling for admissible variables (see [42] for details).
Fig. 4 compares the utility and bias of CAPUCHIN repair methods on Adult data. As shown, all repair methods
successfully reduced the ROD for all classifiers. The CAPUCHIN repair methods had an effect similar to dropping
the sensitive and inadmissible variables completely, but they delivered much higher accuracy (because the CI was
enforced approximately).

Future Extensions. The problem of repairing data w.r.t a set of CI constraints was studied in [43] for a single
saturated CI constraint problem.1 In the presence of multiple training labels and sensitive attributes, one needs
to enforce multiple potentially interacting or inconsistent CIs; this is more challenging and requires further
investigation. In addition, further research is required on developing approximate repair methods to be able to
trade the fairness and accuracy of different ML applications.

1A CI statement is saturated if it contains all attributes.
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3.4 Fairness-Aware Weak Supervision Methods

ML pipelines rely on massive labeled training sets. In most practical settings, such training datasets either do not
exist or are very small. Constructing large labeled training datasets can be expensive, tedious, time-consuming or
even impractical. This has motivated a line of work on developing techniques for addressing the data labeling
bottleneck, referred to as weak supervision methods. The core idea is to programmatically label training data
using, e.g., domain heuristics [31], crowdsourcing [32] and distant supervision [24]. In this context, the main
challenges are handling noisy and unreliable sources that can potentially generate labels that are in conflict and
highly correlated. State-of-the-art frameworks for weak supervision, such as Snorkel [30], handle these challenges
by training label models that take advantage of conflicts between all different labeling sources to estimate their
accuracy. The final training labels are obtained by combining the result of different labeling sources weighted by
their estimated accuracy. While the focus of existing work is on collecting quality training labels to maximize
the accuracy of ML models, the nuances of fairness cannot be captured by the exiting machinery to assess the
reliability of the labeling sources. In particular, a new set of techniques is required to detect and explain whether
certain labeling sources are biased and to combine their votes fairly.

3.5 Provenance for Explanation

Data provenance refers to the origin, lineage, and source of data. Various data provenance techniques have been
proposed to assist researchers in understanding the origins of data [14]. Recently, data provenance techniques
has been used to explain why integrity constraints fail [46]. These techniques are not immediately applicable
to fairness integrity constraints, which are probabilistic. This motivates us to extend provenance to fairness or
probabilistic integrity constraints in general. This extension is particularly crucial for reasoning about the fairness
of training data collected from different sources by data integration and fusion, and it opens the opportunity to
leverage existing techniques, such as provenance summarization [2], why-not provenance [8], and query-answers
causality and responsibility [23, 38, 39, 5], explanations for database queries queries [33] to generate fine- and
coarse-grained explanations for bias and discrimination.

4 Conclusions

This paper initiated a discussion on applying data management techniques in the embedding areas of algorithmic
fairness in ML. We showed that fairness requires causal reasoning to capture natural situations, and that popular
associational definitions in ML can produce incorrect or misleading results.
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Abstract

AI and machine learning tools are being used with increasing frequency for decision making in domains
that affect peoples’ lives such as employment, education, policing and financial qualifications. These
uses raise concerns about biases of algorithmic discrimination and have motivated the development of
fairness-aware machine learning. However, existing fairness approaches are based solely on attributes of
individuals. In many cases, discrimination is much more complex, and taking into account the social,
organizational, and other connections between individuals is important. We introduce new notions
of fairness that are able to capture the relational structure in a domain. We use first-order logic to
provide a flexible and expressive language for specifying complex relational patterns of discrimination.
Furthermore, we extend an existing statistical relational learning framework, probabilistic soft logic (PSL),
to incorporate our definition of relational fairness. We refer to this fairness-aware framework FairPSL.
FairPSL makes use of the logical definitions of fairnesss but also supports a probabilistic interpretation.
In particular, we show how to perform maximum a posteriori (MAP) inference by exploiting probabilistic
dependencies within the domain while avoiding violations of fairness guarantees. Preliminary empirical
evaluation shows that we are able to make both accurate and fair decisions.

1 Introduction

Over the past few years, AI and machine learning have become essential components in operations that drive the
modern society, e.g., in financial, administrative, and educational spheres. Discrimination happens when qualities
of individuals which are not relevant to the decision making process influence the decision. Delegating decision
making to an automated process raises questions about discriminating against individuals with certain traits based
on biases in the data. This is especially important when the decisions have the potential to impact the lives of
individuals, for example, the decisions on granting loans, assigning credit, and employment.

Fairness is defined as the absence of discrimination in a decision making process. The goal of fairness-aware
machine learning is to ensure that the decisions made by an algorithm do not discriminate against a population
of individuals [14, 7, 16]. Fairness has been well studied in the social sciences and legal scholarship (for
an in-depth review see [6]), and there is emerging work on fairness-aware ML within the AI and computer
science communities. For example, fairness through awareness/Lipschitz property [11], individual fairness [27],
statistical parity/group fairness [17], counterfactual fairness [19], demographic parity/disparate impact [14, 10],
preference-based fairness [26], and equality of opportunity [16].

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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The existing work in fairness-aware machine learning is based on a definition of discrimination where a
decision is influenced by an attribute of an individual. An attribute value upon which discrimination is based
(such as gender, race, or religion) is called a sensitive attribute. The sensitive attribute defines a population of
vulnerable individuals known as the protected group. A fair decision-making process treats the protected group
the same as the unprotected group.

However, in many social contexts, discrimination is the result of complex interactions and can not be described
solely in terms of attributes of an individual. For example, consider an imaginary scenario in an organization in
which younger female workers who have older male supervisors have lower chances of promotion than their male
counterparts.1 This discrimination pattern involves two attributes of the individual (gender and age), a relationship
with another individual (supervisor), and two attributes of the second individual. Addressing such complex cases
poses two challenges. First, the concepts of discrimination and fairness need to be extended to capture not only
attributes of individuals but also the relationships between them. Second, a process is required that ensures that
fair decisions are made about individuals who are affected by such patterns. In this paper we address both of
these challenges. We use first-order logic (FOL) to extend the notion of fairness to the relational setting. FOL is
an expressive representation for relational problems which is also widely used for learning in relational domains.
Moreover, we extend an existing framework for statistical relational learning [15] called probabilistic soft logic
(PSL)2 [5]. PSL combines logic and probability for learning and reasoning over uncertain relational domains.
One of the most common reasoning tasks in PSL is called maximum a posteriori (MAP) inference, which is
performed by finding the most probable truth values for unknowns over a set of given evidence. We develop a
new MAP inference algorithm which is able to maximize the a posteriori values of unknown variables subject to
fairness guarantees. An early version of this paper which this work builds upon and extends appeared in [13].

Our contributions are as follows: 1) we propose fairness-aware machine learning for the relational setting; 2)
we extend PSL into a fairness-aware framework called FairPSL which can represent the logical definition of fair-
ness; 3) we develop a new MAP inference algorithm which is able to maximize the posteriori values of unknown
variables subject to fairness guarantees; 4) we empirically evaluate our proposed framework on synthetic data.

2 Motivation

Discrimination in social contexts have been studied in the field of social psychology [9, 8, 22]. There is a large
literature on various aspects of relational bias in social contexts such as in-group-out-group bias, gender bias,
and ethnicity-based favoritism that can result in discrimination. As an example, consider gender bias in the
workplace that reflects stereotypically masculine criteria and male-based favoritism. Such gender bias typically
places women in lower positions and negatively impacts their opportunities. Further, lack of women in leadership
positions may affect the promotion of women and results in a glass ceiling that keeps women from rising beyond
a certain level in the hierarchy. This scenario shows that considering protected attributes such as gender is not
always sufficient to detect the source of bias and avoid discrimination, one also has to consider the relational
information, in this case the organization hierarchy. Note that this can be generalized to any ingroup/outgroup
scenario where the sensitive attribute could be race, religion, age, marital-status, etc.

The existing work on designing fair algorithms in machine learning exclusively focuses on attribute-based
fairness, which is based on the following assumptions: First, there is an assumption that the individuals (sometimes
referred to as units or entities) are independent and described by simple attribute vectors. Second, the group for
which one wishes to ensure fairness (known as the protected group) is defined on the basis of some attribute
values. Finally, there is a decision that is associated with each individual, and the goal is to ensure that members

1Of course, many other patterns may be possible: female bosses may promote female subordinates and discriminate against male
workers, or male bosses may promote female employees. Our goal is to provide a general framework which is able to describe arbitrarily
complex discrimination patterns.

2http://psl.linqs.org/
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of the protected group are subject to a fair decision (we discuss different fairness measures in Section 4). We
illustrate attribute-based fairness in the following example.

Example 1 (Loan Processing): A bank bases its decisions about granting a loan on attributes of the applicant.
The goal is to decide whether to grant a loan to an applicant using a predictive model. The bank needs to ensure
that the obey fair lending practices and ensure that gender, race, sexual orientation of applicants has no influence
on the decision. In this scenario, the protected group is the historically disadvantaged applicants.

The current fairness-aware machine learning techniques are not capable of modeling relations and hence cannot be
used to make the decision making model fair. However, in many decision making scenarios, especially in social
and organizational settings, the domain is relational, and the protected group itself might be best represented
using a relational definition. We illustrate this setting in the following scenario:

Example 2 (Performance Review): Consider an organization where decisions about the promotion of employ-
ees is based on two criteria: 1) an objective performance measure, and 2) the opinion of their direct and indirect
managers above them. The opinions are inferred from the performance reviews which are collected periodically.
Not every manager can submit a review for all its subordinates, this is especially the case for top-level managers
who have a large number of subordinates. Hence, the opinions of managers are collectively inferred from the
opinions of their sub-ordinates. However, some employees may be biased, and judge other employees unfavorably,
by favoring employees who are similar to themselves (same gender, race, religion, etc.) over employees who are
dissimilar. The organization needs to ensure that promotion of employees do not have any relational bias caused
by in-group-out-group favoritism.

Example 2 describes a prediction problem over a database that consists of relations between employees. Such
prediction tasks are best handled by techniques from the relational learning domain. To ensure fair prediction in
such settings, we need to extend the notion of attribute-based fairness to relational fairness. Throughout this
paper, we use the performance review problem as a running example for relational fairness.

3 Fairness Formalism

A representation that can describe different types of entities and different relationships between them is called
relational. In this section, we use first-order logic to define relational fairness. We employ first-order logic as an
expressive representation formalism which can represent objects and complex relationships between them. We
start by defining an atom:

Definition 1 (Atom): An atom is an expression of the form P (a1, a2, . . . , an) where each argument a1, a2, . . . ,
an is either a constant or a variable. The finite set of all possible substitutions of a variable to a constant for a
particular variable a is called its domainDa. If all variables in P (a1, a2, . . . , an) are substituted by some constant
from their respective domain, then we call the resulting atom a ground atom.

Example 3: In our loan processing problem (Example 1), we can represent applicants’ attributes by atoms. For
instance, atom Female(v) indicates whether or not applicant v is female. Similarly, we can represent relations
with atoms. In the performance review problem in Example 2 the atom Manager(m, e) indicates whether or not
employee m is a direct or indirect manager of employee e.

The relational setting provides the flexibility to express complex definitions with formulae.

Definition 2 (Formula): A formula is defined by induction: every atom is a formula. If α and β are formulae,
then α ∨ β, α ∧ β, ¬α, α→ β are formulae. If x is a variable and α is a formula, then the quantified expressions
of the form ∃x α and ∀x α are formulae.
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To characterize groups of individuals based on a formula, we define the notion of population.

Definition 3 (Population): We denote formula F which has only one free variable v (i.e., other variables in F
are quantified) by F [v]. The population defined by F [v] is the set of substitutions of v for which F [v] holds.

Example 4: Consider the formula F [v] := ∀u, Manager(u, v)→ ¬SameGroup(u, v). The population specified
by this formula is the set of individuals all of whose managers belong to a group different from theirs.

The truth value of a formula is derived from the truth value of atoms that it comprises, according to the rules
of logic. Each possible assignment of truth values to ground atoms is called an interpretation.

Definition 4 (Interpretation): An interpretation I is a mapping that associates a truth value I(P ) to each
ground atom P . For Boolean truth values, I associates true to 1 and false to 0 truth values. For soft logic (see
Definition 10) I maps each ground atom P to a truth value in interval [0, 1].

In attribute-based fairness, it is assumed that there is a certain attribute of individuals, i.e, the sensitive
attribute, that we do not want to affect a decision. Gender, race, religion and marital status are examples of
sensitive attributes. Discrimination has been defined in social science studies as a treatment in favor or against a
group of individuals given their sensitive attribute. This group of individuals is the protected group.

In a relational setting, both the sensitive attributes of an individual and their participation in various relations
may have an undesired effect on the final decision. We characterize the protected group in a relational setting by
means of a population. In practice, we are often interested in maintaining fairness for a specific population such
as applicants, students, employees, etc. This population is then partitioned into the protected and unprotected
groups. We define a discriminative pattern which is a pair of formulae to capture these groups: 1) F1[v]: to
specify the difference between the protected and unprotected groups and 2) F2[v]: to specify the population over
which we want to maintain fairness.

Definition 5 (Discriminative pattern): A discriminative pattern is a pair DP[v] := (F1[v], F2[v]) , where F1[v]
and F2[v] are formulae.

Example 5: The two formulae in the discrimination pattern DP[v] :=
(
(∀u, Manager(u, v)→ ¬SameGroup(u, v)),

Employee(v)
)

specify two populations, namely all employees and those employees who belong to a group differ-
ent from their managers.

Given the definition of the discriminative pattern, we have a rich language to define the scope of the protected
and unprotected groups in a relational setting.

Definition 6 (Protected group): Given an interpretation I , the protected group is a population of the form:

PG := {v : F1[v] ∧ F2[v]}

which is defined as the set of all instances hold for variable v for which F1[v] ∧ F2[v] is true under interpretation
I , that is, I(F1[v] ∧ F2[v]) = 1. Similarly, the unprotected group is a population of the form:

UG := {v : ¬F1[v] ∧ F2[v]}

which is defined as the set of all instances hold for variable v for which I(¬F1[v] ∧ F2[v]) = 1.

Example 6: The protected group of the discrimination pattern specified in Example 5 is PG :=
{
v :

(
∀u,

Manager(u, v)→ ¬SameGroup(u, v)
)
∧Employee(v)

}
and the unprotected group isUG :=

{
v :
(
∃u, Manager(u, v)∧

SameGroup(u, v)
)
∧Employee(v)

}
. This means our protected group is the set of employees belonging to a group

different from their managers, and our unprotected group consists of other employees.
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Discrimination is defined in terms of a treatment or decision that distinguishes between the protected and
unprotected groups. Here we define the decision atom.

Definition 7 (Decision atom): A decision atom d(v) is an atom containing exactly one variable v that specifies
a decision affecting the protected group which is defined either by law or end-user.

Example 7: The decision atom ToPromote(v) indicates whether or not v receives a promotion.

Note that the fairness formulation in this section is designed for the relational setting, however relational
fairness subsumes the attribute-based fairness such that: a sensitive attribute is defined by an atom with one
argument and F2[v] in discrimination pattern is Applicant(v). For example, discrimination pattern of our loan
processing problem in Example 1 is of the form DP := (Female(v),Applicant(v)) that denotes female applicants
as the protected group (i.e., PG := {v : Female(v)}) and male applicants as the unprotected group (i.e.,
UG := {v : ¬Female(v)}).

4 Fairness Measures

Over the past few years, many fairness measures have been introduced [24]. An important class of these measures
are group fairness measures which quantify the inequality between different subgroups. Some of the most popular
measures in this class include equal opportunity, equalized odds, and demographic parity [16]. In this paper we
restrict our focus to the latter. In an attribute-value setting, demographic parity means that the decision should be
independent of the protected attributes. Assume that binary variables A and C denote the decision and protected
attributes, and the preferred value of A is one. Demographic parity requires that:

P (A = 1|C = 0) = P (A = 1|C = 1)

We will now generalize this measure to the relational setting using the notations defined in Section 3. Let
a and c denote the counts of denial (i.e., negative decisions) for protected and unprotected groups, and n1 and
n2 denote their sizes, respectively. Given the decision atom d(v), discriminative pattern DP(F1[v], F2[v]), and
interpretation I , these counts are computed by the following equations:

a ≡
∑
v∈Dv

I
(
¬d(v) ∧ F1[v] ∧ F2[v]) (5)

c ≡
∑
v∈Dv

I
(
¬d(v) ∧ ¬F1[v] ∧ F2[v]) (6)

n1 ≡
∑
v∈Dv

I
(
F1[v] ∧ F2[v]) (7)

n2 ≡
∑
v∈Dv

I
(
¬F1[v] ∧ F2[v]) (8)

The proportions of denying for protected and unprotected groups are p1 = a
n1

and p2 = c
n2

, respectively. There
are a number of data-driven measures [20] which quantify demographic disparity and can be defined in terms of
p1 and p2:

• Risk difference: RD = p1 − p2, also known as absolute risk reduction.

• Risk Ratio: RR = p1
p2

, also known as relative risk.

• Relative Chance: RC = 1−p1
1−p2 also, known as selection rate.
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These measures have been used in the legal systems of European Union, UK, and US [1, 2, 3]. Notice that RR is
the ratio of the proportion of benefit denial between the protected and unprotected groups, while RC is the ratio
of the proportion of benefit granted. Finally, we introduce the notion of δ-fairness.

Definition 8 (δ-fairness): If a fairness measure for a decision making process falls within some δ-window, then
the process is δ-fair. Given 0 ≤ δ ≤ 1, the δ-windows for measures RD/RR/RC are defined as:

−δ ≤RD ≤ δ
1− δ ≤RR ≤ 1 + δ

1− δ ≤RC ≤ 1 + δ

To overcome the limitations of attribute-based fairness, we introduce a new statistical relational learning (SRL)
framework [15] suitable for modelling fairness in relational domain. In the next section, we review probabilistic
soft logic (PSL). We then extend PSL with the definition of relational fairness introduced above in Section 6. Our
fairness-aware framework, “FairPSL”, is the first SRL framework that performs fair inference.

5 Background: Probabilistic Soft Logic

In this section, we review the syntax and semantics of PSL, and in the next section we extend MAP inference in
PSL with fairness constraints to define MAP inference in FairPSL.

PSL is a probabilistic programming language for defining hinge-loss Markov random fields [5]. Unlike other
SRL frameworks whose atoms are Boolean, atoms in PSL can take continuous values in the interval [0, 1]. PSL is
an expressive modeling language that can incorporate domain knowledge with first-order logical rules and has
been used successfully in various domains, including bioinformatics [23], recommender systems [18], natural
language processing [12], information retrieval [4], and social network analysis [25], among many others.

A PSL model is defined by a set of first-order logical rules called PSL rules.

Definition 9 (PSL rule): a PSL rule r is an expression of the form:

λr : T1 ∧ T2 ∧ . . . ∧ Tw → H1 ∨H2 ∨ . . . ∨Hl (9)

where T1, T2, . . . , Tw, H1, H2, . . . ,Hl are atoms or negated atoms and λr ∈ R+ ∪∞ is the weight of the
rule r. We call T1 ∧ T2 ∧ . . . ∧ Tw the body of r (rbody), and H1 ∨H2 ∨ . . . ∨Hl the head of r (rhead).

Since atoms in PSL take on continuous values in the unit interval [0, 1], next we define soft logic to calculate
the value of the PSL rules under an interpretation I .

Definition 10 (Soft logic): The (∧̃) and (∨̃) and negation (¬̃) are defined as follows. For m,n ∈ [0, 1] we have:
m∧̃n = max(m + n − 1, 0), m∨̃n = min(m + n, 1) and ¬̃m = 1 −m. The ˜ indicates the relaxation over
Boolean values.

The probability of truth value assignments in PSL is determined by the rules’ distance to satisfaction.

Definition 11 (The distance to satisfaction): The distance to satisfaction dr(I) of a rule r under an interpreta-
tion I is defined as:

dr(I) = max{0, I(rbody)− I(rhead)} (10)
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R1 λ1 : IsQualified(e)→ HighPerformance(e)
R2 λ1 : ¬IsQualified(e)→ ¬HighPerformance(e)
R3 ∞ : PositiveReview(e1, e2)→ PositiveOpinion(e1, e2)
R4 ∞ : ¬PositiveReview(e1, e2)→ ¬PositiveOpinion(e1, e2)
R5 λ1 : PositiveOpinion(e1, e2) ∧Manager(m, e1)→ PositiveOpinion(m, e2)
R6 λ1 : ¬PositiveOpinion(e1, e2) ∧Manager(m, e1)→ ¬PositiveOpinion(m, e2)
R7 λ1 : PositiveOpinion(m, e) ∧Manager(m, e)→ IsQualified(e)
R8 λ1 : ¬PositiveOpinion(m, e) ∧Manager(m, e)→ ¬IsQualified(e)
R9 λ1 : ¬ToPromote(e)
R10 ∞ : IsQualified(e)→ ToPromote(e)
R11 ∞ : ¬IsQualified(e)→ ¬ToPromote(e)

Table 1: A simplified PSL model for the Performance Reviewing problem

By using Definition 10, one can show that the closer the interpretation of a grounded rule r is to 1, the smaller
its distance to satisfaction. A PSL model induces a distribution over interpretations I . Let R be the set of all
grounded rules, then the probability density function is:

f(I) =
1

Z
exp[−

∑
r∈R

λr(dr(I))p] (11)

where λr is the weight of rule r, Z =
∫
I exp[−

∑
r∈R λr(dr(I))p] is a normalization constant, and p ∈ {1, 2}

provides a choice of two different loss functions, p = 1 (i.e., linear), and p = 2 (i.e, quadratic). These probabilistic
models are instances of hinge-loss Markov random fields (HL-MRF) [5]. The goal of maximum a posteriori
(MAP) inference is to find the most probable truth assignments IMPE of unknown ground atoms given the evidence
which is defined by the interpretation I . Let X be all the evidence, i.e., X is the set of ground atoms such that
∀x ∈ X, I(x) is known, and let Y be the set of ground atoms such that ∀y ∈ Y, I(y) is unknown. Then we have

IMAP(Y ) = arg max
I(Y )

P (I(Y )|I(X)) (12)

Maximizing the density function in Equation 11 is equivalent to minimizing the weighted sum of the distances to
satisfaction of all rules in PSL.

Example 8: The simplified PSL model for the performance reviewing problem in Example2 is given in Table 1.
The goal of MAP inference for this problem is to infer employees to promote. We simplified the model by
assigning the same weight to all soft rules (i.e., λi = 1 where i = {1, 2, 5, 6, 7, 8, 9}). Below we explain the
meaning of each rule in the model.

Rule R1 indicates that qualified employees have high performance and similarly rule R2 expresses that
a negative qualification of employees is derived from their low performance. Rules R5 and R6 presents the
propagation of opinion from bottom to top of the organizational hierarchy, i.e., managers have similar opinions
towards employees given the opinions of their sub-ordinate managers. And rules R7 and R8 indicate that the
positive/negative opinion of direct/indirect managers derive from the qualification of an employee. Rule R9
indicates the prior that not all employees get promoted. We also have four hard constraints (i.e., rules R3, R4,
R10 and R11) where the weight of the rules are∞. Rules R3 and R4 indicate that submitted positive/negative
reviews should reflect positive/negative opinions. And two rules R10 and R11 show that a highly qualified
employee should get promoted.
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6 Fairness-aware PSL (FairPSL)

The standard MAP inference in PSL aims at finding values that maximize the conditional probability of unknowns.
Once a decision is made according to these values, one can use the fairness measure to quantify the degree of
discrimination. A simple way to incorporate fairness in MAP inference is to add the δ-fairness constraints to the
corresponding optimization problem.

Consider risk difference, RD, where RD ≡ a
n1
− c

n2
. The δ-fairness constraint −δ ≤ RD ≤ δ can be encoded

as the following constraints:

n2a− n1c− n1n2δ ≤ 0 (13)

n2a− n1c + n1n2δ ≥ 0 (14)

Similarly, from RR ≡ a/n1

c/n2
and the δ-fairness constraint 1− δ ≤ RR ≤ 1 + δ we obtain:

n2a− (1 + δ)n1c ≤ 0 (15)

n2a− (1− δ)n1c ≥ 0 (16)

And finally, RC ≡ 1−a/n1

1−c/n2
and the δ-fairness constraint 1− δ ≤ RC ≤ 1 + δ gives:

− n2a + (1 + δ)n1c− δn1n2 ≤ 0 (17)

− n2a + (1− δ)n1c + δn1n2 ≥ 0 (18)

A primary advantage of PSL over similar frameworks is that its MAP inference task reduces to a convex
optimization problem which can be solved in polynomial time. To preserve this advantage, we need to ensure that
the problem will remain convex after the addition of δ-fairness constraints.

Theorem 1: The following condition is sufficient for preserving the convexity of MAP inference problem after
addition of δ-fairness constraints: The formulae F1[v] and F2[v] do not contain an atom y ∈ Y and all atoms in
F1[v] and F2[v] have values zero or one.

Proof: Since I(F1[v]) and I(F2[v]) do not depend on I(Y ), the values n1 and n2 are constants that can be
computed in advance. Let us define the sets Da

v = {v ∈ Dv : F1[v] ∧ F2[v] is true} and Dc
v = {v ∈ Dv :

¬F1[v] ∧ F2[v] is true}. Since F1[v] and F2[v] can be only zero or one, we can rewrite the equations 5 and 6 as:

a =
∑
v∈Da

v

I(¬d(v)) = |Da
v | −

∑
v∈Da

v

I(d(v))

c =
∑
v∈Dc

v

I(¬d(v)) = |Dc
v| −

∑
v∈Dc

v

I(d(v))

which indicates that a and c can be expressed as linear combinations of variables in the optimization problem.
This means that constraints 13-18 are linear. Hence, addition of these constraints preserves the convexity of the
optimization problem.

7 Experiments

We show the effectiveness of FairPSL by performing an empirical evaluation. We investigate two research
questions in our experiments:

Q1 What is the effect of the fairness threshold δ on the fairness measures RD/RC/RR?

43



Figure 1: The model used for generating the datasets.
There are four binary random variables, P, Q, O, and
R. P: indicates whether or not the employee has high
performance; Q: indicates whether or not an employee
has high qualification; O: indicates whether or not the
colleague submits the positive opinion towards the em-
ployee; R: indicates whether or not the colleague has
a positive opinion towards the employee; L1, L2: indi-
cates the label of the review provider and review receiver
(observed).

Figure 2: An example of an orga-
nizational hierarchy with five levels
and 50 employees with k=3. Each
employee either has label A (shown
with grey) or B (shown with white).
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Q2 How is decision quality affected by imposing δ-fairness constraints?

Note that although we present the result for specific parameters of the framework in this section, we ran
extensive analysis and the results we present are representative. We implemented the MAP inference routines
of PSL and FairPSL in Python, using Gurobi-8.13 as the backend solver. The FairPSL code, code for the data
generator and data is publicly available4.

7.1 Data generation

We evaluate the FairPSL inference algorithm on synthetic datasets representing the performance review scenario
(introduced in Example 2). The organization hierarchy is generated synthetically. The organization hierarchy
generator is parameterized by two numbers: the number of employees in the organization (n) and the number of
employees managed by each manager (k). Each employee is randomly assigned with a label A or B. An examples
organization hierarchy with n=50 and k=3 is shown in Figure 2.

For each employee, we use the generative model of Figure 1 to draw assignments for all the random variables.
We assume that only 40% of employees are qualified for promotion and regardless of their labels, employees
submit only 60% of their opinions. In addition, due to various personal and environmental factors, only 60% of
high quality employees perform well while 10% of low quality employees also perform well regardless of their
labels. Note that these numbers are not specific and just chosen for the framework to serve as a representative
setting and a proof of concept. The conditional probability table for the opinion variable O is parameterized by
four values (θ1, θ2, θ3, θ4) which together determine the degree of discrimination against the protected group.
Since other parameters in the Bayesian network did not have a direct effect on the degree of discrimination, we
fixed them to arbitrary values.

The results presented in this section are based on an organization hierarchy with 100 employees where
k = 5. However, the results of the framework are not sensitive to the settings as we test the framework

3www.gurobi.com
4https://github.com/gfarnadi/FairPSL
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Figure 3: Fairness score of predictions obtained by MAP inference of PSL and FairPSL, according to the fairness measures
RD, RR, and RC. The labels of datasets are mentioned with parenthesis next to the inference method. The FairPSL values of
each measure are obtained by adding the δ-fairness constraint of that measure.

with various organization sizes ranging from 50 to 500 employees and various degree for k ranging from
3 to 10. We generated seven datasets given the organization hierarchy using different values for the θ pa-
rameters: (0.0, 1.0, 0.0, 0.0), (0.33, 1.0, 0.0, 0.0), (0.66, 1.0, 0.0, 0.0), (1.0, 1.0, 0.0, 0.0), (1.0, 1.0, 0.0, 0.33),
(1.0, 1.0, 0.0, 0.66), (1.0, 1.0, 0.0, 1.0).

In the first three settings the discrimination originates from negative opinions towards qualified outgroup
employees. The first setup is an extreme case where the opinion towards outgroup employees is always negative.
The discrimination in the last three settings originates from positive opinions towards unqualified ingroup
employees. The last setup is an extreme case where the opinion towards ingroup employees is always positive.
The fourth setup represent unbiased opinions where employees are treated similarly based on their qualification.

MAP Inference We use the model presented in Table 1 for MAP inference in PSL and FairPSL (recall that in
FairPSL, the δ-fairness constraints corresponding to one of the fairness measures are also added to the model).
The observed atoms are Manager(m,e), PositiveReview(e1,e2) and labels of all employees. The truth values
for all other atoms are obtained via MAP inference. We use the truth values obtained for the decision atoms
ToPromote(e) to compute the fairness measures. We defined the discriminative pattern, and the protected and
unprotected groups of this problem in Section 3.

7.2 Evaluation results

To answer Q1, we run the MAP inference algorithm of PSL and FairPSL on seven synthetic datasets. We run the
MAP inference of FairPSL multiple times on each dataset: For each of the three fairness measures, we add the
corresponding δ-fairness constraint with five thresholds {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}.

Figure 3 shows the fairness score of predictions in terms of the three fairness measures. As expected, tighter
δ-fairness constraints lead to better scores. Note that the best possible score according to RD is 0, as it computes
a difference. Since RR and RC compute ratios, the best possible score according to these measures is 1. In our
experiments, with any of these measures, taking δ = 0.001 pushes the score of predictions to its limit.

The δ-fairness constraints modify the optimization problem of MAP inference by reducing the feasible region
to solutions that conform with fairness guarantees. Research question Q2 is concerned with the effect of this
reduction on the accuracy of predictions. Note that decision quality is the same as the accuracy of predictions. To
answer this question, we compare the inferred values for the decision atoms ToPromote(e) against their actual
values. These values are extracted from the known values of IsQualified(e) according to rules 11 and 12 in Table 1.
Figure 4 shows the area under the curve of the receiver operating characteristic (AUC) of predicting the decision
variable in three groups, namely the protected group, the unprotected group (i.e., promotion of the employees
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Figure 4: AUC score of predictions for truth values of unknown atoms ToPromote(e) using MAP inference of PSL and
FairPSL with δ-fairness constraints RD with δ = 0.001.

who have in-group managers), and all employees. By doing so, we make sure that our fairness constraints do not
propagate bias towards either of the populations. Since the results of FairPSL with δ-fairness constraints RR and
RC are very similar to the results of RD, we only report the latter here.

According to Figure 4, the results of both PSL and FairPSL in all seven datasets are close to each other. Note
that although fairness may impose a cost in terms of overall accuracy, FairPSL often improves the accuracy of the
protected class. Sometimes the overall predictions of FairPSL are even slightly better than PSL (e.g., dataset 6
and 7). As expected, the accuracy of the fourth setting where the opinions are unbiased are similar in both PSL
and FairPSL. We observe that prediction of MAP inference for both FairPSL and PSL are similar, thus, in these
settings at least, FairPSL guarantees fairness without hurting accuracy. Further investigation is required on the
effect of the various ranges of discrimination (i.e., θ1, θ2, θ3, θ4) on the prediction results of FairPSL.

We also generate various types of organizations in which labels are not uniformly distributed, e.g., one
population only occurs at the bottom levels of an organization. While we did not observe any differences in the
behavior of our method with respect to accuracy and fairness measure, we found that the degree of discrimination
is higher in such organizations. Further investigations on the structure of an organization on discrimination is an
interesting direction for future research.

8 Conclusion and Future Directions

Many applications of AI and machine learning affect peoples’ lives in important ways. While there is a growing
body of work on fairness in AI and ML, it assumes an individualistic notion of fairness. In this paper, we
have proposed a general framework for relational fairness which includes both a rich language for defining
discrimination patterns and an efficient algorithm for performing inference subject to fairness constraints. We
show our approach enforces fairness guarantees while preserving the accuracy of the predictions.

There are many avenues for expanding on this work. For example, here we assumed that the discriminative
pattern is given, however an automatic mechanism to extract discriminatory situations hidden in a large amount of
decision records is an important and required task. Discrimination discovery has been studied for attribute-based
fairness [21]. An interesting next step is discrimination pattern discovery in relational data.
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1 Introduction

More than 54 percent of the world’s population lives in urban areas [1]. Predicting dynamic urban activities
such as energy consumption, air pollution, public safety, and traffic flows has become a fundamental task for
improving the quality of human life. Urban mobility is closely intertwined with these problems, and is therefore
a major determinant of quality of life [2], crucial to employment opportunities and access to resources such as
education and health care [3].

Evidence suggests that residents of low-income and minority neighborhoods are concentrated away from
economic opportunity and public resources [4]. Injustice of transportation services experienced by these residents
further reinforces social exclusion as the availability and quality of transportation impact a person’s access to
opportunities [5, 6, 7, 8]. For example, one study revealed that living in neighborhoods with longer commute
times is associated with lower employment rates of younger generations [9]. As a result, transportation equity
issues have motivated government agencies to develop extensive multimodal transportation networks[6].

New mobility is about emerging transportation modes, including but not limited to car-sharing, bike-sharing,
and ride-hailing or Transportation Network Companies (TNCs) [10]. New mobility services provide technology-
based, on-demand, and affordable alternatives to traditional means. These services offer a chance to address
persistent equity issues in transportation. However, new mobility services also bring new equity concerns.
For example, people without internet service, smart phones, or credit cards are not able to get access to the
services. Moreover, studies show that algorithms or human beings that distribute app-based mobility services
may discriminate against people of color [11].

This paper reviews the methods and findings of mobility equity studies, with a focus on new mobility. The
paper is structured as follows: Section 2 presents the background of transportation equity. Section 3 summarizes
the main findings from current equity studies for mobility systems, with a brief discussion on future research.
Section 4 reviews the commonly used methods for evaluating the equity of mobility service provision and usage
and considers strengths and weaknesses. Section 5 discusses the relationship between the transportation equity
community and the fairness in machine learning community. Section 6 concludes the paper.
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2 Equity in Mobility Systems: Background

Automated decision systems powered by machine learning and big data have been widely employed in many
applications including credit scoring, criminal justice, online advertising, employment, etc [12, 13, 14, 15].
These systems have been hailed as efficient, objective, and accurate alternatives to human decision makers [16].
However, increasing evidence has shown that data-driven systems contain biases. For example, Google’s image
recognition system wrongly identified black users as gorillas [17]. Amazon’s same-day delivery services excluded
predominantly black neighborhoods in many cities to a varying degree [18].

Even if the algorithms themselves are well-intentioned, they can replicate and amplify human biases encoded
in the data, thus resulting in unequal distribution of impacts across different demographic groups [12, 19, 20].
This effect is due to machine learning algorithms seeking to fit the training data as closely as possible to make
accurate predictions. The process of learning also “accurately” captures historical signals of discrimination.
In 2017, Caliskan et al. [21] found that an influential language corpus [22] generated by machine learning
algorithms accurately reproduced historic biases. The corpus reflects societal stereotypes such as female names
are more associated with family while male names are more associated with career. Not only do algorithms pick
up discrimination in data, they also magnify them [23]. This effect is often due to the underrepresentation of
minority groups in training data, leading to higher error rates for the minorities. One study [24] revealed that
a widely-used predictive policing tool, PredPol, would reinforce the bias in the police-recorded, resulting in
disproportionate policing of minority communities.

The heightened concerns about automated decision systems concentrate not only on discrimination, but also
on a range of related issues, including transparency, privacy, and accountability [25]. These issues often intertwine
and conflict with one another in practice. In the context of automatic decision systems, transparency is about the
openness and understandability of data and models and accountability is about being responsible for the decisions
[26]. Transparency is a critical prerequisite for accountability. In the absence of concrete evidence of intentional
discrimination, it is difficult to hold an individual or organization accountable for biased decisions.

In practice, transparency for automatic decision systems is not easily achievable. Burrell [27] summarized
three types of barriers to transparency: 1) intrinsic opacity, where some algorithms such as deep learning models
are difficult to understand and interpret; 2) illiterate opacity, which says the general public may lack the expertise
to understand the algorithms; and 3) intentional opacity, which is often resulted from intellectual property
protection of the algorithm developers.

2.1 Definitions of transportation equity

Equity in the context of mobility has been studied independently since well before the recent interest in gener-
alized fairness methods for machine learning. These efforts suggest that domain-specific and context-sensitive
approaches should be incorporated into any fairness-aware ML system. Equity for mobility is the fair distribution
of transportation costs and benefits, among current (and future) members of society [5].

There are mainly two perspectives from which to examine equity: horizontal equity and vertical equity.
Horizontal equity (also called fairness and egalitarianism) is concerned with providing equal resources to
individual or groups considered equal in ability and need, which means the public policies avoid favoring one
individual or group over another. Horizontal equity suggests that those who pay more should receive superior
services.

Vertical equity (also referred to as social justice, environmental justice, and social inclusion) is concerned
with allocating resources to individuals or groups that differ in income, social class, mobility need, or ability. It
advocates that public policies favor disadvantaged groups by providing discounts or special services, therefore
compensating for overall inequities. One way to evaluate vertical equity is equity of opportunity, meaning that
disadvantaged groups should have adequate access to transportation resources. Equity of opportunity is usually
measured by access to services. In contrast, “equity of outcome” is usually measured by the actual usage of the
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systems across groups. There is a general agreement about the goal of equity of opportunity, but less agreement
about equity of outcome [5, 28, 29].

There are other ways to define transportation equity. Social equity indicates the differences between socioe-
conomic groups. Spatial equity refers to the differences in transport services among geographic regions [30].
These different definitions often overlap or conflict with each other. For example, horizontal equity requires the
users to pay for what they get, whereas vertical equity prioritizes the needs of disadvantaged groups such as the
low-income or ethnic minorities in the form of discounts [31].

2.2 Evaluation of mobility equity

Mobility equity research addresses a wide range of issues, including, for example, economic studies on how
transportation is subsidized and taxed, and operational studies on how negative impacts of transportation systems
are distributed among different groups [6]. Litman [5] proposed four variables to consider when performing any
equity evaluation.

• Type of equity: horizontal equity or vertical equity

• Impact (costs and benefits) categories: public facilities and services, user costs and benefits (e.g., taxes and
fares), service quality (e.g., public transportation service quality including frequency, speed, safety, reliabil-
ity, comfort, etc.), external impacts (e.g., air pollution), economic impacts (e.g., access to employment),
and regulation and enforcement (e.g., parking regulations)

• Measurement unit: per capita, per unit of travel (e.g., per trip), or per dollar.

• Categorization of people: demographics (e.g., age, household type, race), income class, ability, location,
mode (e.g., pedestrians, public transit), industry (e.g., freight, public transit), and trip type (e.g., commutes)

This paper focuses on the equity of new mobility systems service provision and usage across different
social-economic, demographic, or geographic groups.

3 Findings from Equity Research in Mobility Systems

We describe findings in the literature across 1) public transportation, and 2) new mobility services.

Public transportation Transportation equity has long been a major concern of governmental agencies, re-
searchers, and the general public [5, 6, 7]. Despite the tremendous investment in transportation system devel-
opment and progress in transportation equity research, there are still many long-standing equity issues resulted
from unequal distributions of transport resources across different socioeconomic groups and spatial regions
[32, 33, 8, 34]. A number of studies have found out that an uneven urban development has resulted in a lack
of public transport supply for disadvantaged groups. For example, Vasconcellos [35] pointed out in Brazil,
road systems are developed in a radial pattern. Low-income residents usually settled in fringes of the city with
irregular pavements or hilly areas that are subject to landslides. The urban centers with good public services
are mostly occupied by the high-income people. Similarly, Ricciardi [8] found that there is an unequal spatial
distribution of public transport resources in two Australian cities. Their analysis showed that 70% of Perth’s
population shares one third of the public transit supply. Moreover, three socially disadvantaged groups –– the
elderly, low-income, and no-car households have less access to public transport services compared to the overall
population. Some studies also showed that the economic burden and negative climate impacts of transportation
systems is disproportionately imposed on disadvantaged people [33, 30, 36]. In recognizing these issues, many
cities now have incorporated social equity into urban transportation planning. However, one study found that
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social equity goals are often not translated into clear and actionable items and there is a lack of appropriate
methods for assessing their achievements [37, 5]. Current literature on equity in public transport suggests that
disadvantaged groups as a whole experience inequitable access to public transport services but suffer from
significant negative impacts from the transportation systems.

3.1 New mobility

Bikeshare A number of researchers have studied equity in bikeshare systems. Several studies found that
bikeshare stations were typically located in urban centers with high population density [38, 39], and there was a
lack of stations in low-income areas. In an assessment of bikeshare systems in seven US cities, Ursaki et al. found
significant differences in the race, education level, and income of population inside and outside bike share service
areas in four cities [40]. Other studies also indicated that in North America, advantaged groups tend to have more
access to docked bikeshare than disadvantaged groups [41]. Recently, free-floating (dockless) bike share systems
have been introduced in several major cities in China and the United States [42, 43, 44]. Free-floating bikeshare
systems may have different equity landscape from docked systems. There are no stations in the city, therefore
there are no fixed service areas. In this way, access to bikes are transient and largely dependent on the placement
of individual bikes, which is driven by user demand and companies’ bike rebalancing strategies. As free-floating
bikeshare systems are fairly new, the impact on equity are unclear. In examining access equity of dockless bikes
in Seattle, Mooney et al. found out that more college-educated and higher-income residents have access to more
bikes. They also found out that bike demand is highly correlated with rebalancing destinations [43], suggesting
that the companies themselves are accountable for equity issues that arise.

Equal access to bikeshare does not imply equity of actual usage. Several studies found inequalities in the
usage of bikeshare systems [45, 46]. For example, Daddio et al. [45] found a negative association between
station-level usage with non-white population in Washington, D.C. The disparities in use partially stem from the
inequalities of access, but there are many other factors that inhibit bikeshare use among disadvantaged groups.
McNeil et al. found out that the biggest barrier to bikeshare is traffic safety, regardless of race or income [47].
Lower-income people of color have more concerns about costs of membership and more misconceptions about
bikeshare than higher-income white people. Another study [48] found that credit card requirement, lack of
computer access, annual subscription fee, and lack of bike lanes etc. are reported by low-income residents
as barriers to bikeshare. Shaheen et al. [6] identified five types of barriers to use bikeshare including spatial,
temporal, economic, physiological, and social barriers, and provided policy recommendations. Overall, current
literature suggests that disparities exist in the access and use of bikeshare systems.

Ride-hailing Ride-hailing can potentially redefine car access, mitigating the mobility divide resulted from car
ownership [49]. But the equity of ride-hailing services remains unclear. Several studies found that the service
quality in terms of waiting times is not necessarily associated with the average income or minority fraction of
pickup locations [50, 51]. A recent study [49] found that users in low-income neighborhoods actually use Lyft
more frequently than users in high-income neighborhoods in Los Angeles. The findings of this study suggest that
Lyft may provide automobile alternatives to neighborhoods with less access to cars. These findings contradict the
conclusions from other studies, which suggest that TNCs provide poor services to low-income neighborhoods [52].

Another thread of research examined the discrimination in TNCs. Ge et al. [11] found out that TNC drivers
discriminate against African American riders, resulting in longer waiting times and higher trip cancellation
rate in Boston and Seattle. Similarly, Brown [49] found that black riders experienced four percent higher trip
cancellation rates and longer waiting times than white riders in Los Angeles. Middleton [53] examined rider-
to-ride discrimination in ridesharing. Results showed that white respondents in majority white counties are
more likely to hold discriminatory attitudes towards riders of other races or class. A few studies investigated the
relationship between TNCs and public transit. For example, Jin et al. [54] studied whether Uber contributes to
the horizontal equity of transportation system. Their results implied that Uber has insignificant improvement
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over transportation equity in New York City. In short, the extent to which ride-hailing forestall or exacerbate
inequalities in transportation is not well understood.

4 Methods of Evaluating Transportation Equity

A variety of research methods including survey research [47], interviews and focus group [48], content analysis
[37], correlational research [50, 51, 45, 46, 38], experimental research [11, 49], and equity metrics [28, 54, 39],
have been employed to evaluate transportation equity. These methods differ in their focuses and features, but can
be used together to complement each other. Statistical tests (that routinely used in correlational research) and
equity metrics are two key techniques for discrimination discovery in both transportation and machine learning
research. Experimental research allows the identification of causal relationships between variables. This section
focuses on correlational research, experimental research, and equity metrics.

4.1 Correlational research

Correlational research aims to explore the relationship between two or more natural occurring variables. It
determines which variables are related and how they are related (e.g., positive or negative) [55]. The two main
steps involved in correlational research are measurement and data analysis. Researchers collect and measure
variables from a variety of settings, but do not control over or manipulate them. Data analysis (e.g., statistical
analyses, GIS methods, visualization) is applied to describe the relationships between variables. Correlational
research does not establish a causal relationship between variables, but allows researchers to examine the
associations among many variables at the same time.

Many equity studies employ correlational research to discover associations between transportation services
provision (or usage) and sensitive attributes (i.e., percentage of minority in a neighborhood). Statistical methods
(e.g., regression, t-test) are often used to discover statistical relationship. GIS methods (e.g., buffer analysis) are
usually employed at the same time for generating variables for statistical tests, analyzing spatial distribution, and
visualizing results. Three examples of correlational research are presented below.

Example 1: Quantifying the equity of bikeshare access in US cities Ursaki and Aultman-Hall [40] examined
the access equity of docked bikeshare systems in seven US cities by comparing the socioeconomic characters of
areas within and outside bikeshare service areas. A service area is defined as a 500m buffer around a bike station.
The equitable situation for a city is that the characteristics (e.g., percent white) of population inside the service
areas are not different from the population outside service areas.

The authors obtained docking station locations data from both the open data portals and the operators directly.
Socioeconomic data including population density, race, education level, income, and age was obtained from ACS
at census block group (CBG) level. Then the socioeconomic variables inside and outside service areas per CBG
was calculated for each city. Student’s t-tests were performed to assess statistical significance. Their results
showed that the low-income, the elderly, and the minority have less access to bikeshare. For example, in Chicago,
the percentage of African Americans inside and outside service areas is 18.7% and 41.9%, respectively.

This example examines seven cities in one study, providing a more holistic view of the equity of bikeshare
access compared to studies that focus on only one city. Nevertheless, this study has several limitations. First,
equity analysis is only conducted at city level. Although the socioeconomic variables inside and outside service
areas were calculated at CBG level, the authors did not discuss the spatial heterogeneity within each city. Second,
docking station placement is only one of the factors that influence access equity. This study did not consider
other important factors such as the supply of bikes at each station over time. Lastly, the Student’s t-tests may
give misleading results in this study, because the spatial dependencies among neighboring CBG violate the
independence assumption required by the test.
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Figure 1: Coefficient estimates and 95% confidence
interval of spatial error model for (a) population
density, (b) employment density, (c)minority popu-
lation fraction, and (d) average income [50].

Figure 2: Coefficients for minority fraction from
geographically weighted regression. Purple indi-
cates a positive association between expected wait-
ing time and minority fraction; gold indicates a
negative association [50].

Example 2: Transportation network company wait times in Greater Seattle, and relationship to socioeco-
nomic indicators Hughes and MacKenzie [50] investigated the relationships between wait times for UberX and
socioeconomic indicators at census block group (CBG) level in Greater Seattle area. They obtained wait times by
making UberX requests through Uber API using quasi-randomly selected locations throughout Greater Seattle.
They collected about 1 million data points over a two-month period in 2015. Socioeconomic data including
population density, employment density, average income, and minority population fraction was collected from
the American Community Survey 5-year estimates (ACS).

They first fitted a regression model with mean waiting times in a CBG as dependent variable and socioeco-
nomic attributes as independent variables. Using a Moran index test, they found significant spatial dependencies
among waiting times in different CBG. Subsequently, they developed a spatial error model for each hour of the
day to incorporate spatial effect into regression. Results showed that after adjusting the other covariates, higher
population density and employment density were associated with shorter waiting time, but that the fraction of
minorities in a block group did not significantly associated with waiting times, and that the relationship between
these two variables varied between positive and negative throughout the day (Figure 1). In addition, higher
average income is associated with longer wait times, suggesting that low-income areas enjoy better services.
Geographically weighted regression (GWR) [56] was used to inform different impacts of each socioeconomic
variable on different regions. GWR results showed that the relationship between the fraction of minority and wait
times is mostly negative. They concluded that “white and wealthy” areas do not necessarily enjoy a better TNC
service in terms of wait times.

The strength of this study is that it examined both spatial and temporal variations of the effects of different
variables (e.g., minority fraction) on TNC waiting times. An interesting addition to this study is to include factors
describing the urban form, such as road network into analysis into analysis. For example, the authors found out
that higher income is associated with longer waiting time. It is possible that areas with dense road networks tend
to experience shorter waiting times, and high-income individuals tend to live in areas with sparse road networks.
If this is case, it implies that current urban infrastructure may contribute to the inequalities of new mobility
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services. For the same reason, it is unclear if the relationships found in this study will generalize to other cities,
of which urban forms (e.g., road network, crime rate, employment density, etc.) differ from Seattle.

Example 1 and Example 2 both examined the equity of service provision in terms of a single indicator (service
area coverage and waiting times). These two examples sought to evaluate equity of opportunity. While waiting
times and docking station locations are important, they do not fully imply the disparities in actual use. For
example, individuals without a smartphone cannot use shared bikes even if the docking station is located close to
them. The following example approaches this problem from another perspective, namely, focusing on evaluating
the equity of outcome.

Example 3: Inequalities in usage of a public bicycle sharing Ogilvie and Goodman [38] explored the
correlation between the usage of a bikeshare system in London and socioeconomic attributes. The dataset they
use is the anonymized user registration data of a bikeshare system. They examined two dependent variables
separately: mean number of trips made by a registered user per month (continuous) and whether a registered user
has ever made any trip (binary). They constructed a series of independent variables from the registration data,
including gender, place of residence, income deprivation (English Indices of Deprivation) at the level of the Lower
Super Output Area (LSOA, a base unit of UK census data), non-White percentage of residential LSOA, distance
from residence to nearest bike station, number of stations within 250m of residence, month of registration, etc.

The authors employed linear regression to examine the relationship between “mean number of trips per
month” and independent variables, and logistic regression to examine the relationship between “ever made any
trip” and independent variables. Spatial autocorrelation was accounted for using maximum likelihood estimation.
Regression results showed that female users made fewer trips than males per month and users in more deprived
areas are less likely to live close to a bike station. After adjusting for the distance from residential area to
station, those in more deprived areas made more trips than those in the least deprived areas. They concluded that
disparities exist in usage of the system across population, and the system has potentials to fulfill unmet meet if
services expand to more deprived areas.

This study examined the equity of individual-level bikeshare usage. Although the authors found that female
users tend to have fewer trips than male users, they cannot determine the cause of this observed relationship.
It could be that females tend to have fewer bike trips at night or to regions with high crime rates due to safety
concerns. After adjusting for crime rate or time of day, the association between bike usage and gender may
change. This brings up another limitation of this research resulted from the use of automatically collected data
from bikeshare system. The authors did not have control over the data collection process, so what they could study
is also limited. Moreover, constrained by the data availability, the authors had to use area-level socioeconomic
variables derived from the postcode of registration debit or credit card. It is thus unclear whether the conclusions
would still hold if individual-level variables were available. The temporal scale of the data (7 months) limits the
possibility to explore seasonal effects of bike usage.

Advantages and limitations of correlational research for equity studies By using correlational research,
researchers can examine the relationships between transportation provision (or usage) and a wide range of
variables collected from various sources. This is especially true when large amount of automatically collected
data (e.g., smart card data, bikeshare trip database) is available. Correlational research is appropriate when
researchers are unable to manipulate the variables due to practical or ethical reasons. For example, in equity
studies, area-level variables such as average income of a CBG is not controllable.

One limitation of correlational research is that a significant correlation does not allow the researcher to
determine a causal relationship, because there could be many factors that the researcher did not study but
contribute to the correlation. And these factors could be independent of mobility service provision. Further
inquiry is needed to corroborate the findings from a correlational study. Another limitation is that correlational
research heavily depends on data availability and data quality, as discussed in Example 3.
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4.2 Experimental Research

Experimental research enables researchers to identify causal relationship. In an experiment design, the researcher
seeks to fully control the environment conditions so that variables of interest can be manipulated, while other
variables are controlled (or randomized) across conditions. In this way, the effects of variables of interest can
be tested by comparing between two or more conditions. Unlike correlational research, experimental research
strictly controls for the impacts of variables not of interest, thus allowing the effects of variables of interest to be
measured upon the outcome [55].

Example: Racial and gender discrimination in transportation network companies Ge et al. [11] studied
the racial and gender discrimination in Transportation Network Companies (TNCs). They undertook two
randomized control trails, hailing about 1500 rides in Seattle and Boston and recording service quality indicators.
In the Seattle experiment, the treatment is race. Eight RAs (two African American females, two white females,
two African American males, and two white males) were hired to request rides. Measures including estimated
waiting times, acceptance time (time between trip request and acceptance), actual waiting times (time between
acceptance and arrival), trip cancellation rate, trip duration, costs, and ratings were recorded by screenshots
for each trip. To control for variables not of interest, the authors adopted a number of strategies. The RAs are
undergraduate students, avoiding confounding factors such as age. They were given the identical smartphones
using the same carriers, and received the same data collection instructions. The RAs were instructed to minimize
their interactions with the driver, preventing the introduction of factors that influence ratings and travel time.
Specific routes were developed to control for pick-up locations and travel duration. These routes were randomly
assigned to RAs. RAs were also instructed to travel after evening rush hours from Mondays to Thursdays.
Ordinary least squares regression (OLS) results showed that acceptance time is longer for African American
riders than white riders for both UberX and Lyft.

In the Boston experiment, the authors adopted a within-group design. They hired eight RAs with a range of
ethnic backgrounds summoning UberX or Lyft rides in Boston, each requesting rides under a “white-sounding”
name and a “distinctively black name”. This change in design aims to control the differences in data collection
practices among RAs. In this case, the treatment is whether the rider has a black sounding name. Other aspects of
experiment design are similar to those of the Seattle experiment. OLS results showed that riders with African
American-sounding names experienced more frequent trip cancellations, and that African American males have
higher cancellation rates than white males. Further analysis revealed that trip cancellations concentrated in pickup
locations with low population density. They concluded that racial discrimination exists in TNC services in Seattle
and Boston.

Advantages and limitations of experimental research for equity studies Experimental research allows for
drawing causal conclusions. This is because experiments are conducted in controlled conditions and researchers
can claim that the changes in outcomes are caused by the variable of interest.

Experimental research has notable limitations. First, the requirement that controlling all variables that might
influence the outcomes is sometimes not realistic. This is especially true for experiments conducted in a natural
environment. For example, in Ge et al.’s Seattle experiment [11], there are variances in the data collection
practices (e.g., the time lag between taking screenshots and sending requests) among RAs. This influences the
measurement of outcome variables. Second, compared to automatically collected data or survey data, experiments
are often not able to produce large amount of data. Data collection in experiments is often expensive and
labor-intensive. Finally, although experimental research can determine causal effects (e.g., racial discrimination
exists in TNC services in Seattle), it cannot unveil the reasons why the outcome occurred (e.g., why TNC drivers
discriminate against certain races). Further investigation through other research methods (e.g., interviews) is
needed to understand the phenomenon.
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Figure 3: Use Lorenz curves to compare the equity of
public transport service level to demand (population
and employment) [28].

Figure 4: Use Lorenz curves to com-
pare the equity of public transport and
Uber service level to population [54].

4.3 Equity Metrics

Metrics that measure the distribution of some mobility system impacts (e.g., service level) have been widely
adopted in transportation equity evaluation. Unlike statistical tests which focus on the discovery of discrimination
or inequalities, metrics directly gauge the degree of equity by a single value. Equity metrics used in transportation
equity research differ but overlap with those used in fairness in machine learning research. The similarities
between them partially arise from the fact that both fields borrowed ideas from other domains such as social
welfare and economics. For example, Gini coefficient (or Gini index), initially proposed to represent cumulative
income and wealth distribution across a population, is one of the most popular equity metrics used in transportation
to gauge the equity of transportation resource allocation [8]. However, Gini index has not yet received much
attention in machine learning community [57]. Perhaps this is because fairness in machine learning research
has primarily concentrated on classification problems that used in credit scoring, profiling of potential suspects,
hiring, etc., for which other metrics are more appropriate. On the other hand, there are a few metrics, such as the
“80% Rule” [58], were used in both communities [59]. The following examples introduce the use of Gini index
and the ”80% Rule” in transportation equity.

Example 1: Using Lorenz curves to assess public transport equity in Melbourne Delbosc and Currie [28]
proposed to use Gini index as an equity metric of public transit service provision. A Lorenz curve is a graphical
representation of Gini index. The figure below (see Figure 3) illustrates an example of a Lorenz curve representing
the cumulative income across a population. The perfect equitable income distribution is plotted as the dashed
line (line of equity) and an inequitable distribution of income is represented by the solid curve (Lorenz curve). A
point on the solid curve can be interpreted as X percent (e.g., 70%) of population shares about Y percent (e.g.,
25%) of the total income of the population. Gini index is the ratio of the area between the line of equity and the
Lorenz curve (A), divided by the total area under the line of equity (A+B).

Delbosc and Currie applied a gini index to compare the equity of public transport service level to a proxy of
demand (population and employment) in Melbourne. Service level of a census tract is expressed as a composite
index taking into account bus, tram, and rail service areas and frequency. Using the service level index and the
population of each census tract, the authors generated the first Lorenz curve (black solid curve) as shown in Figure
3. The Gini index is 0.68 for overall population in Melbourne. This can be interpreted as 70% of the population
shares 19% of the public transport services. A second Lorenz curve (a grey solid curve) was calculated, taking
into account the employment density. The Gini index for total population and employment is 0.62, appearing
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Table 2: Gini coefficient without and with Uber [54]

more equitable than the first curve. Nevertheless, these two curves suggest that inequalities exist in public transit,
with only a small portion of the population enjoying the majority of transit services.

In this example, the Gini index serves as a measure of horizontal equity, that is, providing equal resources
to those equal in need. The need for transportation supply of each census tract is approximated by population
and employment density. So the perfect equitable distribution is that every unit of population and jobs shares the
same transport resources. The need of special demographic groups (vertical equity) is not considered.

Example 2: Using Lorenz curves to access the equity of Uber and public transit in New York City Most
recently, Jin et al. [54] employed Lorenz curves and Gini index to study the equity of Uber services in New York
City (see Figure 4). They calculated service level for Uber and public transit using a similar approach as Delbosc
and Currie [28]. Their results suggested that Uber is less equitable than public transit: 20% of population shares
the 95% of Uber services.

They further compared Gini indexes of different boroughs for public transit and public transit + Uber (see
Table 2). The results (see Table 2) shows that with Uber, the Gini index of the whole city reduced by about 0.03 on
weekdays and by about 0.008 on weekends. This implies that Uber has insignificant impact on the transportation
equity of New York City.

This study exemplifies how Gini index can be used to compare transportation equity across regions and across
modes. This is possible because Gini index has several desirable features: it does not depend on the size of the
population, the overall transit supply level, or the geographic units. For example, Gini index can be used to
examine the equity of a neighborhood, a city, or a country. And it enables the comparison of equity between a
city with high level of transit supply and one with low supply.

One limitation of Gini index is its heavy reliance on data. As Jin et al. noted, the main reason to choose New
York City as study area is data availability. Beyond availability, all data sources have limitations (e.g., census data
is not up-to-date) that would be calculated into Gini index. Another limitation lies in the way the service level is
calculated. Studies that employed Gini indexes tend to use different methods to calculate service level [30]. It is
unclear whether changing the service level indicator will significantly affect Gini index. These two limitations
suggest that Gini indexes should be interpreted with caution.

Example 3: Evaluation of the equity of bikeshare system accessibility Meng [39] applied the “80% Rule”
to evaluate access equity of a bikeshare system in Chicago. The “80% Rule” was advocated by the US Equal
Employment Opportunity Commission to detect disparate impacts in employee selection procedures. The 80%
Rule states that if the selection rate for minorities is less than 80% of the rate of non-minorities, the procedure
is deemed to be discriminatory [58]. Similar to Ursaki and Aultman-Hall (see Example 1 of Section 4.1), the
analysis is based on the locations of docking stations. The author created a 0.25-mile buffer around each station
as service area, and calculated the demographic characteristics (i.e., race, gender, education, language proficiency,
and income level) of population inside each service area. For each station, the equity metric based on the 80%
Rule is calculated as follows:
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Ratio =
Number of minorities/Total number of minorities

Number of non−minorities/Total number of non−minorities
(19)

The results show that more than 33% of the stations have ratios below 0.8 for all demographic characteristics
(except for gender) under examination.

There are several limitations of this study. First, instead of providing a city-level ratio, the authors computed
station-level ratios and examined equity using the percentage of stations that violate the 80% Rule. This approach
is problematic when the stations are not equally distributed. It is possible that a majority of the stations are all
located in a small portion of the city and they tend to have similar ratios. Second, docking station placement
cannot sufficiently represent access to bikeshare, as discussed in Example 1 of Section 4.1. Despite these
weaknesses, this study serves as a typical example of using fairness metrics to evaluate vertical equity in new
mobility systems.

Advantages and limitations of equity metrics Equity metric provides a single measure of equity, making it
possible to track trends over time and conduct comparative studies between cities. It is easier for non-experts to
interpret compared to statistical tests, therefore suited for conveying evaluation results to broader audience.

However, the reliability of metrics heavily depends on the quality of data sources. Moreover, different metrics
often reflect competing goals. For example, Gini index measures horizontal equity, emphasizing individuals with
equal ability or need gets equal resources. The 80% Rule shares a similar spirit of group fairness [59], which
advocates for equal resource distribution across difference demographic groups. The choice of metrics may
significantly affect evaluation results, so the use of multiple metrics is important.

4.4 Other methods

Apart from the three research methods described above, surveys, interviews, and focus groups have been used for
transportation equity studies. These methods can be used to develop a deeper understanding of why inequalities
exist based on the opinions, attitudes, and experiences from stakeholders of mobility systems. For example,
McNeil, Nathan, et al. [47] conducted a survey of residents living in underserved neighborhoods with bikesahre
stations. The findings revealed that minority respondents have more barriers, for example, costs of membership,
to using shared bikes than non-minorities. This helps to explain why providing adequate spatial access to
disadvantaged neighborhoods alone is not enough to address the disparities in actual use.

5 Transportation Equity and Fairness in Machine learning

In examining the fairness (equity) definitions from transportation equity community and fair machine learning
(FairML) community, we observe that a natural mapping between them can be established, though further effort
is needed to create a consistent mapping between concepts in one domain to the other. Horizontal equity echoes
the spirit of individual fairness (similar people should be treated similarly). Vertical equity resembles group
fairness (sensitive attributes should be independent from outcomes). This is true in cities where there is an uneven
distribution of transport supply across different socioeconomic groups. Vertical equity encourages compensating
for such inequalities by policies favoring disadvantaged groups. This aligns with group fairness that the level of
transportation supply in a city should be the same across different groups. Vertical equity and group fairness are
only “roughly” related because by definition, group fairness stresses “independence” between sensitive attributes
and outcome, whereas vertical equity does not.

The most commonly used method for evaluating horizontal equity is Gini index. It has not attracted much
attention in machine learning community. This may be partially due to the fact that not much attention has been
paid to resource allocation problems in fair machine learning research. On the other hand, machine learning
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community has developed a few metrics for individual fairness. Individual fairness requires that the “similarity”
between a pair of individuals from two demographic groups respectively has to be defined. For example, in
making hiring decisions, the algorithm has to possess perfect knowledge of how to compare the “qualification”
of two individuals. This is often not realistic in practice and we have to come up with a suitable similarity
metric that is best agreed upon among domain experts of a task. Theoretically, individual fairness can be used
to evaluate horizontal equity. For example, in a simplified shared bike allocation problem, we use population
and employment density as the demand for bikes. Then the differences in demand between two areas a and b
can be expressed as d(a, b) according to some similarity function d. Suppose we have an algorithm assigning
bikes to areas, the number of bikes that area a and b will get is f(a) and f(b), respectively. A fair allocation
satisfying individual fairness requires that for every two pairs of areas in the city: D(f(a), f(b)) <= d(a, b),
where D is another similarity function. The difficulty again, lies in the fact that we do not have perfect knowledge
to determine the similarity in demand between two areas.

The majority of transportation equity research focuses on vertical equity. Likewise, more attention has been
devoted to group fairness than individual fairness in machine learning community. Transportation equity heavily
employs statistical tests for equity analysis, which is appropriate for discovering unfairness. Machine learning
uses fairness metrics much more often, because metrics allow researchers to reduce achieving fairness goals to a
much simpler problem: minimizing a value that represents unfairness. This is also valid in terms of algorithm
design. In fact, some metrics, such as the 80% Rule, have been used in both communities. This connection may
open great possibilities for bridging these two domains.

Fair machine learning community focuses almost exclusively on methods, whereas transportation equity
concerns more about applications, policies, and interventions. Although fair machine learning approaches hold
great promises in optimizing resource allocation in mobility settings, there is a long way to go to design, deploy,
and evaluate a fairness-aware data-driven system as a real-world application. At the end of this paper, I hope to
highlight the urgency of convergence of these two fields. Ultimately, researchers with knowledge in both fields,
practitioners, policy-makers, and citizens should work together towards a common goal: a fair and effective
transportation system for all citizens.

6 Conclusion

This paper summarized the findings and methods of equity studies in mobility systems, with a focus on new
mobility systems. For new mobility services, it is generally agreed that disparities exist in the access and use
of docked bikeshare system, but the equity implications of ride-hailing are still unclear. Further research is
needed to understand how to deliver a more equitable new mobility system to serve the need of different groups.
Many research methods have been employed in transportation equity studies. Different methods vary in their
objectives, strengths and weaknesses. Correlational research can exploit a wide range of data sources and discover
associations among many factors, but it cannot determine causal relationships. Equity metrics enable comparative
studies among cities and assessment of changes over time, but their reliability is highly dependent on data.
Experimental research can produce reliable findings, but is expensive and difficult to control all extraneous
variables. The choice of research methods depends on research goals, and multiple methods can be used together
to complement each other.

Given the similarities in objectives, concepts, and methods between transportation equity community and
fairness in machine learning community, bridging these two domains together holds promise to enable multi-
disciplinary breakthroughs.
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Abstract

In this article, we address important extensions to the problem of allocating indivisible items to a
population of agents: The agents are partitioned into disjoint groups on the basis of attributes (e.g.,
ethnicity) and we want the overall utility of the allocation to respect some notion of diversity and/or
fairness with respect to these groups. We study two specific incarnations of this general problem. First, we
address a constrained optimization problem, inspired by diversity quotas in some real-world allocation
problems, where the items are also partitioned into blocks and there is an upper bound on the number
of items from each block that can be assigned to agents in each group. We theoretically analyze the
price of diversity – a measure of the overall welfare loss due to these capacity constraints – and report
experiments based on two real-world data sets (Singapore public housing and Chicago public school
admissions) comparing this constrained optimization-based approach with a lottery mechanism with
similar quotas. Next, instead of imposing hard constraints, we cast the problem as a variant of fair
allocation of indivisible goods – we treat each group of agents as a single entity receiving a bundle of
items whose valuation is the maximum total utility of matching agents in that group to items in that bundle;
we present algorithms that achieve a standard relaxation of envy-freeness in conjunction with specific
efficiency criteria.

1 Introduction

Over the years, the Singapore government has adopted several social integration measures, to accommodate its
multi-ethnic and multi-cultural population; one of these is the Ethnic Integration Policy (EIP) used by the Housing
and Development Board (HDB) since 1989 [27] to determine housing allocations. This government body is
charged with the construction of government subsidized public housing estates, and selling them to Singapore
residents. The EIP sets upper bounds on the percentage of flats in every estate that can be owned by households of
every major ethnic group: since 5 March 2010, every HDB housing block is required to hold no more than 87%
Chinese, 25% Malay, and 15% Indian/Others [17, 14]. These ethnic quotas prevent the over-representation of any
one group in an estate (resulting in de-facto segregation). HDB uses a lottery to allocate new developments: all
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applicants who apply for a particular development pick their flats in a random order. Under the lottery mechanism,
applicants selected later in the order may not get their top choices; in fact, they may be rejected because the quota
for their ethnic group has been filled, even if there are empty flats that they are willing to take.

Example 1: Consider an estate with 100 flats; Amirah (who is ethnically Malay) receives a queue number of 30
— i.e., she is the 30th person to choose a flat; if, by random chance, 25 ethnic Malays precede her in the queue
and pick before her, the ethnic quota for Malays (25%) will be filled and Amirah will no longer be allowed to
select a flat in that estate. On the other hand, if Amirah is 110th in line but all families preceding her in the queue
are ethnically Chinese, then at most 87 out of the 100 flats will be taken (since the Chinese have an 87% quota)
and Amirah will have at least 13 flats to choose from. �

Over 72% of Singapore apartments are HDB flats [34], housing an estimated 81% of Singapore residents [18] as
of 2018; thus, the HDB public housing market has a significant impact on the life and welfare – both individual
and collective – of this island nation [13, 14, 20, 32, 37]. The HDB lottery mechanism, coupled with ethnicity
constraints, adds another layer of complexity to what is, at its core, similar to the classic weighted bipartite
matching or assignment problem [21, 26]: agents (buyer households) have idiosyncratic values/utilities for items
(flats) while a central planner (HDB) wishes to allocate at most one item to each agent and vice versa, with the
economic criterion of overall utility/welfare/efficiency in mind – but also with an added social goal of promoting
diversity. Inspired by diversity-respecting allocation mechanisms — prevalent not only in Singapore public
housing but also in other domains such as matching residents to hospitals in Japan, school admissions in many
U.S. cities, and more [19, 36, 16] — we formally study the balance between maximizing allocative welfare and
promoting allocative diversity. This underlying problem of allocation/assignment of goods distinguishes our
contribution from the extensive literature on fairness and diversity in subset selection (see e.g., [35, 10] and
references therein).

In Section 2, we analyze a (simplified) HDB housing market as an extension to the assignment problem
where the sets of agents and items are partitioned into subsets called types and blocks respectively; there is a
pre-specified upper bound on the number of agents of each type that can be assigned items in each block, called
type-block capacities. We analyze the price of diversity, i.e., the fractional loss in the overall (optimal) welfare
due to these capacity constraints, and relate it to a measure of type disparity; we also report simulations based on
recent, real-world data sets, comparing our constrained optimization approach with a lottery mechanism with
ethnicity quotas in terms of welfare.

In Section 3, we present an alternative approach towards the efficiency-diversity trade-off, drawing on and
adding to the rich literature on the fair division of indivisible goods (see e.g., [28, 12, 22, 4, 3]). Here, each type
is represented by a super-agent that is allocated a bundle of items; the super-agent’s valuation of a bundle is
given by the maximum utility assignment of items in the bundle to agents of that type. When agent-item utilities
are binary, we provide a polynomial-time algorithm that computes an allocation with the maximum (utilitarian)
social welfare while satisfying a popular fairness criterion: envy-freeness up to one item (EF1) [11]; for arbitrary
real-valued utilities, we show experimentally that a heuristic extension of the classic envy-graph algorithm due to
Lipton et al. [24] produces an EF1 allocation with low waste (a new inefficiency concept that we have introduced
for this setting).

2 Diversity through hard capacity constraints

First, let us rigorously formulate the welfare maximization problem in a bipartite matching setting under type-
block capacity constraints. Detailed proofs of all theoretical results in this section can be found in Benabbou et al.
[7]. Throughout the paper, for s ∈ N, we denote the set {1, 2, . . . , s} by [s].

Definition 1 (ASSIGNTC): An instance of the Assignment with Type Constraints (ASSIGNTC) problem is
given by: (i) a set N of n agents partitioned into k types N1, . . . , Nk, (ii) a set M of m items/goods partitioned
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into l blocks M1, . . . ,Ml, (iv) a utility u(i, j) ∈ R+ for each agent i ∈ N and each item j ∈ M , and (iv) a
capacity λpq ∈ N for all (p, q) ∈ [k]× [l]; λpq is an upper bound on the number of agents of type Np allowed in
block Mq. W.l.o.g. we assume that for all p, q, λpq ≤ |Mq|.

An assignment of items to agents, which we will also sometimes call an (N,M)-matching, can be represented
by a (0, 1)-matrix X = (xij)n×m where xij = 1 if and only if item j is assigned to agent i. Our objective is to
maximize the utilitarian social welfare or USW, i.e., the sum of agent utilities: u(X) ,

∑
i∈N

∑
j∈M xiju(i, j).

Clearly, this optimization problem can be formulated as an integer linear program (ILP) as in Figure 1. Here,
the first set of inequalities captures our type-block constraints while the last three sets are the usual matching
constraints jointly ensuring that each item (resp. agent) is assigned to at most one agent (resp. item). In general,
the decision version of the ASSIGNTC problem is NP-complete (Benabbou et al. [7, Theorem 3.2]) but admits
a polynomial-time 1

2 -approximation algorithm (Benabbou et al. [7, Theorem 3.4]); moreover, the problem can
be solved in polynomial(n,m) time by a minimum-cost network flow-based algorithm (Benabbou et al. [7,
Theorem 3.6]) if the utility matrix satisfies one of the following two conditions: (i) type-uniformity i.e., all agents
of a type have identical utilities (for all p ∈ [k] and for all j ∈M , there exists Upj ∈ R+ such that u(i, j) = Upj
for all i ∈ Np); (ii) block-uniformity i.e., all items in a block are clones of each other (for all q ∈ [l] and for all
i ∈ N , there exists Uiq ∈ R+ such that u(i, j) = Uiq for all j ∈Mq).

max
∑
i∈N

∑
j∈M

xiju(i, j)

s.t .
∑
i∈Np

∑
j∈Mq

xij ≤ λpq ∀p ∈ [k], ∀q ∈ [l]

∑
j∈M

xij ≤ 1 ∀i ∈ N

∑
i∈N

xij ≤ 1 ∀j ∈M

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈M

Figure 1: ILP formulation of ASSIGNTC.

We are mainly interested in how the imposition of type-
block capacities impacts allocative efficiency. If we denote
the set of all valid item assignments X by X , and all as-
signments additionally satisfying our type-block constraints
by XC , then the unconstrained and unconstrained optimal
social welfares for any given utility matrix (u(i, j))n×m
are given by OPT(u) , maxX∈X u(X) and OPTC(u) ,
maxX∈XC u(X). Clearly, OPTC(u) ≤ OPT(u) since
XC ⊆ X . This leads to a natural measure of welfare loss
for the ASSIGNTC problem; we call this the Price of Di-
versity (a similar definition appears in [1, 10]): PoD(u) ,
OPT(u)/OPTC(u). By definition, PoD(u) ≥ 1, and its
exact value depends on agent utilities, but we can bound
it, regardless of the utility model, in terms of the fractional

type-block capacities defined as αpq , λpq/|Mq| for each (p, q) ∈ [k]× [l].

Theorem 2: For any ASSIGNTC instance, PoD(u) ≤ 1/min(p,q)∈[k]×[l] αpq.

The following example shows that there is an ASSIGNTC instance whose PoD reaches the upper bound in
Theorem 2; in other words, this bound is tight.

Example 2: Suppose, |Np0 | ≥ |Mq0 | for some type-block pair (p0, q0) in the set argmin(p,q)∈[k]×[l] αpq in an
ASSIGNTC instance, and the utilities are given by u(i, j) = 1 if i ∈ Np0 and j ∈ Mq0 , u(i, j) = 0 otherwise.
An optimal unconstrained assignment fully allocates the items in block Mq0 to agents in Np0 for a total utility of
|Mq0 | whereas any optimal constrained assignment allocates exactly λp0q0 items in Mq0 to agents in Np0 for a
total utility of λp0q0 . Hence, for this family of instances, PoD(u) = |Mq0 |/λp0q0 = 1/αp0q0 . �

In general, the bound in Theorem 2 is linear in the number of items i.e., the welfare loss due to hard diversity
constraints can be significant in some instances (e.g., Example 2). However, type-block capacities are determined
by a central planner in our model; a natural way of setting them is to fix the fractional capacities αpq in
advance, and then compute λpq = αpq × |Mq| when block sizes become available: by committing to a fixed
minimum type-block quota α∗ (i.e., αpq ≥ α∗ for all (p, q) ∈ [k] × [l]), the planner can ensure a PoD(u)
of at most 1/α∗, regardless of the problem size and utility function. Higher values of α∗ reduce the upper
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bound on PoD(u) but also increase the capacity of a block for every ethnicity, having an adverse effect on the
diversity of block composition – α∗ thus functions as a tunable tradeoff parameter between ethnic integration
and worst-case welfare loss. In the Singapore housing allocation problem, the EIP fixes a universal percentage
cap, slightly higher than the actual corresponding population proportion for every ethnicity. Plugging the current
EIP percentages mentioned in Section 1 into the bound in Theorem 2, we get that the Singapore housing system
has PoD(u) ≤ 1

0.87+0.25+0.15 ≈ 6.67. We mention that the price of diversity compares the best constrained
allocation with the best unconstrained allocation; mechanisms deployed in practice do not necessarily try to
find the optimal allocation. For example, the HDB mechanism uses a lottery to allocate flats, and thus may
theoretically exhibit greater welfare loss than the bound set in Theorem 2.

Theorem 2 offers a worst-case tight bound on the price of diversity, making no assumptions on agent utilities,
but Example 2 suggests that this upper bound is attained when social welfare is solely extracted from a single
agent type and a single block. Intuitively, we can improve our bound if a less ‘disparate’ optimal assignment exists.
To formalize this notion, we introduce a new parameter. For any optimal unconstrained assignment X∗ ∈ X , let
βp(X

∗) denote the ratio of the average utility of agents in Np to the average utility of all agents under X∗. The
inter-type disparity parameter β(X∗) is defined as: β(X∗) , minp∈[k] βp(X

∗) = minp∈[k]
up(X∗)/|Np|
u(X∗)/n . Notice

that β(X∗) is in (0, 1], can be computed in polynomial time and is fully independent of the type-block capacities
(it uses X∗, an unconstrained optimal assignment). The closer β(X∗) is to 1, the lower the disparity between
average agents of different types under X∗.

Theorem 3: For any ASSIGNTC instance and any unconstrained optimal assignment X∗ ∈ X , we have
PoD(u) ≤ 1/β(X∗)∑

p∈[k] νp minq∈[l] αpq
, where νp =

|Np|
n is the proportion of type p ∈ [k] in the agent population.

For the Singapore public housing problem, if we use the ethnic proportions reported in the 2010 census report
[33] i.e., |N1|/n = 0.741 (Chinese), |N2|/n = 0.134 (Malay), and |N3|/n = 0.125 (Indian/Others) and the
same block quotas αpq as before, then in the case of no disparity (i.e., β(X∗) = 1), a simple calculation based on
Theorem 3 shows that PoD(u) ≤ 1.43 (approx.). Combining Theorems 2 and 3, if we plot the PoD(u) against
the disparity parameter β(X∗) based on Singapore data, the point corresponding to any ASSIGNTC instance
must lie in the shaded region of Figure 2.

2.1 Experimental Analysis

Figure 2: PoD vs disparity parameter for the
HDB problem with current EIP quotas and eth-
nic proportions from Census 2010.

In this section, we present simulations of the ASSIGNTC prob-
lem using recent, publicly available datasets: Singapore de-
mographic and housing allocation statistics, and the Chicago
public school admission data. We compare the welfare of three
assignment mechanisms: unconstrained optimal (maximizing
welfare while ignoring the diversity constraints), constrained
optimal (finding the optimal allocation under diversity con-
straints), and one-shot lottery-based (running a lottery with
diversity constraints, as is the case for the HDB mechanism).1

Conducting large-scale surveys to elicit agent preferences over
items was beyond the scope of this work, so we simulated util-
ities based on reasonable models for both problems. We solved
both the unconstrained and constrained social welfare maxi-
mizations using the Gurobi Optimizer. We refer the reader to
https://git.io/fNhhm for full implementation details.

1We generated a uniformly random sequence over agents and assigned to each an item for which it has the highest utility among
unassigned items in blocks for which that agent’s ethnicity quota had not been filled yet. We abstract away other complications of actual
lottery-based approaches used in our problem domains to focus on diversity constraints.
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(a)

(b)

Figure 3: (a) Singapore public hous-
ing block locations. (b) Tier statuses
of Chicago census tracts and magnet
school locations (orange dots).

The Singapore Public Housing Allocation Problem. We collected
data on the locations and numbers of flats of recent HDB housing
development projects advertised over the second and third quarters of
2017.2 Each development constitutes a block in our simulations, for
a total of m = 1350 flats partitioned into l = 9 blocks M1, . . . ,M9

(Figure 3(a)), consisting of 128, 162, 156, 249, 108, 94, 104, 190,
159 flats respectively. There are pre-specified categories of flats, viz.
2-room flexi, 3-room, 4-room, and 5-room; our data set includes lower
and upper bounds, LB(t, q) and UB(t, q) respectively, on the monthly
cost (loan) for a flat of category t in block Mq for every t and q. We
simulate 2 pools of n applicants whose ethnic composition follows the
2010 Singapore census report [33], as shown in Table 3. From the same
census report, we collected the average salary S(p) of each ethnicity
group p ∈ [k], given in Singapore dollars: S(1) = S$7, 326, S(2) =
S$4, 575 and S(3) = S$7, 664. From publicly available data3 on
Singapore’s Master Plan 2014,4 we glean the locations of the geographic
centers of the 55 planning areas that Singapore is divided into; we
also obtained the population sizes of the three ethnicity groups under
consideration in each planning area from the General Household Survey
2015 data available from the Department of Statistics, Singapore.5

Our block capacities follow latest HDB block quotas [14]: α1q =
0.87, α2q = 0.25, α3q = 0.15 for every block Mq.

We simulate 4 utility models; each has one parameter that does not
come from the data: (i) Distance-based (Dist(σ2)): Each agent i ∈ N
has a preferred geographic location ~ai ∈ R2 (chosen uniformly at ran-
dom within the physical landmass of Singapore) that she would like to live as close as possible to (say, the location
of her parents’ apartment, workplace, or preferred school). For every block Mq, we generate the utility of that
agent i for apartment j ∈Mq by first drawing a sample from the normal distribution N (1/d(~ai, loc(Mq)), σ

2),
where loc(Mq) ∈ R2 is the geographical location of block Mq and d(·, ·) represents Euclidean distance, and
then renormalizing to make the sum of utilities of each agent for all apartments in M equal to 1. (ii) Type-based
(Type(σ2)): We assume that all agents of the same type (i.e., ethnic group) have the same preferred location (i.e.,
∀p ∈ [k],∀i, i′ ∈ Np,~ai = ~ai′); the rest is similar to the above distance-based model. (iii) Project approval-based
(Project(ρ)): We construct, for each type, a categorical distribution over the 55 planning areas of Singapore,
the probability of each area being proportional to the fraction of the sub-population of that type living in that
area; for each agent i, we sample a preferred planning area from the above distribution corresponding to i’s
type; if a project Mq is within a radius ρ of the geographic center of agent i’s preferred planning area, then i
approves of the project i.e., u(i, j) = 1 ∀j ∈Mq, else i disapproves of the project i.e., u(i, j) = 0 ∀j ∈Mq. (iv)
Price-based (Price(σ2)): Each agent i ∈ Np has a salary si that is generated according to the normal distribution
N (S(p), σ2). Each flat j ∈ Mq of category t has a monthly cost pj chosen uniformly in [LB(t, q),UB(t, q)].
The utility that agent i derives from flat j is then defined by u(i, j) = 1/(pj − si

3 )2, assuming that agent i is
willing to pay one-third of her monthly salary on mortgage installments;6 the rationale for the utility formula is
that a high cost relative to the budget makes flats unaffordable, while a much lower cost indicates unsatisfactory
quality, making the agent unhappy in both scenarios.

2http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/bto-sbf
3https://data.gov.sg/dataset/master-plan-2014-planning-area-boundary-web
4https://www.ura.gov.sg/Corporate/Planning/Master-Plan/
5https://www.singstat.gov.sg/publications/ghs/ghs2015content
6Inspired by the Singapore Central Provident Fund Board-endorsed “3-3-5 rule”, as of 21 Sep 2017.
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Figure 4: Averaged utility losses for (a) Dist(σ2) and (b) Type(σ2) with n = m = 1350 (left) and n = 3000,
m = 1350 (right).

n |N1| |N2| |N3|
1350 1000 180 170
3000 2223 402 375

Table 3: #applicants (types 1, 2,
and 3 are Chinese, Malay, Indi-
an/Others respectively)

For each of our treatments (Figures 4–6), we plot the realized PoD(u)
(hatched bar), the theoretical upper bound on PoD(u) as per Theorem 3
(dark gray bar), and the relative loss of the HDB lottery mechanism (i.e.,
the ratio of OPT(u) to the total utility of the assignment produced by the
lottery mechanism) averaged over 100 agent permutations (light gray bar)
against the values of the corresponding model parameters (σ2 or ρ). In order
to compare Dist(σ2) with Type(σ2), we vary both σ2 in {1, 5, 10} and n in
{1350, 3000}; the results reported in Figures 4 are on average performance
over 100 randomly generated instances. Our first observation is that, in all our experiments, Dist(σ2) exhibits
virtually no utility loss due to the imposition of type-block constraints (see the hatched bars in Figures 4(a)).
This is because utilities in Dist(σ2) are independent of ethnicity, resulting in a very low value for the inter-type
disparity parameter β (indicated by the dark gray bars) — in fact, for any utility model where utilities are
independent of ethnicity, the expected value of the disparity parameter is 1. For the Type(σ2) model-based
utilities, the disparity parameter is somewhat higher (utilities do strongly depend on ethnicity), resulting in a
higher PoD(u) (see the hatched bars in Figures 4(b)). Despite making no attempt to optimize social welfare
under type-block constraints, the HDB lottery mechanism does surprisingly well when the number of agents
equals the number of apartments (see the light gray bars in the left part of Figure 4), extracting at least 84% of the
optimal unconstrained welfare under the Dist(σ2) utility model, and at least 79% of the social welfare under
the Type(σ2) model. However, the lottery-induced welfare is negatively impacted by the number of agents (see
the light gray bars in the right part of Figure 4); for instance, it only extracts 65% of the optimal unconstrained
welfare under Dist(1) with n = 3000 and, in fact, the lottery-induced welfare loss for this treatment even exceeds
the theoretical upper bound on the price of diversity.

For Project(ρ), we use the fact that one degree of latitude or longitude at the location of Singapore corresponds
to roughly 111 km to compute distances; we vary ρ in {5, 7.5, 10} (in km). The results averaged over 100 runs
are provided in Figure 5. In all instances, PoD(u) is almost one and the lottery-induced welfare is also nearly
as good, achieving at least 87% of the unconstrained optimum for 1350 agents and practically 100% for 3000
agents; the disparity parameter is also consistently close to its ideal value of 1, keeping the upper bound at
around 1.45 regardless of the radius. Thus, this can be considered an example of a utility model for which the
lottery mechanism virtually implements a constrained optimal allocation for a wide range of model parameters.
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Figure 5: Averaged utility losses for Project(ρ) with n = m = 1350 (left) and n = 3000, m = 1350 (right).

Figure 6: Averaged utility losses for Price(σ2) with n = m = 1350 (left) and n = 3000, m = 1350 (right).

Finally, for Price(σ2), we vary σ2 in {0, 10, 50}; the results obtained by averaging over 100 runs are given in
Figure 6. While the price of diversity is practically equal to one in all instances, the welfare loss observed with the
lottery mechanism drastically increases with σ2 (recall that agents from the same ethnicity group have identical
preferences when σ2 = 0): for instance, for 1350 agents, it extracts 98% of the optimal unconstrained welfare
under Price(0) while it only extracts 35% of this value under Price(50). These numerical tests show that utility
models exist for which the lottery mechanism may perform poorly compared to the optimal constrained allocation
mechanism, even in allocation problems with a very low price of diversity.

Chicago Public School Admissions. Chicago Public Schools (CPS) is one of the largest school districts in the
U.S.A.,7 overseeing more than 600 schools of various types.8 The application and selection processes for these
schools involve a number of computerized lotteries, with a significant number of entry-level seats in magnet and
selective enrollment schools being filled by lotteries based on a tier system based on the family socio-economic
status (SES) as part of a social integration policy. The city computes a multi-factor, composite SES score for each
of the census tracts that Chicago is divided into, and places each tract in one of four tiers based on its score in
such a way that each tier contains (roughly) a quarter of school-aged children. The tier of a child is determined by
their residential address. Of the seats in each school earmarked for a citywide SES lottery or general lottery, an
equal number is allocated to each tier, and there is an upper limit on the number of schools that a child may apply
to (see [30, 29]). We apply our setup to a simplified version of the CPS student-seat allocation scenario.

We collected data from the Chicago Public Schools website9 on the locations of magnet schools in Chicago
(which use a lottery mechanism to select students), as well as the total number of students enrolled in these
schools in 2018, which we divided by 9 to obtain the approximate number of first-graders (there are nine grades

7http://www.cps.edu/About_CPS/At-a-glance/Pages/Stats_and_facts.aspx
8http://cpstiers.opencityapps.org/about.html
9http://cps.edu/Pages/home.aspx
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Figure 7: Averaged utility losses for Dist(σ2) with n = m = 2261 (left) and n = 5000,m = 2261 (right) in our
Chicago-based simulations.

in total). This leads us to instances with l = 37 blocks (schools) and m = 2261 items (available seats) in
total. In this school admission problem, students are partitioned into k = 4 types, viz. Tiers 1, 2, 3 and 4,
depending on their residence (see Figure 3(b)10). In our experiments, we simulate 2 pools of n students where
the type composition follows the real-world proportion, as shown in Table 4. Our type-block capacities are
λpq = 0.25|Mq| for every pair (p, q). For our student-seat utility simulations, we use the distance-based utility
model Dist(σ2) we introduced in the housing domain, with the following important modifications: we choose the
preferred location of a student uniformly at random from the collection of census tracts (polygons) belonging to
her tier (see Figure 3(b)), where the position of every polygon is approximated by taking the averaged coordinates
of its extreme points; we reset each student’s utility to 0 for any school ranked 21st or lower in the preference
ordering induced by her utilities (since students are allowed to apply to at most 20 schools), and then renormalize
the utilities.

n |N1| |N2| |N3| |N4|
2261 613 622 533 493
5000 1355 1375 1180 1090

Table 4: #students (type p is Tier p for
each p ∈ [4].)

In our experiments, we vary σ2 in {0, 10, 50}, and report 100-run
averages of the same measurements as in the Singapore-based simula-
tions (Figure 7). We observe that both the price of diversity (hatched)
and the loss of the lottery mechanism (light gray bar) decrease as σ2

increases, remaining well below the Theorem 3 bound (dark gray).
However, the lottery mechanism loss is quite high in all instances
and, just as in the Singapore case, gets worse for a higher number of
students. Our experiments suggest that the lottery mechanism is better
suited to problems with an equal number of agents and items.

3 Group Fairness in Allocation

Up to this point, we have only explored the welfare loss due to capacity constraints; however, allocative efficiency
is only one facet of group fairness. In some settings, groups might receive an overall worse outcome from the
allocation mechanism, as compared to others. This is known in the fairness literature as envy. In this section, we
explore how envy-freeness (i.e., having no agent group envy another’s allocation) affects the allocation outcome.

10Based on data from http://cpstiers.opencityapps.org/ and http://cps.edu/ScriptLibrary/
Map-SchoolLocator/index.html.
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We work with a model similar to that in Section 2 with two differences: (i) the items M are not partitioned into
blocks (or, equivalently, there is one block); (ii) we assume that for each agent i ∈ N (resp. item j ∈M ), there is
at least one item j ∈M (resp. agent i ∈ N ) with u(i, j) > 0. We adopt an alternative view of diversity-respecting
assignment as a task of allocating bundles (i.e., disjoint subsets of M ) to super-agents (i.e., the types N1, . . . , Nk)
in a manner that is both fair and efficient (see [8] for further details and complete proofs).

Each type p is represented by a super-agent. We define vp(S), the valuation of any super-agent p ∈ [k] for
any bundle of items S ⊆M , as the maximum utilitarian social welfare of matching items in S to agents of type
Np; vp(·) is a monotonic, submodular set function (see [8, Theorem 1]). Moreover, our model does not satisfy
the additive bundle-valuation assumption or the public goods assumption prevalent in most prior work (see e.g.,
[12, 5, 2, 31] and references therein), necessitating novel solution techniques.

Definition 4 (Allocation): An allocationA is a collection of bundlesMA1 ,· · · ,MAk , such thatMA1 ∪. . .∪MAk ⊆
M and MAp ∩MAq = ∅ for all p, q ∈ [k] with p 6= q, along with a maximum-USW matching between each type Np

and its allocated bundle MAp for all p ∈ [k], thereby inducing a unique (N,M)-matching XA = (xAij)i∈N,j∈M .

We call MA0 = M\ ∪p∈[k] MAp the set of withheld items under allocation A. In general, withholding items
means that an allocation violates, by definition, the completeness condition, a commonly used efficiency criterion.
A type p’s marginal utility for an item j is the difference in p’s valuation of S with and without item j:
∆p(S; j) , vp(S ∪ {j}) − vp(S) if j /∈ S; ∆p(S; j) , vp(S) − vp(S\{j}) if j ∈ S. We say that an item
j ∈ MAp is unused under A if it is either unassigned in the corresponding matching between Np and MAp or
is assigned to an agent i ∈ Np such that u(i, j) = 0. Cleaning is the procedure of revoking all unused items
from an allocation and putting them in the withheld set. An item j ∈ M is wasted by an allocation A if it is
either withheld (i.e., j ∈ MA0 ) or allocated to a type p and unused, although there is some other type q with
∆q(M

A
q ; j) > 0. A non-wasteful allocation has no wasted items. Non-wastefulness is a reasonable efficiency

concept in this setting; in fact, it turns out to be a relaxation ([8, Lemma 1]) of a popular efficiency criterion,
Pareto optimality: an allocation is Pareto optimal among types if the realized bundle-value of no type under this
allocation can be strictly improved without strictly diminishing that of another.

We base our fairness criterion on the concept of envy: a type p envies a type q if vp(MAp ) < vp(M
A
q ); p envies

q up to ν items, ν ∈ [|MAq |], if there is a subset C ⊆MAq of size |C| = ν such that vp(MAp ) ≥ vp(MAq \C) and,
for every subset C ′ ⊆MAq with |C ′| < ν, vp(MAp ) < vp(M

A
q \C ′). Ideally, we want no type to envy another but

such an allocation may not exist; a relaxation that always exists is the following:

Definition 5 (Envy-freeness up to one item [11]): Allocation A is envy-free up to one item (EF1) among types
if for any two types p, q ∈ [k], p either does not envy q or envies q up to one item i.e., there exists an item
j ∈MAq such that vp(MAp ) ≥ vp(MAq \{j}).

We want our allocation to be not just EF1 among types (thereby respecting diversity) but also efficient in one
of the ways discussed above. Our first result in this vein applies to the binary utility model: u(i, j) ∈ {0, 1},
∀i ∈ N , ∀j ∈M . This captures scenarios where each agent either approves or disapproves of an item but does
not distinguish among its approved items. Moreover, in formal conversations with stakeholders, we have found
that a binary utility model is likely consistent with how agents value items in many real-world situations, e.g., in
housing markets, a potential buyer might want a flat of a particular category only (such as a 3BHK within a 5-km
radius of her workplace), being indifferent among flats of the same category.

Theorem 6: For any problem instance with a binary utility model, Algorithm 1 computes in poly(n,m) time an
EF1 allocation that also maximizes the utilitarian social welfare of the induced (N,M)-matching.

It is easy to see that optimal utilitarian social welfare automatically implies Pareto optimality among types, and
hence non-wastefulness. Thus, Algorithm 1 solves the fair and efficient allocation problem for binary utilities.

72



Algorithm 1: Maximum-size Matching with Envy-Induced Transfers

1 Compute a maximum-size matching of bipartite graph (N,M) such that there is an edge between i and j
iff u(i, j) = 1, and clean the resulting allocation; designate the subset of items matched to agents in Np

as type p’s allocated bundle MAp ∀p ∈ [k].
2 /*Envy-Induced Transfers*/
3 while there are two types p, q such that p envies q up to more than 1 item. do
4 Find item j′ ∈MAq such that ∆p(M

A
p ; j′) > 0.

5 MAq ←MAq \{j′}; MAp ←MAp ∪ {j′}.
6 Compute a maximum-size (Np,Mp)-matching.
7 end

For more general utilities in R+, an algorithm that guarantees a similarly fair and efficient allocation remains
elusive. However, we note that it is possible to obtain a type-complete TEF1 allocation in polynomial time by a
natural extension (called L hereafter) of the algorithm due to Lipton et al. [24]: iterate over the items j ∈ M ,
giving item j to a type, say p, that is currently not envied by any other type for its current bundle Mp; compute
an optimal matching with the augmented bundle Mp ∪ {j}; construct the envy graph where there is a directed
edge from a type q to a type r whenever q envies r and eliminate any cycle in this graph by transferring the
bundle of every type on this cycle to its predecessor on this cycle (to ensure that there is an unenvied type in each
iteration), followed by re-matching within each such type. Although no item is withheld, it is possible for the
final allocation to be wasteful: an item may be allocated to a type which has zero marginal utility for it or may
become unassigned after a bundle is transferred between types.

One heuristic that could reduce waste is the following: in each iteration, find an item-type pair having the
maximum marginal utility among all currently unenvied types and all unallocated items (breaking further ties
uniformly at random, say), and allocate that item to that type. We call L, augmented with this heuristic, H.

%Waste

Data set #Items L H

UNEQUAL
50 13% 0
100 39% 0

EQUAL
50 0% 0
100 0.005% 0

To test how this marginal utility maximization heuristic performs in
practice, we experimentally compared procedures L and H using the
percentage of items wasted averaged over runs, denoted by %Waste,
as our performance metric. We simulated two data sets with n = 100
agents partitioned into k = 3 types: UNEQUAL (ethnic proportions
following Singapore 2010 census [33]): |N1| = 74, |N2| = 13,
|N3| = 13; EQUAL: |Np| ≈ n/k for all types p ∈ [k]. For each
agent, we sampled m numbers uniformly at random from [0, 1] and

normalized them to generate utilities for all m items, with m ∈ {50, 100}. The results are shown in the adjoining
table: the main observation is that H produces zero waste for all experiments. Thus, augmenting L with a simple
heuristic produces a surprising improvement in performance over a wide range of problem parameters.

4 Discussion and future work

One of the extensions of the work presented here that we are currently pursuing is a rigorous analysis of the
lottery mechanism with diversity quotas which we experimentally compared with our constrained optimization
benchmark in Section 2.1. We are trying to assess whether certain lotteries are better than others in maintaining
diverse but efficient outcomes in theory and in practice i.e., how the different parameters (the number of types,
their respective percentage caps, sizes, and their utility structures) interact with the randomness of the draws to
affect the welfare of the entire population as well as welfare-discrepancies among types.

One other major direction we are investigating is an extension of/alternative to Algorithm 1 for arbitrary
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real-valued utilities. Several other possible approaches towards a tradeoff between fairness/diversity and efficiency
are also worth exploring: diversity through the optimization of carefully constructed objective functions [23, 1];
extensions of non-envy-based fairness concepts (group-wise egalitarian welfare, maximin shares [3, 6], etc.) to
our matching-based setting, and so on.
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Abstract

Human decision makers often receive assistance from data-driven algorithmic systems that provide a
score for evaluating the quality of items such as products, services, or individuals. These scores can
be obtained by combining different features either through a process learned by ML models, or using a
weight vector designed by human experts, with their past experience and notions of what constitutes item
quality. The scores can be used for different evaluation purposes such as ranking or classification.

In this paper, we view the design of these scores through the lens of responsibility. We present
technical methods (i) to assist human experts in designing fair and stable score-based rankings and (ii)
to assess and (if needed) enhance the coverage of a training dataset for machine learning tasks such as
classification.

1 Introduction
Big data technologies have affected every corner of human life and society. These technologies have made
our lives unimaginably more shared, connected, convenient, and cost-effective. Using data-driven technologies
gives us the ability to make wiser decisions, and can help make society safer, more equitable and just, and
more prosperous. However, while having an enormous potential to help solve societal issues, irresponsible
implementation of these technologies can not only fail to help, but may even make matters worse. Racial bias in
predictive policing and data-driven judgeship, harming marginalized people and poor communities, and sexism
in job recommendation systems are a few examples of such failures. In order to minimize societal harms of
data-driven technologies, and to ensure that objectives such as fairness, equity, diversity, robustness, accountability,
and transparency are satisfied, it is necessary to develop proper tools, strategies, and metrics.

Human decision makers often receive assistance from data-driven algorithmic systems that provide a score
for evaluating objects, including individuals. The scores can be computed by combining different attributes either
through a process learned by ML models (using some training data), or using a weight vector assigned by human
experts. For example, a support vector machine learns the parameter values that define a linear separator in some
regularized multi-dimensional feature space. Learning methods require that there be labeled data, and assume
that there is some known ground truth.

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Figure 1: General architecture of score-based
systems

In contrast, an expert-specified method does not require any la-
beled data, but may be ad-hoc. The scores are used either to
evaluate an object independently (by only looking at its score) or
in comparison with others.

Two major categories of methods that use scores to supporting
decisions are (i) Classification and (ii) Ranking1. Classification
is often used for predicting future outcomes based on historical
data. Predicting recidivism and classifying individuals based on
how likely they will commit a crime in the future is a societally
important example of this kind. Ranking, on the other hand, is
used for assignment by comparison on the existing data. For
example, a company may rank its employees, and then reward
high-ranked employees (with a raise or promotion) and fire low-
ranked employees. College admissions is another example where
the top-k applicants may be admitted by a college. Similarly, the
international football association FIFA considers its rankings as “a
reliable measure” for seeding the international tournaments such
as the World Cup [3].

Rankings are relative while labels in classification are absolute. That is, the rank of an individual depends on
the others in the dataset, while class labels are assigned solely based on the score of an individual. The scoring
mechanism for classification is usually learned by ML models. It can be a linear model such as regression and
SVM, or a complex deep learning model. On the other hand, scoring mechanism for ranking is usually designed
by human experts. US News university rankings, FIFA rankings, and CSRankings2 are some of these examples.

Of course, the dichotomy above is not as clean as the preceding paragraph may suggest. Not all classification
scoring is machine-learned. For example PSA (Public Safety Assessment) scores3, used in data-driven judgeship,
are human-designed. Similarly, ranking can be the basis for classification through the introduction of a cut-off
rank, as in the case of college admissions.

Figure 1 shows the general architecture of score-based systems for data-driven decision making. The central
component in these systems are the score-based evaluators that assign a score to each individual in the input data
and generate the output by, for example, ranking or classifying the input. The output provides the evaluation of
individuals that is used for decision making. Note that the scoring module can be designed by experts, or be
learned by a machine, using some training data.

We, in our project Mithra, view human experts (for human-designed evaluators) and training data (for machine
learned evaluators) as the keys to achieving responsibility in score-based systems. That is, for human-designed
tasks such as ranking, we advocate designing assistive tools that help experts make sure their evaluators meet
the objectives of fairness and stability. On the other hand, for machine learning tasks such as classification,
we advocate assessing and repairing training data to make sure that, for example, the data is representative of
minority groups [4], and models trained on that data do not reflect results of historical discrimination [5]. In the
following, first in § 2, we explain our research for score-based ranking. Then in § 3, we provide our results for
machine learning tasks such as classification by assessing and enhancing coverage for a (given) training dataset.

1Note that in some contexts ranking or classification is done without scoring. For instance, rank aggregation from partial ranked
lists [1] or pairwise comparisons [2] is popular for group opinion collection. Our focus in this paper are evaluations (including ranking
and classification) based on scores.

2csrankings.org
3www.psapretrial.org/about/factors
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D f f ′

id x1 x2 location 〈1, 1〉 〈1.11, .9〉
t1 0.63 0.71 Detroit 1.34 1.338
t2 0.72 0.65 Chicago 1.37 1.384
t3 0.58 0.78 Detroit 1.36 1.387
t4 0.7 0.68 Chicago 1.38 1.389
t5 0.53 0.82 Detroit 1.35 1.321
t6 0.61 0.79 Chicago 1.4 1.388

Figure 2: Example 1-Data Figure 3: Example 1-Dual space Figure 4: Ordering ex-
change between t1:[1,2] and
t2:[2,1]

2 Responsible Ranking

Ranking of individuals is commonplace today, and is used, for example, for college admissions and employment.
Score-based evaluators, designed by human experts, are commonly used for ranking, especially when there are
multiple criteria to consider. The scores are usually computed by linearly combining (with non-negative weights)
the relevant attributes of each individual from some dataset D. Then, we sort the individuals in decreasing order
of score and finally return either the full ranked list or its highest-scoring sub-set, the top-k.

Formally, we consider a dataset D to consist of n items, each with d scalar scoring attributes. In addition to
the scoring attributes, the dataset may contain non-scoring attributes that are used for filtering, but they are not
our concern here. Thus we represent an item t ∈ D as a d-length vector of scoring attributes, 〈x1, x2, . . . , xd〉.
Without loss of generality, we assume that the scoring attributes have been appropriately transformed: normalized
to non-negative values between 0 and 1, standardized to have equivalent variance, and adjusted so that larger
values are preferred. A scoring function f~w : Rd → R, with weight vector ~w = 〈w1, w2, . . . , wd〉, assigns the
score f~w(t) = Σd

j=1wjt[j] to any item t ∈ D.
Linear scoring functions are straightforward to compute and easy to understand [6]. That is the reason they

are popular for ranking, and for evaluation in general. However, it turns out that the rankings may highly depend
on the design of these functions. To further explain this, let us consider the following toy example.

Example 1: Consider a real estate agency with two offices in Chicago, IL and Detroit, MI. The owner assigns
agents based on need (randomly) to the offices. By the end of the year, she wants to give a promotion to the “best”
three agents. The criteria for choosing the agents are x1 : sales and x2 : customer satisfaction. Figure 2
shows the values in D, after normalization. Considering the two criteria to be (roughly) equally important, the
owner chooses the weights ~w = 〈1, 1〉 for scoring. That is, the score of every agent is computed as f = x1 + x2.
The 5th column in Figure 2 shows the scores, based on this function. According to function f , the top-3 agents
are t6, t4, and t2, with scores 1.4, 1.38, and 1.37, respectively. Note that, according to f , all top-3 agents are
located in Chicago and no agent from Detroit is selected.

The specific weights chosen have a huge impact on the score and hence rank for an item. In Example 1, the
owner chose the weight vector ~w = 〈1, 1〉, in an ad-hoc manner, without paying attention to the consequences.
However, small changes in the weights could dramatically change the ranking. For example, the function f ′ with
the weight vector ~w′ = 〈1.1, .9〉 may be equally good for the owner and she may not even have a preference
between ~w and ~w′. Probably her choice of weights is only because ~w is more intuitive to human beings. The last
column in Figure 2 shows the scores based on f ′, which produce the ranking f ′ : 〈t4, t6, t3, t2, t1, t5〉. Comparing
it with the ranking generated by f : 〈t6, t4, t2, t3, t5, t1〉, one may notice that the rank of each and every individual
has changed. More importantly, while according to f all promotions are given to the agents of the Chicago office,
f ′ gives two promotions to Chicago and one to Detroit.

Many sports use ranking schemes. An example is the FIFA World Ranking of national soccer teams based
on recent performance. FIFA uses these rankings as “a reliable measure for comparing national A-teams” [3].
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Despite the trust placed by FIFA in these rankings, many critics have questioned their validity. University rankings
is another example that is both prominent and often contested [7]: various entities, such as U.S. News and World
Report, Times Higher Education, and QS, produce such rankings. Similarly, many funding agencies compute
a score for a research proposal as a weighted sum of scores of its attributes. These rankings are, once again,
impactful, yet heavily criticized. Similarly, in criminal justice, COMPAS [8] was originally intended to provide
services and positive interventions, under resource constraints. That is, a score computed by COMPAS would
then be used to rank individuals to prioritize access to services. Many other impactful examples can be mentioned,
such as a company that evaluates its employees to promote some and let go some others, and a college admissions
officer who decides to admit a small portion of the applicants.

Surprisingly, similar to Example 1, despite the enormous impact of score-based rankers, attribute weights are
usually assigned in an ad-hoc manner, based only on intuitive reasoning and common-sense of the human designers.
For instance, in the case of FIFA rankings, the scoring formula combines the past four years of performance of
each team as x1 + 0.5x2 + 0.3x3 + 0.2x4, where xi is the team’s performance in the past ith year. Of course, the
designers tried to come up with a set of weights that make sense. For them 0.98x1 + 0.51x2 + 0.29x3 + 0.192x4
would probably be equally acceptable, since the weight values are virtually identical: they choose the former
formula simply because round numbers are more intuitive. This issue, in the context of university ranking, is
further elaborated by Malcolm Gladwell in [7].

Assuming that the designers of rankings are willing to accept scoring functions similar to their initial functions,
Mithra provides a toolbox and algorithms to help human experts practice responsible ranking. In the following, we
start by providing some necessary background from computational geometry in § 2.2, followed by an explanation
of fairness and stability in our framework in § 2.1.

2.1 Fairness and Stability Models

Decisions based on rankings may impact the lives of individuals and even influence societal policies. For this
reason, it is essential to make the development and deployment of rankings transparent and otherwise principled.
Also, since rankings highly depend on what weights are chosen in the scoring function, it is necessary to make
sure that generated rankings are fair and robust.

2.1.1 Fairness

There is not a single universal definition of fairness. Impossibility theorems [9] have established that we cannot
simultaneously achieve all types of fairness. Indeed, the appropriate definitions of fairness greatly depend on
the context and on the perspective of the user. Sometimes, it may even be prescribed by law. As such, we
consider a general definition of fairness in our work. Our focus is on societal (v.s. statistical) bias [10] and group
fairness [11] (v.s. individual fairness [12]).

We consider some attributes, used for decision making (e.g. sales and customer satisfaction in Example 1), to
be non-sensitive. Some other attributes, such as race and gender (and location in Example 1), we consider to be
sensitive. We adopt the Boolean fairness model, in which a fairness oracle O takes as input an ordered list of
items from D, and determines whether the list satisfies a set of fairness constraints, defined over the sensitive
attributes: O : ∇f (D) → {>,⊥}. A scoring function f that gives rise to a fair ordering over D is said to be
satisfactory. For instance, in Example 1, assume that the owner knows that, because of some hidden factors, sales
and customer satisfaction patterns are different in Chicago and Detroit. Hence, she considers the selection of the
top-3 agents to be fair, if it assigns at least one of the promotions to each one of the offices. Note that according
to this criterion, the ranking provided by f = x1 + x2 is not fair as it assigns all three promotions to the agents in
Chicago. On the other hand the ranking generated by function f ′ = 1.1x1 + .9x2 assigns two of the promotions
to Chicago and one to Detroit, and hence is considered to be fair.
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2.1.2 Stability

We want a ranking to be stable with respect to changes in the weights used for scoring. Given a particular ranked
list of items, one question a consumer will ask is: how robust is the ranking? If small changes in weights can
change the ranked order, then there cannot be much confidence in the correctness of the ranking. We call a
ranking of items stable if it is generated by a large portion of scoring functions in the neighborhood of the initial
scoring function specified by the expert.

Every scoring function in a universe U∗ of scoring functions induces a single ranking of the items. But each
ranking is generated by many functions. For a datasetD, let RD be the set of rankings over the items inD that are
generated by at least one scoring function f ∈ U∗. Consider the set of scoring functions that generate a ranking
r ∈ RD. Because this set of functions is continuous, we can think of it as a region in the space of all possible
functions in U∗. We use the region associated with a ranking to define the ranking’s stability. The intuition is
that a ranking is stable if it can be induced by a large set of functions. If the region of a ranking is large, then
small changes in the weight vector are not likely to cross the boundary of a region and therefore the ranked order
will not change. For every region R, let its volume, vol(R), be the measure of its bulk. Given a ranking r ∈ RD,
the stability of r is the proportion of scoring functions in U∗ that generate r. That is, stability is the ratio of the
volume of the ranking region of r to the volume of U∗. Formally:

SD(r) =
vol(RD(r))

vol(U∗)
(20)

We emphasize that stability is a property of a ranking (not of a scoring function).

2.2 Geometric Interpretation

In the popular geometric model for studying data, each attribute is modeled as a dimension and items are
interpreted as points in a multi-dimensional space. We transform this Primal space into a dual space [13].

We use the dual space in Rd, where an item t is presented by a hyperplane d(t) given by the following
equation of d variables x1 . . . xd:

d(t) : t[1]× x1 + · · ·+ t[d]× xd = 1 (21)

Continuing with Example 1, Figure 3 shows the items in the dual space. In R2, every item t is a 2-dimensional
hyperplane (i.e. simply a line) given by d(t) : t[1]x1 + t[2]x2 = 1. In the dual space, a scoring function f~w is
represented as a ray starting from the origin and passing through the point [w1, w2, ..., wd]. For example, the
function f with the weight vector ~w = 〈1, 1〉 in Example 1 is drawn in Figure 3 as the origin-starting ray that
passes through the point [1, 1]. Note that every scoring function (origin-starting ray) can be identified by (d− 1)
angles 〈θ1, θ2, · · · , θd−1〉, each in the range [0, π/2]. Thus, given a function f~w, its angle vector can be computed
using the polar coordinates of w. For example, the function f in Figure 3 is identified by the angle θ = π/4.
There is a one-to-one mapping between these rays and the points on the surface of the origin-centered unit
d-sphere (the unit hypersphere in Rd), or to the surface of any origin-centered d-sphere. Thus, (the first quadrant
of) the unit d-sphere represents the universe of functions U .

Consider the intersection of a dual hyperplane d(t) with the ray of a function f . This intersection is in the
form of a × ~w, because every point on the ray of f is a linear scaling of ~w. Since this point is also on the
hyperplane d(t), t[1]× a× w1 + · · ·+ t[d]× a× wd = 1. Hence,

∑
t[j]wj = 1/a. This means that the dual

hyperplane of any item with the score f(t) = 1/a intersects the ray of f at point a × ~w. Following this, the
ordering of the items based on a function f is determined by the ordering of the intersection of the hyperplanes
with the vector of f . The closer an intersection is to the origin, the higher its rank. For example, in Figure 3, the
intersection of the line t6 with the ray of f = x1 + x2 is closest to the origin, and t6 has the highest rank for f .

Consider the dual presentation of two items t1 : [1, 2] and t2 : [2, 1], shown in Figure 4, and a function that
passes through this intersection. We name this function the ordering exchange between t1 and t2. That is because
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this function partitions the space in two regions, where every function in the top-left region ranks t1 higher than
t2 while every function in bottom-right ranks t2 higher. In general, the ordering exchange between a pair of items
ti and tj is identified by (the set of function on) the following origin-passing hyperplane:

d∑
k=1

(ti[k]− tj [k])wk = 0 (22)

2.3 Designing Fair Ranking Schemes

We interpret fairness to mean that (a) disparate impact, which may arise as a result of historical discrimination,
needs to be mitigated; and yet (b) disparate treatment cannot be exercised to mitigate disparate impact when
the decision system is deployed. Disparate impact arises when a decision making system provides outputs that
benefit (or hurt) a group of people sharing a value of a sensitive attribute more frequently than other groups
of people. Disparate treatment, on the other hand, arises when a decision system provides different outputs
for groups of people with the same (or similar) values of non-sensitive attributes but with different values of
sensitive attributes. To avoid disparate treatment, it is desirable (and in many cases mandated by law) to not
use information about an individual’s membership in a protected group as part of decision-making. Following
these, our goal is to build a system that helps human expert to design fair ranking schemes, in the sense that those
both mitigate disparate impact (by ensuring that appropriate proportionality constraints are satisfied) and do not
exercise disparate treatment (by not explicitly using information about an individual’s membership in a protected
group) during deployment. That is, a single evaluator will be used for all items in the dataset, irrespective of their
membership in a protected group.

Our goal [4] is to build a system to assist a human designer of a scoring function in tuning attribute weights
to achieve fairness. Formally, our closest satisfactory function problem is: Given a dataset D with n items over d
scalar scoring attributes, a fairness oracle O : ∇f (D)→ {>,⊥}, and a linear scoring function f with the weight
vector ~w = 〈w1, w2, · · · , wd〉, find the function f ′ with the weight vector ~w′ such that O(∇f ′(D)) = > and the
angular distance between ~w and ~w′ is minimized.

Since the tuning process does not occur too often, it may be acceptable for it to take some time. However, we
know that humans are able to produce superior results when they get quick feedback in a design or analysis loop.
Ideally, a designer of a ranking scheme would want the system to support her work through interactive response
times. Our goal is to meet this need, to the extent possible, by providing a query answering system. From the
system’s viewpoint, the challenge is to propose similar weight vectors that satisfy the fairness constraints, in
interactive time. To accomplish this, our solution operates with an offline phase and then an online phase. In
the offline phase, we process the dataset, and develop data structures that will be useful in the online phase. In
the online phase, the user specifies a query in the form of a scoring function f . If the ranking based on f does
not meet the predefined fairness constraints, we suggest to the user an alternative scoring function that is both
satisfactory and similar to f . The user may accept the suggested function, or she may decide to manually adjust
the query and invoke our system once again.

The notion of ordering exchanges, explained in § 2.2 is a key in the preprocessing phase. Consider the set
of ordering exchange hyperplanes between all pairs of items in D. Similar to Figure 4, each hyperplane hi,j
(the ordering exchange between ti and tj) partitions the function space U in two regions where in one region ti
outranks tj while in the other tj is ranked higher. The collection of these hyperplanes provide an arrangement [14]
in the form of a dissection of the space into origin-starting connected d-cones with convex surfaces, we call
ranking regions. All functions in a ranking region generate the same ranking while every ranking is generated by
the functions of (at most) one ranking region. Hence, in the offline time it is enough to identify the satisfactory
ranking regions whose rankings satisfy fairness constraints.

For 2D, we design a raw-sweeping algorithm. At a high level, using a min-heap for maintaining the ordering
exchanges, the algorithm sweeps a ray from the x to y-axis. It first orders the items based on the x-axis and
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gradually updates the ordering as it visits an ordering exchange along the way. As the algorithm moves from one
ranking region to the other, it checks if the new ranking is fair, and if so, marks the region as satisfactory. Each
satisfactory region in 2D is identified by two angles as its beginning and end. We construct a the sorted list of (the
borders of) satisfactory regions in the offline phase. Given a query function f in online phase, we apply a binary
search on the sorted list. If f falls in a satisfactory region, the algorithm returns f , otherwise it returns the closest
satisfactory border to f .

Discovering the satisfactory regions in MD is challenging when there are more than two attributes. That is
because the complexity of the arrangement of ordering exchanges is exponential in the number of attributes, d.
Even given the satisfactory regions, answering user queries in interactive time is not possible. The reason is
that we need to solve a non-linear programming problem for each satisfactory region, before answering each
query. To address this issue, we propose an approximation algorithm for obtaining answers quickly, yet accurately.
Our approach relies on first partitioning the function space, based on a user-controlled parameter N , into N
equi-volume cells, where each cell is a hypercube of (d − 1)-dimensions. During preprocessing, we assign a
satisfactory function f ′c to every cell c such that, for every function f , the angle between f and f ′c is within a
bounded threshold (based on the value of N ) from f and its optimal answer. To do so, we first identify the cells
that intersect with a satisfactory region, and assign the corresponding satisfactory function to each such cell.
Then, we assign the cells that are outside of the satisfactory regions to the nearest discovered satisfactory function.
In the online phase, given an unsatisfactory function f , we need to find the cell to which f belongs, and to return
its satisfactory function. This can be done in O(logN) by performing binary searches on the partitioned space.

2.4 Obtaining Stable Rankings

Magnitude of the ranking regions that produces an observed ranking identify its stability. Stability is a natural
concern for consumers of a ranked list. If a ranking is stable, then the same ranking would be obtained for many
choices of weights. But if this region is small, then we know that only a few weight choices can produce the
observed ranking. This may suggest that the ranking was engineered or “cherry-picked” by the producer to obtain
a specific outcome. Human experts who produce scoring functions for generating the rankings desire to produce
stable results. We argued in [15] that stability in a ranked output is an important aspect of algorithmic transparency,
because it allows the producer to justify their ranking methodology, and to gain the trust of consumers. Of course,
stability cannot be the only criterion in the choice of a scoring function: the result may be weights that seem
“unreasonable” to the ranking producer. To support the producer, we allow them to specify a range of reasonable
weights, or an acceptable region in the space of functions, and help the producer find stable rankings within this
region.

We develop a framework [16] that can be used to assess the stability of a provided ranking and to obtain a
stable ranking within the the acceptable region of scoring functions. We address the case where the user cares
about the rank order of the entire set of items, and also the case where the user cares only about the top-k
items. We focus on efficiently evaluating an operator we call GET-NEXT, which can be used to discover the stable
rankings, ordered by their stability. Formally, for a dataset D, a region of interest U∗, and the top-(h− 1) stable
rankings in U∗, discovered by the previous GET-NEXT calls, our goal is to find the h-th stable ranking r ∈ R. Note
that the GET-NEXT operator enables discovering the top-` stable rankings, for any arbitrary `. That simply can be
done by calling the operator ` times. Our technical contribution for 2D is similar to the one for fair rankings. The
2D algorithm first discovers the ranking regions in U∗ by sweeping a ray in it. The discovered rankings, along
with their stabilities, are moved to a heap data structure. Then, every call of GET-NEXT returns the next stable
ranking from heap.

For MD, we design a threshold-based algorithm that uses an arrangement [4] tree data structure, AKA cell
tree [17], to partially construct the arrangement of ordering exchange hyperplanes. Specifically, given that our
objective is to find stable rankings and that the user will likely be satisfied after observing a few rankings, rather
than discovering all possible rankings, we target the discovery of only the next stable ranking and delay the
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arrangement construction for other rankings. Arrangement construction is an iterative process that starts by
partitioning the space into two half-spaces by adding the first hyperplane. The construction then iteratively adds
the other hyperplanes; to add a new hyperplane, it first identifies the set of regions in the arrangement of previous
hyperplanes with which the new hyperplane intersects, and then splits each such region into two new regions.
The GET-NEXT operator, however, only breaks down the largest region at every iteration, delaying the construction
of the arrangement in all other regions. Please refer to [16] for more details about the algorithm.

While being efficient in practice for medium-size settings, the algorithms based on arrangement construction
are not scalable, as their worst-case complexities are cursed by the complexity of the arrangement. Next, we
discuss function sampling as a powerful technique for aggregate estimation using Monte-carlo methods [18], as
well as an effective technique for search-space exploration.

2.5 Function Sampling for Scalability

Uniform sampling from the scoring function space enables designing randomized algorithms for evaluating and
designing score-based evaluators. In the following, we first discuss sampling from the complete function space
and then propose an efficient unbiased sampling from a region of interest U∗.

As explained in § 2.2, there is a 1-1 mapping between the universe of scoring functions and the points on the
surface of (the first quadrant of) the unit d-sphere. That is, every point one the surface of the d-sphere correspond
to a scoring function and vice versa. Hence, the problem of choosing functions uniformly at random from U
is equivalent to choosing random points from the surface of a d-sphere. As also suggested in [19], we adopt a
method for uniform sampling of the points on the surface of the unit d-sphere [20, 21]. Rather than sampling the
angles, this method samples the weights using the Normal distribution, and normalizes them. This works because
the normal distribution function has a constant probability on the surfaces of d-spheres with common centers [21].
Therefore, in order to generate a random function in U , we set each weight as wi = |N (0, 1)|, where N (0, 1)
draws a sample from the standard normal distribution.

In order to compute an aggregate (or conduct exploration) by perturbing in a region of interest U∗ in the
neighborhood of some function f , we need to only sample from the set of functions with the maximum angle
around the ray of f . An acceptance-rejection method [22] can be used for this purpose. That is, to draw a sample,
uniformly at random, from U and accept it, if it belongs to U∗. The efficiency of this method, however, depends
on the volume of U∗, as if it is small, the algorithm will reject most of the generated samples. Alternatively, we
propose a sampler that works based on the following observation: modeling U∗ as the surface unit d-spherical
cap, each Riemannian piece of the surface forms a (d− 1)-sphere. Following this observation, our sampler first
selects a Riemannian piece, randomly, proportional to its volume. Then it uses the Normal distribution to draw
a sample from the surface of the Riemannian piece. Please refer to [16] for more details about the design of
this sampler. We would like to emphasize that the proposed sampler has a linear complexity to the number of
attributes d. It therefore provides a powerful tool for studying the score-based evaluators in higher dimensions.

We use function sampling for different purposes, including (i) evaluating the stability of a given ranking,
(ii) designing a randomized algorithm for finding the stable rankings, and (iii) on-the-fly query processing for
discovering fair functions. For (i) and (ii), in [16], we design Monte-carlo methods [18] that consume a set of
N function samples for finding the rankings in U∗ and computing their stabilities. For (iii), function sampling
provides a heuristics for on-the-fly fair ranking scheme query processing in large-scale settings [4].

We used function sampling in MithraRanking [23], our web application4, designed for responsible ranking
design. After uploading a dataset, or choosing among available datasets, the application allows the user to specify
the fairness constraints she wants to satisfy. For instance, in Figure 5, the user has added a constraint that the
top-30% of the ranking should contain at most 30% with age more than 56 years old. Note that the interface
gives the user the ability to add multiple fairness constraints. She then, as in Figure 6, specifies the weight vector

4http://mithra.eecs.umich.edu/demo/ranking/
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Figure 5: Specifying fairness con-
straints

Figure 6: Specifying a weight vector Figure 7: System results

of the initial scoring function and a region of interest around it, by specifying a cosine similarity. The system
then ranks the data based on the specified function and checks if the ranking satisfies the fairness criteria. It also
draws unbiased function samples from the region of interest to estimate the stability of the generated ranking.
The system also uses the samples for finding the most stable rankings in the region of interest, the most similar
fair function to the initial function, and a function (not necessarily the most similar) that generates a fair and
stable ranking (Figure 7). The user can then accept any of those suggestions and change the ranking accordingly.

3 Coverage in Training Data
So far in this paper, we discussed responsible design of scoring functions by a human expert. Scoring models
are also used for tasks such as classification and prediction Such scoring models can be complex and are often
determined using machine learning techniques. An essential piece to the learning is a labeled training dataset.
This dataset could be collected prospectively, such as through a survey or a scientific experiment. In such a case,
a data scientist may be able to specify requirements such as representation and coverage. However, more often
than not, analyses are done with data that has been acquired independently, possibly through a process on which
the data scientist has limited, or no, control. This is often called “found data” in the data science context. It is
generally understood that the training dataset must be representative of the distribution from which the actual
test/production data will be drawn. More recently, it has been recognized that it is not enough for the training
data to be representative: it must include enough examples from less popular “categories”, if these categories
are to be handled well by the trained system. Perhaps the best known story underlining the importance of this
inclusion is the case of the “google gorilla” [24]. An early image recognition algorithm released by Google had
not been trained on enough dark-skinned faces. When presented with an image of a dark African American,
the algorithm labeled her as a “gorilla”. While Google very quickly patched the software as soon as the story
broke, the question is what it could have done beforehand to avoid such a mistake in the first place. The Google
incident is not unique: there have been many other such incidents. For example, Nikon introduced a camera
feature to detect whether humans in the image have their eyes open – to help avoid the all-too-common situation
of the camera-subject blinking when the flash goes off resulting in an image with eyes closed. Paradoxically for a
Japanese company, their training data did not include enough East Asians, so that the software classified many
(naturally narrow) open Asian eyes as closed [25].

The problem becomes critical when the data is used for training models for data-driven algorithmic decision
making. For example, consider a tool designed to help judges in sentencing criminals by predicting how likely
an individual is to re-offend. Such a tool can provide insightful signals for the judge and have the potential to
make society safer. On the other hand, a wrong signal can have devastating effects on individuals’ lives. So it is
important to make sure that the tool is trained on data that includes adequate representation of individuals similar
to each person that will be scored by it. In [26], we study a real dataset of criminals used for building such a tool,
published by Propublica [8]. We demonstrate that a model with an acceptable overall accuracy had an accuracy
worse than random guess for Hispanic females, due to inadequate representation.

While Google’s resolution to the gorilla incident was to “ban gorillas” [27], a better solution is to ensure that
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the training data has enough entries in each category. Referring to the issue as “disparate predictive accuracy”,
[28] also highlights that the problem often is due to the insufficient or skewed sample sizes. If the only category
of interest were race, as in (most of) the examples above, there are only a handful of categories and this problem
is easy. However, in general, objects can have tens of attributes of interest, all of which could potentially be
used to categorize the objects. For example, survey scientists use multiple demographic variables to characterize
respondents, including race, sex, age, economic status, and geographic location. Whatever be the mode of data
collection for the analysis task at hand, we must ensure that there are enough entries in the dataset for each object
category. Drawing inspiration from the literature on diversity [29], we refer to this concept as coverage.

Lack of coverage in a dataset also opens up the room for adversarial attacks [30]. The goal in an adversarial
attack is to generate examples that are misclassified by a trained model. Poorly covered regions in the training
data provide the adversary with opportunities to create such examples. For instance, consider the gorilla incident
again. Knowing that black people are under-represented in the dataset gives the adversary the information that the
models trained using this dataset are not well-trained for this category. The adversary can use this information to
generate examples that are misclassified by the model.

Our objective here is two-fold. First, we want to help the dataset users to assess the coverage, as a characteri-
zation, of a given dataset, in order to understand such vulnerabilities. For example, we use information about
lack of coverage as a widget in the nutritional label [15] of a dataset, in our MithraLabel system5[31]. Once the
lack of coverage has been identified, next we would like to help data owners improve coverage by identifying the
smallest number of additional data points needed to hit all the “large uncovered spaces”.

Given multiple attributes, each with multiple possible values, we have a combinatorial number of possible
patterns, as we call combinations of values for some or all attributes. Depending on the size and skew in
the dataset, the coverage of the patterns will vary. Given a dataset, our first problem is to efficiently identify
patterns that do not have sufficient coverage (the learned model may perform poorly in portions of the attribute
space corresponding to these patterns of attribute values). It is straightforward to do this using space and time
proportional to the total number of possible patterns. Often, the number of patterns with insufficient coverage
may be far fewer. In [26], we develop techniques, inspired from set enumeration and association rule mining
(apriori) [32], to make this determination efficient.

A more interesting question for the dataset owners is what they can do about lack of coverage. Given a list of
patterns with insufficient coverage, they may try to fix these, for example by acquiring additional data. In the
ideal case, they will be able to acquire enough additional data to get sufficient coverage for all patterns. However,
acquiring data has costs, for data collection, integration, transformation, storage, etc. Given the combinatorial
number of patterns, it may just not be feasible to cover all of them in practice. Therefore, we may seek to
make sure that we have adequate coverage for at least any combination of ` attributes, where we call ` the
maximum covered level. Alternatively, we could identify important pattern combinations by means of a value
count, indicating how many combinations of attribute values match that pattern. Hence, our goal becomes to
determine the patterns for the minimum number of items we must add to the dataset to reach a desired maximum
covered level or to cover all patterns with at least a specified minimum value count.

We consider the low-dimensional categorical (sensitive) attributes A = {A1, A2, ..., Ad} such as race,
gender, and age for studying coverage. Where attributes are continuous valued or of high cardinality, we
consider using techniques such as (a) bucketization: putting similar values into the same bucket, or (b) considering
the hierarchy of attributes in the data cube for reducing the cardinality of any one attribute. To capture lack of
coverage in the dataset, we define a pattern P as a vector of size d, in which P [i] is either X (meaning that its
value is unspecified) or is a value of attribute Ai. We name the elements with value X as non-deterministic and
the others as deterministic. We say an item t matches a pattern P (written as M(t, P ) = >), if for all i for which
P [i] is deterministic, t[i] is equal to P [i]. For example, consider the pattern P = X1X0 on four binary attributes
A1 to A4. It describes the value combinations that have the value 1 on A2 and 0 on A4. Hence, for example,

5http://mithra.eecs.umich.edu/demo/label/
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t1 = [1, 1, 0, 0] matches P , while t3 = [1, 0, 1, 0] does not match it, because P [2] = 1 and t3[2] = 0. Using the
patterns to describe the space of value combinations, we define the coverage of a pattern P as the number of items
in D that match it. We say a pattern P is dominated by another pattern P ′ if all value combinations matching it
also match P ′. Our (lack of coverage) identification problem is to discover Maximal Uncovered Patterns (MUPs),
the set of uncovered patterns (patterns with coverage less than a threshold) that are not dominated by another
uncovered pattern. This problem is #P-complete. At a high level, we define a directed acyclic graph (DAG) that
captures the domination relation between the patterns and transform the problem into an enumeration on this
graph while using the monotonicity property of coverage for pruning the search space.

We note that not all combinations of attribute values are of interest. Some may be extremely unlikely, or
even infeasible. For example, we may find few people with attribute age as “teen” and attribute education
as “graduate degree”. A human expert, with sufficient domain knowledge, is required to be in the loop for
(i) identifying the attributes of interest, over which coverage is studied, (ii) setting up a validation oracle that
identifies the value combinations that are not realistic, and (iii) identifying the uncovered patterns and the
granularity of patterns that should get resolved during the coverage enhancement.

Our coverage enhancement problem is: given a dataset D, its set of material MUPsMD, and a positive
integer number λ, to determine the minimum set of additional tuples to collect such that, after the data collection,
the maximum number of deterministic values in any MUP is at least λ. The problem, using a polynomial-time
reduction from the vertex cover problem, turns out to be NP-complete. Since a single tuple could contribute to the
coverage of multiple patterns, we shall show that this problem translates to a hitting set [33] instance. Using this
transformation, we show that the greedy approach provides a logarithmic approximation-ratio for the problem.
Given the exponential number of value combinations, the direct implementation of hitting set techniques can be
very expensive. Hence, we also provide an efficient implementation of the greedy approach.

4 Final Remarks

In this article we explained our results towards responsible data-driven decision making in score-based systems.
The scores, in these systems, are obtained by combining some features using either machine learning models or
human-designed weight vectors. We provided our results for (i) assisting the experts to design fair and stable
rankings, and (ii) assessing and enhancing coverage in a (given) training dataset for tasks such as classification.

So far, in (i) our focus has been on ranking, where the scores are used for comparing the items in a pool.
Human-designed scores are also used for tasks such as classification. Extending our results for these tasks is part
of our future work. Also, we would like to adopt the proposed techniques for linear machine learning models.
The idea is to first train a machine learning model and then adjust the model to, for example, satisfy some fairness
criteria. A similar idea can also be applied for designing ensemble methods for combining the outcome of
multiple ML models. In (ii), we used a fixed threshold across different value combinations, representing “minor
subgroups”. We consider further investigations on identifying threshold value and minor subgroups for future
work. We will also investigate other properties (in addition to coverage) for assessing and enhancing the fitness of
training data for responsible data science tasks.
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Letter from the Impact Award Winner

I was very happy and humbled to receive this year’s TCDE Impact Award, with the citation “for contributions
to spatial, temporal, and spatio-temporal data management.” I would like to thank those who nominated me as
well as the awards’d committee. Conducting research is very much a social, or collaborative, activity, and I have
worked with many excellent colleagues on the three topics mentioned in the citation, and they deserve most of the
credit for the results that I have contributed to achieving. I will mention some of them as I cover aspects of my
research journey. I started out working on temporal databases and then later transitioned to working on spatial
and spatio-temporal databases. To achieve some degree of brevity, I will offer an account of only some of the
activities related to temporal data management. I thus start at the very beginning of my academic life.

The Early Years—Ph.D. Studies I received my M.Sc. degree in computer science from Aalborg University in
1988. At that time, the M.Sc. study had a formal duration of five and a half years and included two B.Sc. degrees
(in my case, in Mathematics and Computer Science). The last half year was devoted to the M.Sc. thesis, but
the mindset at the time was that you were not serious if you spent less than a year. Thus, having received the
M.Sc. degree after six years of study, I received a scholarship to go and study for a Ph.D. for two and a half years
anywhere in the world. All I needed to do was to write a thesis—the course requirements were already satisfied.

In early September 1988, I then arrived at Dulles Airport. My M.Sc. supervisor, Lars Mathiassen, now a
professor at Georgia State University, had recommended that I study under the direction of Leo Mark, then a
young faculty member at the University of Maryland. I still remember driving with Leo from Dulles to his house
in the late evening with all the windows open in his (by Danish standards) huge and very American Chevy. An
exciting journey had started.

A November 25, 1988 plan gave the following working title for my thesis: “A By-Relation Implemented
Object Oriented Data Model Supporting Efficient Storage and Retrieval of Versions of Complex Objects in
Engineering Applications.” I started out looking at the versioning aspect, and this led to studies of support for
transaction time, which I viewed as an ideal foundation for fine-grained version support. The eventual title of the
thesis was “Towards the Realization of Transaction Time Database Systems,” and I had become interested in
temporal databases.

The Pursuit of Industrial Impact Having completed the Ph.D. studies and defended the thesis back in
Denmark in January 1991, I packed up my car in Greenbelt, MD and drove cross-country to Tucson, AZ, where I
was to work with the most visible temporal database researcher, Rick Snodgrass, then a young faculty member at
the University of Arizona. I had received a faculty position at Aalborg University that allowed me to spend my
first semester with Rick. Our interests matched very well, and we got off to a very good start. This turned into
three more sabbaticals, in 1992, 1994, and 1999, where I also got the opportunity to work with Rick’s students,
Curtis Dyreson, Nick Kline, and Mike Soo.

The 1990s were exciting times in temporal databases. The field had witnessed a proliferation of temporal
data models and query languages, almost to the point of each researcher having their own model and language. It
was felt that this blocked industrial impact, and initiatives were taken to achieve a consensus temporal data model
and query language. This resulted in the TSQL2 query language, which was designed by an 18-person committee
led by Rick.

Pursuing the goal of achieving industrial impact, Rick subsequently was the main force behind attempts to
standardize TSQL2. This turned out to be a difficult process, in part due to politics and a variety of interests,
but we also made technical progress. Specifically, we learned that the TSQL2 design approach did not scale
well: Adding support for some temporal functionality to SQL worked fine, but adding comprehensive support
following the TSQL2 approach was not pretty. While SQL is not a pretty language in the first place in terms of
design, the TSQL2 approach yielded a result that was uglier than we would have liked. Something different was
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needed. As we were making these revelations, Michael Böhlen joined the University of Arizona as a postdoc. He
had worked on an approach to language design that inspired the introduction of so-called statement modifiers into
TSLQ2. The idea is that many temporal queries can be expressed intuitively and unambiguously as a single-state,
non-temporal (and easy-to-formulate) SQL query that is then performed, as specified by a statement modifier,
on all states of a temporal relation, after which the results are combined into a temporal relation. So a temporal
query could then be formulated by a non-temporal query prefixed by some modifiers. A careful design based
on this approach was introduced into standards proposals, and an “academic” version called ATSQL was also
designed and documented in a TODS 2000 paper titled “Temporal Statement Modifiers.”

In parallel with the above, I also worked on a range of other subjects in temporal databases, including database
design, covering logical and conceptual temporal database design; data model and query language design aspects;
support for the notion of “now” and for data aging; indexing; implementation of temporal algebra operators;
query optimization; and architectures for implementing temporal query language support. I worked with five
of my first six Ph.D. students on these topics: Kristian Torp, Heidi Gregersen, Dieter Pfoser, Janne Skyt, and
Giedrius Slivinskas.

The Recent Years While spatial and spatio-temporal databases started to take over as my main activity around
year 2000, I have continued to maintain an interest in temporal databases. Following his postdoc at Arizona,
Mike joined the faculty at Aalborg University. He later moved to the Free University of Bozen-Bolzano and
he is now back home in Switzerland, at the University of Zurich. I have been fortunate to be able to continue
to work on temporal databases with Mike, Hans Gamper from Bolzano, and most recently Anton Dignös, as a
Ph.D. student at Zurich and now as a faculty member at Bolzano. A key goal was to achieve an implementation
of ATSQL. With other colleagues, we looked at many options, but it took until 2016, i.e., 16 years, before we
had solid results. In particular, Anton’s Ph.D. thesis and a TODS 2016 paper titled “Extending the Kernel of a
Relational DBMS with Comprehensive Support for Sequenced Temporal Queries” show how to extend the kernel
of PosgreSQL to enable efficient support for the functionality described in the TODS 2000 paper.

Impact and Lessons Looking back, one may ask what the impact of this work has been. Certainly, the literature
suggests that the work has influenced other research in the field, but there has also been impact beyond academia.
One highlight is that Teradata put temporal support into their system based on the statement modifier approach,
which made them a pioneer in offering temporal support. This was done before ANSI/ISO standardization. Today,
Teradata in addition supports the temporal tables and (limited) query language syntax in the standard. Another
highlight is that the PostgreSQL implementation described in the TODS 2016 paper is available for anyone to
use. A different line of impact is in the area of database design, where national statistics bureaus (e.g., Statistics
Denmark) and archives (e.g., Danish National Archives) make use of temporal tables, including bi-temporal
tables, when organizing their data. I have been contacted by, and have interacted with, several such entities. While
the standards have adopted a language design approach that I think does not scale, and while there is a disconnect
between SQL standardization and academia, I do believe that the standard is influenced by advances in temporal
database research. For example, the standard supports bitemporal tables: We studied such tables in depth and
even coined the term bitemporal.

Finally, I want to make a few points. First, research is often a social and collaborative effort. One should try
to work with good colleagues (check!) and try to be a good colleague. Second, it can take decades to achieve
societal impact, which is at odds with the increasing dependence on short externally funded projects in order to
be able to perform research. Third, the disconnect between stardardization and academia is unfortunate from a
societal perspective. Fourth, in research, one often does not quite know where one ends when starting.

Christian S. Jensen
Aalborg University, Denmark
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Letter from the Service Award Winner

Icing on the Cake

I have had the honor and pleasure of serving for 25+ years and over 100 issues as the Editor-in-Chief (EIC) of the
Data Engineering Bulletin, the very publication in which this letter is being published. I never dreamed, while
pondering the Bulletin EIC offer from Rakesh Agrawal, then the TCDE chair in 1992, that I would make the
Bulletin so significant a part of my career. To now get rewarded with the TCDE Service Award is truly “icing
on the cake”. I am thankful to the TCDE both for the opportunity to serve as Bulletin EIC and now for being
honored for this service with this award.

The Bulletin has been such a large part of my technical career and my primary service activity until just
recently, when I have become involved with Computer Society governance. And the beauty of how this all
worked out is that the Bulletin has truly been a “labor of love”. Where else can database professionals learn what
is happening in a subarea of our field, brought together in a single issue, with contributions from research and
industrial leaders.

In the database area, which changes so fast, the ability of the Bulletin to provide a special issue on a new
topic is both unique and invaluable. The ability of Bulletin editors to bring leading technologists together to write
articles for an issue is the “magic sauce” that makes the entire enterprise a success. Over the years, it has been my
pleasure to work with so many of the gifted editors whose work you see in every issue published. I like to think
that I also contributed to the success of the Bulletin– but my success was one level indirect. It was my success
over the years of convincing distinguished members of the database community to serve as Bulletin editors. As
one mark of this success, the editors I have appointed include seven Codd Award winners, all but one prior to
their receiving the award. And I have no doubt there will be more winners in the future.

The Bulletin would not exist without articles written by so many distingushed members of our database
community. Their willingness to contribute articles is a direct result of you, our readers, who so eagerly consume
Bulletin articles. The result of this is a virtuous cycle: distinguished editors attract distinguished authors, who
write articles that are read and cited by many members of our database community. So you, dear reader, have
played an essential role in making this system work.

Over the years, the Bulletin has transformed from solely paper publication to a mixed paper-electronic
publication to finally an entirely electronic publication. Over that time, my job at Digital Equipment Corp. (DEC)
transformed into a job at Microsoft. My thanks to both employers, who so generously permitted me to spend
time on the Bulletin for so many years, and who provided the initial web infrastructure that made the Bulletin
available electronically.

Haixun Wang, my successor and current Bulletin EIC, now has three issues ”under his belt”. So the future of
the Bulletin looks very promising. He has recently introduced an ”opinion” section, and asked me to contribute
an opinion piece in the first issue with the new section. This was my first non-letter Bulletin publication since
1987 (before I became EIC). I am hoping it is not the last as, like so many others in our community, I value the
Bulletin as a channel for publishing my technical contributions.

And now, finally, I too have the pleasure of reading Bulletin articles– focusing on their technical content,
rather than being concerned (and consumed) by formatting and editorial issues. I have already begun enjoying
this post-EIC role, and look forward to this continuing. Thank you all for contributing to the success of the
Bulletin and for making my involvement so personally gratifying.

David Lomet
Microsoft Research, USA
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Letter from the Rising Star Award Winner

I am honored to have received the 2019 IEEE TCDE Early Career Award “for contributions to main-memory
indexing and database architectures for NVM”. Let me use the opportunity of this letter to describe three open,
interrelated problems in this area that I consider both interesting and important.

Is the current dominance of LSM trees over B-tree justified?

For decades, virtually all database systems relied on B-trees for indexing (with hashing being a distant second).
Most modern NoSQL, NewSQL, and cloud database systems, in contrast, primarily rely on Log-Structured
Merge-trees (LSM) as their main data structure. B-trees and LSMs differ in terms of many different dimensions:
in-place vs. out-of-place writes, eager writes vs. background merges, favoring reads vs. writes, etc. I therefore
wonder: Have B-trees become obsolete? Are LSMs just a fad? Is it possible to design a data structure that
combines the best properties of the two approaches?

Do we need a new class of database systems for flash arrays?

In the past 7 years, main memory capacities have stagnated. The first commercially-available version of byte-
addressable non-volatile memory (“Intel Optane DC Persistent Memory”) turned out to be as expensive as DRAM,
but significantly slower. Flash, on the other hand, has become much cheaper during this time frame and is now
20× cheaper than DRAM per byte. Furthermore, flash has become much faster, and it is now possible to directly
attach a dozen or more devices to a single server, which results in a theoretical aggregated bandwidth close to
DRAM. Neither traditional disk-based, nor modern in-memory or NVM-based database systems are capable of
exploiting such extremely fast flash devices. This raises the question of whether a new system design is needed
and how it would differ from existing approaches.

How to exploit hardware fluidity in the cloud?

When developing high-performance database systems, most of us implicitly assume that the hardware is fixed
and optimize for a particular configuration. Given how most organizations procure hardware, this a reasonable
approach. In the cloud, however, because it is easy to migrate to a different instance with potentially very different
underlying properties, hardware should not be thought of as fixed. After all, users care about performance and
cost, not about which kind of instances their service runs on. Therefore, cloud-native database systems could
autonomously optimize the hardware configuration they run on. This requires an economical, literally cost-based
approach that takes actual market prices into account.

Viktor Leis
Friedrich-Schiller-Universität Jena
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