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Abstract

Scheduling various data-intensive tasks over the processing units of a server has been a heavily
studied but still challenging effort. In order to utilize modern multicore servers well, a good scheduling
mechanism has to be conscious of different dimensions of parallelism offered by these servers. This
requires being aware of the micro-architectural features of processors, the hardware topology connecting
the processing units of a server, and the characteristics of these units as well as the data-intensive
tasks. The increasing levels of parallelism and heterogeneity in emerging server hardware amplify these
challenges in addition to the increasing variety of data-intensive applications.

This article first surveys the existing scheduling mechanisms targeting the utilization of a multicore
server with uniform processing units. Then, it revisits them in the context of emerging server hardware
composed of many diverse cores and identifies the main challenges. Finally, it concludes with the
description of a preliminary framework targeting these challenges. Even though this article focuses
on data-intensive applications on a single server, many of the challenges and opportunities identified
here are not unique to such a setup, and would be relevant to other complex software systems as well as
resource-constrained or large-scale hardware platforms.

1 Introduction

Utilizing the processors of commodity servers well is crucial to avoid wasting resources, energy, and money
in data centers regardless of their scale [16]. As a result, quest to remove the bottlenecks of data management
systems causing underutilization of modern commodity servers have been the focus of many past and ongoing
work [1]. One of the essential challenges in this quest is scheduling various data-intensive tasks effectively over
the processing units that are available to these tasks. The fundamental evolution of the server hardware and the
increasing variety of the data-intensive applications over the recent years amplify this challenge.

Server hardware has gone through major advances over the years as illustrated in Figure 1a. These advances
have stemmed from Moore’s Law [27], which is the observation that the number of transistors in a dense
integrated circuit doubles approximately every two years. To exploit the increase in the transistor counts in a unit
area, initially, computer architects focused on boosting the performance of a single core while designing chips
(left-hand side of Figure 1a). Around 2005, however, Dennard Scaling [10], which states that as the transistors
get smaller their power density in a unit area remains constant, came to a halt. Increasing the complexity of a
processor core became non-viable since it raised concerns about power draw and heat dissipation. To overcome
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Figure 1: (a) Evolution of server hardware over time following Moore’s Law and Dennard Scaling. Each break in
the timeline represents a disruptive period for processor evolution due to power concerns. (b) Ways to deploy
data-intensive applications.

this limitation, computer architects started to add more and more cores on a single processor [29] and more and
more processors in servers (middle part of Figure 1a). Multicore processors have enabled the continuation of
Moore’s Law despite the halt of Dennard Scaling. Unfortunately, the limits of the traditional multicore processor
design is also upon us. Adding more and more cores to a processor cannot be the only path to overcome the halt
of Dennard Scaling since we will not be able to power all of those cores up simultaneously. This trend is also
known as dark silicon [11]. To overcome this limitation, we must design cores that are more energy-efficient. One
way to achieve this by specializing cores, reducing energy spent per instruction, for certain tasks [20]. Then, as
part of the commodity servers, one can utilize the specialized cores in addition to the general-purpose ones. The
emerging server hardware landscape, therefore, will likely to be composed of a heterogeneous set of processing
units (as illustrated by the different colors in right-hand side of Figure 1a); each specialized to execute a specific
task very well, with opportunities for extreme levels of parallelism.

In parallel to the evolution of commodity server hardware that data-intensive applications typically run on,
the applications themselves and how they are deployed have also changed over time as illustrated in Figure 1b.
Transaction and analytical processing used to be the two broad categories of data-intensive applications. Analytics,
in turn, have several distinct sub-categories such as online analytical processing, data warehousing, machine
learning, graph analytics, etc. Traditionally, they have been deployed separately and data moved from an
operational system (such as an online transaction processing system) to various types of analytics systems
using an extract-transform-load (ETL) process. The reason for this separation is that optimal system design for
serving transactional and different types of analytical tasks are different (e.g., row stores for OLTP, column stores
for OLAP, NoSQL for unstructured data, etc.). In recent years, however, the popularity of the data-intensive
applications such as real-time inventory/pricing/recommendations, fraud detection, risk analysis, IoT, AI, etc.
require data management systems that can run fast transactions and analytics simultaneously. As a result, there is
an increasing demand for data management systems that can handle hybrid transactional and analytical processing
(HTAP) efficiently [30].

Designing a scheduling mechanism that is able to leverage the heterogeneity of processing units for the
variety of the data-intensive tasks to be executed in the emerging hardware and software landscapes is a difficult
but significant challenge to tackle. The goal of this article is to derive some guidelines to overcome this challenge
in the context of a single node of commodity server hardware. First, Section 2 surveys some of the existing
work that target scheduling of data-intensive tasks on modern homogeneous multicore servers. Then, Section 3
discusses emerging heterogeneous server hardware landscape and considers existing work in the context of such
hardware. Finally, Section 4 illustrates a framework for scheduling diverse set of (or hybrid) data-intensive tasks
over diverse set of (or heterogeneous) processing units focusing on the resource estimation challenges.
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2 Scheduling Data-Intensive Tasks over Different Dimensions of Parallelism

As previously mentioned, we view the effective scheduling of different data-intensive tasks as a significant factor
when it comes to effective utilization of the resources of modern server hardware. Any mechanism that targets
effective scheduling must be able to answer the following questions.

What to schedule? This question determines the unit of scheduling. What is the granularity of the task to be
executed on a specific processing unit? Is it the whole data-intensive task required by a client request or is it part
of it? If it is a part of it, what is the size of that part?

Where to schedule? This challenge handles the mapping between tasks and processing units. This mapping
has both a static and a dynamic part. The static mapping targets the question of what the most effective processing
unit/units to execute a task is/are. The answer to this question assumes that every kind of processing unit is
available in infinite amounts. In practice, however, we rarely have all kinds of processing units in a single server
and the hardware resources are finite. The dynamic mapping must consider the question of whether the ideal
processing units for a task are available at the exact time that we have to execute that task. In addition, in the case
of unavailability, what are the next best alternatives?

How to schedule? This challenge provides the necessary execution and communication primitives, especially
if multiple processing units are involved in executing a task. What are the primitives to utilize while scheduling a
task or parts of a task? Which level(s) of the system stack these primitives come from?

The following subsections survey the scheduling mechanisms proposed in recent work that depart from the
conventional wisdom when it comes to the answers to the questions above. Section 2.1 and Section 2.2 focus on
utilizing the resources of a single core and multiple uniform cores, respectively.

2.1 Implicit/Vertical Parallelism

Before Dennard Scaling made it problematic to put more complexity within a core due to heat dissipation
concerns, exploiting Moore’s Law meant boosting the performance of a single core. This resulted in parallelism
opportunities within a core through techniques like instruction level parallelism, pipelining, out-of-order execution,
simultaneous multithreading, etc. We refer to this kind of parallelism as implicit/vertical parallelism as the
different tasks are time-multiplexed on the same core instead of being run concurrently in the same execution
cycle. The main insight behind this kind of parallelism is overlapping various stall times with other work instead
of a core wasting the execution cycles being idle. For example, as a core waits for fetching an instruction or
data item from memory due to it not being present in L1 caches, one can overlap this waiting time with another
instruction or data fetch request from the same task or execute another task on the same core. In addition, mostly
hardware manages this kind of parallelism and software has the luxury to be oblivious to it. Therefore, before
multicores emerged, the software systems got faster with each new generation of servers without having to make
fundamental design changes.

On the other hand, for many data-intensive applications being oblivious to implicit parallelism leads to
severe underutilization of the micro-architectural resources of servers. Several workload characterization studies
emphasize the high rates of memory access related stall times due to either instruction or data accesses for data-
intensive applications [12, 37]. Similarly, techniques like simultaneous multithreading may even hurt performance
if not used carefully [42]. Multiple data-intensive tasks sharing the same resources in a core simultaneously may
put more pressure on caches due to their aggregate data and instruction footprint. Therefore, there is value to
rethink the way we design and schedule data-intensive tasks even when utilizing implicit parallelism.

Figure 2 illustrates alternative ways of scheduling a data-intensive task on a single core (a & b) and on
multiple cores (c & d). The figure assumes that tasks run over a setup that has fast I/O (e.g., DRAM, NVRAM,
low-latency SSD) and hence do not require context switching due to slow I/O (e.g., HDD). In the figure, a
data-intensive task is at the granularity of a whole transaction or analytical query. The task has three sub-tasks A,
B, C. In the interest of our discussion, let’s assume that these sub-tasks are at a granularity where their instruction
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Figure 2: Different ways of scheduling data-intensive tasks. In the context of this illustration a task is at the
granularity of a transaction or an analytical query, where A, B, and C are the sub-tasks of this task.

or data set sizes can fit in L1-I or L1-D, respectively. This section discusses Figure 2(a & b) since the focus is on
implicit parallelism, whereas the discussion of Figure 2(c & d) is in Section 2.2.

Figure 2(a) depicts the more conventional way of scheduling tasks. In this case, the tasks run without any
interruptions on a core as a whole one after the other based on their priority in a task queue in the system. They
take turns thrashing the caches since each executes sub-tasks A through C in order independent of the other tasks.
Thus, each sub-task incurs overhead due to cache misses. In this case, the answer to the what question is the
whole task while the where question doesn’t matter as there is only a single core, and the answer to the how
question is mainly left to the default mechanisms supported by the operating system.

Figure 2(b) shows an alternative way to schedule the sub-tasks, which time-multiplexes them with the goal of
maximizing cache locality. The first, lead, task executes A incurring cache miss overhead as previously. However,
instead of proceeding to execute B, the first task context switches allowing, in turn, the second and third tasks to
execute instead. The second and third tasks find sub-task A in L1 and thus incur no overhead due to misses. Once
all three tasks execute the first sub-task, execution proceeds to the second one and so on.

The core idea of time-multiplexing the tasks on a single core to improve cache locality has been studied
and shown to be effective in the context of both instruction (L1-I) and data (L1-D) [4, 17, 18, 24] locality. The
main insight behind this idea is that similar tasks share common instructions or data or both. As a result, they
can benefit from constructive sharing of the cache resources to improve locality. Fewer cache misses lead to
better utilization of the micro-architectural resources that enable implicit parallelism within a core since a smaller
portion of the overall execution time is spent on stalls. Even if a technique that focuses on instruction cache
locality may hinder data cache locality or vice-versa, the benefits of one may outshine the overhead of the other,
or the locality may improve at the higher levels of the cache hierarchy despite the hindered L1 locality thanks to
constructive sharing [39].

Achieving constructive sharing for different concurrent tasks in a system is not straightforward. The first
challenge is the underlying assumption of the tasks would have similar sub-tasks to be executed. For data-
intensive applications, this is not an issue. No matter how different the output or high-level functionality of
one data-intensive task from another, data management or processing systems typically compose a subset of
predefined sub-tasks to serve a task. Figure 3 and Figure 4 show some examples within the same or across different
applications/tasks. Transactions are composed of sub-tasks such as probing and scanning an index, inserting a
tuple to a table, updating a tuple, etc. Traditional analytical queries are composed of projections, selections, joins,
etc. These sub-tasks themselves have common sub-tasks such as hash table lookup, data partitioning, sorting, etc.
across different types of sub-tasks or workloads. There may be frequently accessed tables or indexes or metadata
used by several of these sub-tasks. Overall, there are many opportunities for constructive sharing in data-intensive
applications.
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Figure 3: Examples of common sub-tasks across different types of data-intensive applications. Hash table lookup
is common across OLTP, OLAP, and machine learning. Data partitioning is common across many OLAP tasks.
Sorting is common both across data-intensive applications and while ordering input/output values from various
client requests.

Determining the granularity of sub-tasks to time-multiplex at runtime is a harder challenge (to answer the
what question) as well as orchestrating the runtime scheduling in a lightweight manner (to answer the how
question). Regarding the former challenge, previous work either considers the granularity of database operators
[18], rely on monitoring the cache behavior at runtime to determine when the L1 cache starts to become full [4],
or perform profiling [17]. Regarding the latter challenge, previous work either adopts hardware mechanisms [4]
to sidestep the overheads of default context switching primitives of the operating system, or develop specialized
context switching at the kernel-level [17].

Finally, despite increasing the throughput, time-multiplexing a batch of tasks on one core increases the
average latency, especially for the lead task. One has to take into account the priority or latency requirements
of the data-intensive tasks when deploying these types of scheduling mechanisms. This challenge is definitely
under-studied in the literature.

2.2 Explicit/Horizontal Parallelism

The switch to multicore processors forced traditional software systems, including data management systems, to
go through fundamental design changes in order to exploit the kind of parallelism offered by having multiple
cores in a processor [1]. We refer to this kind of parallelism as explicit/horizontal parallelism as it allows different
tasks to run simultaneously in the same execution cycle. Unlike implicit parallelism, this type of parallelism has
to be managed more carefully at the software side to reap the benefits. In this dimension of parallelism, majority
of the efforts from previous work focus on removing scalability bottlenecks that arise due to concurrent threads
accessing shared data. Complementary to such scalability problems, this article focuses on the work that targets
scheduling of data-intensive tasks on multicores.

Let’s start by following the discussion from Figure 2, Figure 2(c & d) illustrate alternative ways of scheduling
data-intensive tasks on multicores. Figure 2(c) depicts the more conventional way when there is no I/O. Each task
is scheduled to a different core in the system and executed as a whole on that core. As a result, each task exhibits
cache misses since neither the instruction nor the data footprint of data-intensive tasks fit in L1 caches. This way
of scheduling stems from traditional data management systems treating various data management tasks as large
indivisible units of work on a single server. This monolithic view of such tasks eventually leads to sub-optimal
resource management decisions even on today’s homogeneous commodity server hardware [39].

In the case of Figure 2(c), just like Figure 2(a), the answer to the what question is the whole task and the
answer to the how question is mainly left to the default mechanisms supported by the operating system. On
the other hand, having multiple cores makes the where question more difficult to answer. Traditional systems
typically pick the next available/idle core to schedule the next task to be executed.

Figure 2(d), on the other hand, spreads the computation of a data-intensive task over multiple cores and
utilizes the aggregate L1-I cache capacity of the multicores while executing this task. The main insight behind
this idea is, as in Section 2.1, the observation that data-intensive tasks in general share common sub-tasks (or
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code [39]). As long as there are enough cores so that the aggregate L1-I capacity can hold all code segments, a
task can migrate to the core whose L1-I cache holds the code segment the task is about to execute. For example,
as Figure 2(d) shows, the first, lead, transaction can execute sub-task A first on core 1, then migrate to core 2
where it would execute sub-task B, then migrate to core 3 where it would execute sub-task C. The second and
third tasks can follow in a pipelined fashion, finding sub-tasks A, B, and C, in cores 1, 2, and 3, respectively.
While the lead task incurs an overhead when fetching the code segments for the first time, the other tasks do
not. Even though, the migrations may diminish data locality at the L1-D level, as long as they happen within a
processor/socket, long-latency data misses from the last-level cache either stay the same or get reduced as a result
of constructive data sharing across similar tasks [39].

The core idea of spreading the computation over multiple cores to improve instruction cache locality, is
initially studied in the context of separating kernel code from application code in [7]. SLICC [3] and ADDICT
[39] have taken this idea further to also localize the common application code across concurrent data-intensive
tasks over specific cores. These work in fact target improving cache locality, minimizing stall times due to
cache misses, and hence, improving utilization of implicit parallelism within a core like the work described in
Section 2.1. However, they exploit explicit parallelism to achieve their target. Similarly, the staged execution
mechanisms such as QPipe [18], which are originally developed with implicit parallelism in mind, are later
adapted to utilize explicit parallelism as well [14, 34]. Furthermore, separating the tasks to be executed by the
kernel and the data-intensive application into common sub-tasks, and running these sub-tasks over separate
specific cores is also studied in the context of effective operating system and database system co-design [15].

In addition to strengthening the techniques that target improving (instruction or data) locality for data-intensive
tasks, explicit parallelism also allows exploiting intra-task parallelism. In other words, the independent sub-tasks
of a data-intensive task can run concurrently over multiple cores. To prevent underutilization of ever increasing
explicit parallelism offered by multicores or many cores, intra-task parallelism is essential. Viewing tasks as a
black-box and just focusing on optimizing for inter-task parallelism is ineffective while scaling up on servers
with 100s or 1000s of cores.

A common way to achieve intra-task parallelism is to partition the data to be processed by a data-intensive
task and assign different threads to each partition [25, 35]. Data partitioning is only one dimension when targeting
intra-task parallelism, though. The other, slightly more challenging, dimension is to detect the independent
sub-tasks within a task that can run concurrently. Figure 4 gives an example of how to parallelize the sub-tasks of
the payment transaction from the industry-standard TPC-C benchmark [40], which is utilized by the DORA/PLP
mechanisms [31, 32]. The three update operations over the different tables (customer, district, and warehouse)
have no dependency on each other and can run in parallel while the insert operation over the history table must
run after these three. Previous work adapted the SQL frontend of Postgres to determine the independent sub-tasks
of transactions automatically [31]. Expanding this methodology to more complex data-intensive tasks is still a
challenge.

All the mechanisms that involve multiple cores in the execution of a transaction whether it is to improve
cache locality or intra-task parallelism or both, have the same challenges as the mechanisms that time-multiplex
sub-tasks on the same core (Figure 2(b)). Therefore, the answers to the what and how questions here are the
same as in Section 2.1 (i.e., finer-granularity sub-tasks and lighter-weight context switching). Answering the
where question, on the other hand, requires runtime monitoring and bookkeeping to know which core has the
instructions a sub-task needs or which cores are assigned to which database operators beforehand. Furthermore,
explicit parallelism in the era of multisocket multicore hardware with non-uniform memory access (NUMA), also
brings the challenge of minimizing communication overheads across the sub-tasks. Involving multiple cores in the
execution of a data-intensive tasks require orchestrating the sub-tasks, which requires communication across cores
that may not be able to communicate as fast as some other cores. Naive ways of scheduling sub-tasks ignoring
hardware topology, especially NUMA, may hinder overall performance even if it utilizes explicit parallelism
well [33, 35]. Therefore, one must definitely take the hardware topology into account while answering the where
question.
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Figure 4: TPC-C’s payment transaction. Each node represents a sub-task in payment. Customer,
District, Warehouse, and History are the tables in TPC-C. (For brevity the iteration over the Customer
table in this transaction is omitted). (a) The serial execution plan also illustrating the sub-tasks of payment at
different granularities. payment performs operations such as update and insert. An update performs actions
such as index probe, update record, write log, etc. These actions also have sub-tasks at a finer-granularity. (b)
The parallel execution plan for payment exploiting intra-transaction parallelism among the three independent
updates.

3 Toward Heterogeneous Parallelism

As mentioned in Section 1, adding more and more cores to a processor cannot be the only path for progressing
commodity servers anymore. Moore’s Law is slowing down. The main reason is once again power-related even
though there are other physical constraints as well (e.g., fabrication costs for transistors that get smaller and
smaller). The supply voltage required to power all the transistors up does not decrease at a proportional rate. Even
if we can still add more and more cores on processors, we will not be able to power all of them up simultaneously
[11]. Optimizing energy per instruction has to be the key in this new era.

One option to achieve more energy-efficient hardware is to adopt simpler and more low-power cores in
emerging processors. However, such processing units are not suitable for latency critical applications. In
addition, solely focusing on the energy-efficiency of an individual core or processor is not going to give us
energy-proportionality [5]. We have to focus on how much energy it takes to run tasks to completion. The
low-power cores might end up spending more energy at the end of the day for running a set of tasks compared to
power-hungry cores since it takes them longer to execute tasks due to being slower [23].

The better long-term solution for energy-efficiency is to build servers with a variety of processing units, where
each unit is specialized to accelerate specific tasks. On such servers, one would pick the cores to power-up based
on the tasks currently running, while shutting down the idle cores that are specialized for other types of tasks.
Orchestrating task scheduling dynamically over such heterogeneous hardware intensifies an already challenging
problem on homogeneous hardware (as Section 2 focused on). In addition, economic feasibility of specialized
hardware is always a concern since specialization limits the market of a system, despite being more efficient, as
opposed to being general-purpose. As a result, processor specialization for data-intensive tasks was unpopular in
industry up until recently. However, this attitude has been changing [2, 20]. Therefore, there is pressing need
to develop scheduling mechanisms that not only consider the diversity of the data-intensive tasks, but also the
diversity of the processing units.

The scheduling approaches surveyed in Section 2 are inspiring and preliminary steps toward the efficient
utilization of processors with many diverse parallelism opportunities. The common denominators (and the
common root of the associated challenges) across all of these mechanisms are that (1) they view data-intensive
tasks at a finer sub-task granularity (e.g., update operation of payment transaction instead of the whole payment
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transaction) and (2) they adopt lighter-weight and hardware-topology-aware techniques for dynamic scheduling
of these sub-tasks instead of relying on the traditional operating system defaults.

Splitting data-intensive tasks into their sub-tasks (see examples in Figure 3 and Figure 4) help in identifying the
common sub-tasks across concurrent transactions or analytical queries. This, in turn, enables more opportunities
for constructive instruction and data sharing, intra-task parallelism, and mapping a unit work to a core that would
benefit the most from running on that core. Furthermore, it is an essential preliminary step to discover the frequent
critical sub-tasks that justify building new specialized hardware for. Therefore, even though detecting the right
granularity for sub-tasks and orchestrating more things at runtime is a big challenge, this challenge is worthwhile
to address and study in more depth. It is the only way to answer the what question and aides answering the where
question in the context of emerging heterogeneous hardware landscape.

After mapping a certain granularity of sub-tasks to the available processing units at runtime, one has to
perform the actual scheduling and coordination of these sub-tasks efficiently. Otherwise, no matter how optimal
the mapping is, it is not going to be beneficial. Specializing context switching or thread migrations for data-
intensive tasks either at the level of the kernel or hardware has been tried (as also mentioned in Section 2.1).
These techniques and others that specialize the same routines should be revisited in more detail in the context
of heterogeneous hardware. It is highly likely that the common operating system layers and mechanisms will
also evolve with such hardware. Therefore, it is important to have a holistic view while developing mechanisms
to efficiently coordinate sub-tasks in order to achieve lightweight coordination and minimize replication of
functionality across layers. In addition, exploiting more and more processing units should not turn the development
of a data-intensive application into an unproductive process. Ensuring the correct and efficient instruction and data
stream on a specific processing unit should be handled through high-level language primitives for the application
developer and smart query compilation within the data management system [19]. Tackling these two challenges
is the way to answer the how question for heterogeneous many cores.

Next, we discuss an end-to-end framework that takes the challenges of scheduling varying data-intensive
tasks on heterogeneous hardware into account by mainly focusing on the resource estimation challenge, which
also aides the where question.

4 A Framework for Running Data-Intensive Tasks on Emerging Hardware

Even though the previous sections focus on the utilization of a single server hardware, resource-aware scheduling
is an active field of research often tailored specifically for different hardware platforms, from small embedded
systems [38] up to clusters [9]. Executing tasks with varying resource demands in parallel can lead to inefficient
resource utilization, especially on heterogeneous hardware. More precisely, the correlation between the resource
demand of a task and its completion time is often highly non-linear, once the task is executed concurrently with
other ones. In order to solve the very challenging problem of finding an optimal resource mapping for a single
task, new resource-aware scheduling strategies are required, which efficiently map tasks to heterogeneous parallel
architectures, taking their particular resource demands into account. Independent of the actual objective, i.e.,
making the execution of hybrid tasks more efficient or designing an efficient parallelization strategy for a specific
task, the underlying motivation remains the same, namely, optimizing the execution of tasks on heterogeneous
hardware architectures while respecting given latency requirements.

In data management systems, hybrid data-intensive tasks often arrive dynamically providing only inaccurate
information about their resource utilization behavior. Unlike classical scheduling problems, such systems require
mapping methods that (1) interact with a resource model to map tasks to suitable resources at runtime and (2)
adjust mapping decisions dynamically depending on the system load.

Many existing work that tackle the problem of scheduling tasks on parallel architectures aim to optimize
either the execution of tasks having similar characteristics (e.g., only transactional workloads) or the scheduling
of tasks with hybrid characteristics (transactional and analytical workloads) on homogeneous parallel systems.
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Figure 5: Framework for resource-aware scheduling strategies guided by a resource estimation model for hybrid
data-intensive tasks executed on heterogeneous hardware.

For example, database systems such as SAP HANA or HyPer are designed to efficiently execute hybrid tasks
using an optimized workload management system for servers with homogeneous cores [36]. Future scheduling
strategies, however, should consider both the heterogeneity of workloads and of hardware in order to find an
efficient resource-aware mapping exploiting the full potential of the underlying parallel architecture.

To enable a resource-efficient scheduling of data-intensive tasks over complex heterogeneous hardware
architectures, we focus on a framework, illustrated in Figure 5, that includes scheduling mechanisms guided
by resource estimation models. Regarding different aspects of our strategy, we survey previous approaches
harvesting already existing results that shall serve as a guideline.

To generate resource estimation models distinct machine learning methods or analytical models can be applied
to predict the resource demands for different possible task-to-core(s) mapping strategies. Analytical models can
be more accurate than machine learning models when applied to estimate the runtime of concurrently executed
tasks [41]. However, machine learning models are typically preferred in more complex heterogeneous hardware
scenarios, since the complexity of the analytical models can increase rapidly in such cases. When building
models that are capable of describing the complete data management system behavior, several aspects need to be
taken into consideration. For models with high multidimensionality and thus high complexity, a dimensionality
reduction, through machine learning techniques such as clustering or classification, is suggested [8]. For example,
as shown by previous work [26], a workload forecasting strategy based on machine learning techniques can try
to predict the expected arrival rate of certain types of tasks in a data management system and use clustering to
reduce the model complexity. In general, machine learning methods, especially for resource estimations, are
not only applicable to data management systems running on a single server. They can also be applied in the
context of cluster management, e.g., to classify heterogeneous workloads that would achieve an efficient resource
utilization [9].

Figure 5 visualizes the optimization cycle of the resource-aware scheduling framework. It consists of four
main steps.

In the first step, the sub-task detection tries to identify possible sub-tasks from the incoming data-intensive
tasks (transactional and different types of analytical) to take possible parallelization strategies into account.

To determine an efficient mapping of tasks to available hardware, it is necessary to be aware of each task’s
(estimated) resource demand. To this effect, a flexible resource estimation model is constructed in the second
step, which estimates the resource demands of each task and sub-task based on previously executed similar
tasks. Since the available hardware architecture influences the runtime behavior of a task, the model also uses
the hardware description as input, and later should also be able to adapt to hardware changes. As mentioned
above, such a model can utilize machine learning techniques instead of analytical cost models, since the analytical
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models could become very complex when they have to cope with many different heterogeneous hardware parts
in one system. Depending on the model’s estimations, tasks can be classified into different types of groups
based on their resource demands to later efficiently map them to suitable hardware resources or queues that are
assigned to each group. Therefore, as an output the model produces task profiles including different resource
utilization characteristics and an execution priority that can be used for latency critical tasks. A similar framework
for resource-aware scheduling that focuses on scheduling parallel parameter optimization of machine learning
algorithms with heterogeneous tasks have been studied in [22]. This framework uses a regression model to
estimate the runtime of tasks and computes an execution priority for each task. This priority is then used as
input to schedule these tasks in a way that minimizes CPU idling on homogeneous clusters. Further work on this
framework showed that its runtime estimation mechanism also works for heterogeneous hardware. However, for
heterogeneous hardware the random forest regression model is found to be more effective since task execution
times form a discontinuous model because of the additional categorical variable that represents the processor
type [21]. Besides runtime estimation, the estimation of multiple performance metrics via machine learning
techniques for specific query plans on homogeneous hardware is proposed in [13]. In [28] a detailed overview of
different machine learning techniques applicable for estimating multiple metrics for highly concurrent OLTP
workloads on homogeneous systems is given, which could be interesting as well for resource estimations on
heterogeneous systems.

As depicted in Figure 5, the obtained task profiles including multiple metrics serve as inputs for the resource-
aware scheduling strategies in the third step. Resulting from this, an execution plan is created that efficiently
maps tasks to suitable hardware resources. While creating the execution plan, this step also determines whether
to use intra-task parallelism or the degree of parallelism for a task based on the available hardware resources
and topology. As mentioned in Section 2.2, due to sub-task coordination efforts and non-uniform core-to-core
communication costs, parallel execution plan of a task may not always result in faster execution compared to
running a task serially.

Since the profiles are only estimated, under- or overestimation (e.g., of execution times) may occur. In such
cases, a task may need to be rescheduled or stopped to guarantee latency requirements. This service is performed
by the execution monitoring provided by the last step of our strategy. Here, an adaptive operator replacement
technique using machine learning for runtime estimation, as presented in [6], could be applied, where operator
mappings are dynamically adjusted on heterogeneous co-processors. Moreover, execution monitoring is also used
to gather information about the system behavior, such as CPU or memory utilization, and to measure the de facto
resource utilization of tasks at runtime. After a task or a group of tasks has finished their execution, the results are
collected to iteratively refine the resource estimation model. Evidently, the quality of the scheduling strategy
depends on the accuracy of the resource estimation. Hence, the model update entails more reliable estimations
over time for the future predictions of the new incoming tasks.

5 Conclusion

In this article, we focused on scheduling data-intensive applications with different types of tasks over the
processing units of emerging heterogeneous server hardware. Existing scheduling proposals that diverge from
conventional methods when utilizing the resources of a single server with homogeneous multicores already give
us essential insights. Therefore, their challenges should be revisited in the context of emerging heterogeneous
hardware. More specifically, moving forward we should focus on the following: (1) identifying sub-tasks of
data-intensive tasks across different applications, especially the common ones that allow constructive sharing of
instructions and data, (2) efficient orchestration of these sub-tasks at runtime, (3) dynamic models to guide us
during task-to-core(s) mapping decisions, and (4) a holistic approach across hardware, operating systems, and
data management/processing systems to keep the systems’ layers lightweight. This article navigated these items
giving a high-level overview. Our goal is to tackle them in more detail in the future.
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[37] U. Sirin, P. Tözün, D. Porobic, and A. Ailamaki. Micro-architectural Analysis of In-memory OLTP. In SIGMOD,
pages 387–402, 2016.

[38] M. Tillenius, E. Larsson, R. M. Badia, and X. Martorell. Resource-Aware Task Scheduling. ACM TECS, 14(1):5:1–
5:25, 2015.
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