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1 Introduction

1.1 Cost/Performance

Data in traditional data caching record management systems resides on secondary storage, and is read into main
memory only when operated on. This limits system performance. Main memory data stores with data always in
main memory are faster. But this performance comes at an increased cost. The analysis in [7] shows how modern
data caching systems can produce better cost/performance. Their exploition of a storage hierarchy hence can
serve a greater diversity of data management needs at lower cost.

1.2 A Little History

Traditional data management systems were implemented using hard disk drives (HDD) coupled with small main
memories. Such systems were, of necessity, designed as data caching systems. That is, data lived on HDDs, and
was read into a main memory cache to be operated on. As main memories became larger and costs fell, more
and more data was cached. Removing I/O cost from the path to data improved performance substantially. It
exposed, however, new performance bottlenecks. For example, concurrency control and recovery (CCR) has
modest execution cost compared with data I/O accesses. With the 1/O cost reduced, CCR became a much larger
part of operation execution path.

Database researchers, in striving for great performance, looked again at CCR. Ultimately, high performance
CCR techniques were developed that depended, for effectiveness, upon there being no I/0. High latency within
transactions did not fit well with these techniques. This led to main memory only data management systems, e.g.,
[1, 3, 10], with performance of millions of operations/sec. Main memory systems inspired an explosion of new
CCR and data access techniques suitable for such systems. However, the performance gains required permanently
committing main memory to the data being managed.

The main memory efforts have, however, led to technology that made it possible to achieve much higher
performance in data caching systems. For example, both RocksDB [8] and Deuteronomy [4, 5, 6] use main
memory techniques, e.g. latch-free data access, for high performance on data cached in main memory. In addition,
both dramatically shrink write I/O cost via log structuring techniques, and avoid some read I/O by supporting
“blind” updates without the pages needing to be in main memory.

2 Data Management Economics

A data management system should ALW AY' S be able to achieve higher performance with all data in main
memory. Further, the fall-off in performance when data has to first be brought into the cache is substantial, even for
a highly optimized system. So why bother with a data caching system? The answer is “better cost/performance”.
So the argument here is not that there is insufficient main memory to hold the data, but that there is a less costly
way to manage data.

We regard data caching system operations as coming in two flavors, in-memory operations M M (data is
in main memory) and secondary storage operations S5 (data needs to be brought into main memory). Data
management operations have both execution and storage costs. Storage costs are always paid, while execution
costs are incurred only when data is operated on. M M operations have higher performance (no secondary storage
data access) while S.S operations have lower storage costs (flash is cheaper than DRAM).
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Figure 1: The cost/sec of main memory operations and secondary storage operations as execution rates change.

2.1 Data Management Cost/Sec

We analyze cost per second of data management for our two operations: M M and SS ! The costs are of two
forms, storage rental costs for data and cpu and device rental costs for operation execution.

M M operations: We need to rent a page of DRAM ($DRAM) and a page of flash (SFLASH) because the
data is also on secondary storage. M M operation execution cost is SMOP.

$SMM = ($DRAM + $FLASH) + N « $MOP (1)

SS operations: We need to rent a page of flash (SFLASH) but not a page of DRAM since we are bringing
the data into DRAM only as needed. So the cost in DRAM is insignificantly small. The cost of an S.S operation
involves its storage cost, now flash memory, with cost SFLASH and its execution cost $SOP. $SOP consists of
M M operation execution cost SMOP plus the cost of bringing the data into DRAM. This second cost is SFLOP,
the cost of an SSD’s 10 operation, plus $10, the cost of the cpu executing its IO path .

$S5 = $FLASH + N = ($MOP + $FLOP + $I0) )

We can now calculate the breakeven point- i.e., how many op/sec N we need to execute for the costs to be
equal. For lowest cost, we switch between M M and SS operations at that point. We solve for 1 /N, the interval
between accesses when costs are equal.

1 $SOP—-$MOP $FLOP +$I0 3
N $DRAM  $DRAM

T; yields our version of the “5-minute” rule. T; is approximately one minute (the updated “5 minute rule” [2]).
The smaller the breakeven time, the sooner the cost is reduced by evicting the page. A data caching system can
use the breakeven point in choosing the lower cost operation. It approximates this point with its caching policy.
The cost trade-off between M M and S'S operations is shown in Figure 1. Capturing operation costs permits us
to compare costs at performance points away from breakeven. This demonstrates why flash cost SFLASH is so
important.

At low access rates, the cost of storage dominates the execution cost. Since main memory is 10X more costly
than flash, an M M operation is 11X more expensive than an .S.S operation at very low access rates. At high access
rates, it is the execution cost that dominates. $SOP is about 12.X the cost of $SMOP, with $FLOP approximately
6X of $SMOP, and $10 about 5X of $MOP. The number of IOPS provide by an SSD has dramatically increased,
reducing $FLOP. Thus CPU cost ($10) for an I/O is now a significant part of $SOP cost.

Trading space (cost) for time (cost) can be useful for improving systems, but how much space for how
much performance? We analysed other technologies in [7] which showed similar cross-over points frequently

T, =

' A more detailed analysis is in [7].



exist where relative cost advantage also changes between systems. Using more main memory, as done by the
main memory MassTree key-value store results in its performance being higher than Deuteronomy’s. In our
experiments, the breakeven point for a page at about 7; = 3 seconds. Hence MassTree is better for very hot
data, but not for data accessed less frequently. Data compression saves storage cost at the expense of increasing
execution cost, hence good for very cold data, even though decompression adds to execution cost.

3 Concluding Thoughts

Cost/performance is usually more important than sheer performance. And storage costs are a very big part of
overall costs, since most data is cold. Further, the hot data set typically changes over time. Cost effective data
management means reducing storage costs for cold data and reducing execution cost for hot data. That is what
data caching systems do. Data caching systems dominate the market via better cost/performance, despite main
memory systems having higher performance.

There is another message here. Research may dramatically increase data caching system performance. For
example, reducing the cost of moving data between storage hierarchy levels could be a huge win, enabling new
and cheaper storage technologies to play an important role in data management. That research agenda might
succeed in producing a ”one size” system that fits (almost) all [9] of the data management market.
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