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Abstract

With their capability to perform both high-speed transactional processing and complex analytical work-
loads on the same dataset and at the same time, Operational Analytics Database Management Systems
give enormous flexibility to application developers. Particularly, they allow for the development of
new classes of enterprise applications by giving analytical insights into operational data sets in real
time. From a database system point of view though, these applications are very demanding, as they
exhibit a highly diverse combination of different query workloads with inhomogeneous performance and
latency requirements. In this article, we discuss the practical implications and challenges for database
architects and system designers. We propose solutions that—by sharing semantics between the appli-
cation, the database system, the operating system, and the hardware—allow to manage complex and
resource-intensive workloads in an efficient and holistic way.

1 Introduction

Driven by the idea of enabling both transactional processing as well as real-time analytical query workloads
in the context of a single system [1], a new class of database management systems has emerged, referred to as
operational analytics database management systems [2]. These systems envision to simplify the data management
landscape by consolidating multiple, disparate use cases. Consequently, they allow the creation of novel business
applications which seamlessly combine both real-time analytics and transaction processing [3]. From a database
system designer’s point of view, however, delivering high performance for these modern applications puts up
additional challenges because their workload characteristics are highly diverse and demanding.

In particular, static workload management schemes and simple heuristics perform suboptimally considering
end-to-end performance [4]. The reason for this is that even the same query can have different priorities from
an application’s point of view, depending on the context it is being executed in. A simple primary-key based
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lookup operation can be issued, e.g, in the context of a mission-critical and time-sensitive OLTP transaction such
as the interactive data entry by a business user, but also as part of a non-critical batch transaction that runs for
hours in the background. A complex analytical query can be sent in the context of, e.g., a scheduled quarter-end
close report (making it rather uncritical from an execution time point of view), but also as part of a user-driven,
interactive dashboard application where virtually every millisecond counts.

Motivated by these observations, we share the opinion of other researchers that individual hard- and software-
solutions throughout the data processing stack fail to address the complex challenges of these systems in
isolation [5, 6]. Particularly, we believe that they are best addressed by a holistic approach, and in collaboration
between the application, database management system, and the underlying hardware [7].

Outline. This article is structured as follows. In Section 2, we discuss how to bridge the semantic gap between
the application and the database system. Communicating additional workload context information and priorities
allows the database system to perform prioritization, scheduling, and resource management that is in line with the
expectations of the application. Next, Section 3 discusses a similar technique which allows the database system to
share semantic information about data access patterns with the underlying hardware (i.e., the processor) by using
CPU cache partitioning. This enables the more efficient utilization of CPU caches, specifically for heterogeneous,
highly concurrent workloads. In Section 4, we highlight different approaches for database management systems
to interact with the operating system, e.g., to improve scaling and robustness. While commercial database systems
usually choose to circumvent the OS exploiting detailed workload information, another strategy is bringing the
database system and the operating system closer together with a radical co-design. We conclude the article in
Section 5.

2 Workload Management in SAP HANA

Analytical and transactional workloads do not only have different resource demands, they are also linked to
different performance expectations. Transactional workloads are characterized by operations which consume
relatively little memory and compute power. However, they are usually sensitive to lock contention. Unfor-
tunately, this resource contention leads to fluctuations in statement response times, while applications expect
predictable throughput and response time characteristics. In our experience, customers are willing to sacrifice
peak performance in return for better predictability of statement response times. Analytical workloads, on the
other hand, typically are demanding regarding CPU and memory consumption. In particular, single analytical
ad-hoc statements may consume excessive amounts of memory or CPU. This is particularly problematic for
operational analytics DBMS when demanding analytical statements take away CPU clock cycles and slow down
concurrent transactional workloads [4].

To balance or prioritize different workloads and to comply with a service level agreement (SLA), commercial
DBMS usually employ workload management to manage resources available to single statements, applications
or database users, see [8] for a good overview. In SAP HANA, workload management works on a fine-grained
level [9] because the system is optimized for modern multi-core architectures with extensive multi-threading [10].
Limiting, e.g., the number of working threads or the amount of memory available to the engine, can be managed
for entire workloads or individual statements. While this creates a powerful tuning option for the user, the system
has to track and enforce resource consumption in all of its components. In the following, we briefly present two
mechanisms for implementing workload management using the example of SAP HANA: workload classes and
admission control.

Workload Classes. In SAP HANA workload classes address 1) the requirement of avoiding the excessive
resource consumption of single statements and 2) the requirement of isolating the resource demands of different
applications, database users, etc. Workload classes are containers of configuration parameters like priority, query
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Figure 1: Average response time of web requests with and without using workload classes.

timeout, limits of memory consumption, or limits of concurrency per statement or per group of statements. They
are defined in the database catalog and can be applied to all statements of a database connection. Workload classes
depend on context information passed by the client application: session variables, key-value pairs maintained per
database connection, e.g., APPLICATION="ETL". This context information is matched to a workload mapping
which defines the set of session variables to consider and the mapping to a workload class.

The example in Listing 1 defines a workload class ETLWorkloadClass. Statements executed in the
context of this workload class may not consume more than 5GB of memory and will not use more than one
thread. The corresponding workload mapping ETLWorkloadMapping will apply this workload class if the
session variable APPLICATION="ETL" is set in the database connection. We have confirmed in many customer
scenarios that workload classes can significantly help to achieve high performance and robust system behavior.

CREATE WORKLOAD CLASS "ETLWorkloadClass"
SET ’STATEMENT MEMORY LIMIT’ = ’5’,

’STATEMENT THREAD LIMIT’ = ’1’;

CREATE WORKLOAD MAPPING "ETLWorkloadMapping"
WORKLOAD CLASS "ETLWorkloadClass"

SET ’APPLICATION NAME’ = ’ETL’;

Listing 1: Simple example of using workload classes in SAP HANA.

Experimental Results. Figure 1 illustrates how workload classes can improve response time of web requests in
peak load situations. We measure the average response time per web request: Using JMeter we issue continuously
50 web requests per second. In addition, we slowly increase analytical and ETL load by adding five queries
to each workload every five minutes. Eventually, we reach a very high system load with close to 100% CPU
utilization. Using workload classes, we limit the ETL and the analytical workload to one thread and 5GB of
main memory per SQL query (cf. Listing 1). Thus, the ETL and analytical load is handled using a best-effort
strategy with reduced resource usage. The results demonstrate that enabling workload class management keeps
the average response time of the web requests at a low, predictable value.

Admission Control. Workload classes influence the resource consumption during execution when a statement
was already admitted by the database processes. However, a reasonably sized system may still experience short
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Figure 2: Request processing in SAP HANA using admission control.

peaks in CPU or memory consumption that may result in contention of memory, CPU or latches. Hence, in
SAP HANA we complement workload classes with an admission control mechanism. A schematic overview is
depicted in Figure 2.

The admission control mechanism maintains a weighted moving average zi for all monitored resources of the
host such as CPU utilization or total memory consumption. When SAP HANA receives a new database request, it
checks the weighted moving average against thresholds for each resource. If each zi is below its corresponding
queuing threshold q, the statement is admitted for immediate execution. If the statement cannot be executed
immediately, each zi is checked against its corresponding reject threshold r. If the resource usage is below the
reject threshold, the statement is queued; otherwise it is rejected immediately. SAP HANA periodically checks if
the resource consumption has decreased below the queuing threshold. When this is the case, a batch of requests is
fetched from the queue and scheduled for execution. Database requests may also be rejected when the queue
exceeds a configurable size or when the request is queued for too long.

Admission control samples the current resource usage xi every second. The value xi is taken into account
with, e.g., a weight of λ = 0.7. Note that the sampling interval in combination with the weighted moving average
lessens the impact of peak load situations, while the thresholds assure that the system reaches a high load without
being overloaded. In addition, admission control assumes that the client application implements a reasonable
strategy to retry rejected database requests. We could verify in productive setups that admission control helps to
avoid contention issues in peak load situations, and that customers profit from a more robust system behavior.

Conclusion. Different workloads have different resource demands and performance characteristics. To manage
hardware resources efficiently or to comply with SLAs of various workloads, commercial systems employ
workload management. Using SAP HANA as an example, we present two techniques. Workload classes limit,
e.g., the amount of memory or number of threads for an entire workload or an individual statement by enforcing
limits across all components of the DBMS. In addition, admission control manages incoming request before they
are admitted into the system, monitors CPU and memory consumption, and ultimately accepts or rejects a request
to improve response times in peak load scenarios.

3 CPU Cache Partitioning

Modern microprocessors feature a sophisticated hierarchy of caches to hide the latency of memory access.
However, multiple cores within a processor usually share the same last-level cache (LLC). We observed that this
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can hurt performance and predictability, especially in concurrent workloads whenever a query suffers from cache
pollution caused by another query running on the same processor: the throughput of cache-sensitive operators
may degrade by more than 50% [11]. In particular, some workloads are highly sensitive to the available amount
of CPU cache (e.g., random accesses to a small hash table), contrary to cache-insensitive operations such as
a sequential scan of a large memory area. The good news is that hardware manufacturers allow fine-grained
control of cache allocation by offering mechanisms such as Intel’s Cache Allocation Technology (CAT) [12]. By
integrating a cache partitioning mechanism, which partitions the cache for individual database operators, into the
execution engine of a prototype version of SAP HANA, we were able to improve the overall system performance
by up to 38%.

Cache-Sensitivity. We analyzed the cache-sensitivity of individual operators using the example of the column
scan operator, the aggregation with grouping operator and the foreign key join operator. Our results show that
column scans do not profit from a large LLC. This observation does not come as a surprise because, by nature,
scans read data exactly once from DRAM without re-using it. Aggregations, by contrast, can be highly sensitive
to the size of the LLC. The algorithm that we consider is based on hashing, and is most cache-sensitive whenever
the size of the hash tables is comparable to the (configured) LLC size. Only if the hash table is either very small
or very large, cache sensitivity becomes less significant. Finally, the cache sensitivity of foreign key joins heavily
depends on the input data, i.e., the cardinality of the primary keys: If the size of the bit vector used internally
is comparable to the size of the cache, the algorithm becomes cache-sensitive. Otherwise the operator does not
profit from a large LLC.

Cache Partitioning. Traditionally, the user has little control over the cache, as it is entirely managed by
hardware. Techniques such as page coloring [13] offer the possibility of partitioning the cache by allocating
memory in specific memory pages, known to map to a specific portion of the cache. But those techniques require
significant changes to the OS and the application. Plus, re-partitioning the cache at runtime requires copying the
data [14, 15].

With the microarchitecture codenamed “Haswell” Intel introduced Cache Allocation Technology (CAT) [12]
to partition the last-level cache of a processor. We use the Linux kernel interface of CAT (available since version
4.10 [16]) to integrate cache partitioning into the execution engine of a prototype version of SAP HANA. A
schematic overview of how we retrofitted cache partitioning into an execution engine is illustrated in Figure 3.

The execution engine of SAP HANA uses a thread pool of worker threads to execute jobs [10], e.g., an
operator. We annotate a job with information of its cache usage. The approach is similar to workload classes, but
its granularity differs. While workload classes annotate entire queries, the cache partitioning mechanism annotates
jobs, internal units of work often featuring a distinctive memory access pattern. Currently, we distinguish between
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three categories of jobs: (i) jobs which are not cache-sensitive and pollute the cache such as the column scan; (ii)
jobs which are cache-sensitive and profit from the entire cache such as the aggregation with grouping operator
for most cases; and (iii) jobs such as the foreign key join operator which can be both cache-polluting and
cache-sensitive depending on the query or data. By default, a job belongs to (ii) to avoid regressions. During
the execution of a job, the engine maps a job to a bitmask and passes the bitmask and the TID of the worker
thread to the Linux kernel. The Linux kernel associates the bitmask with the TID allowing it to update a core’s
bitmask during thread scheduling. Integrating cache partitioning into the code base of an industry-strength system,
described into more detail in [11], requires only a small effort: our actual implementation consists of less than
1000 lines of code.

While we derived the cache partitioning scheme from an experimental analysis, the application of existing
characterization methods for describing the cache usage pattern of a database operator could be investigated. For
instance, Chou and DeWitt [17] propose the query locality set model based on the knowledge of various patterns
of queries to allocate buffer pool memory efficiently. Others propose the cache miss ratio as an online model for
characterizing workloads or operators [18, 19, 20].

Experimental Results. Figure 4 illustrates some of our experimental results. Our evaluation confirms that,
e.g., aggregations are sensitive to cache pollution caused by, e.g., column scans. Aggregations are most sensitive
to cache pollution whenever the size of their performance-critical data structures is comparable to the size of
the LLC (cf. Figure 4b). Note that columns in SAP HANA are dictionary-compressed. A compressed column
contains indexes which reference values in a dictionary. A dictionary is a sorted, unique sequence of the actual
domain values. Because the aggregation operator decompresses its input to compute the aggregate, it performs
many random accesses to the dictionary of the aggregated column. Moreover, aggregations frequently access
hash tables used for grouping.

We observed that the throughput of the aggregation query may drop below 60% compared to running isolated
in the system. By utilizing cache partitioning and restricting the column scan to 10% of the available LLC, we
can improve the throughput of the aggregation query by up to 21%. In addition, the column scan operator profits
from the fact that the aggregation operator consumes less memory bandwidth: The throughput of the column
scan increases slightly by up to 6%, too. We determine that the overall cache hit ratio increases and that the
LLC misses per instruction decrease because the aggregation performs fewer accesses to main memory and more
accesses to the cache.

While the column scan operator always pollutes the cache, other operators such as the join operator (not
shown here) only cause cache pollution whenever its frequently accessed data structures fit in the L1 or L2
cache [11]. In these cases, we can eliminate cache pollution as well and significantly improve performance by
restricting the join to a small portion of the LLC. Generally, the search for the “best” partitioning in any given
situation will depend on accurate result size estimates.

Conclusion. In-memory database operators exhibit different performance characteristics depending on the
available cache size. We demonstrate how to integrate a cache partitioning mechanism into the execution engine
of an existing DBMS with low expenditure and show in our evaluation that our approach avoids cache pollution
and significantly reduces cache misses improving overall system performance. Ultimately, our results illustrate
that integrating cache partitioning into a DBMS engine is worth the effort: it may improve but never degrades
performance for arbitrary workloads containing scan-intensive, cache-polluting operators.

4 Interaction with the OS

The interaction of the database management system with the operation system is crucial for achieving high
concurrency, high scalability and robust performance. While commercial database systems usually choose to
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circumvent the OS and exploit detailed workload information, another strategy is bringing the database system
and the operating system closer together with a radical co-design. First, we discuss how a database management
system may take control of memory management and task scheduling using the example of SAP HANA. Second,
we present concepts as well as first experimental results for the bare metal runtime MxKernel, a shared platform
for implementing crucial components for both the DBMS and the OS.

4.1 Bypassing the OS

Instead of relying on the operating system, SAP HANA takes care of, e.g., the memory management and task
scheduling itself—similar to other vendors such as IBM [21] and Oracle [22]—to achieve high concurrency, high
scalability and robust performance. In the following, we briefly present how SAP HANA “bypasses” the OS
using the example of memory management and task scheduling.

Memory Management. In contrast to general-purpose allocators which do not scale to thousands of cores and
usually specialize in allocating small blocks, the memory management of SAP HANA is specifically built for the
needs of a database system. It is primarily optimized for high concurrency and scalability in multithreaded and
NUMA environments and provides robust performance for the allocation of different sizes of memory requests
and their defragmentation (compaction and garbage collection) during the long operating time of the system
(cf. [23]). In addition, the tailor-made implementation supports tracking and monitoring memory operations
to provide fine-grained memory usage statistics. This facilitates limiting the memory consumption globally,
per instance, per process, or SQL statement for, e.g., the implementation of workload classes from Section 2.
Furthermore, the memory statistics can be used for debugging memory leaks or memory corruption as well as for
analyzing performance characteristics related to memory usage.

The memory management pre-allocates memory by requesting chunks of memory (using mmap) from the
operating system. From this point on, the OS is no longer involved. The cached memory is distributed across
different memory pools and completely managed by the database system. To reduce lock conflicts, each CPU has
its own pool. However, pools can still take memory from other pools.

Task Scheduling. The task scheduling mechanism of SAP HANA utilizes its domain-specific knowledge of
database internals to efficiently schedule tasks for highly concurrent, both analytical and transactional workloads.
To mitigate the problem of blocking tasks in transactional workloads, the task scheduler dynamically adapts the
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number of threads in the self-managed thread pool and prioritizes short-running OLTP queries. At the same time,
the scheduler makes use of a dynamic concurrency hint for analytical workloads, which results in a lower number
of tasks for OLAP queries avoiding synchronization, communication and scheduling costs [24]. In general, the
task scheduler relies on the scheduler of the Linux kernel to map threads to cores, but it, e.g., manages the thread
placement to NUMA nodes explicitly and supports task stealing to deal with under-utilization [25].

4.2 DB/OS Co-Design

Most DBMS such as SAP HANA implement, e.g., their own memory management or task scheduling to achieve
high concurrency, high scalability as well as robust performance. Bypassing the OS comes at a price, however.
First, the DBMS re-implements features already existing in the OS. This means that program code may be
duplicated, which in return creates unnecessary maintenance and development costs. In addition, with the OS and
the DBMS having their own implementations it becomes increasingly difficult to share information. Hence, the
DBMS might have detailed information about its workloads, but at the same time it lacks the comprehensive
hardware and system information available to the OS and vice versa. Second, bypassing the OS works best if
the DBMS is the only application. However, as soon as the DBMS is co-running with another application on
the same machine, e.g., in a cloud scenario or an on-premise infrastructure, dynamically managing a machine’s
hardware resources becomes very difficult.

A solution could be the introduction of a central component to which each application as well as the OS
communicate their resource demands. Such a component could then possess detailed information about each
of the applications’ workloads running on the OS and about the OS itself. Consequently, a radical co-design of
OS and DBMS (as well as other applications) could address the problem of dynamic resource management on a
shared machine. A first step into this direction is the bare-metal platform MxKernel, which we introduce in the
following.

Architecture of MxKernel. Usually, DBMS are built on top of an underlying OS which is used to abstract
the machine’s hardware such as CPU architectures or complex memory hierarchies. This abstraction can result
in the loss of information relevant to the DBMS. For example, applications running on top of the OS have less
knowledge about parallel executed applications, the load factor of the machine and the actual hardware structure.
Using external libraries like libnuma [26] might help to gain additional hardware information such as local
and remote memory areas or the NUMA distribution of CPU cores. But the use is more like a crutch and does
not solve the problem holistically. It remains, e.g, difficult to explore and utilize cache hierarchies or topology
structures of various modern hardware [5].

A first step towards solving these problems in a holistic way is the bare-metal platform MxKernel. Figure 5
depicts an overview of the architecture. The platform’s core is a basis layer, which enables to run all applications
as well as the OS side by side. Note that running an OS is optional. At the same time, MxKernel provides
a detailed view of the hardware and an interface to which an application can communicate its requirements
regarding hardware resources or performance expectations.

In particular, it implements services for hardware compatibility and a mechanism for control flow execution.
Moreover, its architecture allows, e.g., the OS and the DBMS to share data structures and algorithms such as
B-Trees, which can be used for primary key indexing by the DBMS or for implementing a file system by the OS.

MxTasks. The platform MxKernel introduces MxTasks to abstract from and to create an interface to the control
flow execution. MxTasks describe small units of work representing a more lightweight alternative to POSIX
Threads. They are executed atomically by implementing a run-to-completion semantic. Usually, MxTasks feature
only a small sequence of instructions. As a result, their runtime, memory accesses, and resource requirements are
easier to predict and to define than threads. In addition, MxTasks can be coupled with precise metadata about,
e.g., its memory access patterns, its accessed data structures and its preferred NUMA region. Thus, by annotating

17



Hardware
CPU CPU GPU

MEM MEM

MxKernel

DBMS OS

MxTaskMxTaskMxTask MxTaskMxTaskMxTask

Thread-based
applications
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MxTasks with workload information we employ the same concept of sharing semantics between application, OS,
DBMS, and hardware as discussed for workload classes in Section 2 or for jobs in Section 3.

MxKernel creates an execution plan that synchronizes MxTasks for shared-resource accesses and optimizes
them for cache and NUMA locality. Thus, MxKernel functions as a central component for resource management
which receives (workload) information in the form of MxTasks with metadata. Its execution framework then tries
to fulfill the requirements of all applications as well as possible. Applications running on top of an (optional) OS,
however, can still choose to use threads instead of MxTasks for compatibility reasons.

Furthermore, MxTasks represent a way to exploit heterogeneous systems by providing different implementa-
tions for distinct processing units such as GPUs or CPUs. Based on system load and the runtime property of a
MxTask, MxKernel could then choose the most suitable available hardware for execution.

Experimental Results. As a first use case, we evaluated an index data structure based on the Blink-tree [27]. We
implement the insert algorithm described by Lehman and Yao [27]. However, we modify it to support MxTasks:
We spawn a new task for each traversal of a node. This means that we create a task for looking up the child node
to traverse next. When a task finally finds the matching leaf node, we insert the new value.

While concurrent POSIX Threads accessing the same node of the Blink-tree have to be protected using latches,
MxTasks benefit from the run-to-completion semantic: Mapping the traversal of a tree node to a specific processor
core ensures that only one task accesses a node at a time. In addition, we benefit from cache locality because one
core accesses the same data structure multiple times.

We consider two different implementations of the Blink-tree: a version based on POSIX Threads executed on
Linux, and a version based on MxTasks running on MxKernel. The workload consists of 16 · 106 insert operations
using unique key-value pairs. We execute the experiment on a system with two Intel Xeon E5-2690 processors
with 8 CPU cores each, and simultaneous multithreading enabled.

The results illustrated in Figure 6 show that while the thread-based version exhibits a higher throughput until
using eight threads, the throughput starts dropping after using four threads. We explain the differences with
the latch contention of the thread version: Every node has to be protected by a latch to prevent inconsistencies.
MxTasks, on the other hand, have no need to use latches. Every node of the Blink-tree is assigned to one of the
cores and every MxTask accessing a node will be executed on the mapped core without suspension.

In addition, we notice that the throughput degrades slightly after using cores from the second NUMA node.
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We attribute this to the increased overhead of cache coherency. For managing MxTasks and tracking their
execution state, we use a wait-free queue for every core. Pushing MxTasks from a queue of one core to the queue
of another core, triggers the cache coherency mechanism of the processor which costs additional execution time.
This effect occurs as soon as another NUMA node is involved. Note that the throughput of the thread-based
version, on the other hand, drops significantly with more than 16 cores.

Conclusion. The interaction between DBMS and OS are crucial for creating high-performance systems. We
briefly present how a commercial system such as SAP HANA bypasses the OS and implements, e.g., its own
memory management and task scheduling to guarantee robust performance and scaling by exploiting domain-
specific knowledge, or to track and to enforce the consumption of hardware resources. Another strategy is the
co-design of DBMS and OS. As a first step towards this goal, we introduce the bare-metal platform MxKernel.
On top of it, the DBMS and the OS run side by side with an interface to communicate their hardware and runtime
requirements to. In return, MxKernel manages hardware resources exclusively.

5 Conclusion

Operational analytics database management systems with the capability to perform both high-speed transactional
processing and complex analytical workloads on the same dataset and at the same time, impose new challenges
and practical implications for system designers. In this article, we discussed several solutions that allow to
manage these resource-intensive workloads in an efficient and holistic way. In particular, we explicitly share
workload information between application, OS, DBMS, and hardware which allows us to manage resources
efficiently and to improve performance and predictability.

By sharing context information between the application and the DBMS, systems can implement an application-
aware resource management and quality of service features. SAP HANA employs workload classes for limiting
the resource consumption of queries issued by individual applications. In addition, we presented its admission
control mechanism to manage the amount of requests the system handles at a given time in order to avoid
contention in peak load situations.

19



By sharing cache usage information between the DBMS and the hardware, we implement a mechanism that
dynamically partitions the cache per individual operator. We demonstrated that this may improve the overall
throughput of highly concurrent workloads, where we restrict the cache usage of scan-intensive operators and
increase the cache capacity for cache-sensitive operators.

Finally, we discussed how the database system interacts with the operating system. While DBMS traditionally
take control over individual features of the OS and implement, e.g., a custom memory management or task
scheduling, other research directions explore their co-design. In particular, we presented the bare-metal platform
MxKernel. On top of it, the DBMS and the OS run side by side and communicate their hardware and runtime
requirements to the platform. In return, MxKernel takes care of managing all hardware resources.
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[5] J. Giceva, T. Salomie, A. Schüpbach, G. Alonso, and T. Roscoe. COD: Database / Operating System Co-Design.
CIDR, 2013.

[6] K. Kara, J. Giceva, and G. Alonso. FPGA-based Data Partitioning. SIGMOD, 2017, pp. 433–445.

[7] A. Böhm. Novel Optimization Techniques for Modern Database Environments. BTW, 2015, pp. 23–24.

[8] M. Zhang. Autonomic Workload Management for Database Management Systems. Ph.D. thesis, Queen’s University,
2014.

[9] SAP SE. SAP HANA Administration Guide. https://help.sap.com/viewer/
6b94445c94ae495c83a19646e7c3fd56/2.0.03/en-US, 2018.

[10] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and A. Ailamaki. Scaling Up Concurrent Main-Memory Column-Store
Scans: Towards Adaptive NUMA-aware Data and Task Placement. VLDB, vol. 8, no. 12, pp. 1442–1453, 2015.
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