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Letter from the Editor-in-Chief

Opinions and Viewpoints

Starting from this issue, the Data Engineering Bulletin will feature opinions and viewpoints from distinguished
researchers in the database community and beyond. The landscape of data management has changed dramatically
since the Internet, the explosion of big data, and the rise of machine learning. It is important to ponder on the
state of database research, its impact on industrial practice, and new initiatives the database community should
undertake. For this reason, we bring in thought leaders to help stimulate the discussions and move the field
forward.

In this issue, we asked two renowned experts in the field, David Lomet and Alon Halevy, to share their
thoughts about some history and future trends of data management. David comtemplates on the role of caching in
the past and future. His analysis provides deep insights into why data caching systems continue to dominate the
market and how to achieve higher performance that does not rely on simply increasing main memory cache size.
Alon considers aspects of data that are important to decision making but are traditionally ignored by our research
community. His pieces covers the management of subjective data, building unbiased presentations of data that are
tailored to the subjective world-view of the recipient, and the subjective nature of human decision making.

The Current Special Issue

Philippe Bonnet put together an exciting issue on the inter-operations among applications, database systems,
operating system, and hardware. The six articles in the issue illustrate various forms of cross-layer support.

Haixun Wang
WeWork Corporation
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Letter from the Special Issue Editor

The layering of applications, database systems, operating system, and hardware, has never been an ideal
separation. For decades, database systems have overriden operating system services in order to efficiently support
transactional properties. However, this layering has enabled the independent evolution of database systems based
on well-defined abstractions, at a performance cost that has remained negligible for decades.

Today, this layering is challenged. First, applications that require low latency in addition to high throughput
cannot tolerate inefficiencies due to layer independance. When every micro-second counts, it makes sense to
streamline the data path across layers. Second, techniques and policies devised for multicore CPUs, might have
to be revised for large number of possibly diverse cores. Third, the dominance of virtualized environments and
the emergence of programmable hardware requires novel abstractions.

There is a need to rethink the boundaries of applications, database systems, operating system, and hardware
and revisit the nature of the interactions across these layers. In this issue, we have collected six articles that
illustrate various forms of cross-layer support.

The first article proposes to share information across layers to optimize resource utilization. It is based on
experimental results with SAP HANA and proposes a concrete instance of co-design between Database and
Operating System. It identifies the need to bridge the semantic gap between application and database system.

The second article illustrates a mechanism, hyperupcalls, specifically designed to bridge such a semantic gap.
Hyperupcalls have been designed to bridge the semantic gap between a hypervisor and a guest virtual machine
(this work got the best paper award at Usenix ATC 2018). In this paper, the authors explore how hyperupcalls
could be used from the perspective of applications and database systems.

Following these two articles from industrial research, the following three articles are authored by young
faculty members. Each outlines an ambitious research agenda that revisits the role of database systems on the
data, control, and compute planes of modern computers.

The third article revisits operating system support for data management on modern hardware. It argues for
new forms of interface between database system and operating system. The fourth article focuses on specialized
hardware and the opportunities this creates for database system design. The fifth article details the challenge of
utilizing server cores efficiently for data intensive tasks, especially on servers equipped with many/diverse cores,
and makes the case for cross-layer support for data-intensive task scheduling.

The sixth article focuses on a general purpose synchronization method, optimistic lock coupling, that is both
simple and scales to a large number of cores. This method is applicable to most tree-like data structures and
should be considered as an operating system-level facility on multi-core CPUs.

The traditional layering has favoured contributions from independent communities. The cross-layer ap-
proaches outlined in this issue, favour collaborations between database experts and experts on hardware, operating
systems, compilers, and programming languages. We anticipate that the data engineering community will
increasingly engage with these communities in the near future.

Philippe Bonnet
IT University of Copenhagen
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Data Caching Systems Win the Cost/Performance Game

David Lomet
Microsoft Research, Redmond, WA 98052

1 Introduction

1.1 Cost/Performance

Data in traditional data caching record management systems resides on secondary storage, and is read into main
memory only when operated on. This limits system performance. Main memory data stores with data always in
main memory are faster. But this performance comes at an increased cost. The analysis in [7] shows how modern
data caching systems can produce better cost/performance. Their exploition of a storage hierarchy hence can
serve a greater diversity of data management needs at lower cost.

1.2 A Little History

Traditional data management systems were implemented using hard disk drives (HDD) coupled with small main
memories. Such systems were, of necessity, designed as data caching systems. That is, data lived on HDDs, and
was read into a main memory cache to be operated on. As main memories became larger and costs fell, more
and more data was cached. Removing I/O cost from the path to data improved performance substantially. It
exposed, however, new performance bottlenecks. For example, concurrency control and recovery (CCR) has
modest execution cost compared with data I/O accesses. With the I/O cost reduced, CCR became a much larger
part of operation execution path.

Database researchers, in striving for great performance, looked again at CCR. Ultimately, high performance
CCR techniques were developed that depended, for effectiveness, upon there being no I/O. High latency within
transactions did not fit well with these techniques. This led to main memory only data management systems, e.g.,
[1, 3, 10], with performance of millions of operations/sec. Main memory systems inspired an explosion of new
CCR and data access techniques suitable for such systems. However, the performance gains required permanently
committing main memory to the data being managed.

The main memory efforts have, however, led to technology that made it possible to achieve much higher
performance in data caching systems. For example, both RocksDB [8] and Deuteronomy [4, 5, 6] use main
memory techniques, e.g. latch-free data access, for high performance on data cached in main memory. In addition,
both dramatically shrink write I/O cost via log structuring techniques, and avoid some read I/O by supporting
“blind” updates without the pages needing to be in main memory.

2 Data Management Economics

A data management system should ALWAY S be able to achieve higher performance with all data in main
memory. Further, the fall-off in performance when data has to first be brought into the cache is substantial, even for
a highly optimized system. So why bother with a data caching system? The answer is “better cost/performance”.
So the argument here is not that there is insufficient main memory to hold the data, but that there is a less costly
way to manage data.

We regard data caching system operations as coming in two flavors, in-memory operations MM (data is
in main memory) and secondary storage operations SS (data needs to be brought into main memory). Data
management operations have both execution and storage costs. Storage costs are always paid, while execution
costs are incurred only when data is operated on. MM operations have higher performance (no secondary storage
data access) while SS operations have lower storage costs (flash is cheaper than DRAM).
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Figure 1: The cost/sec of main memory operations and secondary storage operations as execution rates change.

2.1 Data Management Cost/Sec

We analyze cost per second of data management for our two operations: MM and SS 1 The costs are of two
forms, storage rental costs for data and cpu and device rental costs for operation execution.

MM operations: We need to rent a page of DRAM ($DRAM) and a page of flash ($FLASH) because the
data is also on secondary storage. MM operation execution cost is $MOP.

$MM = ($DRAM + $FLASH) +N ∗ $MOP (1)

SS operations: We need to rent a page of flash ($FLASH) but not a page of DRAM since we are bringing
the data into DRAM only as needed. So the cost in DRAM is insignificantly small. The cost of an SS operation
involves its storage cost, now flash memory, with cost $FLASH and its execution cost $SOP. $SOP consists of
MM operation execution cost $MOP plus the cost of bringing the data into DRAM. This second cost is $FLOP,
the cost of an SSD’s IO operation, plus $IO, the cost of the cpu executing its IO path .

$SS = $FLASH +N ∗ ($MOP + $FLOP + $IO) (2)

We can now calculate the breakeven point- i.e., how many op/sec N we need to execute for the costs to be
equal. For lowest cost, we switch between MM and SS operations at that point. We solve for 1/N , the interval
between accesses when costs are equal.

Ti =
1

N
=

$SOP − $MOP

$DRAM
=

$FLOP + $IO

$DRAM
(3)

Ti yields our version of the “5-minute” rule. Ti is approximately one minute (the updated “5 minute rule” [2]).
The smaller the breakeven time, the sooner the cost is reduced by evicting the page. A data caching system can
use the breakeven point in choosing the lower cost operation. It approximates this point with its caching policy.
The cost trade-off between MM and SS operations is shown in Figure 1. Capturing operation costs permits us
to compare costs at performance points away from breakeven. This demonstrates why flash cost $FLASH is so
important.

At low access rates, the cost of storage dominates the execution cost. Since main memory is 10X more costly
than flash, anMM operation is 11X more expensive than an SS operation at very low access rates. At high access
rates, it is the execution cost that dominates. $SOP is about 12X the cost of $MOP, with $FLOP approximately
6X of $MOP, and $IO about 5X of $MOP. The number of IOPS provide by an SSD has dramatically increased,
reducing $FLOP. Thus CPU cost ($IO) for an I/O is now a significant part of $SOP cost.

Trading space (cost) for time (cost) can be useful for improving systems, but how much space for how
much performance? We analysed other technologies in [7] which showed similar cross-over points frequently

1A more detailed analysis is in [7].
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exist where relative cost advantage also changes between systems. Using more main memory, as done by the
main memory MassTree key-value store results in its performance being higher than Deuteronomy’s. In our
experiments, the breakeven point for a page at about Ti = 3 seconds. Hence MassTree is better for very hot
data, but not for data accessed less frequently. Data compression saves storage cost at the expense of increasing
execution cost, hence good for very cold data, even though decompression adds to execution cost.

3 Concluding Thoughts

Cost/performance is usually more important than sheer performance. And storage costs are a very big part of
overall costs, since most data is cold. Further, the hot data set typically changes over time. Cost effective data
management means reducing storage costs for cold data and reducing execution cost for hot data. That is what
data caching systems do. Data caching systems dominate the market via better cost/performance, despite main
memory systems having higher performance.

There is another message here. Research may dramatically increase data caching system performance. For
example, reducing the cost of moving data between storage hierarchy levels could be a huge win, enabling new
and cheaper storage technologies to play an important role in data management. That research agenda might
succeed in producing a ”one size” system that fits (almost) all [9] of the data management market.

4 Acknowledgements

I want to thank Haixun Wang for inviting me to write this opinion piece. Thanks also to my Deuteronomy
colleagues, particularly Justin Levandoski, Sudipta Sengupta, and Ryan Stutsman. Together, we built a great data
caching system.
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The Ubiquity of Subjectivity

Alon Halevy

1 Introduction

Data has become an integral part of our lives. We use data to make a wide spectrum of decisions that affect our
well-being, such as what to wear today, where to go for dinner and on vacation, which charity to support, and who
to vote for in the elections. Ideally, we’d like to think that if we just had all the facts, decisions would be easy
and disagreements would be quickly settled. As a research community, our goal has been to fuel such decision
making by focusing on extracting, managing, querying and visualizing data and facts. I argue here that we need
to acknowledge the subjective aspects of data and decision making and broaden our agenda to incorporate them
into the systems we build.

Subjectivity is prevalent in at least three levels. First, the data itself may be subjective: there is no ground truth
about whether a restaurant is romantic or a travel destination is relaxing. We need to develop techniques to extract,
manage and query subjective data. Second, presentation of the data can be subjective either by introducing bias
(perhaps intentionally or even maliciously), or by tailoring the presentation to the frame of mind of the recipient.
Third, human decision making is inherently subjective and based on emotions. We need to understand how to
model the emotional aspect of decision making in our systems.

The following sections will expand on each of these topics. I have already done some research on the first
topic [5] and so my comments on it will be more concrete. However, I believe all three areas are equally important.

2 Subjective data

When we compare between multiple options (e.g., hotels, restaurants, online courses), we typically lean on
subjective data that describes the experiential aspects of these options. Today, this data resides in online reviews.
For example, reviews will give insights on whether a restaurant has a quiet ambience, a hotel has helpful staff, or
a school has good faculty. While today’s online shopping sites make significant attempts at surfacing key quotes
from reviews and even classifying them into several categories, a user cannot express experiential conditions in
the query (e.g., hotels up to $250 a night with helpful staff). Hence, we end up sifting through many reviews until
we get exhausted and settle for sub-optimal choices.

Database systems traditionally focus on the objective attributes of entities (e.g., the price and location of
a hotel, or the cuisine of a restaurant). One exception, which captures a narrow aspect of subjective data, is
modeling reviewers’ opinions as star ratings, and letting users query the aggregate ratings. Subjective data
introduces additional technical challenges because it is expressed in free text and is very nuanced. Hence, in
addition to the inherent subjectivity of the data, users may express similar opinions with very different words. The
Natural Language Processing (NLP) community has spent significant effort on subjective data. That community
investigated problems such as identifying subjective data [14], studying how subjectivity affects the meaning of
words [12], learning extraction patterns for it [13], and creating summaries of online reviews [6]. Management of
subjective data presents an interesting opportunity to combine techniques from databases and NLP.

The first challenge involving subjective data is answering complex queries. Roughly speaking, from a query
processing perspective, the NLP community has addressed the problem of retrieving individual facts (e.g., finding
comments about the friendliness of the hotel staff). However, to answer more complex queries, a system needs
to be able to combine multiple query predicates and to aggregate opinions across many reviews. Combining
multiple subjective predicates (e.g., hotels with quiet rooms and friendly staff) is similar in spirit to the problem
of combining multiple sources of fuzzy information [2]. Aggregating subjective data is crucial because users
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typically want to get an overview of the reviews at hand. The problem of aggregating reviews is fascinating
because it requires mapping textual expressions to some meaningful scale. Of course, we may also want to restrict
whose opinions we consider in answering the query. For example, I may want to only consider reviews of people
like me, or people who are experienced travelers.

The second challenge regarding subjective data is that the schema is much more fluid and subjective. Since
experiential aspects of an entity can be extremely varied and nuanced, it’s not clear which attributes to include in
the schema and what their precise meaning is. Some attributes may be related to each other or mostly determined
by others (e.g., FRIENDLYSTAFF and HELPFULSTAFF). Hence, a subjective database system cannot assume that
every query it receives can be answered with its schema. In some cases, it will need to find attributes in the
schema that are closest to the query terms. In other cases, when the system has low confidence that the schema
can be used to answer the query, it will need to fall back on the actual text in the reviews. In some ways, this
challenge is similar to how web search engines straddle the boundary between structured and unstructured data.
When a search engine can confidently map a query to an entity in their knowledge graph, the engine presents a
knowledge card with structured data. When the engine thinks the answer appears in a paragraph of text or an
HTML table on the Web, they present that result prominently. But when both of these fail, they fall back on links
to ranked Web pages.

Finally, at the core of the subjective evaluation of data is also the subjective view of the user asking the query.
A hotel that would be considered clean for one person may not cut it for another, and obviously opinions differ on
cafes. Hence, when user profiles are available, a subjective database should tailor its answers to the user. User
profiles may be collected passively from previous queries, clicks or purchases, or they may be constructed by
answering a few survey questions. The next two sections dive deeper into the topic of the user perception.

3 Subjective presentation

To be useful, data needs to be communicated to a user either textually, orally or visually. There are two
dimensions to subjectivity in the presentation: faithfulness–whether the data is presented without bias, and
effectiveness–whether the data is presented in a way that is likely to resonate with the frame of mind of the
recipient.

In terms of faithfulness, there are several common methods to create a misleading presentation, including
omission, alluding to the straight-line instinct, and improper comparison [8]. An example of omission is in
Figure 1(a) showing that unemployment rates in the US have been going down since Donald Trump took office
in January, 2017, whereas Figure 1(b) shows that it is merely a continuation of the trend that began during
the previous administration. An example of alluding to the straight-line instinct would be to show the world
population growth graph in Figure 1(c) and letting the readers extrapolate that it will grow indefinitely. In fact,
the common estimates show that the world population will actually peak around 2050. An example of improper
comparison would be to state that the GDP of the USA grew by 2.3% in 2017 but without presenting growth
numbers for comparable economies. Note that in some cases search engines already show comparable points
when presenting structured data.

In the above examples the presenter seems at least slightly nefarious by hiding relevant aspects of the data
(see [9] for a more detailed discussion of fairness in data analysis). But subjectivity in presentation can also
be introduced in order to frame the data in a way that can resonate better with the recipient. Such subjectivity
could make the difference between making a convincing case or falling on flat ears. Lakoff and Wehling discuss
the framing issue in the context of political debates [4]. They discuss the example of the healthcare debate in
American politics and claim that once the healthcare is framed as a product, there is little chance of convincing
conservatives that it should be available to everyone and that everyone should be forced to buy healthcare. After
all, a government should not force its citizens to buy any product, be it peanut butter, striped socks, or healthcare.
In contrast, if healthcare is framed as an issue of freedom, which is central to the conservative doctrine, then
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(a) (b) (c)

Figure 1: (a) is the unemployment rate in the USA since 2017 and (b) is the rate since 2009. (c) is the world
population over time.

conservatives would see the merits. After all, you are not truly free if a medical condition can completely deplete
all your assets.

The above discussion leads to several research problems which can be stated at a general level as follows: (1)
is P a faithful presentation of the data D? (2) Does a presentation P of data D support an argument A? (3) is
the presentation P of data D effective for the user U? Note that effectiveness is different from relevance–data can
be relevant, but the user may still ignore it if not presented effectively. In a particular context, these problems will
be made more specific. For example, we will have some space of possible presentations (e.g., graphs spanning
different time periods), and for elements of that space we can consider specific questions, such as would a
presentation of a graph of a variable over time incorrectly lead to inducing wrong conclusions with the straight
line instinct? Could one falsely conclude a particular pattern without looking at a broader time scale? What are
appropriate comparison points for a particular datum?

4 Subjective data use

We would like to think that our decision making is rational and based on hard facts. In practice, however, it is well
known from psychology and Neuroscience that our emotions, which express many of our subjective preferences,
play a large part in our decision making [3]. In fact, it has been shown that without emotions we cannot make
even simple decisions. A famous case in point was Antonio Damasio’s patient named Elliot [1]. Elliot suffered a
particular type of damage to his brain following the removal of a tumor and was unable to feel any emotion, even
when he was shown very disturbing images. While Elliot’s IQ remained in tact, he was not able to make simple
decisions such as how to prioritize work items or choose an item from a restaurant menu.

I am not suggesting that the intricacies of decision making can be reformulated as a data management problem,
but I think we can do a much better job at incorporating the emotional aspect of decision making into the systems
we build.2 From a computational perspective, decision making involves exploring a large state space of possible
outcomes, such as choosing a hotel to stay during a trip, or the best method for securing child care for your baby.
The first challenge to decision making arises because the number of possible states may be too large to consider,
especially under time and attention pressure. Second, we may have incomplete or only probabilistic knowledge
about these possible states, making the comparison even sketchier. Finally, many of the choices we make in life
(e.g., between job offers or romantic prospects) are not really directly comparable to each other.

To reach decisions effectively, we prune the search space using heuristics that may not be conscious [10].
For example, we may proceed by specifying conditions on aspects of the problem (i.e., conditions on schema
attributes) that exclude many options (including some good ones!) until we have a small enough set of choices to
consider in detail [11]. Developing an understanding of how to use this and other heuristics effectively while and

2Rosalind Picard already pointed in this direction in 1997 in her original book on Affective Computing [7], (page 220).
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still guaranteeing quality decisions presents an exciting area of research that our current data science toolkit set is
well poised to investigate.

5 Conclusion

To realize the full potential of the vast amounts of data available to us today, systems need to be able to manage
subjective data and to understand how prospective consumers of the data think and make decisions subjectively.
I’ve tried to outline a few concrete steps on this very broad research agenda. Of course, as we tackle these
problems, we should also keep in mind that ultimately the data we have is merely an abstraction of the world
and there will be other factors that are not included in the data that will influence our decisions and actions. In
a nutshell, this is a call to consider concepts from psychology, behavioral economics and neuroscience in the
design of tools that enable decision making based on data.
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Abstract

With their capability to perform both high-speed transactional processing and complex analytical work-
loads on the same dataset and at the same time, Operational Analytics Database Management Systems
give enormous flexibility to application developers. Particularly, they allow for the development of
new classes of enterprise applications by giving analytical insights into operational data sets in real
time. From a database system point of view though, these applications are very demanding, as they
exhibit a highly diverse combination of different query workloads with inhomogeneous performance and
latency requirements. In this article, we discuss the practical implications and challenges for database
architects and system designers. We propose solutions that—by sharing semantics between the appli-
cation, the database system, the operating system, and the hardware—allow to manage complex and
resource-intensive workloads in an efficient and holistic way.

1 Introduction

Driven by the idea of enabling both transactional processing as well as real-time analytical query workloads
in the context of a single system [1], a new class of database management systems has emerged, referred to as
operational analytics database management systems [2]. These systems envision to simplify the data management
landscape by consolidating multiple, disparate use cases. Consequently, they allow the creation of novel business
applications which seamlessly combine both real-time analytics and transaction processing [3]. From a database
system designer’s point of view, however, delivering high performance for these modern applications puts up
additional challenges because their workload characteristics are highly diverse and demanding.

In particular, static workload management schemes and simple heuristics perform suboptimally considering
end-to-end performance [4]. The reason for this is that even the same query can have different priorities from
an application’s point of view, depending on the context it is being executed in. A simple primary-key based
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lookup operation can be issued, e.g, in the context of a mission-critical and time-sensitive OLTP transaction such
as the interactive data entry by a business user, but also as part of a non-critical batch transaction that runs for
hours in the background. A complex analytical query can be sent in the context of, e.g., a scheduled quarter-end
close report (making it rather uncritical from an execution time point of view), but also as part of a user-driven,
interactive dashboard application where virtually every millisecond counts.

Motivated by these observations, we share the opinion of other researchers that individual hard- and software-
solutions throughout the data processing stack fail to address the complex challenges of these systems in
isolation [5, 6]. Particularly, we believe that they are best addressed by a holistic approach, and in collaboration
between the application, database management system, and the underlying hardware [7].

Outline. This article is structured as follows. In Section 2, we discuss how to bridge the semantic gap between
the application and the database system. Communicating additional workload context information and priorities
allows the database system to perform prioritization, scheduling, and resource management that is in line with the
expectations of the application. Next, Section 3 discusses a similar technique which allows the database system to
share semantic information about data access patterns with the underlying hardware (i.e., the processor) by using
CPU cache partitioning. This enables the more efficient utilization of CPU caches, specifically for heterogeneous,
highly concurrent workloads. In Section 4, we highlight different approaches for database management systems
to interact with the operating system, e.g., to improve scaling and robustness. While commercial database systems
usually choose to circumvent the OS exploiting detailed workload information, another strategy is bringing the
database system and the operating system closer together with a radical co-design. We conclude the article in
Section 5.

2 Workload Management in SAP HANA

Analytical and transactional workloads do not only have different resource demands, they are also linked to
different performance expectations. Transactional workloads are characterized by operations which consume
relatively little memory and compute power. However, they are usually sensitive to lock contention. Unfor-
tunately, this resource contention leads to fluctuations in statement response times, while applications expect
predictable throughput and response time characteristics. In our experience, customers are willing to sacrifice
peak performance in return for better predictability of statement response times. Analytical workloads, on the
other hand, typically are demanding regarding CPU and memory consumption. In particular, single analytical
ad-hoc statements may consume excessive amounts of memory or CPU. This is particularly problematic for
operational analytics DBMS when demanding analytical statements take away CPU clock cycles and slow down
concurrent transactional workloads [4].

To balance or prioritize different workloads and to comply with a service level agreement (SLA), commercial
DBMS usually employ workload management to manage resources available to single statements, applications
or database users, see [8] for a good overview. In SAP HANA, workload management works on a fine-grained
level [9] because the system is optimized for modern multi-core architectures with extensive multi-threading [10].
Limiting, e.g., the number of working threads or the amount of memory available to the engine, can be managed
for entire workloads or individual statements. While this creates a powerful tuning option for the user, the system
has to track and enforce resource consumption in all of its components. In the following, we briefly present two
mechanisms for implementing workload management using the example of SAP HANA: workload classes and
admission control.

Workload Classes. In SAP HANA workload classes address 1) the requirement of avoiding the excessive
resource consumption of single statements and 2) the requirement of isolating the resource demands of different
applications, database users, etc. Workload classes are containers of configuration parameters like priority, query
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Figure 1: Average response time of web requests with and without using workload classes.

timeout, limits of memory consumption, or limits of concurrency per statement or per group of statements. They
are defined in the database catalog and can be applied to all statements of a database connection. Workload classes
depend on context information passed by the client application: session variables, key-value pairs maintained per
database connection, e.g., APPLICATION="ETL". This context information is matched to a workload mapping
which defines the set of session variables to consider and the mapping to a workload class.

The example in Listing 1 defines a workload class ETLWorkloadClass. Statements executed in the
context of this workload class may not consume more than 5GB of memory and will not use more than one
thread. The corresponding workload mapping ETLWorkloadMapping will apply this workload class if the
session variable APPLICATION="ETL" is set in the database connection. We have confirmed in many customer
scenarios that workload classes can significantly help to achieve high performance and robust system behavior.

CREATE WORKLOAD CLASS "ETLWorkloadClass"
SET ’STATEMENT MEMORY LIMIT’ = ’5’,

’STATEMENT THREAD LIMIT’ = ’1’;

CREATE WORKLOAD MAPPING "ETLWorkloadMapping"
WORKLOAD CLASS "ETLWorkloadClass"

SET ’APPLICATION NAME’ = ’ETL’;

Listing 1: Simple example of using workload classes in SAP HANA.

Experimental Results. Figure 1 illustrates how workload classes can improve response time of web requests in
peak load situations. We measure the average response time per web request: Using JMeter we issue continuously
50 web requests per second. In addition, we slowly increase analytical and ETL load by adding five queries
to each workload every five minutes. Eventually, we reach a very high system load with close to 100% CPU
utilization. Using workload classes, we limit the ETL and the analytical workload to one thread and 5GB of
main memory per SQL query (cf. Listing 1). Thus, the ETL and analytical load is handled using a best-effort
strategy with reduced resource usage. The results demonstrate that enabling workload class management keeps
the average response time of the web requests at a low, predictable value.

Admission Control. Workload classes influence the resource consumption during execution when a statement
was already admitted by the database processes. However, a reasonably sized system may still experience short
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Figure 2: Request processing in SAP HANA using admission control.

peaks in CPU or memory consumption that may result in contention of memory, CPU or latches. Hence, in
SAP HANA we complement workload classes with an admission control mechanism. A schematic overview is
depicted in Figure 2.

The admission control mechanism maintains a weighted moving average zi for all monitored resources of the
host such as CPU utilization or total memory consumption. When SAP HANA receives a new database request, it
checks the weighted moving average against thresholds for each resource. If each zi is below its corresponding
queuing threshold q, the statement is admitted for immediate execution. If the statement cannot be executed
immediately, each zi is checked against its corresponding reject threshold r. If the resource usage is below the
reject threshold, the statement is queued; otherwise it is rejected immediately. SAP HANA periodically checks if
the resource consumption has decreased below the queuing threshold. When this is the case, a batch of requests is
fetched from the queue and scheduled for execution. Database requests may also be rejected when the queue
exceeds a configurable size or when the request is queued for too long.

Admission control samples the current resource usage xi every second. The value xi is taken into account
with, e.g., a weight of λ = 0.7. Note that the sampling interval in combination with the weighted moving average
lessens the impact of peak load situations, while the thresholds assure that the system reaches a high load without
being overloaded. In addition, admission control assumes that the client application implements a reasonable
strategy to retry rejected database requests. We could verify in productive setups that admission control helps to
avoid contention issues in peak load situations, and that customers profit from a more robust system behavior.

Conclusion. Different workloads have different resource demands and performance characteristics. To manage
hardware resources efficiently or to comply with SLAs of various workloads, commercial systems employ
workload management. Using SAP HANA as an example, we present two techniques. Workload classes limit,
e.g., the amount of memory or number of threads for an entire workload or an individual statement by enforcing
limits across all components of the DBMS. In addition, admission control manages incoming request before they
are admitted into the system, monitors CPU and memory consumption, and ultimately accepts or rejects a request
to improve response times in peak load scenarios.

3 CPU Cache Partitioning

Modern microprocessors feature a sophisticated hierarchy of caches to hide the latency of memory access.
However, multiple cores within a processor usually share the same last-level cache (LLC). We observed that this
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can hurt performance and predictability, especially in concurrent workloads whenever a query suffers from cache
pollution caused by another query running on the same processor: the throughput of cache-sensitive operators
may degrade by more than 50% [11]. In particular, some workloads are highly sensitive to the available amount
of CPU cache (e.g., random accesses to a small hash table), contrary to cache-insensitive operations such as
a sequential scan of a large memory area. The good news is that hardware manufacturers allow fine-grained
control of cache allocation by offering mechanisms such as Intel’s Cache Allocation Technology (CAT) [12]. By
integrating a cache partitioning mechanism, which partitions the cache for individual database operators, into the
execution engine of a prototype version of SAP HANA, we were able to improve the overall system performance
by up to 38%.

Cache-Sensitivity. We analyzed the cache-sensitivity of individual operators using the example of the column
scan operator, the aggregation with grouping operator and the foreign key join operator. Our results show that
column scans do not profit from a large LLC. This observation does not come as a surprise because, by nature,
scans read data exactly once from DRAM without re-using it. Aggregations, by contrast, can be highly sensitive
to the size of the LLC. The algorithm that we consider is based on hashing, and is most cache-sensitive whenever
the size of the hash tables is comparable to the (configured) LLC size. Only if the hash table is either very small
or very large, cache sensitivity becomes less significant. Finally, the cache sensitivity of foreign key joins heavily
depends on the input data, i.e., the cardinality of the primary keys: If the size of the bit vector used internally
is comparable to the size of the cache, the algorithm becomes cache-sensitive. Otherwise the operator does not
profit from a large LLC.

Cache Partitioning. Traditionally, the user has little control over the cache, as it is entirely managed by
hardware. Techniques such as page coloring [13] offer the possibility of partitioning the cache by allocating
memory in specific memory pages, known to map to a specific portion of the cache. But those techniques require
significant changes to the OS and the application. Plus, re-partitioning the cache at runtime requires copying the
data [14, 15].

With the microarchitecture codenamed “Haswell” Intel introduced Cache Allocation Technology (CAT) [12]
to partition the last-level cache of a processor. We use the Linux kernel interface of CAT (available since version
4.10 [16]) to integrate cache partitioning into the execution engine of a prototype version of SAP HANA. A
schematic overview of how we retrofitted cache partitioning into an execution engine is illustrated in Figure 3.

The execution engine of SAP HANA uses a thread pool of worker threads to execute jobs [10], e.g., an
operator. We annotate a job with information of its cache usage. The approach is similar to workload classes, but
its granularity differs. While workload classes annotate entire queries, the cache partitioning mechanism annotates
jobs, internal units of work often featuring a distinctive memory access pattern. Currently, we distinguish between
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three categories of jobs: (i) jobs which are not cache-sensitive and pollute the cache such as the column scan; (ii)
jobs which are cache-sensitive and profit from the entire cache such as the aggregation with grouping operator
for most cases; and (iii) jobs such as the foreign key join operator which can be both cache-polluting and
cache-sensitive depending on the query or data. By default, a job belongs to (ii) to avoid regressions. During
the execution of a job, the engine maps a job to a bitmask and passes the bitmask and the TID of the worker
thread to the Linux kernel. The Linux kernel associates the bitmask with the TID allowing it to update a core’s
bitmask during thread scheduling. Integrating cache partitioning into the code base of an industry-strength system,
described into more detail in [11], requires only a small effort: our actual implementation consists of less than
1000 lines of code.

While we derived the cache partitioning scheme from an experimental analysis, the application of existing
characterization methods for describing the cache usage pattern of a database operator could be investigated. For
instance, Chou and DeWitt [17] propose the query locality set model based on the knowledge of various patterns
of queries to allocate buffer pool memory efficiently. Others propose the cache miss ratio as an online model for
characterizing workloads or operators [18, 19, 20].

Experimental Results. Figure 4 illustrates some of our experimental results. Our evaluation confirms that,
e.g., aggregations are sensitive to cache pollution caused by, e.g., column scans. Aggregations are most sensitive
to cache pollution whenever the size of their performance-critical data structures is comparable to the size of
the LLC (cf. Figure 4b). Note that columns in SAP HANA are dictionary-compressed. A compressed column
contains indexes which reference values in a dictionary. A dictionary is a sorted, unique sequence of the actual
domain values. Because the aggregation operator decompresses its input to compute the aggregate, it performs
many random accesses to the dictionary of the aggregated column. Moreover, aggregations frequently access
hash tables used for grouping.

We observed that the throughput of the aggregation query may drop below 60% compared to running isolated
in the system. By utilizing cache partitioning and restricting the column scan to 10% of the available LLC, we
can improve the throughput of the aggregation query by up to 21%. In addition, the column scan operator profits
from the fact that the aggregation operator consumes less memory bandwidth: The throughput of the column
scan increases slightly by up to 6%, too. We determine that the overall cache hit ratio increases and that the
LLC misses per instruction decrease because the aggregation performs fewer accesses to main memory and more
accesses to the cache.

While the column scan operator always pollutes the cache, other operators such as the join operator (not
shown here) only cause cache pollution whenever its frequently accessed data structures fit in the L1 or L2
cache [11]. In these cases, we can eliminate cache pollution as well and significantly improve performance by
restricting the join to a small portion of the LLC. Generally, the search for the “best” partitioning in any given
situation will depend on accurate result size estimates.

Conclusion. In-memory database operators exhibit different performance characteristics depending on the
available cache size. We demonstrate how to integrate a cache partitioning mechanism into the execution engine
of an existing DBMS with low expenditure and show in our evaluation that our approach avoids cache pollution
and significantly reduces cache misses improving overall system performance. Ultimately, our results illustrate
that integrating cache partitioning into a DBMS engine is worth the effort: it may improve but never degrades
performance for arbitrary workloads containing scan-intensive, cache-polluting operators.

4 Interaction with the OS

The interaction of the database management system with the operation system is crucial for achieving high
concurrency, high scalability and robust performance. While commercial database systems usually choose to
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circumvent the OS and exploit detailed workload information, another strategy is bringing the database system
and the operating system closer together with a radical co-design. First, we discuss how a database management
system may take control of memory management and task scheduling using the example of SAP HANA. Second,
we present concepts as well as first experimental results for the bare metal runtime MxKernel, a shared platform
for implementing crucial components for both the DBMS and the OS.

4.1 Bypassing the OS

Instead of relying on the operating system, SAP HANA takes care of, e.g., the memory management and task
scheduling itself—similar to other vendors such as IBM [21] and Oracle [22]—to achieve high concurrency, high
scalability and robust performance. In the following, we briefly present how SAP HANA “bypasses” the OS
using the example of memory management and task scheduling.

Memory Management. In contrast to general-purpose allocators which do not scale to thousands of cores and
usually specialize in allocating small blocks, the memory management of SAP HANA is specifically built for the
needs of a database system. It is primarily optimized for high concurrency and scalability in multithreaded and
NUMA environments and provides robust performance for the allocation of different sizes of memory requests
and their defragmentation (compaction and garbage collection) during the long operating time of the system
(cf. [23]). In addition, the tailor-made implementation supports tracking and monitoring memory operations
to provide fine-grained memory usage statistics. This facilitates limiting the memory consumption globally,
per instance, per process, or SQL statement for, e.g., the implementation of workload classes from Section 2.
Furthermore, the memory statistics can be used for debugging memory leaks or memory corruption as well as for
analyzing performance characteristics related to memory usage.

The memory management pre-allocates memory by requesting chunks of memory (using mmap) from the
operating system. From this point on, the OS is no longer involved. The cached memory is distributed across
different memory pools and completely managed by the database system. To reduce lock conflicts, each CPU has
its own pool. However, pools can still take memory from other pools.

Task Scheduling. The task scheduling mechanism of SAP HANA utilizes its domain-specific knowledge of
database internals to efficiently schedule tasks for highly concurrent, both analytical and transactional workloads.
To mitigate the problem of blocking tasks in transactional workloads, the task scheduler dynamically adapts the
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number of threads in the self-managed thread pool and prioritizes short-running OLTP queries. At the same time,
the scheduler makes use of a dynamic concurrency hint for analytical workloads, which results in a lower number
of tasks for OLAP queries avoiding synchronization, communication and scheduling costs [24]. In general, the
task scheduler relies on the scheduler of the Linux kernel to map threads to cores, but it, e.g., manages the thread
placement to NUMA nodes explicitly and supports task stealing to deal with under-utilization [25].

4.2 DB/OS Co-Design

Most DBMS such as SAP HANA implement, e.g., their own memory management or task scheduling to achieve
high concurrency, high scalability as well as robust performance. Bypassing the OS comes at a price, however.
First, the DBMS re-implements features already existing in the OS. This means that program code may be
duplicated, which in return creates unnecessary maintenance and development costs. In addition, with the OS and
the DBMS having their own implementations it becomes increasingly difficult to share information. Hence, the
DBMS might have detailed information about its workloads, but at the same time it lacks the comprehensive
hardware and system information available to the OS and vice versa. Second, bypassing the OS works best if
the DBMS is the only application. However, as soon as the DBMS is co-running with another application on
the same machine, e.g., in a cloud scenario or an on-premise infrastructure, dynamically managing a machine’s
hardware resources becomes very difficult.

A solution could be the introduction of a central component to which each application as well as the OS
communicate their resource demands. Such a component could then possess detailed information about each
of the applications’ workloads running on the OS and about the OS itself. Consequently, a radical co-design of
OS and DBMS (as well as other applications) could address the problem of dynamic resource management on a
shared machine. A first step into this direction is the bare-metal platform MxKernel, which we introduce in the
following.

Architecture of MxKernel. Usually, DBMS are built on top of an underlying OS which is used to abstract
the machine’s hardware such as CPU architectures or complex memory hierarchies. This abstraction can result
in the loss of information relevant to the DBMS. For example, applications running on top of the OS have less
knowledge about parallel executed applications, the load factor of the machine and the actual hardware structure.
Using external libraries like libnuma [26] might help to gain additional hardware information such as local
and remote memory areas or the NUMA distribution of CPU cores. But the use is more like a crutch and does
not solve the problem holistically. It remains, e.g, difficult to explore and utilize cache hierarchies or topology
structures of various modern hardware [5].

A first step towards solving these problems in a holistic way is the bare-metal platform MxKernel. Figure 5
depicts an overview of the architecture. The platform’s core is a basis layer, which enables to run all applications
as well as the OS side by side. Note that running an OS is optional. At the same time, MxKernel provides
a detailed view of the hardware and an interface to which an application can communicate its requirements
regarding hardware resources or performance expectations.

In particular, it implements services for hardware compatibility and a mechanism for control flow execution.
Moreover, its architecture allows, e.g., the OS and the DBMS to share data structures and algorithms such as
B-Trees, which can be used for primary key indexing by the DBMS or for implementing a file system by the OS.

MxTasks. The platform MxKernel introduces MxTasks to abstract from and to create an interface to the control
flow execution. MxTasks describe small units of work representing a more lightweight alternative to POSIX
Threads. They are executed atomically by implementing a run-to-completion semantic. Usually, MxTasks feature
only a small sequence of instructions. As a result, their runtime, memory accesses, and resource requirements are
easier to predict and to define than threads. In addition, MxTasks can be coupled with precise metadata about,
e.g., its memory access patterns, its accessed data structures and its preferred NUMA region. Thus, by annotating
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MxTasks with workload information we employ the same concept of sharing semantics between application, OS,
DBMS, and hardware as discussed for workload classes in Section 2 or for jobs in Section 3.

MxKernel creates an execution plan that synchronizes MxTasks for shared-resource accesses and optimizes
them for cache and NUMA locality. Thus, MxKernel functions as a central component for resource management
which receives (workload) information in the form of MxTasks with metadata. Its execution framework then tries
to fulfill the requirements of all applications as well as possible. Applications running on top of an (optional) OS,
however, can still choose to use threads instead of MxTasks for compatibility reasons.

Furthermore, MxTasks represent a way to exploit heterogeneous systems by providing different implementa-
tions for distinct processing units such as GPUs or CPUs. Based on system load and the runtime property of a
MxTask, MxKernel could then choose the most suitable available hardware for execution.

Experimental Results. As a first use case, we evaluated an index data structure based on the Blink-tree [27]. We
implement the insert algorithm described by Lehman and Yao [27]. However, we modify it to support MxTasks:
We spawn a new task for each traversal of a node. This means that we create a task for looking up the child node
to traverse next. When a task finally finds the matching leaf node, we insert the new value.

While concurrent POSIX Threads accessing the same node of the Blink-tree have to be protected using latches,
MxTasks benefit from the run-to-completion semantic: Mapping the traversal of a tree node to a specific processor
core ensures that only one task accesses a node at a time. In addition, we benefit from cache locality because one
core accesses the same data structure multiple times.

We consider two different implementations of the Blink-tree: a version based on POSIX Threads executed on
Linux, and a version based on MxTasks running on MxKernel. The workload consists of 16 · 106 insert operations
using unique key-value pairs. We execute the experiment on a system with two Intel Xeon E5-2690 processors
with 8 CPU cores each, and simultaneous multithreading enabled.

The results illustrated in Figure 6 show that while the thread-based version exhibits a higher throughput until
using eight threads, the throughput starts dropping after using four threads. We explain the differences with
the latch contention of the thread version: Every node has to be protected by a latch to prevent inconsistencies.
MxTasks, on the other hand, have no need to use latches. Every node of the Blink-tree is assigned to one of the
cores and every MxTask accessing a node will be executed on the mapped core without suspension.

In addition, we notice that the throughput degrades slightly after using cores from the second NUMA node.
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Figure 6: Throughput of insert operations into a Blink-tree. While the throughput drops down when using more
than four POSIX Threads, the throughput stagnates when using MxTasks from the second NUMA region.

We attribute this to the increased overhead of cache coherency. For managing MxTasks and tracking their
execution state, we use a wait-free queue for every core. Pushing MxTasks from a queue of one core to the queue
of another core, triggers the cache coherency mechanism of the processor which costs additional execution time.
This effect occurs as soon as another NUMA node is involved. Note that the throughput of the thread-based
version, on the other hand, drops significantly with more than 16 cores.

Conclusion. The interaction between DBMS and OS are crucial for creating high-performance systems. We
briefly present how a commercial system such as SAP HANA bypasses the OS and implements, e.g., its own
memory management and task scheduling to guarantee robust performance and scaling by exploiting domain-
specific knowledge, or to track and to enforce the consumption of hardware resources. Another strategy is the
co-design of DBMS and OS. As a first step towards this goal, we introduce the bare-metal platform MxKernel.
On top of it, the DBMS and the OS run side by side with an interface to communicate their hardware and runtime
requirements to. In return, MxKernel manages hardware resources exclusively.

5 Conclusion

Operational analytics database management systems with the capability to perform both high-speed transactional
processing and complex analytical workloads on the same dataset and at the same time, impose new challenges
and practical implications for system designers. In this article, we discussed several solutions that allow to
manage these resource-intensive workloads in an efficient and holistic way. In particular, we explicitly share
workload information between application, OS, DBMS, and hardware which allows us to manage resources
efficiently and to improve performance and predictability.

By sharing context information between the application and the DBMS, systems can implement an application-
aware resource management and quality of service features. SAP HANA employs workload classes for limiting
the resource consumption of queries issued by individual applications. In addition, we presented its admission
control mechanism to manage the amount of requests the system handles at a given time in order to avoid
contention in peak load situations.
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By sharing cache usage information between the DBMS and the hardware, we implement a mechanism that
dynamically partitions the cache per individual operator. We demonstrated that this may improve the overall
throughput of highly concurrent workloads, where we restrict the cache usage of scan-intensive operators and
increase the cache capacity for cache-sensitive operators.

Finally, we discussed how the database system interacts with the operating system. While DBMS traditionally
take control over individual features of the OS and implement, e.g., a custom memory management or task
scheduling, other research directions explore their co-design. In particular, we presented the bare-metal platform
MxKernel. On top of it, the DBMS and the OS run side by side and communicate their hardware and runtime
requirements to the platform. In return, MxKernel takes care of managing all hardware resources.
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Abstract

Hyperupcalls are a mechanism which we recently proposed to bridge the semantic gap between a
hypervisor and its guest virtual machines (VMs) by allowing the guest VM to provide the hypervisor safe,
verifiable code to transfer information. With a hyperupcall, a hypervisor can safely read and update data
structures inside the guest, such as page tables. A hypervisor could use such a hyperupcall, for example,
to determine which pages are free and can be reclaimed in the VM without invoking it.

In this paper, we describe hyperupcalls and how they have been used to improve and gain additional
insight on virtualized workloads. We also observe that complex applications such as databases hold
a wealth of semantic information which the systems they run on top of are unaware of. For example,
a database may store records, but the operating system can only observe bytes written into a file, and
the hypervisor beneath it blocks written to a disk, limiting the optimizations the system may make: for
instance, if the operating system understood the database wished to fetch a database record, it could
prefetch related records. We explore how mechanisms like hyperupcalls could be used from the perspective
of an application, and demonstrate two use cases from an application perspective: one to trace events in
both the guest and hypervisor simultaneously and another simple use case where a database installs a
hyperupcall so the hypervisor can prioritize certain traffic and improve response latency.

1 Introduction

Previously, we have described Hyperupcalls [4], a tool used to bridge the semantic gap in virtualization, where
one side of an abstraction (virtual machines) must be oblivious to the other (hypervisors). The abstraction of
a virtual machine (VM), enables hosts known as hypervisors to run multiple operating systems (OSs) known
as guests simultaneously, each under the illusion that they are running in their own physical machine. This is
achieved by exposing a hardware interface which mimics that of true, physical hardware. The introduction of this
simple abstraction has led to the rise of the modern data center and the cloud as we know it today. Unfortunately,
virtualization is not without drawbacks. Although the goal of virtualization is for VMs and hypervisors to be
oblivious from each other, this separation renders both sides unable to understand decisions made on the other
side, a problem known as the semantic gap.

The semantic gap is not limited to virtualization - it exists whenever an abstraction is used, since the purpose
of the abstraction is to hide implementation details. For example, in databases, a SQL query has limited insight
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into how the query planner may execute it, and the query planner has limited insight into the application that sent
the SQL query. Insight into the application may help the database execute the query optimally. If the database
could see that an application was overloaded, it might be able to delay execution of the query and use the resources
for other applications. Likewise, if the application could see that a column was being reindexed, it may perform
the query on another column, or defer that query for later.

In virtualization, addressing the semantic gap is critical for performance. Without information about decisions
made in guests, hypervisors may suboptimally allocate resources. For example, the hypervisor cannot know
what memory is free in guests without understanding their internal OS state, breaking the VM abstraction.
As a result, in virtualized environments, many mechanisms have been developed to bridge the semantic gap.
State-of-the-art hypervisors today typically bridge the semantic gap with paravirtualization [10, 35], which makes
the guest aware of the hypervisor. Several paravirtual mechanisms exist and are summarized in Table 1. Another
mechanism hypervisors may leverage is introspection, which enables the hypervisor to observe the behavior of
virtual machines without prior coordination.

Each one of these mechanisms used in virtualization may be used elsewhere where the semantic gap exists.
For example, a paravirtual mechanism such as a hypercall might be similar to an application informing a database
using an RPC call, whereas an upcall may involve a database informing an application about it’s internal state.
While introspection would be more complicated to implement in the context of applications such as databases,
one can imagine a database attempting to infer the workload of an application by measuring its query rate, or an
application trying to determine if a database is overloaded by measuring response latency.

In this paper, we describe the design and implementation of hyperupcalls 1, a technique which enables a
hypervisor to communicate with a guest, like an upcall, but without a context switch, like VMI. This is achieved
through the use of verified code, which enables a guest to communicate to the hypervisor in a flexible manner
while ensuring that the guest cannot provide misbehaving or malicious code. Once a guest registers a hyperupcall,
the hypervisor can execute it to perform actions such as locating free guest pages or running guest interrupt
handlers without switching into the guest. We believe that hyperupcalls are useful from the perspective of
an application - both as a tool for an application such as a database to gain insight about its clients, and for
applications to use in a virtualized environment, breaking the semantic gap between the application, guest
operating system and hypervisor.

Hyperupcalls are easy to build: they are written in a high level language such as C, and we provide a framework
which allows hyperupcalls to share the same codebase and build system as the Linux kernel that may be generalized
to other operating systems. When the kernel is compiled, a toolchain translates the hyperupcall into verifiable
bytecode. This enables hyperupcalls to be easily maintained. Upon boot, the guest registers the hyperupcalls
with the hypervisor, which verifies the bytecode and compiles it back into native code for performance. Once
recompiled, the hypervisor may invoke the hyperupcall at any time.

We have previously shown that hyperupcalls enable a hypervisor to be proactive about resource allocation
when memory is overcommitted, enhance performance when interprocessor interrupts (IPIs) are used, and enhance
the security and debuggability of systems in virtual environments [4]. In this paper, we show an application use
case: we design a hyperupcall which is installed by memcached to prioritize the handling and reduce the latency
of certain requests.

2 Communication Mechanisms

It is now widely accepted that in order to extract the most performance and utility from virtualization, hypervisors
and their guests need to be aware of one another. To that end, a number of mechanisms exist to facilitate
communication between hypervisors and guests. Table 1 summarizes these mechanisms, which can be broadly
characterized by the requestor, the executor, and whether the mechanism requires that the hypervisor and the

1Hyperupcalls were previously published as “hypercallbacks” [5].
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HV Hyperupcalls Upcalls VMI [18]

Table 1: Hypervisor-Guest Communication Mechanisms. Hypervisors (HV) and guests may communicate through
a variety of mechanisms, which are characterized by who initiates the communication, who executes and whether
the channel for communication is coordinated (paravirtual). Italicized cells represent channels which require
context switches.

guest coordinate ahead of time. We note that many of these mechanisms have analogs in other places where the
semantic gap may exist. For example, a hypercall might be similar to a query notification in a database, and an
upcall might resemble an out-of-band request to a service.

In the next section, we discuss these mechanisms and describe how hyperupcalls fulfill a need for a commu-
nication mechanism where the hypervisor makes and executes its own requests without context switching. We
begin by introducing state-of-the-art paravirtual mechanisms in use today.

2.1 Paravirtualization

Hypercalls and upcalls. Most hypervisors today leverage paravirtualization to communicate across the seman-
tic gap. Two mechanisms in widespread use today are hypercalls, which allow guests to invoke services provided
by the hypervisor, and upcalls, which enable the hypervisor to make requests to guests. Paravirtualization means
that the interface for these mechanisms are coordinated ahead of time between hypervisor and guest [10].

One of the main drawbacks of upcalls and hypercalls is that they require a context switch as both mechanisms
are executed on the opposite side of the request. As a result, these mechanisms must be invoked with care.
Invoking a hypercall or upcall too frequently can result in high latencies and computing resource waste [3].

Another drawback of upcalls in particular that the requests are handled by the guest, which could be busy
handling other tasks. If the guest is busy or if a guest is idle, upcalls incur the additional penalty of waiting for
the guest to be free or for the guest or woken up. This can take an unbounded amount of time, and hypervisors
may have to rely on a penalty system to ensure guests respond in a reasonable amount of time.

Finally, by increasing the coupling between the hypervisor and its guests, paravirtual mechanisms can be
difficult to maintain over time. Each hypervisor have their own paravirtual interfaces, and each guest must
implement the interface of each hypervisor. The paravirtual interface is not thin: Microsoft’s paravirtual interface
specification is almost 300 pages long [26]. Linux provides a variety of paravirtual hooks, which hypervisors can
use to communicate with the VM [46]. Despite the effort to standardize the paravirtualization interfaces they
are incompatible with each other, and evolve over time, adding features or even removing some (e.g., Microsoft
hypervisor event tracing). As a result, most hypervisors do not fully support efforts to standardize interfaces and
specialized OSs look for alternative solutions [25, 31].

Pre-virtualization. Pre-Virtualization [24] is another mechanism in which the guest requests services from the
hypervisor, but the requests are served in the context of the guest itself. This is achieved by code injection: the
guest leaves stubs, which the hypervisor fills with hypervisor code. Pre-virtualization offers an improvement
over hypercalls, as they provide more flexible interface between the guest and the hypervisor. Arguably, pre-
virtualization suffers from a fundamental limitation: code that runs in the guest is deprivileged and cannot perform
sensitive operations, for example, accessing shared I/O devices. As a result, in pre-virtualization, the hypervisor
code that runs in the guest still needs to communicate with the privileged hypervisor code using hypercalls.
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2.2 Introspection

Introspection occurs when a hypervisor or guest attempts to infer information from the other context without
directly communicating with it. With introspection, no interface or coordination is required. For instance, a
hypervisor may attempt to infer the state of completely unknown guests simply by their memory access patterns.
Another difference between introspection and paravirtualization is that no context switch occurs: all the code to
perform introspection is executed in the requestor.

Virtual machine introspection (VMI). When a hypervisor introspects a guest, it is known as VMI [18]. VMI
was first introduced to enhance VM security by providing intrusion detection (IDS) and kernel integrity checks
from a privileged host [9, 17, 18]. VMI has also been applied to checkpointing and deduplicating VM state [1],
as well as monitoring and enforcing hypervisor policies [32]. These mechanisms range from simply observing a
VM’s memory and I/O access patterns [22] to accessing VM OS data structures [14], and at the extreme end they
may modify VM state and even directly inject processes into it [19, 15]. The primary benefits of VMI are that the
hypervisor can directly invoke VMI without a context switch, and the guest does not need to be “aware” that it is
inspected for VMI to function. However, VMI is fragile: an innocuous change in the VM OS, such as a hotfix
which adds an additional field to a data structure could render VMI non-functional [8]. As a result, VMI tends to
be a “best effort” mechanism.

HVI. Used to a lesser extent, a guest may introspect the hypervisor it is running on, known as hypervisor
introspection (HVI) [42, 37]. HVI is typically employed either to secure a VM from untrusted hypervisors [38]
or by malware to circumvent hypervisor security [36, 28].

2.3 Extensible OSes

While hypervisors provide a fixed interface, OS research suggested along the years that flexible OS interfaces
can improve performance without sacrificing security. The Exokernel provided low level primitives, and
allowed applications to implement high-level abstractions, for example for memory management [16]. SPIN
allowed to extend kernel functionality to provide application-specific services, such as specialized interprocess
communication [11]. The key feature that enables these extensions to perform well without compromising
security, is the use of a simple byte-code to express application needs, and running this code at the same protection
ring as the kernel. Our work is inspired by these studies, and we aim to design a flexible interface between the
hypervisor and guests to bridge the semantic gap.

2.4 Hyperupcalls

This paper introduces hyperupcalls, which fulfill a need for a mechanism for the hypervisor to communicate
to the guest which is coordinated (unlike VMI), executed by the hypervisor itself (unlike upcalls) and does not
require context switches (unlike hypercalls). With hyperupcalls, the VM coordinates with the hypervisor by
registering verifiable code. This code is then executed by the hypervisor in response to events (such as memory
pressure, or VM entry/exit). In a way, hyperupcalls can be thought of as upcalls executed by the hypervisor.

In contrast to VMI, the code to access VM state is provided by the guest so the hyperupcalls are fully aware
of guest internal data structures— in fact, hyperupcalls are built with the guest OS codebase and share the same
code, thereby simplifying maintenance while providing the OS with an expressive mechanism to describe its state
to underlying hypervisors.

Compared to upcalls, where the hypervisor makes asynchronous requests to the guest, the hypervisor can
execute a hyperupcall at any time, even when the guest is not running. With an upcall, the hypervisor is at the
mercy of the guest, which may delay the upcall [6]. Furthermore, because upcalls operate like remote requests,
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Hyperupcall Code (C)

Hyperupcall Table

Hyperupcall
Framework

int is_page_free {
   if (page��free)
 return false;
   else {
 int page;

eBPF Bytecode

BPF_MOV_64 r0, r1
BPF_JMP_IMM #04
BPF_LD_ABS r1, #08
BPF_ALU64_IMM r3, #
BPF_EXIT_INSN

Native  Code

movl $0xff12AB45, %
addl %ecx, %eax
xorl %esi, %esi
movl 4(%esp), %ebx
retl
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Figure 1: System Architecture. Hyperupcall registration (left) consists of compiling C code, which may reference
guest data structures, into verifiable bytecode. The guest registers the generated bytecode with the hypervisor,
which verifies its safety, compiles it into native code and sets it in the VM hyperupcall table. When the hypervisor
encounters an event (right), such as a memory pressure, it executes the respective hyperupcall, which can access
and update data structures of the guest.

upcalls may be forced to implement OS functionality in a different manner. For example, when flushing remote
pages in memory ballooning [41], the canonical technique for identifying free guest memory, the guest increases
memory pressure using a dummy process to free pages. With a hyperupcall, the hypervisor can act as if it were a
guest kernel thread and scan the guest for free pages directly.

Hyperupcalls resemble pre-virtualization, in that code is transferred across the semantic gap. Transferring
code not only allows for more expressive communication, but it also moves the execution of the request to the
other side of the gap, enhancing performance and functionality. Unlike pre-virtualization, the hypervisor cannot
trust the code being provided by the virtual machine, and the hypervisor must ensure that execution environment
for the hyperupcall is consistent across invocations.

In some ways, hyperupcalls may resemble SQL stored procedures: they are a block of code installed across the
semantic gap, and code is more expressive than a simple request. One important distinction between hyperupcalls
and stored procedures is that hyperupcalls have access to the guest state and data structures, whereas stored
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procedures do not. This allows hyperupcalls to be much more expressive and dynamic compared to simple code
transfer mechanisms.

3 Architecture

Hyperupcalls are short verifiable programs provided by guests to the hypervisor to improve performance or
provide additional functionality. Guests provide hyperupcalls to the hypervisor through a registration process at
boot, allowing the hypervisor to access the guest OS state and provide services by executing them after verification.
The hypervisor runs hyperupcalls in response to events or when it needs to query guest state. The architecture of
hyperupcalls and the system we have built for utilizing them is depicted in Figure 1.

We aim to make hyperupcalls as simple as possible to build. To that end, we provide a complete framework
which allows a programmer to write hyperupcalls using the guest OS codebase. This greatly simplifies the devel-
opment and maintenance of hyperupcalls. The framework compiles this code into verifiable code which the guest
registers with the hypervisor. In the next section, we describe how an OS developer writes a hyperupcall using
our framework. Some of the implementation details, especially in regards to how we verify that the code is safe
and execute the hyperupcall, are out of the scope of this paper. For more details, see [4].

3.1 Building Hyperupcalls

Guest OS developers write hyperupcalls for each hypervisor event they wish to handle. Hypervisors and guests
agree on these events, for example VM entry/exit, page mapping or virtual CPU (VCPU) preemption. Each
hyperupcall is identified by a predefined identifier, much like the UNIX system call interface [33].

3.1.1 Providing Safe Code

One of the key properties of hyperupcalls is that the code must be guaranteed to not compromise the hypervisor.
In order for a hyperupcall to be safe, it must only be able to access a restricted memory region dictated by the
hypervisor, run for a limited period of time without blocking, sleeping or taking locks, and only use hypervisor
services that are explicitly permitted.

Since the guest is untrusted, hypervisors must rely on a security mechanism which guarantees these safety
properties. There are many solutions that we could have chosen: software fault isolation (SFI) [40], proof-carrying
code [30] or safe languages such as Rust. To implement hyperupcalls, we chose the enhanced Berkeley Packet
Filter (eBPF) VM.

We chose eBPF for several reasons. First, eBPF is relatively mature: BPF was introduced over 20 years
ago and is used extensively throughout the Linux kernel, originally for packet filtering but extended to support
additional use cases such as sandboxing system calls (seccomp) and tracing of kernel events [21]. eBPF enjoys
wide adoption and is supported by various runtimes [12, 29]. Second, eBPF can be provably verified to have the
safety properties we require, and Linux ships with a verifier and JIT which verifies and efficiently executes eBPF
code [43]. Finally, eBPF has a LLVM compiler backend, which enables eBPF bytecode to be generated from a
high level language using a compiler frontend (Clang). Since OSes are typically written in C, the eBPF LLVM
backend provides us with a straightforward mechanism to convert unsafe guest OS source code into verifiably
safe eBPF bytecode.

3.1.2 From C to eBPF — the Framework

Unfortunately, writing a hyperupcall is not as simple recompiling OS code into eBPF bytecode. However,
our framework aims to make the process of writing a hyperupcalls simple and maintainable as possible. The
framework provides three key features that simplify the writing of hyperupcalls. First, the framework takes care
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of dealing with guest address translation issues so guest OS symbols are available to the hyperupcall. Second, the
framework addresses limitations of eBPF, which places significant constraints on C code. Finally, the framework
defines a simple interface which provides the hyperupcall with data so it can execute efficiently and safely.

Guest OS symbols and memory. Even though hyperupcalls have access to the entire physical memory of the
guest, accessing guest OS data structures requires knowing where they reside. OSes commonly use kernel address
space layout randomization (KASLR) to randomize the virtual offsets for OS symbols, rendering them unknown
during compilation time. Our framework enables OS symbol offsets to be resolved at runtime by associating
pointers using address space attributes and injecting code to adjust the pointers. When a hyperupcall is registered,
the guest provides the actual symbol offsets enabling a hyperupcall developer to reference OS symbols (variables
and data structures) in C code as if they were accessed by a kernel thread.

Global / Local Hyperupcalls. Not all hyperupcalls need to be executed in a timely manner. For example,
notifications informing the guest of hypervisor events such as a VM-entry/exit or interrupt injection only affect
the guest and not the hypervisor. We refer to hyperupcalls that only affect the guest that registered it as local, and
hyperupcalls that affect the hypervisor as a whole as global. If a hyperupcall is registered as local, we relax the
timing requirement and allow the hyperupcall to block and sleep. Local hyperupcalls are accounted in the vCPU
time of the guest similar to a trap, so a misbehaving hyperupcall penalizes itself.

Global hyperupcalls, however, must complete their execution in a timely manner. We ensure that for the guest
OS pages requested by global hyperupcalls are pinned during the hyperupcall, and restrict the memory that can
be accessed to 2% (configurable) of the guest’s total physical memory. Since local hyperupcalls may block, the
memory they use does not need to be pinned, allowing local hyperupcalls to address all of guest memory.

Addressing eBPF limitations. While eBPF is expressive, the safety guarantees of eBPF bytecode mean that it
is not Turing-complete and limited, so only a subset of C code can be compiled into eBPF. The major limitations
of eBPF are that it does not support loops, the ISA does not contain atomics, cannot use self-modifying code,
function pointers, static variables, native assembly code, and cannot be too long and complex to be verified.

One of the consequences of these limitations is that hyperupcall developers must be aware of the code
complexity of the hyperupcall, as complex code will fail the verifier. While this may appear to be an unintuitive
restriction, other Linux developers using BPF face the same restriction, and we provide a helper functions in
our framework to reduce complexity, such as memset and memcpy, as well as functions that perform native
atomic operations such as cmpxchg. A selection of these helper functions is shown in Table 2. In addition, our
framework masks memory accesses (§3.4), which greatly reduces the complexity of verification. In practice, as
long as we were careful to unroll loops, we did not encounter verifier issues while developing the use cases in (§4)
using a setting of 4096 instructions and a stack depth of 1024.

Hyperupcall interface. When a hypervisor invokes a hyperupcall, it populates a context data structure, shown
in Table 3. The hyperupcall receives an event data structure which indicates the reason the callback was called,
and a pointer to the guest (in the address space of the hypervisor, which is executing the hyperupcall). When the
hyperupcall completes, it may return a value, which can be used by the hypervisor.

Writing the hyperupcall. With our framework, OS developers write C code which can access OS variables
and data structures, assisted by the helper functions of the framework. A typical hyperupcall will read the event
field, read or update OS data structures and potentially return data to the hypervisor. Since the hyperupcall
is part of the OS, the developers can reference the same data structures used by the OS itself—for example,
through header files. This greatly increases the maintainability of hyperupcalls, since data layout changes are
synchronized between the OS source and the hyperupcall source.
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Helper Name Function
send vcpu ipi Send an interrupt to VCPU

get vcpu register Read a VCPU register
set vcpu register Read a VCPU register

memcpy memcpy helper function
memset memset helper function
cmpxchg compare-and-swap

flush tlb vcpu Flush VCPU’s TLB
get exit info Get info on an VM EXIT event

Table 2: Selected hyperupcall helper functions. The hyperupcall may call these functions implemented in the
hypervisor, as they cannot be verified using eBPF.

Input field Function
event Event specific data including event ID.
hva Host virtual address (HVA) in which the guest memory is mapped.

guest mask Guest address mask to mask bits which are higher than the guest memory address-width. Used for
verification (§3.4).

vcpus Pointers to the hypervisor VCPU data structure, if the event is associated with a certain VCPU, or a
pointer to the guest OS data structure. Inaccessible to the hyperupcall, but used by helper functions.

vcpu reg Frequently accessed VCPU registers: instruction pointer and VCPU ID.
env Environment variables, provided by the guest during hyperupcallregistration. Used to set address

randomization offsets.

Table 3: Hyperupcall context data. These fields are populated by the hypervisor when a hyperupcall is called.

It is important to note that a hyperupcall cannot invoke guest OS functions directly, since that code has not
been secured by the framework. However, OS functions can be compiled into hyperupcalls and be integrated in
the verified code.

3.2 Compilation

Once the hyperupcall has been written, it needs to be compiled into eBPF bytecode before the guest can register it
with the hypervisor. Our framework generates this bytecode as part of the guest OS build process by running the
hyperupcall C code through Clang and the eBPF LLVM backend, with some modifications to assist with address
translation and verification:

Guest memory access. To access guest memory, we use eBPF’s direct packet access (DPA) feature, which was
designed to allow programs to access network packets safely and efficiently without the use of helper functions.
Instead of passing network packets, we utilize this feature by treating the guest as a “packet”. Using DPA in this
manner required a bug fix [2] to the eBPF LLVM backend, as it was written with the assumption that packet sizes
are ≤64KB.

Address translations. Hyperupcalls allow the hypervisor to seamlessly use guest virtual addresses (GVAs),
which makes it appear as if the hyperupcall was running in the guest. However, the code is actually executed by
the hypervisor, where host virtual address (HVAs) are used, rendering guest pointers invalid. To allow the use of
guest pointers transparently in the host context, these pointers therefore need to be translated from GVAs into
HVAs. We use the compiler to make these translations.

To make this translation simple, the hypervisor maps the GVA range contiguously in the HVA space, so
address translations can easily be done by adjusting the base address. As the guest might need the hyperupcall
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to access multiple contiguous GVA ranges—for example, one for the guest 1:1 direct mapping and of the OS
text section [23]—our framework annotates each pointer with its respective “address space” attribute. We extend
the LLVM compiler to use this information to inject eBPF code that converts each of the pointer from GVA to
HVA by a simple subtraction operation. It should be noted that the generated code safety is not assumed by the
hypervisor and is verified when the hyperupcall is registered.

Bound Checks. The verifier rejects code with direct memory accesses unless it can ensure the memory accesses
are within the “packet” (in our case, guest memory) bounds. We cannot expect the hyperupcall programmer to
perform the required checks, as the burden of adding them is substantial. We therefore enhance the compiler to
automatically add code that performs bound checks prior to each memory access, allowing verification to pass.
As we note in Section 3.4, the bounds checking is done using masking and not branches to ease verification.

Context caching. Our compiler extension introduces intrinsics to get a pointer to the context or to read its
data. The context is frequently needed along the callback for calling helper functions and for translating GVAs.
Delivering the context as a function parameter requires intrusive changes and can prevent sharing code between
the guest and its hyperupcall. Instead, we use the compiler to cache the context pointer in one of the registers and
retrieve it when needed.

3.3 Registration

After a hyperupcall is compiled into eBPF bytecode, it is ready to be registered. Guests can register hyperupcalls
at any time, but most hyperupcalls are registered when the guest boots. The guest provides the hyperupcall event
ID, hyperupcall bytecode and the virtual memory the hyperupcall will use.

3.4 Verification

The hypervisor verifies that each hyperupcall is safe to execute at registration time. Our verifier is based on
the Linux eBPF verifier and checks three properties of the hyperupcall: memory accesses, number of runtime
instructions, and helper functions used.

3.5 Execution

Once the hyperupcall is compiled, registered and verified, it may be executed by the hypervisor in response to an
event. There are some complexities to executing hyperupcalls, for accessing remote CPU states and dealing with
locks. In general, the hypervisor can run the hyperupcall to obtain information about the guest without waiting on
a response from the guest.

4 Use Cases and Evaluation

Previously, we presented several use cases for hyperupcalls which primarily involved the guest operating system:
enabling a hypervisor to be proactive about resource allocation when memory is overcommitted, enhancing
performance when interprocessor interrupts (IPIs) are used, and increasing the security and debuggability of
systems in virtual environments [4]. From the application perspective, we also provided a modified version of
the ftrace utility to help application developers see both hypervisor and guest events in a unified view. In this
section, we focus on the application use cases of hyperupcalls: first we present both the frace utility previously
presented and a new use case where we enable memcached to install a hyperupcall to prioritize certain traffic.
This enables the hypervisor to safely understand application traffic and perform actions based on application state
without coupling the hypervisor with application code.
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4.1 Unified Event Tracing

Event tracing is an important tool for debugging correctness and performance issues. However, collecting traces
for virtualized workloads is somewhat limited. Traces collected inside a guest do not show hypervisor events,
such as when a VM-exit is forced, which can have significant effect on performance. For traces that are collected
in the hypervisor to be informative, they require knowledge about guest OS symbols [13]. Such traces cannot be
collected in cloud environments. In addition, each trace collects only part of the events and does not show how
guest and hypervisor events interleave.

To address this issue, we run the Linux kernel tracing tool, ftrace [34], inside a hyperupcall. Ftrace
is well suited to run in a hyperupcall. It is simple, lockless, and built to enable concurrent tracing in multiple
contexts: non-maskable interrupt (NMI), hard and soft interrupt handlers and user processes. As a result, it was
easily be adapted to trace hypervisor events concurrently with guest events. Using the ftrace hyperupcall, the
guest can trace both hypervisor and guest events in one unified log, easing debugging. Since tracing all events use
only guest logic, new OS versions can change the tracing logic, without requiring hypervisor changes.

Tracing is efficient, despite the hyperupcallcomplexity (3308 eBPF instructions), as most of the code deals
with infrequent events that handles situations in which trace pages fill up. Tracing using hyperupcalls is slower
than using native code by 232 cycles, which is still considerably shorter time than the time a context switch
between the hypervisor and the guest takes.

Tracing is a useful tool for performance debugging, which can expose various overheads [47]. For example,
by registering the ftrace on the VM-exit event, we see that many processes, including short-lived ones, trigger
multiple VM exits due to the execution of the CPUID instruction, which enumerates the CPU features and must
be emulated by the hypervisor. We found that the GNU C Library, which is used by most Linux applications, uses
CPUID to determine the supported CPU features. This overhead could be prevented by extending Linux virtual
dynamic shared object (vDSO) for applications to query the supported CPU features without triggering an exit.

4.2 Scheduler Activation

Our scheduler activation hyperupcall prototype performs scheduler activation by increasing the virtual machine
priority for a short time when a packet which matches a condition arrives to the guest. memcached registers a
hyperupcall with the guest, which in turn registers a hyperupcall with the hypervisor on a guest packet receiving
event. In our prototype implemetation, this hyperupcall simply boosts the VM priority using a helper function,
but we could have also performed other actions such as inspect the packet contents or access guest data structures.
We increase the VM priority (cpu.weight) from a default value of 10 to 100 for 100ms.

Figure 2 shows the results. We used a memcached server in a guest with a single VCPU and increased the
level of overcommittment of the physical CPU the machine was running on. The guest and multiple background
tasks (iperf) were executed in different cgroups with equal priority. We assume in our experiment that the
same user owns all the different guests. A workload generator (memcslap) was dispatched every second to issue
100 requests to the VM. Each experiment as conducted 50 times and the average execution time and standard
deviation are shown.

Overall, this use case demonstrates that an application can use hyperupcalls to prioritize requests to the guest
in an application-specific manner, greatly reducing latency and variability. We believe that we have only scratched
the surface, and there are many other use cases of hyperupcalls which can be used to enhance applications. Since
hyperupcalls can seamlessly integrate into the codebase of the application and are able to access guest state,
developing new use cases is greatly simplified. We are currently working on making it easier for the hyperupcall
to access application state, as well as methods for the guest OS to safely register multiple hyperupcalls on the
same event.
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Figure 2: The runtime of 100 memcached requests with varying level of CPU overcommitment, with and without
scheduler activation hyperupcalls. The slowdown ratio is presented above the lines.

5 Availability

We are in the process of open sourcing the hyperupcalls infrastructure and intend to make it available to the public
soon. In the meantime, interested parties may contact the authors to obtain a pre-release version. Currently, the
hyperupcalls infrastructure we intend to release is built for Linux virtual machines, and is integrated into the
source code of the Linux kernel. Additional work is necessary to fully expose this interface to other applications.

There are several contexts which the hyperupcalls infrastructure could be used in other applications. An
application wishing to install its own hyperupcalls, as in the example use cases we developed, could do so using
an interface provided by the operating system. However, the operating system would need to have a mechanism
for multiplexing hyperupcalls registered to the same event, or not support multiplexing at all. Another context that
hyperupcalls could be used by applications is for applications to use the hyperupcalls concept of running verified
trusted code. Our infrastructure does not yet support this, but could serve as an example system for leveraging
eBPF in applications to run code to bridge the semantic gap.

6 Conclusion

Bridging the semantic gap is critical for performance and for the hypervisor to provide advanced services to
guests. Hypercalls and upcalls are currently used to bridge the gap, but they have several drawbacks: hypercalls
cannot be initiated by the hypervisor, upcalls do not have a bounded runtime, and both incur the penalty of context
switches. Introspection, an alternative which avoids context switches can be unreliable as it relies on observations
instead of an explicit interface. Hyperupcalls overcome these limitations by allowing the guest to expose its logic
to the hypervisor, avoiding a context switch by enabling the hyperupcall to safely execute guest logic directly.

We have built a complete infrastructure for developing hyperupcalls which allow developers to easily add
new paravirtual features using the codebase of the OS. This infrastructure could easily be extended to be used by
applications as well, enabling applications to provide the hypervisor insight into their internal state. They can
also be used to bridge the semantic gap outside of virtualization, for example, for services such as databases to
gain more insight about the applications which use them.
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Abstract

For decades, database management systems have found the generic interface, policies and mechanisms
offered by conventional operating systems at odds with the need for efficient utilization of hardware
resources. The existing approach from the OS-side of ”one-size-fits-all” interface and policies fails
to meet modern data management workload’s performance expectations, and the ”overwriting the OS
policies” approach from the DB-side does not scale with the increasing complexity of modern hardware
and deployment trends.

In this article, we present two approaches on how to improve the systems support for database engines.
First, we extend the OS with a policy engine and a declarative interface to improve the knowledge transfer
between the two systems. Such extensions allow for easier deployment on different machines, more
robust execution in noisy environments and better resource allocation without sacrificing performance
guarantees. Second, we show how we leverage a novel OS architecture to develop customized OS kernels
that meet the needs of data management workloads. Finally, we discuss how both approaches can help to
address the pressing challenges for data processing on heterogeneous hardware platforms.

1 Introduction

Generally, today’s operating systems multiplex applications with little to no information about their requirements.
They migrate, preempt, and interrupt threads on various cores, trying to optimize some system-wide objectives
(e.g., load balancing the work queues on individual cores and across the NUMA nodes [27]). As such, the OS
has no notion about how its decisions affect the performance of the applications primarily due to the limited
communication between the two layers [15].

As a result, database engines that run on commodity operating systems often experience performance
problems, which are caused by the generic OS policies [44]. First, when executing in a noisy environment
alongside other applications, the default OS policies for resource management can often cause performance
degradation [19] or inefficiencies in resource usage [16, 27]. Second, even when running in isolation, databases
often override the generic OS policies (e.g., by pinning threads to cores, allocating memory from a particular
NUMA node, or pinning pages to avoid swapping, etc. [37, 22]). The problem with such user-side optimizations
is that they are often tailored to a specific architecture, which makes portability to other platforms a daunting
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task [28, 41]. Third, frequently the applied optimizations are fragile as they rely on assumptions on what
the OS kernel mechanisms and policies do (e.g., HyPer [21] leverages an efficient OS-assisted snapshotting).
Consequently, any change in the OS policies can cause performance bugs that are difficult to identify and debug.

In light of modern hardware trends of increased hardware heterogeneity and machine diversity, pushing all the
complexity up to the developer or within the database engine does not scale. Furthermore, as databases are often
deployed in the cloud, alongside other applications and tasks, they can no longer assume to have full ownership
of the underlying machine’s resources and any scheduling decision they do may be at odds with the noisy system
environment and result in unpredictable performance.

In this article we argue that it is time to revisit the interface between operating systems and databases and
address the modern challenges in a holistic manner crossing various layers across the systems stack. More
specifically, we propose a solution that first addresses the semantic gap that exists between the database engine
and the operating system by leveraging (1) a powerful declarative interface between the two layers allowing for
bi-directional information flow, and (2) an OS policy engine that unifies the knowledge present in the database
(workload characteristics, access patterns, cost models, data distribution, etc.) with the knowledge of the OS
about the underlying hardware and the runtime system-state. Furthermore, we present a novel OS architecture that
allows for OS kernel customization (i.e., policies, mechanisms and services) based on the specific requirements
of the database system or its workloads. Our design is inspired by recent advancements in operating systems,
which enable systems to run a specialized kernel on a subset of the resources on a given machine. This enables
the database to get considerably more control over the full OS stack, which can then be tuned to achieve both
better performance and stronger guarantees. Finally, we argue how both design principles are suitable to target
modern hardware resource dis-aggregation challenges, raising a few interesting research directions.

2 Background

Databases and operating systems have a decades-long conflict when it comes to resource management and
scheduling. Even though they initially started with the same goal – providing efficient access of data written in
files – they took different approaches to addressing the problem. For many years this was not perceived as an
issue as the two systems were targeting different workloads and machines. This shaped the role of monolithic
databases and operating systems as we know them today. However, the economic advantage of off-the-shelf
hardware has led to today’s situation where a database runs on top of conventional OS. The key problem is that
the OS works with very little knowledge about the workload requirements and properties. Its primary role is to
schedule resources among multiple applications and to provide isolation protection. As such, it sees the database
as yet another program and offers the same generic mechanisms and policies, which often lead to sub-optimal
performance numbers.

Recent trends in both hardware architectures and resource dis-aggregation over fast network interconnects as
well as economies of scale and deployment in the cloud are pressing both layers of the system stack to rethink their
internal designs. The last decade, in particular, has seen profound changes in the available hardware as we reached
the power wall limitation and CPU frequencies stopped scaling. In response, hardware architects introduced
multiple cores, heterogeneous compute resources and accelerators. Similarly, with the rise of the memory wall
and the gap between DRAM and CPU frequencies, machines emerged with more complex cache hierarchies,
non-uniform cache coherent memory, etc. Consequently, the system software (both DBs and OSs) has to adapt
and embrace the new hardware landscape as an opportunity to rethink its architecture model and design principles.
For example, to improve performance, novel scheduling decisions within a database engine [24, 37] and certain
relational algorithms has shifted towards hardware awareness in modern machines [36, 5, 46, 32]. Optimal
use of resources today requires detailed knowledge of the underlying hardware (e.g., memory affinities, cache
hierarchies, interconnect distances). Absorbing such complexity has now become the burden of the programmer
and the problem gets further aggravated with the increasing diversity of micro-architectures.
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On the deployment side, in the age of cloud and server consolidation, databases can no longer assume to
have a complete physical machine to themselves. They are increasingly more often deployed and offered as
services on the cloud, where they run alongside other applications. Consequently, the carefully constructed
internal model of machine resources a database typically uses to plan the execution of its query plans and physical
relational operators has become highly dependent on the runtime state of the whole machine. This state, however,
is unknown to the database and is only available in the operating system which has an overview of all active
applications and orchestrates the resource allocation.

In that context, we make the following observations. First, databases can no longer take full ownership
of resource management, allocation and scheduling, partly because of increasing hardware complexity and
portability issues, and partly because databases today are running in noisy environments (e.g., in the cloud),
alongside other applications. Second, there is a big semantic gap between what each layer of the system stack
knows – the database engine about its workload properties and requirements and the operating systems about the
underlying hardware and runtime system-state – and the rigid interface between them does not allow for rich
information flow. Fourth, the one-size-fit-all generic policies and mechanisms offered by the OS for a wide range
of workloads do not work for performance sensitive applications, like data processing engines. And fifth, the
heavy OS stack is no longer suitable for the new generation hardware, with heterogeneous (rack-scale) resource
dis-aggregation. These are the issues we address as part of our work and discuss in the article.

3 Overview of proposed solution

More specifically, we propose customizing the operating system for data-processing applications and enriching
the interface between the two layers to allow for better information flow. This way the operating system can
adjust its allocation policies while reasoning about the workload requirements in addition to its optimization
for system-wide objectives. To achieve that, we built a proof-of-concept system that makes the following
contributions:

First, we show how the semantic gap between data processing engines and the operating system can be
avoided by introducing a declarative interface for mutual information exchange. To do that we explored how
to best integrate some of the extensive knowledge that a database engine has about its workload requirements
(e.g., cost models, data dependency graphs, resource requirements, etc.) into the OS. The goal is to enable the
OS to reason both about the particular requirements and properties of the database and about the system-wide
and runtime view of the hardware platform and the current application mix. We achieve that by introducing a
policy engine in the OS and a resource monitor that facilitates the communication between the two layers. A rich
query-based interface then enables any application (including the database) to interact with the policy engine.
More specifically, it allows the database to (i) query for details about the underlying hardware resources, (ii) rely
on the policy engine to absorb the hardware complexity and diversity, and provide suitable deployment decisions,
and (iii) push database-specific logic down to the OS in the form of stored procedures that enables it to adjust and
react to noisy system environments (§ 4). The system architecture is shown in Figure 1.

Second, inspired by the multikernel OS design [6], in § 5 we propose a novel OS architecture that enables
dynamic partitioning of the machine’s resources (e.g., CPUs, memory controllers, accelerators, etc.) into a control
plane, running a full-weight operating system along with an OS policy engine, and a compute plane, consisting
of specialized light-weight OS stacks. The objective is to enable customization of the compute-plane OS both
for the properties of the underlying hardware (i.e., potentially heterogeneous compute units) and for the specific
requirements of the workload (e.g., customized scheduler or memory management). By design the allocation
of resources between the control and compute plane is dynamic and can be adapted at runtime based on the
changing workload requirements. To demonstrate the benefits of such control-compute plane OS architecture, we
present a light-weight OS with a kernel-integrated runtime (Basslet), which we run on the compute plane, that is
customized for parallel data analytics.
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4 OS policy engine

The OS policy engine is designed to enable both the OS itself and the database running on top to better grasp the
properties of the available hardware resources and reason about the real-time system state.

More specifically, it consists of a knowledge base that contains information about (1) machine specific facts
(e.g., topology of the machine, number of cores and memory per NUMA node, the cache hierarchy, etc.), (2)
application-related facts (e.g., information whether an application is compute- or memory-bound, sensitive to
sharing the caches, etc.), and (3) current system-state (e.g., number of active applications, their memory usage,
etc.). This information is used both by the knowledge base to build a detailed model of the machine and its
resources, and by a set of algorithms and solvers that compute resource allocation schedules. For the knowledge
base we borrow and extend the concept of System Knowledge Base (SKB) from the Barrelfish OS [42, 1], which
stores data in the format of free-form predicates in a Constraint Logic Programming (CLP) engine. This enables
various solvers to reason about the information available by issuing logical queries to perform constraint solving
and optimization.

The resource manager is responsible for communicating with the applications (in our case the database
engine), triggering resource allocation computations in the knowledge base, and executing the decided policies
by invoking the available OS mechanisms. Often, the policy engine relies on a resource profiler to measure the
capacities of hardware resources (e.g., the maximum attainable DRAM bandwidth achievable per NUMA node),
monitor their current utilization, and enable applications to measure their resource requirements or footprints.

Finally, the new interface is declarative and allows for richer two-way information exchange between the
DBMS and the OS policy engine. It covers a wide range of actions from retrieving information about the
underlying architecture to pushing down application-specific cost-models and dataflow dependencies so that
the OS policy engine can reason about them. Furthermore, by allowing stored procedures it enables database-
specific logic to be computed in the OS-side that leverages the most up-to-date system-state. Finally, it supports
the retrieval of application-specific resource usage profiles as measured by the resource profiler and enables a
continuous information flow between the two layers at runtime in the form of notifications and updates. This
way the OS can do a better job when deploying the application’s threads onto a range of different machines and
provide efficient resource allocation without affecting the application’s performance of predictability; and the
database can adapt itself based on the current system state, which is especially important in noisy environments.
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Figure 2: (a) Adaptability to noisy environments. (b) Deployment of complex query plan

Examples

We demonstrate the benefits of the policy engine and importance of leveraging unified knowledge from both the
database engine and the operating system with two different examples.

Use-case 1: Adaptability to noisy environments

In the first use-case we show how a storage engine (that we call CSCS) can be adjusted to interact more closely
with the OS policy engine to achieve good performance and maintain predictable runtime even in dynamic
environment where other applications enter the system and begin using resources [15]. Before starting the
execution, the storage engine communicates with the policy engine its properties (i.e., its scan threads are
CPU-bound, cache- and NUMA-sensitive, the SLO for latency is 3ms, etc.), a cost function that calculates
the scan time given the specific workload properties on a particular machine, and a stored procedure for data
redistribution among the remaining scan threads whenever a CPU core resource is revoked at the expense of a
newly entered task in the system.

When a new task enters the system it registers with the resource manager and asks for a CPU core. The
resource manager notifies the knowledge base of the new changes and triggers a re-computation of the resource
allocation plan. In this re-computation the policy engine checks that even if it takes away a core from the storage
engine, the scan time is still going to be below the runtime SLO and allocates one of the cores to the new
application. The database storage engine is notified of the change and invokes the stored procedure to decide how
to redistribute the data that was scanned by the thread that just lost its CPU core. The stored procedure retrieves
information about the remaining available cores and checks the availability of memory on the corresponding

40



NUMA nodes. It then redistributes the data to the chosen threads and resumes execution. In Fig. 2a we compare
the behaviour of a naive CSCS storage engine that does not react to changes in the system state and continues
executing as if nothing happened (despite another CPU-intensive task entering the system every 4 minutes and
pinning its thread to core 0 where a scan thread runs) leading to significant reduction in response time. The
adaptive-engine line shows how the storage engine behaves when coordinating with the policy engine. Its response
time remains relatively steady even in the presence of other tasks with spikes observed at the time when a new
task enters the system. We explain the spikes as a result of the storage engine redistributing the data to the other
cores, as suggested by the stored procedure. Nevertheless, even when losing a scan thread (core), the storage
engine can easily resume executing with a latency well within the required SLA requirements.

Use-case 2: Efficient deployment on multicore machine

The second use-case demonstrates the benefits of using (1) the resource profiler to capture the resource require-
ments of database operations, (2) the OS policy engine and its knowledge of the underlying machine model and
(3) the DB engine’s knowledge of the data-dependency graph between relational operators in a complex query
plan, to compute a close to optimal deployment of the query plan on a given multicore machine [14].

Good resource management and relational operator deployment requires awareness of the thread’s resource
requirements [3, 29, 26]. As a result of tuning the algorithm’s implementation to the underlying hardware,
databases have also become more sensitive to the resources they have at hand and poor scheduling can lead to
performance degradation [23, 15]. In order to capture the relevant characteristics for application threads, the
resource monitor generates so-called resource activity vectors (RAVs). At present, they capture the usage of the
most important resources (CPU and memory bandwidth usage), but can be easily extended to other resources
when needed (e.g., network I/O utilization, cache sensitivity, etc.). The approach was inspired by the notion of
activity vectors, initially proposed for energy-efficient scheduling on multicore machines [30].

The deployment algorithm for a given query plan runs in the OS policy engine and aims to minimize the
computational- and bandwidth- requirements for the query plan, provide NUMA-aware deployment of the
relational operators and enhance data-locality. As input, it uses (1) the data-dependency graph of the relational
operators as provided by the database engine, (2) the RAVs for each operator as generated by the resource monitor,
and (3) a detailed model of the underlying machine as kept in the OS policy engine. The algorithm consists of
four phases, where the first two compute the required number of cores (corresponding to the temporal scheduling
sub-problem), the third phase approximates the minimum number of required NUMA nodes and the fourth phase
computes the final placement of the cores on the machine so that it minimizes DRAM bandwidth usage – the
spatial scheduling sub-problem.

We evaluated the effectiveness of the algorithm by deploying a TPC-W global query plan as generated by
SharedDB [13] (with 44 relational operators) on the AMD Magnycore machine (four 2.2 GHz AMD Opteron
6174 processors and 128 GB RAM, each processor has two 6-core dies, or 48 cores in total). We compare the
performance of running the workload against two baselines: (1) using the default Linux scheduler and (2) using
the standard operator-per-core deployment used by systems like SharedDB to provide guarantees for predictable
performance and tail latencies. The results are shown in Tab. 2b. The presented values for average throughput
and latency percentiles (50th, 90th, and 99th) show that the performance of the system was not compromised
by the significant reduction in allocated resources (44 for SharedDB default scheduler down to 6 cores for our
algorithm), which is important for databases and their SLOs. Please note that the performance of the query plan
when the Linux scheduler was in charge of the deployment is poorer in both absolute throughput performance
and stability than the other two approaches. This is because the OS can use all 48 cores on the machine and often
migrates threads around based on some system-wide metric which leads to higher tail latencies.
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Figure 3: Illustrating Badis – an adaptive OS architecture, based on the multikernel model. The cores on NUMA
node 1 each execute a separate kernel of the full-weight kernel (FWK). The cores on NUMA node 2 execute a
common instance of a specialized light-weight kernel (LWK A). The computation units on the HW accelerator
run a different version of the light-weight kernel – optimized for the particular hardware platform (LWK B).

5 Customized OS

In the previous section we showed the benefits of using the unified knowledge from both the DB engine and the
OS policy engine. While the design can bring significant advantages in a noisy environment and when scheduling
jobs on a multicore system, it still does not alter the fact that the resource manager of the OS policy engine
needs to use the full-blown OS s tack with all of its generic mechanisms. Recent advancements in operating
system design enable us to configure and specialize the OS system stack (i.e., apply changes in both kernel- and
user-space) for particular workload classes. Some new operating systems are based on the multikernel design [6],
which run a separate kernel on every core [1, 47, 9]. In the Barrelfish OS the state on each core is (relatively)
decoupled from the rest of the system – a multikernel can run multiple different kernels on different cores [49].

5.1 Novel OS architecture and the case for customized kernels

The novel OS architecture (Badis) we propose leverages the flexibility of the Barrelfish multikernel design that
enables us to have an optimized lightweight OS co-exist in the same system as other general purpose OS kernels.
We show the design in Fig. 3. In a nutshell, Badis splits the machine’s resources into a control plane and a
compute plane. The control plane runs the full-weight OS stack (FWK), while the compute plane consists of
customized lightweight kernels (LWKs). The compute plane kernels provide selected OS services tailored to a
particular workload and a noise-free environment for executing jobs on behalf of applications whose main threads
run on the control plane’s FWK. Additionally, as we discuss later, Badis’ modular design makes it suitable to
address HW heterogeneity and enables OS customization for different compute resources.

To demonstrate the benefits, we designed and implemented a customized OS stack for executing parallel
analytical workloads. Even though, in our work we identified multiple opportunities for improvement of resource
management and scheduling (e.g., for CPUs, memory, and various hardware devices) [16], in the first prototype
we focused primarily on managing CPU resources. More specifically, for parallel analytical workloads we
identified the following requirements:

• The need for run-to-completion tasks, which is important for both synchronization-heavy workloads,
where preemption can lead to the well-know convoy effect [8], and data-intensive jobs that are cache-
sensitive, where preemption can often lead to cache pollution and expensive DRAM accesses. In one of our
experiments, we measured the indirect cost of a context-switch on machines with large last-level caches to
be as expensive as 6ms, which is equivalent to the quantum on modern Linux schedulers.
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• The need for co-scheduling for a group of threads that work on the same operation and especially for data
processing workloads that have synchronization steps where a single straggler can impact performance.

• The need for spatial isolation. In particular, when running in a noisy environment alongside other
application threads which also use the memory subsystem. Such interaction can often result in destructive
resource sharing [23, 45]. Hence, we claim that there is more to allocation than just cores and one should
also account for other resources such as shared caches and DRAM bandwidth. Given the properties of
modern multicore machines one such hardware island [38] is a NUMA node.

5.2 Implementation and evaluation

To achieve those requirements in the customized OS kernel, we proposed extending the UNIX-based process
model to also support OS task and ptask (parallel task) as program execution units. This way the database can
explicitly specify that a job needs to be executed without preemption – OS task, or that a pool of user-level threads
that execute a common parallel job should be co-scheduled until completion – OS ptask. We implemented it as
part of a kernel-based runtime, which can execute parallel analytical jobs on behalf of the data processing engine.
Each customized kernel is spawned on a separate NUMA node (hardware island) for spatial isolation. As per
design, the light-weight kernels run on the compute plane, while the FWK on the control plane offers a traditional
thread-based scheduling. The boundary between the two planes, as well as the type of compute-plane kernels, can
be changed at runtime depending on the workload mix requirements. Note that the cost of switching a kernel is as
expensive as a context switch [49]. Such a dynamic architecture makes the system’s stack suitable for scheduling
hybrid workloads (e.g., operational analytics), where different kernels can co-exist at the same time, each one
customized for a particular workload.

To demonstrate that not only database engines can benefit from such a customized kernel integrated runtime,
we evaluated the system with GreenMarl [18], a graph application suite running on OpenMP. More specifically,
we execute PageRank (PR) on the LiveJournal graph, which is the largest available social graph from the SNAP
dataset [25]. The experiment evaluates the efficiency of using the customized compute plane kernel compared to
the performance of the same workload, when executed using either the default OpenMP or the Linux scheduler.
All experiments were ran on the same AMD Magnycours machine as before. The workload is as follows: we
measure the performance when a single client runs a PageRank algorithm on one NUMA node – 6 cores. For
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Figure 5: Active heterogeneous hardware

every subsequent client (i.e., another instance of PR) we allow the system to use additional 6 cores of another
NUMA node. The response variable is the throughput as perceived per client (i.e., the inverse of the total time
needed to execute all PR jobs). The results are presented in Fig. 4. They show that the interference among the
clients when OpenMP or OpenMP+Linux schedule the resources, increases as we add more clients despite having
sufficient resources (there are 8 NUMA nodes and at most 8 PRs running in the system). In contrast, when using
the kernel integrated runtime we can achieve almost linear per-client throughput scale-out until seven clients. The
final six cores, belonging to the first NUMA node, are dedicated for the control plane.

While the discussion here focused on managing CPU resources for analytical workloads, in [16] we also
discuss opportunities for managing memory as well as providing more transparent access to other devices.

5.3 Related work

The HPC community has long argued that their workloads are sensitive to OS “noise” when working at large
scale [17]. Thus, they proposed using light-weight kernels [39, 20, 12] that are customized for sensitive
applications. Researchers have also explored the design space of multikernel-based OSes by having the specialized
light-weight kernels run alongside full-weight kernels like Linux inside the same system [34, 48, 11].

While our prototype is implemented over a multikernel, customized new schedulers can be applied on Linux
if we leverage some recent proposals for fast core reconfigurability [33]. Currently, in our work we have not
directly addressed I/O issues, but the architecture allows to easily integrate the control/data plane ideas proposed
by systems like Arrakis [35] and IX [7]. Similar approaches were also explored in Solros [31] for workloads with
high disk and network bandwidth requirements when running on co-processors.

6 Future outlook and research directions

In this section, we look at recent and future developments of hardware technologies and deployment trends.
We argue for a holistic solution across the system stack (from the data processing layer, down to runtime and
operating systems and eventually hardware) in order to efficiently address the coming challenges and hide the
increasing complexity from the developer’s side.

Modern machines have an abundance of hardware heterogeneity and they are only going to get more diverse.
In Fig. 5 we show all the places where active hardware components can be found today in addition to the regular
CPUs: (1) system-on-chip accelerators like GPUs and FPGAs, (2) smart storage mediums (e.g., smart SSDs), (3)
programmable NICs or NICs with an FPGA attached, as bump in the wire, offloading compute (4) to where the
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data sits (e.g., near-memory computing [2]) or (5) as the data moves between DRAM and the processor’s cache
(e.g., accelerators on the memory controller [4]), etc.

Despite this outlook, today’s commodity operating systems still hide the underlying hardware complexity
and diversity as much as possible from the applications running above. While this made sense in the past,
such an approach today is very restrictive and leads to under-utilization of the available hardware capacity. We
argue that the Badis OS architecture is well-suited for such hardware platforms – as opposed to treating all the
active components as devices with external drivers (as with GPGPUs [40] or NICs [35, 7]), we should have the
OS manage their computational capacities in the control plane and export the device services directly to the
applications via customized compute planes [10]. Recent work in the OS community has also proposed extending
the multikernel model for heterogeneous computing [43] and building data-centric OSs for accelerators [31].

Furthermore, it is important to note that the declarative interface between databases and operating systems
becomes even more relevant in the case of hardware heterogeneity. Especially when a data-processing engine
can offload part of the computation to an active compute component. Constructing cost-models that match
the performance/cost metrics for using an accelerator and pushing down such information to the OS policy
engine, can make the scheduling and resource management of these resources much more effective. If this is also
accompanied with the data-dependency graph as we have shown for other hybrid systems [10], the underlying OS
can absorb the complexity of memory management and task allocation on behalf of the developer and achieve
much higher performance and more efficient resource usage.

Going beyond database engines, many machine learning, data mining and graph processing applications can
benefit from similar cross-layer optimizations across the systems stack, including the operating system. We are
currently exploring how such workloads can benefit by sharing information about their cost models or dataflow
graphs to the OS policy engine when executing on heterogeneous computing platforms (e.g., TPUs or FPGAs).

7 Conclusion

The interaction between database engines and operating systems has been a difficult problem for decades, as
both try to control and manage the same resources but with different goals. For long time, databases had the
luxury to ignore the OS and overwrite the generic policies thanks to hardware homogeneity and over-provisioning
of resources (i.e., running a database alone on a dedicated server machine). With the latest trends in hardware
development (e.g.,from multicore to various accelerators) and workload deployment (e.g., multi-tenancy and
server consolidation in the cloud), these assumptions are no longer valid. Hence, we argue that now is the time for
a holistic approach that crosses multiple layers of the system stack and in particular one that revisits the interface
between database management and operating systems.

In this article, as main problems we identified the knowledge gap that exists between the two systems and
the rigid interface that does not allow for richer information flow as well as the generic policies offered by
conventional operating systems for a wide range of applications. To address these issues we proposed Badis,
an OS control- compute-plane architecture that allows for customization of the compute-plane OS stack for
a particular workload or underlying hardware platform, and a powerful OS policy engine that resides on the
control plane, which is able to reason about the database specific properties and requirements. With a series of
experiments we demonstrated the benefits of the approach of unifying the knowledge of the two layers both for
efficient deployment on modern machines and for maintenance of good and predictable performance in noisy
environments. Looking forward, we believe that the proposed design principles are going to become even more
relevant in the context of active hardware and resource dis-aggregation, and extend beyond the requirements of
traditional data management workloads.
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Abstract

There have been numeorus proposals to accelerate databases using specialized hardware in past years
but often the opinion of the community is pessimistic: the performance and energy efficiency benefits of
specialization are seen to be outweighed by the limitations of the proposed solutions and the additional
complexity of including specialized hardware, such as field programmable gate arrays (FPGAs), in
servers. Recently, however, as an effect of stagnating CPU performance, server architectures started to
incorporate various programmable hardware components, ranging from smart network interface cards,
through SSDs with offloading capabilities, to near-CPU accelerators. The availability of heterogeneous
hardware brings opportunities to databases and we make the case that there is cause for optimism. In the
light of a shifting hardware landscape and emerging analytics workloads, it is time to revisit our stance
on hardware acceleration.

In this paper we highlight several challenges that have traditionally hindered the deployment of
hardware acceleration in databases and explain how they have been alleviated or removed altogether
by recent research results and the changing hardware landscape. We also highlight that, now that these
challenges have been addressed, a new set of questions emerge around the integration of heteroge-
neous programmable hardware in tomorrow’s databases, for which answers can likely be found only in
collaboration with researchers from other fields.

1 Introduction

There is a rich history of projects aiming to specialize computers (or parts of computers) to databases. Notable
examples include the Database Machine from the seventies [1], Gamma [2], the Netezza data appliance [3], the
Q100 DB processor [4], and Oracle Rapid [5] most recently. These works demonstrate orders of magnitude
increase in energy efficiency and better performance thanks to a hardware/software co-design approach. However,
CPUs, until very recently, enjoyed a performance scaling in line with Moore’s law and the time and effort of
designing and delivering specialized hardware was not economical. This changed with the stagnation in CPU
performance [6] and the simultaneous increase in networking speeds in the last decade that has created a clear
need for hardware acceleration.

Initially, the move to the cloud worked against hardware acceleration for databases due to the cloud’s reliance
on commodity hardware and the need to cater to many different users and applications. Recently, however, new
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data-intensive workloads emerged in the cloud (most notably machine learning), that suffered from stagnating
CPU performance and could benefit from various types of compute or networking acceleration. If we look
at today’s cloud offering and datacenters, an exciting, heterogeneous landscape emerges: Machine learning
workloads in the Google Cloud are accelerated with Tensor Processing Units (TPUs) [7], increasing energy
efficiency by at least an order of magnitude when compared to GPUs. Amazon, Baidu and Huawei all offer
Field Programmable Gate Arrays (FPGAs) by the hour in their cloud to users1 to implement custom accelerators.
Microsoft, in project Catapult [8], has been deploying FPGAs in the Azure Cloud to accelerate their infrastructure
and machine learning pipelines. Furthermore, Intel has been experimenting with including small programmable
elements on their Xeon CPUs [9] that can be tailored to accelerate different user applications.

These recent developments mean that multi-purpose programmable hardware accelerators are entering the
mainstream and, from the point of view of the database, they can be exploited without having to incur additional
deployment costs. Specialized hardware is most often used to accelerate compute-bound operations and the
ongoing shift in the analytical database workloads towards machine learning [10][11]2 brings significantly more
compute-intensive operations than the core SQL operators. What’s more, there are proposals for using machine
learning methods to replace parts of the decision making and optimization processes inside databases [12]. These
emerging operators bring new opportunities in hardware acceleration both inside databases and for user workloads.
Furthermore, now that hardware acceleration of real-world workloads is economically feasible, new challenges
emerge around deep integration of programmable hardware in databases.

In this paper we make the case that there is cause for optimism, thanks to the two trends mentioned above,
namely, datacenters becoming increasingly heterogeneous and workloads opening towards machine learning.
These, combined with the state of the art in hardware acceleration for databases, tackle most of the past hindrances
of programmable hardware adoption. We will focus on FPGAs as a representative example and discuss how several
significant challenges have been alleviated recently. In the final part of this paper we highlight open questions
around the topics of resource management and query planning/compilation in the presence of programmable
hardware accelerators.

2 Background

2.1 Programmable Hardware in the Datacenter

The wide range of programmable hardware devices proposed and already deployed in datacenters can be
categorized depending on their location with regards to the data source and CPU into three categories (see
Figure 1): on-the-side, in data-path and co-processor.

The most traditional way we think about accelerators is as being on-the-side (Figure 1.1), attached to the
processor via an interconnect, for instance PCIe. Importantly, in this deployment scenario the CPU owns the
data and explicitly sends it to the accelerator, resulting usually in significant additional latency per operation
due to communication latency and data transformation overhead. This encourages offloading operations at
large granularity and without requiring back and forth communication between the CPU and the accelerator.
GPUs are a common example of this kind of accelerator and were shown to be useful, for instance, to offload
LIKE-based string queries [13]. There have also been proposals that deploy FPGAs this way for data filtering and
decompression, e.g., in the work by Sukhwani et al. [14].

Another way of placing acceleration functionality in the architecture is in data-path (Figure 1.2). This can
be thought of as a generalized version of near-data processing [15], and the goal of the accelerator is to filter or
transform data at the speed that it is received from the data source. Designs that can’t guarantee this could end up

1At the moment of writing it costs around $1.65/h to rent an Amazon EC2 F1 instance.
2For instance, Microsoft SQL Server now includes machine learning plug-ins. https://docs.microsoft.com/en-us/sql/

advanced-analytics/what-is-sql-server-machine-learning
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Figure 1: Programmable hardware accelerators can be deployed either as “on-the-side” accelerator (e.g., GPUs),
as “in data-path” accelerator (e.g. smart NICs, smart SSD), or as co-processor (e.g. in Oracle DAX or Intel
Xeon+FPGA).

slowing down the entire system [16]. Much of the research effort in this space has been centered around in-SSD
processing [17][18], but more recently there have been efforts in using RDMA network interface cards (NICs) to
accelerate distributed databases [20][21]. These NICs are limited to data manipulation acceleration, but there are
efforts to make NICs and networking hardware in general more programmable [22]. This will allow offloading in
the future complex, application-specific, operations.

The third deployment option, namely, co-processor (Figure 1.3), is also becoming increasingly available
in the form of CPUs that integrate domain-specific or general-purpose programmable co-processors: The
Oracle DAX [23] is an example of the former because it implements database-specific operations, such as data
decompression, scan acceleration, comparison-based filtering, on data in the last level cache. Thanks to its
specialized nature, it occupies negligible chip space and does not increase the cost of the CPU. As opposed to the
DAX, the Intel Xeon+FPGA [9] platform offers an FPGA beside the CPU cores for general-purpose acceleration.
The FPGA has high bandwidth cache-coherent access to the main memory and can be reprogrammed in different
ways. This creates acceleration opportunities without the usual overhead of the on-the-side accelerators.

2.2 Field Programmable Gate Arrays

FPGAs are chips that can be programmed to implement arbitrary circuits and historically have been used to
prototype and validate designs that would result later in Application-Specific Integrated Circuits (ASICs). They
have recently become a target for implementing data processing accelerators in datacenters thanks to their
flexibility (their role can change over time, as opposed to an ASIC) and orders of magnitude better energy
efficiency than that of traditional CPUs [24]. FPGAs are composed of look-up tables (LUTs), on-chip memory
(BRAM) and digital signal processing units (DSPs). All these components can be configured and interconnected
flexibly, allowing the programmer to implement custom processing elements (Figure 2). It is not uncommon to
have small ARM cores integrated inside the programmable fabric either, e.g., in Xilinx’s Zynq product line.

FPGAs offer two types of parallelism: first, pipeline parallelism means that complex functionality can be
executed in steps without reducing throughput. The benefit of FPGAs in this context is that the communication
between pipeline stages is very efficient thanks to the physical proximity and availability of on-chip memory to
construct FIFO buffers. The second type of parallelism that is often exploited on FPGAs is data-parallel execution.
This is like SIMD (single instruction multiple data) processing in CPUs, but it can also implement a SPMD
(single program multiple data) paradigm if the operations are coarser grained. What makes FPGAs interesting for
acceleration is that these two types of parallelism can be combined even inside a single application module to
provide both complex processing and scalable throughput.
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Figure 2: The typical steps of programming FPGAs are shown above. The tools spend most of their time mapping
the synthesized circuit onto the FPGA. This is because the chip is composed of many programmable gates and
memories that have to be configured and connected together in a 2D space, ensuring that signals can propagate
correctly within clock periods.

As Figure 2 shows, FPGAs are programmed by synthesizing a circuit from a hardware definition language,
such as Verilog or VHLD, and creating a “bitstream” for a specific device type that defines the behavior of every
logic resource on the chip. This is an expensive step as it requires the tool to lay out the circuit on the “chip
surface” and define connections and routing of these connections between circuit elements. Since FPGAs have
flexible clocking options and the programmer is free to define a target frequency (e.g., 300MHz), the tools have
to set up routing such that signals are propagated within the clock periods (which can become impossible with
too high frequencies).

It is also possible to perform partial reconfiguration (PR), meaning that only a portion of the FPGA’s resources
are reprogrammed (illustrated on the right-hand side of Figure 2). This means that, for instance, in a database
use-case a hardware-accelerated operator can be replaced with another one without having to bring the device
offline. PR, however, comes with limitations: the regions can only be defined at coarse granularity, their size
can’t be redefined at runtime and their reprogramming requires milliseconds.

One important limitation of FPGAs is that all application logic occupies chip space and there is no possibility
of “paging” code in or out dynamically. This means that the complexity of the operator that is being offloaded is
limited by the available logic resources (area) on the FPGA. This also applies to the “state” of an algorithm that is
often stored as data in the on-chip BRAM memories. These can be accessed in a single clock cycle, but if the
data doesn’t fit in the available BRAM, high latency off-chip DRAM has to be used.

3 Sources of Pessimism

Many early projects of FPGA-based database acceleration propose deploying them as on-the-side accelerators for
row stores [14][25][26] and they demonstrate that FPGAs are able to successfully accelerate selection, projection,
group-by aggregation, joins and even sorting, by an order of magnitude when compared to MySQL and Postgres,
for instance. However, the benefits are significantly reduced once one factors in the cost of communication
over PCIe and the software overhead of preparing the data for the FPGA to work on (sometimes pre-parsing,
often copying pages).

In traditional, on-the-side deployments, the high latency communication (microseconds over PCIe) often
forces designs to move entire operators onto the FPGA, even if only parts of the operator were a good match for
the hardware. This leads to complications, because even though FPGAs excel at parallel and pipelined execution,
they behave poorly when an algorithm requires iterative code or has widely branching “if-then-else” logic. In the
case of the former, CPUs deliver higher performance thanks to their higher clock rates. In the case of the latter,
the branching logic needs to be mapped to logic gates that encode all outcomes, resulting in very large circuits.
Since the space on the FPGA is limited, the larger circuits result in reduced parallelism, which in turn leads to
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lower throughput. This means that even though FPGAs could be successful in accelerating the common case
of an algorithm, they might not be able to handle corner cases, and in practice this leads to uncertainty in the
query optimizer or even to wasted work, if an unexpected corner case is encountered during execution.

In parallel with accelerator-based efforts, there have been numerous advances in the space of analytical
databases. Today, column-oriented databases, such as MonetDB [27], are widely deployed and typically
outperform row-oriented ones by at least an order of magnitude and can take advantage of many-core CPUs
efficiently. As a result, the speedups that FPGAs offer when targeting core SQL operators have shrunk3 and
often are not enough to motivate the additional effort of integrating specialized hardware in the server architecture.

For the above reasons, FPGA-based acceleration ideas are often received with pessimism. However, changes
in the hardware available in datacenters and the cloud, as well as the changes in database architecture and user
workloads, create novel opportunities for FPGA-based acceleration. In the next section we discuss these in more
detail and provide examples of how they can be exploited.

4 Reasons for Optimism

4.1 Changing Architectures

With the increasing adoption of distributed architectures for analytical databases, as well as the disaggregation
efforts in the datacenter [28], there are numerous opportunities for moving computation closer to the data source
to reduce the data movement bottlenecks. These bottlenecks arise from the fact that the access bandwidths are
higher closer to the data source than over the network/interconnect and they can be eliminated by pushing filtering
or similar data reduction operations closer to source. Thus, the main goal of accelerators in the data-path is
to reduce the amount of data sent to the processor, while maintaining high data access bandwidths.

The data source is often (network-attached) flash storage and recent projects, for instance, YourSQL [17],
BlueDBM [19] and Ibex [18], show that it is possible to execute SQL operations as the data is moving from
storage to processing at high bandwidth. Another use-case that can benefit from data reduction in a similar way is
ETL. Recent work [29] has demonstrated that specialized hardware can be used to offer a wide range of ETL
operations at high data rate, including: (de)compression, parsing from formats such as CSV or JSON, pattern
matching and histogram creation.

In Ibex we deployed an FPGA between an SSD and the CPU, offering several operators that can be plugged
into MySQL’s query plans. As Figure 3 shows, these include scans, projection, filtering and group-by aggregation,
and were chosen in a way that ensures that processing in hardware will reduce the final data size for most queries.
For this reason, Ibex does not accelerate joins, since these would potentially result in larger output than input and
slow down the system this way. The rest of the operations are all performed at the rate of the data arriving from
storage.

As opposed to on-the-side accelerators, in this space there are two possible options for who “owns” the data.
In the case of smart SSDs, data is typically managed by the host database [17][18]. In contrast, in the case of
distributed storage accessed over the network, it is possible to explore designs where the data is both processed
and managed by the specialized hardware device as, for instance, in Caribou [30][31], our distributed key-value
store that is built using only FPGAs.

In Caribou, the FPGAs implement, in addition to network line-rate data processing, a hash table data structure
and memory allocator necessary for managing large amounts of data, as well as, data replication techniques to
ensure that no records are lost or corrupted in case of device failures or network partitions. This results in a high
throughput, energy efficient distributed storage layer that, even though is built using FPGAs, can be used as a
drop-in replacement for software-based solutions [31].

3Using specialized hardware can still compete with multi-cores if we factor in energy efficiency (Operations/s/Watt) but in many cases
the metric that is of interest is database throughput and response time.
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Figure 3: In Ibex we showcase several operations that can be performed on the data as it is read from storage with
the goal of reducing the number of tuples that arrive at the CPU.

In many ways, in-data-path accelerators provide similar acceleration options as the on-the-side ones because
data is still moved over a network (similarly to an interconnect in the case of the latter) that requires processing
it in large enough batches to warrant the latency overhead. However, if FPGAs are deployed as co-processors,
this overhead is drastically reduced and new opportunities open up, since the latency to the FPGA is in the same
order of magnitude as a cross-socket memory access. The Centaur platform [32], for instance, exposes the FPGA
of an Intel Xeon+FPGA platform using an efficient “hardware thread” API. As a result, in this co-processor
scenario, the database can offload functionality as if spawning a parallel thread and the FPGA can be
used for processing even just a handful of tuples – as we point out in the next subsection, there are emerging
use-cases where this low latency acceleration is a game-changer.

4.2 Emerging Compute-Intensive Workloads

The examples in the previous subsection showed how to reduce the data access bottleneck with an in data-
path accelerator targeting common SQL operators. It is unclear, however, if this strategy can be applied for
co-processors as well. Modern database engines, that make use of the multi-core CPUs and their wide SIMD
units, are rarely compute bound once the data is loaded into main memory. Unless reading data from storage,
offloading core SQL operators is unlikely to bring orders of magnitudes improvements in performance.
There is, however, cause for optimism if we look beyond such operators and in the direction of machine
learning, both training and inference.

A significant portion of machine learning pipelines operate on relational data and the case has been made that
there is a benefit in integrating these pipelines directly in the database [10]. Furthermore, there is also interest in
including such components in the internal modules of the databases [12], to perform optimizations depending on
the workload characteristics and the model. Since this could require on-line retraining that, without hardware
acceleration, could hurt user throughput significantly, new opportunities open up for FPGAs. Acceleration of
training as part of user workloads is being explored, for instance in Dana [10]. The iterative and computation-
heavy nature of training operators makes them less sensitive to the latency issues introduced by using on-the-side
accelerators and therefore could revive the interest in these acceleration platforms. Amazon, for instance, is
already offering FPGAs running Xilinx’s OpenCL-based compute framework as PCIe-attached accelerators.

In the “ML-backed” database scenario it will also be paramount to be able to take decisions with low latency
using learned models – this further motivates the use of FPGAs. Even though GPUs are a de-facto standard for
machine learning acceleration, when it comes to low latency inference, FPGAs can offer benefits since they do
not require batching in their processing modules: recent work by Owaida et al. [33] and Umuroglu et al. [34]
demonstrates, for instance, how FPGAs can be used very efficiently to accelerate inference using decision trees,
respectively, neural networks.
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4.3 Hybrid Approaches to Acceleration

Since all functionality, regardless whether used or not, occupies chip space on the FPGA, corner cases often can’t
be efficiently handled in hardware. For this reason, it is important to design accelerators such that they
behave predictably even if the particular instance of the problem can’t be fully handled. As we illustrate
below with two examples from our work, state of the art solutions overcame such cases by splitting functionality
between FPGA and software, such that the part on the FPGA remains beneficial to execution time regardless of
the input data contents or distribution.

In Ibex [18] we used a hybrid methodology to implement a group-by operator that supports min, max,
count and sum (in order to compute avg, we used query rewriting to compute the count and sums). This
operator is built around a small hash table that collects the aggregate values. In line with FPGA best-practices,
the hash table is of fixed size and is implemented in BRAM. The reason for this is that this way it is possible to
guarantee fixed bandwidth operation, regardless of the data contents, because the FPGA doesn’t have to pause
processing to resize the table.

Unfortunately, this approach has a drawback: if a query has just one more group than the size of the hash
table, the FPGA can’t be used – and this information is often not available up front. We overcome this situation
by post-processing the results of the group-by operator on the FPGA in software. The hardware returns results
from the group by aggregation unit in a format that allows the database to perform an additional aggregation
step without having to apply projections on the tuples or parse them in the first place (see Figure 4). If during
the hash table operations collisions are encountered that can’t be solved, a partial aggregate is evicted from the
table and sent to the software post-processor. Once all the data has been processed on the FPGA, the contents
of the hash table are sent to the software post-processor to compute the final groups. This results in a behavior
where, if all the groups could be computed on the FPGA, the final software step has to perform virtually no
work (assuming that the number of resulting groups is significantly smaller than the cardinality of the table),
and otherwise the software executes the group by aggregation as if there wasn’t any FPGA present (though still
benefits from projections and selections).

The regular expression-based LIKE operator that we implemented in MonetDB [35] running on top of the
Intel Xeon+FPGA platform is another example of the hybrid operator methodology. If the expression can’t be
encoded in its entirety on the FPGA, because, for instance, it contains too many characters (such as the bottom
example in Figure 5), we cut it at the last possible wildcard and process the first part of the expression on the
FPGA and the second part in software. For each string, the FPGA operator returns an index that signifies the end
of the location where the regular expression matched the string. The software can pick up processing from this

Figure 4: By implementing operators in a way that allows hybrid computation, the FPGA accelerator can reduce
data sizes over the bottleneck connection to the CPU in most cases. In this example of Ibex’s group-by operator,
if we would choose an “all or nothing approach”, moving the data to be aggregated to the CPU could become the
bottleneck.
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Figure 5: Even if only part of the regular expression fits on the FPGA it is worth to offload it because the
post-processing becomes cheaper, resulting in an overall faster execution.

point in case of hybrid processing and match the rest of the expression. In case the entire expression fits on the
FPGA, however, the software has no additional work to do. In Figure 5 we illustrate how, when compared to a
single-threaded execution in MonetDB, the hybrid solution is always faster than the software-only one (for more
details see [35]).

One aspect that makes the integration of programmable hardware in databases challenging is the change in
the predictability of query runtimes. Therefore, in our work we aim to design circuits whose throughput is not
affected by the problem instance they work on. This way the query optimizer can predict the rate at which data
will be processed/filtered on the FPGA and with this information it can reliably decide when to offload. One
example of such a design is the regular expression module we presented above. Since the overhead of compiling
regular expressions to circuits and then performing partial reconfiguration (PR) could take longer than executing
an entire query, we took a different approach: we created a “universal” automaton that could implement any
expression, within some limits on the number of distinct characters to detect and the number of states. Small
on-chip memories are used to describe the state machine and the characters of the regular expression, and their
contents can be loaded at runtime in nanoseconds. We laid out this state machine as a pipeline, that processes one
character per clock cycle, regardless of the contents of the on-chip memories. The conversion from a regular
expression written by a user to the configuration parameters is performed in software but is orders of magnitude
cheaper than circuit synthesis.

5 The Road that Lies Ahead

5.1 Managing Programmable Hardware

How to best integrate hardware that, even though reprogrammable, will never be as flexible as software?
Should the operating system/hypervisor control it, or can we build future databases that do this?

Even though there are efforts in the FPGA community to speed up the process of partial reconfiguration, it
is unlikely that the overhead of this operation will ever be as small as that of a software context switch. As a
result, databases must find ways to adapt to the idea of running on specialized hardware that, even though, can be
reprogrammed, doesn’t have the flexibility of software. The main question that needs to be answered in this space
is who will “own” the acceleration functionality, because this also defines whether the database needs only to be
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able to compile its queries to take advantage of the accelerators, or whether it could also synthesize fully custom
accelerators depending on the workload.

If it is the OS/hypervisor that controls the accelerator, then the database still has to be able to adapt to
different underlying hardware acceleration functionality, that will likely be both designed and managed by the
infrastructure/cloud provider. In this scenario, the database has to create query plans that take advantage of the
specific machine’s acceleration opportunities. For this, it is likely that we can reuse techniques that are already
present in databases for compiling code for different target CPU features such as SIMD units [40].

Alternatively, if the database takes full ownership of the accelerator, it will have more responsibility but also
greater opportunities. Instead of relying on the cloud provider to design general-purpose acceleration units that
might or might not match the database’s needs, the database developer can design and synthesize the right ones
and integrate them tighter with the database. What’s more, the database could even generate and synthesize
workload-specific accelerators at runtime.

In DoppioDB [32][36] we explored the case where the database manages the accelerator. The role of the
operating system is to set up a basic infrastructure on the FPGA, configuring it with several “slots” that can
be filled in using partial reconfiguration (we call these slots hardware threads because the interface to them in
software is similar to a function call on a new thread). Once the database has started, the FPGA gets access to the
process’s virtual memory space and the database can explicitly manage what tasks the different slots perform,
choosing in our prototype from a small library of available operators. In DoppioDB, instead of focusing only
on the usual SQL operators like selection or joins, we began exploring how one could extend what the database
is capable of, targeting machine learning type of operators, such as training a model using stochastic gradient
descent or running inference with decision trees. This functionality was exposed using a UDF mechanism, but
in the future could be integrated much tighter with the database. The research question that emerges is how to
populate the hardware operator library and what granularity these operators should have. Recent work by Kara et
al. [42] shows that it is possible to offload sub-operators successfully to the FPGA. However, the identification of
generic enough sub-operators that can be deployed on an accelerator and parameterized/composed at runtime
remains an open challenge.

5.2 Compilation/Synthesis for Programmable Hardware

Are there reusable building blocks that would make query compilation easier for programmable hardware?
Should databases have their own DSLs from which to generate hardware accelerators?

The second big question is how to express acceleration functionality for database use-cases in an efficient
way. As opposed to CPUs or GPUs where the architecture (ISA, caches, etc.) is fixed, in an FPGA it is not. This
adds a layer of complexity to the problem of compiling operators, as well as query planning in general. Given
even just the heterogeneity of modern CPUs and their different SIMD units, there is already a push for databases
to incorporate more and more compiler ideas [40][41].

The side effect of bringing more ideas from compilers into databases is that it will likely also be easier to
integrate DSLs for hardware accelerators [37][38][39] into the database. However, many of these solutions are
targeting compute kernels written in languages such as OpenCL [37], that are a better fit for HPC and machine
learning type functionality than database operations. Therefore, novel ideas are needed that bridge the space
between databases and languages/compilers for specialized hardware. One possible direction to explore is related
to the design of the Spatial language and compiler [38]. Spatial approaches the problem of writing parallel code
for accelerators in a way that accounts for the fact that circuits are physically laid out on the chip. Given that
query plans are often composed by a set of sub-operators that are parameterized differently to implement, for
instance, different join types, these could be an intermediate step between SQL and hardware circuit that allows
the database to offload a pipeline of such sub-operators to the FPGA in an automated manner.

Another aspect that makes translating operators to hardware-based accelerators challenging comes from the
fact that not all functionality will fit on the device. This is true regardless whether we target an FPGA, a P4-based
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switch or SmartNIC, or an ASIC-based solution such as the DAX. Therefore, even if the best case of an operator
can be efficiently translated to hardware, corner cases will have to be handled without significantly impacting
performance. For this reason, the challenge of compilation is also related to the ideas discussed before around
hybrid execution and query planning. Frameworks that compile queries to such platforms will have to provide
software-based post-processing functionality to ensure that corner cases are gracefully handled. The challenge in
this hybrid computation is to find suitable points where to split the functionality in an automated way.

6 Conclusion

In this paper we made the case that the use of specialized hardware in analytical databases has a positive outlook,
even though it has been approached pessimistically for a long time. To support this argument, we discussed the
past and future challenges of including a specific kind of hardware accelerator, namely FPGAs, in databases.

To address fears that deploying FPGAs always brings high overheads that reduce their “raw” speedup, we
highlighted how, in today’s distributed database landscape, they can be used to reduce bottlenecks of data
movement by positioning them in data-path. Since they can process data at the rate at which it is retrieved from
the data source, they never slow down data access, even if there is no opportunity for acceleration. We also
discussed the opportunities that novel machine learning workloads bring. Their operators are typically compute
bound on CPUs and using FPGAs we can achieve significant speedups even when compared to an entire socket
with multiple cores. Finally, to demonstrate that it is possible to design FPGA-based operators that behave
gracefully even if the entire functionality of the operator doesn’t fit on the device, we discussed two examples
from our previous work that implement hybrid computation across FPGA and CPU (a group-by operator and a
regular expression matcher).

We also identify two areas in which significant progress has to be made for the inclusion of heterogeneous
hardware in databases to become truly widespread. One is finding ways to actively manage the programmable
hardware underneath the database, shaping it to workloads using partial reconfiguration and parameterizable
circuits. The second question is about finding the right programming primitives for hardware accelerators in
the context of database operators, to avoid designing from scratch each new accelerator idea and to allow the
database to offload parts of a query more flexibly at runtime. It is unlikely that we can provide answers for both
questions only from inside the database community and will have to instead collaborate with researchers working
in the areas of operating systems, programming languages and compilers.
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Abstract

Scheduling various data-intensive tasks over the processing units of a server has been a heavily
studied but still challenging effort. In order to utilize modern multicore servers well, a good scheduling
mechanism has to be conscious of different dimensions of parallelism offered by these servers. This
requires being aware of the micro-architectural features of processors, the hardware topology connecting
the processing units of a server, and the characteristics of these units as well as the data-intensive
tasks. The increasing levels of parallelism and heterogeneity in emerging server hardware amplify these
challenges in addition to the increasing variety of data-intensive applications.

This article first surveys the existing scheduling mechanisms targeting the utilization of a multicore
server with uniform processing units. Then, it revisits them in the context of emerging server hardware
composed of many diverse cores and identifies the main challenges. Finally, it concludes with the
description of a preliminary framework targeting these challenges. Even though this article focuses
on data-intensive applications on a single server, many of the challenges and opportunities identified
here are not unique to such a setup, and would be relevant to other complex software systems as well as
resource-constrained or large-scale hardware platforms.

1 Introduction

Utilizing the processors of commodity servers well is crucial to avoid wasting resources, energy, and money
in data centers regardless of their scale [16]. As a result, quest to remove the bottlenecks of data management
systems causing underutilization of modern commodity servers have been the focus of many past and ongoing
work [1]. One of the essential challenges in this quest is scheduling various data-intensive tasks effectively over
the processing units that are available to these tasks. The fundamental evolution of the server hardware and the
increasing variety of the data-intensive applications over the recent years amplify this challenge.

Server hardware has gone through major advances over the years as illustrated in Figure 1a. These advances
have stemmed from Moore’s Law [27], which is the observation that the number of transistors in a dense
integrated circuit doubles approximately every two years. To exploit the increase in the transistor counts in a unit
area, initially, computer architects focused on boosting the performance of a single core while designing chips
(left-hand side of Figure 1a). Around 2005, however, Dennard Scaling [10], which states that as the transistors
get smaller their power density in a unit area remains constant, came to a halt. Increasing the complexity of a
processor core became non-viable since it raised concerns about power draw and heat dissipation. To overcome

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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Figure 1: (a) Evolution of server hardware over time following Moore’s Law and Dennard Scaling. Each break in
the timeline represents a disruptive period for processor evolution due to power concerns. (b) Ways to deploy
data-intensive applications.

this limitation, computer architects started to add more and more cores on a single processor [29] and more and
more processors in servers (middle part of Figure 1a). Multicore processors have enabled the continuation of
Moore’s Law despite the halt of Dennard Scaling. Unfortunately, the limits of the traditional multicore processor
design is also upon us. Adding more and more cores to a processor cannot be the only path to overcome the halt
of Dennard Scaling since we will not be able to power all of those cores up simultaneously. This trend is also
known as dark silicon [11]. To overcome this limitation, we must design cores that are more energy-efficient. One
way to achieve this by specializing cores, reducing energy spent per instruction, for certain tasks [20]. Then, as
part of the commodity servers, one can utilize the specialized cores in addition to the general-purpose ones. The
emerging server hardware landscape, therefore, will likely to be composed of a heterogeneous set of processing
units (as illustrated by the different colors in right-hand side of Figure 1a); each specialized to execute a specific
task very well, with opportunities for extreme levels of parallelism.

In parallel to the evolution of commodity server hardware that data-intensive applications typically run on,
the applications themselves and how they are deployed have also changed over time as illustrated in Figure 1b.
Transaction and analytical processing used to be the two broad categories of data-intensive applications. Analytics,
in turn, have several distinct sub-categories such as online analytical processing, data warehousing, machine
learning, graph analytics, etc. Traditionally, they have been deployed separately and data moved from an
operational system (such as an online transaction processing system) to various types of analytics systems
using an extract-transform-load (ETL) process. The reason for this separation is that optimal system design for
serving transactional and different types of analytical tasks are different (e.g., row stores for OLTP, column stores
for OLAP, NoSQL for unstructured data, etc.). In recent years, however, the popularity of the data-intensive
applications such as real-time inventory/pricing/recommendations, fraud detection, risk analysis, IoT, AI, etc.
require data management systems that can run fast transactions and analytics simultaneously. As a result, there is
an increasing demand for data management systems that can handle hybrid transactional and analytical processing
(HTAP) efficiently [30].

Designing a scheduling mechanism that is able to leverage the heterogeneity of processing units for the
variety of the data-intensive tasks to be executed in the emerging hardware and software landscapes is a difficult
but significant challenge to tackle. The goal of this article is to derive some guidelines to overcome this challenge
in the context of a single node of commodity server hardware. First, Section 2 surveys some of the existing
work that target scheduling of data-intensive tasks on modern homogeneous multicore servers. Then, Section 3
discusses emerging heterogeneous server hardware landscape and considers existing work in the context of such
hardware. Finally, Section 4 illustrates a framework for scheduling diverse set of (or hybrid) data-intensive tasks
over diverse set of (or heterogeneous) processing units focusing on the resource estimation challenges.
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2 Scheduling Data-Intensive Tasks over Different Dimensions of Parallelism

As previously mentioned, we view the effective scheduling of different data-intensive tasks as a significant factor
when it comes to effective utilization of the resources of modern server hardware. Any mechanism that targets
effective scheduling must be able to answer the following questions.

What to schedule? This question determines the unit of scheduling. What is the granularity of the task to be
executed on a specific processing unit? Is it the whole data-intensive task required by a client request or is it part
of it? If it is a part of it, what is the size of that part?

Where to schedule? This challenge handles the mapping between tasks and processing units. This mapping
has both a static and a dynamic part. The static mapping targets the question of what the most effective processing
unit/units to execute a task is/are. The answer to this question assumes that every kind of processing unit is
available in infinite amounts. In practice, however, we rarely have all kinds of processing units in a single server
and the hardware resources are finite. The dynamic mapping must consider the question of whether the ideal
processing units for a task are available at the exact time that we have to execute that task. In addition, in the case
of unavailability, what are the next best alternatives?

How to schedule? This challenge provides the necessary execution and communication primitives, especially
if multiple processing units are involved in executing a task. What are the primitives to utilize while scheduling a
task or parts of a task? Which level(s) of the system stack these primitives come from?

The following subsections survey the scheduling mechanisms proposed in recent work that depart from the
conventional wisdom when it comes to the answers to the questions above. Section 2.1 and Section 2.2 focus on
utilizing the resources of a single core and multiple uniform cores, respectively.

2.1 Implicit/Vertical Parallelism

Before Dennard Scaling made it problematic to put more complexity within a core due to heat dissipation
concerns, exploiting Moore’s Law meant boosting the performance of a single core. This resulted in parallelism
opportunities within a core through techniques like instruction level parallelism, pipelining, out-of-order execution,
simultaneous multithreading, etc. We refer to this kind of parallelism as implicit/vertical parallelism as the
different tasks are time-multiplexed on the same core instead of being run concurrently in the same execution
cycle. The main insight behind this kind of parallelism is overlapping various stall times with other work instead
of a core wasting the execution cycles being idle. For example, as a core waits for fetching an instruction or
data item from memory due to it not being present in L1 caches, one can overlap this waiting time with another
instruction or data fetch request from the same task or execute another task on the same core. In addition, mostly
hardware manages this kind of parallelism and software has the luxury to be oblivious to it. Therefore, before
multicores emerged, the software systems got faster with each new generation of servers without having to make
fundamental design changes.

On the other hand, for many data-intensive applications being oblivious to implicit parallelism leads to
severe underutilization of the micro-architectural resources of servers. Several workload characterization studies
emphasize the high rates of memory access related stall times due to either instruction or data accesses for data-
intensive applications [12, 37]. Similarly, techniques like simultaneous multithreading may even hurt performance
if not used carefully [42]. Multiple data-intensive tasks sharing the same resources in a core simultaneously may
put more pressure on caches due to their aggregate data and instruction footprint. Therefore, there is value to
rethink the way we design and schedule data-intensive tasks even when utilizing implicit parallelism.

Figure 2 illustrates alternative ways of scheduling a data-intensive task on a single core (a & b) and on
multiple cores (c & d). The figure assumes that tasks run over a setup that has fast I/O (e.g., DRAM, NVRAM,
low-latency SSD) and hence do not require context switching due to slow I/O (e.g., HDD). In the figure, a
data-intensive task is at the granularity of a whole transaction or analytical query. The task has three sub-tasks A,
B, C. In the interest of our discussion, let’s assume that these sub-tasks are at a granularity where their instruction
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Figure 2: Different ways of scheduling data-intensive tasks. In the context of this illustration a task is at the
granularity of a transaction or an analytical query, where A, B, and C are the sub-tasks of this task.

or data set sizes can fit in L1-I or L1-D, respectively. This section discusses Figure 2(a & b) since the focus is on
implicit parallelism, whereas the discussion of Figure 2(c & d) is in Section 2.2.

Figure 2(a) depicts the more conventional way of scheduling tasks. In this case, the tasks run without any
interruptions on a core as a whole one after the other based on their priority in a task queue in the system. They
take turns thrashing the caches since each executes sub-tasks A through C in order independent of the other tasks.
Thus, each sub-task incurs overhead due to cache misses. In this case, the answer to the what question is the
whole task while the where question doesn’t matter as there is only a single core, and the answer to the how
question is mainly left to the default mechanisms supported by the operating system.

Figure 2(b) shows an alternative way to schedule the sub-tasks, which time-multiplexes them with the goal of
maximizing cache locality. The first, lead, task executes A incurring cache miss overhead as previously. However,
instead of proceeding to execute B, the first task context switches allowing, in turn, the second and third tasks to
execute instead. The second and third tasks find sub-task A in L1 and thus incur no overhead due to misses. Once
all three tasks execute the first sub-task, execution proceeds to the second one and so on.

The core idea of time-multiplexing the tasks on a single core to improve cache locality has been studied
and shown to be effective in the context of both instruction (L1-I) and data (L1-D) [4, 17, 18, 24] locality. The
main insight behind this idea is that similar tasks share common instructions or data or both. As a result, they
can benefit from constructive sharing of the cache resources to improve locality. Fewer cache misses lead to
better utilization of the micro-architectural resources that enable implicit parallelism within a core since a smaller
portion of the overall execution time is spent on stalls. Even if a technique that focuses on instruction cache
locality may hinder data cache locality or vice-versa, the benefits of one may outshine the overhead of the other,
or the locality may improve at the higher levels of the cache hierarchy despite the hindered L1 locality thanks to
constructive sharing [39].

Achieving constructive sharing for different concurrent tasks in a system is not straightforward. The first
challenge is the underlying assumption of the tasks would have similar sub-tasks to be executed. For data-
intensive applications, this is not an issue. No matter how different the output or high-level functionality of
one data-intensive task from another, data management or processing systems typically compose a subset of
predefined sub-tasks to serve a task. Figure 3 and Figure 4 show some examples within the same or across different
applications/tasks. Transactions are composed of sub-tasks such as probing and scanning an index, inserting a
tuple to a table, updating a tuple, etc. Traditional analytical queries are composed of projections, selections, joins,
etc. These sub-tasks themselves have common sub-tasks such as hash table lookup, data partitioning, sorting, etc.
across different types of sub-tasks or workloads. There may be frequently accessed tables or indexes or metadata
used by several of these sub-tasks. Overall, there are many opportunities for constructive sharing in data-intensive
applications.
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Figure 3: Examples of common sub-tasks across different types of data-intensive applications. Hash table lookup
is common across OLTP, OLAP, and machine learning. Data partitioning is common across many OLAP tasks.
Sorting is common both across data-intensive applications and while ordering input/output values from various
client requests.

Determining the granularity of sub-tasks to time-multiplex at runtime is a harder challenge (to answer the
what question) as well as orchestrating the runtime scheduling in a lightweight manner (to answer the how
question). Regarding the former challenge, previous work either considers the granularity of database operators
[18], rely on monitoring the cache behavior at runtime to determine when the L1 cache starts to become full [4],
or perform profiling [17]. Regarding the latter challenge, previous work either adopts hardware mechanisms [4]
to sidestep the overheads of default context switching primitives of the operating system, or develop specialized
context switching at the kernel-level [17].

Finally, despite increasing the throughput, time-multiplexing a batch of tasks on one core increases the
average latency, especially for the lead task. One has to take into account the priority or latency requirements
of the data-intensive tasks when deploying these types of scheduling mechanisms. This challenge is definitely
under-studied in the literature.

2.2 Explicit/Horizontal Parallelism

The switch to multicore processors forced traditional software systems, including data management systems, to
go through fundamental design changes in order to exploit the kind of parallelism offered by having multiple
cores in a processor [1]. We refer to this kind of parallelism as explicit/horizontal parallelism as it allows different
tasks to run simultaneously in the same execution cycle. Unlike implicit parallelism, this type of parallelism has
to be managed more carefully at the software side to reap the benefits. In this dimension of parallelism, majority
of the efforts from previous work focus on removing scalability bottlenecks that arise due to concurrent threads
accessing shared data. Complementary to such scalability problems, this article focuses on the work that targets
scheduling of data-intensive tasks on multicores.

Let’s start by following the discussion from Figure 2, Figure 2(c & d) illustrate alternative ways of scheduling
data-intensive tasks on multicores. Figure 2(c) depicts the more conventional way when there is no I/O. Each task
is scheduled to a different core in the system and executed as a whole on that core. As a result, each task exhibits
cache misses since neither the instruction nor the data footprint of data-intensive tasks fit in L1 caches. This way
of scheduling stems from traditional data management systems treating various data management tasks as large
indivisible units of work on a single server. This monolithic view of such tasks eventually leads to sub-optimal
resource management decisions even on today’s homogeneous commodity server hardware [39].

In the case of Figure 2(c), just like Figure 2(a), the answer to the what question is the whole task and the
answer to the how question is mainly left to the default mechanisms supported by the operating system. On
the other hand, having multiple cores makes the where question more difficult to answer. Traditional systems
typically pick the next available/idle core to schedule the next task to be executed.

Figure 2(d), on the other hand, spreads the computation of a data-intensive task over multiple cores and
utilizes the aggregate L1-I cache capacity of the multicores while executing this task. The main insight behind
this idea is, as in Section 2.1, the observation that data-intensive tasks in general share common sub-tasks (or
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code [39]). As long as there are enough cores so that the aggregate L1-I capacity can hold all code segments, a
task can migrate to the core whose L1-I cache holds the code segment the task is about to execute. For example,
as Figure 2(d) shows, the first, lead, transaction can execute sub-task A first on core 1, then migrate to core 2
where it would execute sub-task B, then migrate to core 3 where it would execute sub-task C. The second and
third tasks can follow in a pipelined fashion, finding sub-tasks A, B, and C, in cores 1, 2, and 3, respectively.
While the lead task incurs an overhead when fetching the code segments for the first time, the other tasks do
not. Even though, the migrations may diminish data locality at the L1-D level, as long as they happen within a
processor/socket, long-latency data misses from the last-level cache either stay the same or get reduced as a result
of constructive data sharing across similar tasks [39].

The core idea of spreading the computation over multiple cores to improve instruction cache locality, is
initially studied in the context of separating kernel code from application code in [7]. SLICC [3] and ADDICT
[39] have taken this idea further to also localize the common application code across concurrent data-intensive
tasks over specific cores. These work in fact target improving cache locality, minimizing stall times due to
cache misses, and hence, improving utilization of implicit parallelism within a core like the work described in
Section 2.1. However, they exploit explicit parallelism to achieve their target. Similarly, the staged execution
mechanisms such as QPipe [18], which are originally developed with implicit parallelism in mind, are later
adapted to utilize explicit parallelism as well [14, 34]. Furthermore, separating the tasks to be executed by the
kernel and the data-intensive application into common sub-tasks, and running these sub-tasks over separate
specific cores is also studied in the context of effective operating system and database system co-design [15].

In addition to strengthening the techniques that target improving (instruction or data) locality for data-intensive
tasks, explicit parallelism also allows exploiting intra-task parallelism. In other words, the independent sub-tasks
of a data-intensive task can run concurrently over multiple cores. To prevent underutilization of ever increasing
explicit parallelism offered by multicores or many cores, intra-task parallelism is essential. Viewing tasks as a
black-box and just focusing on optimizing for inter-task parallelism is ineffective while scaling up on servers
with 100s or 1000s of cores.

A common way to achieve intra-task parallelism is to partition the data to be processed by a data-intensive
task and assign different threads to each partition [25, 35]. Data partitioning is only one dimension when targeting
intra-task parallelism, though. The other, slightly more challenging, dimension is to detect the independent
sub-tasks within a task that can run concurrently. Figure 4 gives an example of how to parallelize the sub-tasks of
the payment transaction from the industry-standard TPC-C benchmark [40], which is utilized by the DORA/PLP
mechanisms [31, 32]. The three update operations over the different tables (customer, district, and warehouse)
have no dependency on each other and can run in parallel while the insert operation over the history table must
run after these three. Previous work adapted the SQL frontend of Postgres to determine the independent sub-tasks
of transactions automatically [31]. Expanding this methodology to more complex data-intensive tasks is still a
challenge.

All the mechanisms that involve multiple cores in the execution of a transaction whether it is to improve
cache locality or intra-task parallelism or both, have the same challenges as the mechanisms that time-multiplex
sub-tasks on the same core (Figure 2(b)). Therefore, the answers to the what and how questions here are the
same as in Section 2.1 (i.e., finer-granularity sub-tasks and lighter-weight context switching). Answering the
where question, on the other hand, requires runtime monitoring and bookkeeping to know which core has the
instructions a sub-task needs or which cores are assigned to which database operators beforehand. Furthermore,
explicit parallelism in the era of multisocket multicore hardware with non-uniform memory access (NUMA), also
brings the challenge of minimizing communication overheads across the sub-tasks. Involving multiple cores in the
execution of a data-intensive tasks require orchestrating the sub-tasks, which requires communication across cores
that may not be able to communicate as fast as some other cores. Naive ways of scheduling sub-tasks ignoring
hardware topology, especially NUMA, may hinder overall performance even if it utilizes explicit parallelism
well [33, 35]. Therefore, one must definitely take the hardware topology into account while answering the where
question.
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Figure 4: TPC-C’s payment transaction. Each node represents a sub-task in payment. Customer,
District, Warehouse, and History are the tables in TPC-C. (For brevity the iteration over the Customer
table in this transaction is omitted). (a) The serial execution plan also illustrating the sub-tasks of payment at
different granularities. payment performs operations such as update and insert. An update performs actions
such as index probe, update record, write log, etc. These actions also have sub-tasks at a finer-granularity. (b)
The parallel execution plan for payment exploiting intra-transaction parallelism among the three independent
updates.

3 Toward Heterogeneous Parallelism

As mentioned in Section 1, adding more and more cores to a processor cannot be the only path for progressing
commodity servers anymore. Moore’s Law is slowing down. The main reason is once again power-related even
though there are other physical constraints as well (e.g., fabrication costs for transistors that get smaller and
smaller). The supply voltage required to power all the transistors up does not decrease at a proportional rate. Even
if we can still add more and more cores on processors, we will not be able to power all of them up simultaneously
[11]. Optimizing energy per instruction has to be the key in this new era.

One option to achieve more energy-efficient hardware is to adopt simpler and more low-power cores in
emerging processors. However, such processing units are not suitable for latency critical applications. In
addition, solely focusing on the energy-efficiency of an individual core or processor is not going to give us
energy-proportionality [5]. We have to focus on how much energy it takes to run tasks to completion. The
low-power cores might end up spending more energy at the end of the day for running a set of tasks compared to
power-hungry cores since it takes them longer to execute tasks due to being slower [23].

The better long-term solution for energy-efficiency is to build servers with a variety of processing units, where
each unit is specialized to accelerate specific tasks. On such servers, one would pick the cores to power-up based
on the tasks currently running, while shutting down the idle cores that are specialized for other types of tasks.
Orchestrating task scheduling dynamically over such heterogeneous hardware intensifies an already challenging
problem on homogeneous hardware (as Section 2 focused on). In addition, economic feasibility of specialized
hardware is always a concern since specialization limits the market of a system, despite being more efficient, as
opposed to being general-purpose. As a result, processor specialization for data-intensive tasks was unpopular in
industry up until recently. However, this attitude has been changing [2, 20]. Therefore, there is pressing need
to develop scheduling mechanisms that not only consider the diversity of the data-intensive tasks, but also the
diversity of the processing units.

The scheduling approaches surveyed in Section 2 are inspiring and preliminary steps toward the efficient
utilization of processors with many diverse parallelism opportunities. The common denominators (and the
common root of the associated challenges) across all of these mechanisms are that (1) they view data-intensive
tasks at a finer sub-task granularity (e.g., update operation of payment transaction instead of the whole payment
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transaction) and (2) they adopt lighter-weight and hardware-topology-aware techniques for dynamic scheduling
of these sub-tasks instead of relying on the traditional operating system defaults.

Splitting data-intensive tasks into their sub-tasks (see examples in Figure 3 and Figure 4) help in identifying the
common sub-tasks across concurrent transactions or analytical queries. This, in turn, enables more opportunities
for constructive instruction and data sharing, intra-task parallelism, and mapping a unit work to a core that would
benefit the most from running on that core. Furthermore, it is an essential preliminary step to discover the frequent
critical sub-tasks that justify building new specialized hardware for. Therefore, even though detecting the right
granularity for sub-tasks and orchestrating more things at runtime is a big challenge, this challenge is worthwhile
to address and study in more depth. It is the only way to answer the what question and aides answering the where
question in the context of emerging heterogeneous hardware landscape.

After mapping a certain granularity of sub-tasks to the available processing units at runtime, one has to
perform the actual scheduling and coordination of these sub-tasks efficiently. Otherwise, no matter how optimal
the mapping is, it is not going to be beneficial. Specializing context switching or thread migrations for data-
intensive tasks either at the level of the kernel or hardware has been tried (as also mentioned in Section 2.1).
These techniques and others that specialize the same routines should be revisited in more detail in the context
of heterogeneous hardware. It is highly likely that the common operating system layers and mechanisms will
also evolve with such hardware. Therefore, it is important to have a holistic view while developing mechanisms
to efficiently coordinate sub-tasks in order to achieve lightweight coordination and minimize replication of
functionality across layers. In addition, exploiting more and more processing units should not turn the development
of a data-intensive application into an unproductive process. Ensuring the correct and efficient instruction and data
stream on a specific processing unit should be handled through high-level language primitives for the application
developer and smart query compilation within the data management system [19]. Tackling these two challenges
is the way to answer the how question for heterogeneous many cores.

Next, we discuss an end-to-end framework that takes the challenges of scheduling varying data-intensive
tasks on heterogeneous hardware into account by mainly focusing on the resource estimation challenge, which
also aides the where question.

4 A Framework for Running Data-Intensive Tasks on Emerging Hardware

Even though the previous sections focus on the utilization of a single server hardware, resource-aware scheduling
is an active field of research often tailored specifically for different hardware platforms, from small embedded
systems [38] up to clusters [9]. Executing tasks with varying resource demands in parallel can lead to inefficient
resource utilization, especially on heterogeneous hardware. More precisely, the correlation between the resource
demand of a task and its completion time is often highly non-linear, once the task is executed concurrently with
other ones. In order to solve the very challenging problem of finding an optimal resource mapping for a single
task, new resource-aware scheduling strategies are required, which efficiently map tasks to heterogeneous parallel
architectures, taking their particular resource demands into account. Independent of the actual objective, i.e.,
making the execution of hybrid tasks more efficient or designing an efficient parallelization strategy for a specific
task, the underlying motivation remains the same, namely, optimizing the execution of tasks on heterogeneous
hardware architectures while respecting given latency requirements.

In data management systems, hybrid data-intensive tasks often arrive dynamically providing only inaccurate
information about their resource utilization behavior. Unlike classical scheduling problems, such systems require
mapping methods that (1) interact with a resource model to map tasks to suitable resources at runtime and (2)
adjust mapping decisions dynamically depending on the system load.

Many existing work that tackle the problem of scheduling tasks on parallel architectures aim to optimize
either the execution of tasks having similar characteristics (e.g., only transactional workloads) or the scheduling
of tasks with hybrid characteristics (transactional and analytical workloads) on homogeneous parallel systems.
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Figure 5: Framework for resource-aware scheduling strategies guided by a resource estimation model for hybrid
data-intensive tasks executed on heterogeneous hardware.

For example, database systems such as SAP HANA or HyPer are designed to efficiently execute hybrid tasks
using an optimized workload management system for servers with homogeneous cores [36]. Future scheduling
strategies, however, should consider both the heterogeneity of workloads and of hardware in order to find an
efficient resource-aware mapping exploiting the full potential of the underlying parallel architecture.

To enable a resource-efficient scheduling of data-intensive tasks over complex heterogeneous hardware
architectures, we focus on a framework, illustrated in Figure 5, that includes scheduling mechanisms guided
by resource estimation models. Regarding different aspects of our strategy, we survey previous approaches
harvesting already existing results that shall serve as a guideline.

To generate resource estimation models distinct machine learning methods or analytical models can be applied
to predict the resource demands for different possible task-to-core(s) mapping strategies. Analytical models can
be more accurate than machine learning models when applied to estimate the runtime of concurrently executed
tasks [41]. However, machine learning models are typically preferred in more complex heterogeneous hardware
scenarios, since the complexity of the analytical models can increase rapidly in such cases. When building
models that are capable of describing the complete data management system behavior, several aspects need to be
taken into consideration. For models with high multidimensionality and thus high complexity, a dimensionality
reduction, through machine learning techniques such as clustering or classification, is suggested [8]. For example,
as shown by previous work [26], a workload forecasting strategy based on machine learning techniques can try
to predict the expected arrival rate of certain types of tasks in a data management system and use clustering to
reduce the model complexity. In general, machine learning methods, especially for resource estimations, are
not only applicable to data management systems running on a single server. They can also be applied in the
context of cluster management, e.g., to classify heterogeneous workloads that would achieve an efficient resource
utilization [9].

Figure 5 visualizes the optimization cycle of the resource-aware scheduling framework. It consists of four
main steps.

In the first step, the sub-task detection tries to identify possible sub-tasks from the incoming data-intensive
tasks (transactional and different types of analytical) to take possible parallelization strategies into account.

To determine an efficient mapping of tasks to available hardware, it is necessary to be aware of each task’s
(estimated) resource demand. To this effect, a flexible resource estimation model is constructed in the second
step, which estimates the resource demands of each task and sub-task based on previously executed similar
tasks. Since the available hardware architecture influences the runtime behavior of a task, the model also uses
the hardware description as input, and later should also be able to adapt to hardware changes. As mentioned
above, such a model can utilize machine learning techniques instead of analytical cost models, since the analytical
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models could become very complex when they have to cope with many different heterogeneous hardware parts
in one system. Depending on the model’s estimations, tasks can be classified into different types of groups
based on their resource demands to later efficiently map them to suitable hardware resources or queues that are
assigned to each group. Therefore, as an output the model produces task profiles including different resource
utilization characteristics and an execution priority that can be used for latency critical tasks. A similar framework
for resource-aware scheduling that focuses on scheduling parallel parameter optimization of machine learning
algorithms with heterogeneous tasks have been studied in [22]. This framework uses a regression model to
estimate the runtime of tasks and computes an execution priority for each task. This priority is then used as
input to schedule these tasks in a way that minimizes CPU idling on homogeneous clusters. Further work on this
framework showed that its runtime estimation mechanism also works for heterogeneous hardware. However, for
heterogeneous hardware the random forest regression model is found to be more effective since task execution
times form a discontinuous model because of the additional categorical variable that represents the processor
type [21]. Besides runtime estimation, the estimation of multiple performance metrics via machine learning
techniques for specific query plans on homogeneous hardware is proposed in [13]. In [28] a detailed overview of
different machine learning techniques applicable for estimating multiple metrics for highly concurrent OLTP
workloads on homogeneous systems is given, which could be interesting as well for resource estimations on
heterogeneous systems.

As depicted in Figure 5, the obtained task profiles including multiple metrics serve as inputs for the resource-
aware scheduling strategies in the third step. Resulting from this, an execution plan is created that efficiently
maps tasks to suitable hardware resources. While creating the execution plan, this step also determines whether
to use intra-task parallelism or the degree of parallelism for a task based on the available hardware resources
and topology. As mentioned in Section 2.2, due to sub-task coordination efforts and non-uniform core-to-core
communication costs, parallel execution plan of a task may not always result in faster execution compared to
running a task serially.

Since the profiles are only estimated, under- or overestimation (e.g., of execution times) may occur. In such
cases, a task may need to be rescheduled or stopped to guarantee latency requirements. This service is performed
by the execution monitoring provided by the last step of our strategy. Here, an adaptive operator replacement
technique using machine learning for runtime estimation, as presented in [6], could be applied, where operator
mappings are dynamically adjusted on heterogeneous co-processors. Moreover, execution monitoring is also used
to gather information about the system behavior, such as CPU or memory utilization, and to measure the de facto
resource utilization of tasks at runtime. After a task or a group of tasks has finished their execution, the results are
collected to iteratively refine the resource estimation model. Evidently, the quality of the scheduling strategy
depends on the accuracy of the resource estimation. Hence, the model update entails more reliable estimations
over time for the future predictions of the new incoming tasks.

5 Conclusion

In this article, we focused on scheduling data-intensive applications with different types of tasks over the
processing units of emerging heterogeneous server hardware. Existing scheduling proposals that diverge from
conventional methods when utilizing the resources of a single server with homogeneous multicores already give
us essential insights. Therefore, their challenges should be revisited in the context of emerging heterogeneous
hardware. More specifically, moving forward we should focus on the following: (1) identifying sub-tasks of
data-intensive tasks across different applications, especially the common ones that allow constructive sharing of
instructions and data, (2) efficient orchestration of these sub-tasks at runtime, (3) dynamic models to guide us
during task-to-core(s) mapping decisions, and (4) a holistic approach across hardware, operating systems, and
data management/processing systems to keep the systems’ layers lightweight. This article navigated these items
giving a high-level overview. Our goal is to tackle them in more detail in the future.
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Abstract

As the number of cores on commodity processors continues to increase, scalability becomes more and
more crucial for overall performance. Scalable and efficient concurrent data structures are particularly
important, as these are often the building blocks of parallel algorithms. Unfortunately, traditional
synchronization techniques based on fine-grained locking have been shown to be unscalable on modern
multi-core CPUs. Lock-free data structures, on the other hand, are extremely difficult to design and often
incur significant overhead.

In this work, we make the case for Optimistic Lock Coupling as a practical alternative to both
traditional locking and the lock-free approach. We show that Optimistic Lock Coupling is highly scalable
and almost as simple to implement as traditional lock coupling. Another important advantage is that it is
easily applicable to most tree-like data structures. We therefore argue that Optimistic Lock Coupling,
rather than a complex and error-prone custom synchronization protocol, should be the default choice for
performance-critical data structures.

1 Introduction

Today, Intel’s commodity server processors have up to 28 cores and its upcoming microarchitecture will have
up to 48 cores per socket [6]. Similarly, AMD currently stands at 32 cores and this number is expected to
double in the next generation [20]. Since both platforms support simultaneous multithreading (also known as
hyperthreading), affordable commodity servers (with up to two sockets) will soon routinely have between 100
and 200 hardware threads.

With such a high degree of hardware parallelism, efficient data processing crucially depends on how well
concurrent data structures scale. Internally, database systems use a plethora of data structures like table heaps,
internal work queues, and, most importantly, index structures. Any of these can easily become a scalability (and
therefore overall performance) bottleneck on many-core CPUs.

Traditionally, database systems synchronize internal data structures using fine-grained reader/writer locks1.
Unfortunately, while fine-grained locking makes lock contention unlikely, it still results in bad scalability because

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1In this work, we focus on data structure synchronization rather than high-level transaction semantics and therefore use the term
lock for what would typically be called latch in the database literature. We thus follow common computer science (rather than database)
terminology.
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lock acquisition and release require writing to shared memory. Due to the way cache coherency is implemented
on modern multi-core CPUs, these writes cause additional cache misses2 and the cache line containing the lock’s
internal data becomes a point of physical contention. As a result, any frequently-accessed lock (e.g., the lock of
the root node of a B-tree) severely limits scalability.

Lock-free data structures like the Bw-tree [15] (a lock-free B-tree variant) or the Split-Ordered List [19]
(a lock-free hash table) do not acquire any locks and therefore generally scale much better than locking-based
approaches (in particular for read-mostly workloads). However, lock-free synchronization has other downsides:
First, it is very difficult and results in extremely complex and error-prone code (when compared to locking).
Second, because the functionality of atomic primitives provided by the hardware (e.g., atomically compare-
and-swap 8 bytes) is limited, complex operations require additional indirections within the data structure. For
example, the Bw-tree requires an indirection table and the Split-Ordered List requires “dummy nodes”, resulting
in overhead due to additional cache misses.

In this paper we make the case for Optimistic Lock Coupling (OLC), a synchronization method that combines
some of the best properties of lock-based and lock-free synchronization. OLC utilizes a special lock type that can
be used in two modes: The first mode is similar to a traditional mutex and excludes other threads by physically
acquiring the underlying lock. In the second mode, reads can proceed optimistically by validating a version
counter that is embedded in the lock (similar to optimistic concurrency control). The first mode is typically used
by writers and the second mode by readers. Besides this special lock type, OLC is based on the observation that
optimistic lock validations can be interleaved/coupled—similar to the pair-wise interleaved lock acquisition of
traditional lock coupling. Hence, the name Optimistic Lock Coupling.

OLC has a number of desirable features:

• By reducing the number of writes to shared memory locations and thereby avoiding cache invalidations, it
scales well for most workloads.

• In comparison to unsynchronized code, it requires few additional CPU instructions making it efficient.

• OLC is widely applicable to different data structures. It has already been successfully used for synchro-
nizing binary search trees [4], tries [14], trie/B-tree hybrids [17], and B-trees [22].

• In comparison to the lock-free paradigm, it is also easy to use and requires few modifications to existing,
single-threaded data structures.

Despite these positive features and its simplicity, OLC is not yet widely known. The goal of this paper is therefore
to popularize this simple idea and to make a case for it. We argue that OLC deserves to be widely known. It is a
good default synchronization paradigm—more complex, data structure-specific protocols are seldom beneficial.

The rest of the paper is organized as follows. Section 2 discusses related work, tracing the history of OLC
and its underlying ideas in the literature. The core of the paper is Section 3, which describes the ideas behind
OLC and how it can be used to synchronize complex data structures. In Section 4 we experimentally show that
OLC has low overhead and scales well when used to synchronize an in-memory B-tree. We summarize the paper
in Section 5.

2The cache coherency protocol ensures that all copies of a cache line on other cores are invalidated before the write can proceed.
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2 Related Work

Lock coupling has been proposed as a method for allowing concurrent operations on B-trees in 1977 [2]. This
traditional and still widely-used method, described in detail in Graefe’s B-tree survey [8], is also called “latch
coupling”, “hand-over-hand locking”, and “crabbing”. Because at most two locks are held at-a-time during tree
traversal, this technique seemingly allows for a high degree of parallelism—in particular if read/write locks are
used to enable inner nodes to be locked in shared mode. However, as we show in Section 4, on modern hardware
lock acquisition (even in shared mode) results in suboptimal scalability.

An early alternative from 1981 is a B-tree variant called B-link tree [10], which only holds a single lock at a
time. It is based on the observation that between the release of the parent lock and the acquisition of the child
lock, the only “dangerous” thing that could have happened is the split of a child node (assuming one does not
implement merge operations). Thus, when a split happens, the key being searched might end up on a neighboring
node to the right of the current child node. A B-link tree traversal therefore detects this condition and, if needed,
transparently proceeds to the neighboring node. Releasing the parent lock early is highly beneficial when the
child node needs to be fetched from disk. For in-memory workloads, however, the B-link tree has the same
scalability issues as lock coupling (it acquires just as many locks).

The next major advance, Optimistic Latch-Free Index Traversal (OLFIT) [5], was proposed in 2001. OLFIT
introduced the idea of a combined lock/update counter, which we call optimistic lock. Based on these per-node
optimistic locks and the synchronization protocol of the B-link tree, OLFIT finally achieves good scalability on
parallel processors. The OLFIT protocol is fairly complex, as it requires both the non-trivial B-link protocol and
optimistic locks. Furthermore, like the B-link tree protocol, it does not support merging nodes, and is specific to
B-trees (cannot easily be applied to other data structures).

In the following two decades, the growth of main-memory capacity led to much research into other data
structures besides the venerable B-tree. Particularly relevant for our discussion is Bronson et al.’s [4] concurrent
binary search tree, which is based on optimistic version validation and has a sophisticated, data structure-specific
synchronization protocol. To the best of our knowledge, this 2010 paper is the first that, as part of its protocol,
interleaves version validation across nodes—rather than validating each node separately like OLFIT. In that paper,
this idea is called “hand-over-hand, optimistic validation”, while we prefer the term Optimistic Lock Coupling to
highlight the close resemblance to traditional lock coupling. Similarly, Mao et al.’s [17] Masstree (a concurrent
hybrid trie/B-tree) is also based on the same ideas, but again uses them as part of a more complex protocol.

The Adaptive Radix Tree (ART) [12] is another recent in-memory data structure, which we proposed in
2013. In contrast to the two data structures just mentioned, it was originally designed with single-threaded
performance in mind without supporting concurrency. To add support for concurrency, we initially started
designing a custom protocol called Read-Optimized Write Exclusion (ROWEX) [14], which turned out to be
non-trivial and requires modifications of the underlying data structure3. However, fairly late in the project, we
also realized, that OLC alone (rather than as part of a more complex protocol) is sufficient to synchronize ART.
No other changes to the data structure were necessary. Both approaches were published and experimentally
evaluated in a followup paper [14], which shows that, despite its simplicity, OLC is efficient, scalable, and
generally outperforms ROWEX.

Similar results were recently published regarding B-trees [22]. In this experimental study a simple OLC-based
synchronization outperformed the Bw-tree [15], a complex lock-free synchronization approach. Another recent
paper shows that for write-intensive workloads, locking often performs better than lock-free synchronization [7].
These experiences indicate that OLC is a general-purpose synchronization paradigm and motivate the current
paper.

3Note that ROWEX is already easier to apply to existing data structures than the lock-free approach. The difficulty depends on the
data structure. Applying ROWEX is hard for B-trees with sorted keys and fairly easy for copy-on-write data structures like the Height
Optimized Trie [3]—with ART being somewhere in the middle.
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3 Optimistic Lock Coupling

The standard technique for inter-thread synchronization is mutual exclusion using fine-grained locks. In a B-tree,
for example, every node usually has its own associated lock, which is acquired before accessing that node. The
problem of locking on modern multi- and many-core processors is that lock acquisition and release require writing
to the shared memory location that implements the lock. This write causes exclusive ownership of the underlying
cache line and invalidates copies of it on all other processor cores. For hierarchical, tree-like data structures,
the lock of the root node becomes a point of physical contention—even in read-only workloads and even when
read/write locks are used. Depending on the specific data structure, number of cores, cache coherency protocol
implementation, cache topology, whether Non-Uniform Memory Access (NUMA) is used, locking can even
result in multi-threaded performance that is worse than single-threaded execution.

The inherent pessimism of locking is particularly unfortunate for B-trees: Despite the fact that logical
modifications of the root node are very infrequent, every B-tree operation must lock the root node during tree
traversal4. Even the vast majority of update operations (with the exception of splits and merges), only modify a
single leaf node. These observations indicate that a more optimistic approach, which does not require locking
inner nodes, would be very beneficial for B-trees.

3.1 Optimistic Locks

As the name indicates, optimistic locks try to solve the scalability issues of traditional locks using an optimistic
approach. Instead of always physically acquiring locks, even for nodes that are unlikely to be modified si-
multaneously, after-the-fact validation is used to detect conflicts. This is done by augmenting each lock with
a version/update counter that is incremented on every modification. Using this version counter, readers can
optimistically proceed before validating that the version did not change to ensure that the read was safe. If
validation fails, the operation is restarted.

Using optimistic locks, a read-only node access (i.e., the majority of all operations in a B-tree) does not
acquire the lock and does not increment the version counter. Instead, it performs the following steps:

1. read lock version (restart if lock is not free)

2. access node

3. read the version again and validate that it has not changed in the meantime

If the last step (the validation) fails, the operation has to be restarted. Write operations, on the other hand, are
more similar to traditional locking:

1. acquire lock (wait if necessary)

2. access/write to node

3. increment version and unlock node

Writes can therefore protect a node from other writes.
As we observed in an earlier paper [14], because of similar semantics, optimistic locks can be hidden behind

an API very similar to traditional read/write locks. Both approaches have an exclusive lock mode, and acquiring
a traditional lock in shared mode is analogous to optimistic version validation. Furthermore, like with some
implementations of traditional read/write locks, optimistic locks allow upgrading a shared lock to an exclusive
lock. Lock upgrades are, for example, used to avoid most B-tree update operations from having to lock inner
nodes. In our experience, the close resemblance of optimistic and traditional locks simplifies the reasoning about
optimistic locks; one can apply similar thinking as in traditional lock-based protocols.

4To a lesser extent this obviously applies to all inner nodes, not just the root.
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Figure 1: Comparison of a lookup operation in a 3-level tree using traditional lock coupling (left-hand side)
vs. optimistic lock coupling (right-hand side).

3.2 Lock Coupling with Optimistic Locks

The traditional and most common lock-based synchronization protocol for B-trees is lock coupling, which
interleaves lock acquisitions while holding at most two locks at a time. If, as we observed earlier, optimistic
locks have similar semantics as traditional locks, it is natural to ask whether lock coupling can be combined
with optimistic locks. And indeed the answer is yes: One can almost mechanically translate traditional lock
coupling code to optimistic lock coupling code. This is illustrated in Figure 1, which compares the traversal in a
tree of height 3 using traditional and optimistic locks. As the figure shows, the main difference is that locking
is translated to reading the version and that unlocking becomes validation of the previously read version. This
simple change provides efficient lock-free tree traversal without the need to design a complex synchronization
protocol.

It is important to emphasize the conceptual simplicity of OLC in comparison to data structures that use
custom protocols like the Bw-tree [15]. To implement lock-free access, the Bw-tree requires an indirection table,
delta nodes, complex splitting and merging logic, retry logic, etc. OLC, on the other hand, can directly be applied
to B-trees mostly by adding the appropriate optimistic locking code and without modifying the node layout
itself. Therefore, OpenBw-Tree, an open source implementation of the Bw-tree, requires an order of magnitude
more code than a B-tree based on OLC5. Given how difficult it is to develop, validate, and debug lock-free code,
simplicity is obviously a major advantage.

3.3 Correctness Aspects

So far, we have introduced the high-level ideas behind OLC and have stressed its similarity to traditional lock
coupling. Let us now discuss some cases where the close similarity between lock coupling and OLC breaks down.
To make this more concrete, we show the B-tree lookup code in Figure 2. In the code, readLockOrRestart
reads the lock version and readUnlockOrRestart validates that the read was correct.

One issue with OLC is that any pointer speculatively read from a node may point to invalid memory (if that
node is modified concurrently). Dereferencing such a pointer (e.g., to read its optimistic lock), may cause a
segmentation fault or undefined behavior. In the code shown in Figure 2, this problem is prevented by the extra
check in line 25, which ensures that the read from the node containing the pointer was correct. Without this

5Both implementations are available on GitHub: https://github.com/wangziqi2016/index-microbench
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1 std::atomic<BTreeNode*> root;
2
3 // search for key in B+tree, returns payload in resultOut
4 bool lookup(Key key, Value& resultOut) {
5 BTreeNode* node = root.load();
6 uint64_t nodeVersion = node->readLockOrRestart();
7 if (node != root.load()) // make sure the root is still the root
8 restart();
9

10 BTreeInner<Key>* parent = nullptr;
11 uint64_t parentVersion = 0;
12
13 while (node->isInner()) {
14 auto inner = (BTreeInner*)node;
15
16 // unlock parent and make current node the parent
17 if (parent)
18 parent->readUnlockOrRestart(parentVersion);
19 parent = inner;
20 parentVersion = nodeVersion;
21
22 // search for next node
23 node = inner->findChild(key);
24 // validate ’inner’ to ensure that ’node’ pointer is valid
25 inner->checkOrRestart(nodeVersion);
26 // now it safe to dereference ’node’ pointer (read its version)
27 nodeVersion = node->readLockOrRestart();
28 }
29
30 // search in leaf and retrieve payload
31 auto leaf = (BTreeLeaf*)node;
32 bool success = leaf->findValue(key, resultOut);
33
34 // unlock everything
35 if (parent)
36 parent->readUnlockOrRestart(parentVersion);
37 node->readUnlockOrRestart(nodeVersion);
38
39 return success;
40 }

Figure 2: B-tree lookup code using OLC. For simplicity, the restart logic is not shown.
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additional validation, the code would in line 27 dereference the pointer speculatively read in line 23. Note that the
implementation of checkOrRestart is actually identical to readUnlockOrRestart. We chose to give it
a different name to highlight the fact that this extra check would not be necessary with read/write locks.

Another potential issue with optimistic locks is code that does not terminate. Code that speculatively accesses
a node, like an intra-node binary search, should be written in a way such that it always terminates—even in the
presence of concurrent writes. Otherwise, the validation code that detects the concurrent write will never run. The
binary search of a B-tree, for example, needs to be written in such a way that each comparison makes progress.
For some data structures that do not require loops in the traversal code (like ART) termination is trivially true.

3.4 Implementation Details

To implement an optimistic lock, one can combine the lock and the version counter into a single 64-bit6 word [14].
A typical read operation will therefore merely consist of reading this version counter atomically. In C++11 this
can be implemented using the std::atomic type.

On x86, atomic reads are cheap because of x86’s strong memory order guarantees. No memory fences are
required for sequentially-consistent loads, which are translated (by both GCC and clang) into standard MOV
instructions. Hence, the only effect of std::atomic for loads is preventing instruction re-ordering. This
makes version access and validation cheap. Acquiring and releasing an optimistic lock in exclusive mode has
comparable cost to a traditional lock: A fairly expensive sequentially-consistent store is needed for acquiring a
lock, while a standard MOV suffices for releasing it. A simple sinlock-based implementation of optimistic locks
can be found in the appendix of an earlier paper [14].

OLC code must be able to handle restarts since validation or lock upgrade can fail due to concurrent writers.
Restarts can easily be implemented by wrapping the data structure operation in a loop (for simplicity not shown
in Figure 2). Such a loop also enables limiting the number of optimistic retry operations and falling back to
pessimistic locking in cases of very heavy contention. The ability to fall back to traditional locking is a major
advantage of OLC in terms of robustness over lock-free approaches, which do not have this option.

In addition to the optimistic shared mode and the exclusive mode, optimistic locks also support a “shared
pessimistic” mode, which physically acquires the lock in shared mode (allowing multiple concurrent readers but
no writers). This mode is useful for table (or range) scans that touch many tuples on a leaf page (which would
otherwise easily abort). Finally, let us mention that large range scans and table scans, should be broken up into
several per-node traversals as is done in the LeanStore [11] system.

Like all lock-free data structures, but unlike traditional locking and Hardware Transactional Memory [9, 16,
13], OLC requires care when deleting (and reusing) nodes. The reason is that a deleting thread can never be sure
that a node can be reclaimed because other threads might still be optimistically reading from that node. Therefore,
standard solutions like epoch-based reclamation [21], hazard pointers [18], or optimized hazard pointers [1]
need to be used. These memory reclamation techniques are, however, largely orthogonal to the synchronization
protocol itself.

6Even after subtracting one bit for the lock status, a back-of-the-envelope calculation can show that 63 bits are large enough to never
overflow in practice.
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Table 4: Performance and CPU counters for lookup and insert operations in a B-tree with 100M keys. We perform
100M operations and normalize the CPU counters by that number.

instruc- L1 L3 branch
threads M op/s cycles tions misses misses misses

lookup (no sync.) 1 1.72 2028 283 39.1 14.9 16.1
lookup (OLC) 1 1.65 2107 370 43.9 15.1 16.7
lookup (lock coup.) 1 1.72 2078 365 42.3 16.9 15.7

insert (no sync.) 1 1.51 2286 530 59.8 31.1 17.3
insert (OLC) 1 1.50 2303 629 61.2 31.1 16.5
insert (lock coup.) 1 1.41 2473 644 61.0 31.0 17.2

lookup (no sync.) 10 15.48 2058 283 38.6 15.5 16.0
lookup (OLC) 10 14.60 2187 370 43.8 15.8 16.8
lookup (lock coup.) 10 5.71 5591 379 54.2 17.0 14.8

insert (no sync.) 10 - - - - - -
insert (OLC) 10 10.46 2940 656 62.0 32.5 16.8
insert (lock coup.) 10 7.55 4161 667 75.0 28.6 16.2

4 Evaluation

Let us now experimentally evaluate the overhead and scalability of OLC. For the experiments, we use an in-
memory B+tree implemented in C++11 using templates, which is configured to use nodes of 4096 bytes, random
8 byte keys, and 8 byte payloads. Based on this B-tree, we compare the following synchronization approaches:

• an OLC implementation7

• a variant based on traditional lock coupling and read/write locks

• the unsynchronized B-tree, which obviously is only correct for read-only workloads but allows measuring
the overhead of synchronization

Note that earlier work has compared the OLC implementation with a Bw-tree implementation [22] and other
state-of-the-art in-memory index structures.

We use a Haswell EP system with an Intel Xeon E5-2687W v3 CPU, which has 10 cores (20 “Hyper-Threads”)
and 25 MB of L3 cache. The system is running Ubuntu 18.10 and we use GCC 8.2.0 to compile our code. The
CPU counters are obtained using the Linux perf API8.

Table 4 compares the performance and CPU counters for lookup and insert operations in a B-tree with
100M keys. With single-threaded execution, we observe that all three approaches have very similar performance.
Adding traditional or optimistic locks to unsynchronized B-tree code results in up to 30% of additional instructions
without affecting single-threaded performance much.

As Figure 3 shows, the results change dramatically once we use multiple threads. For lookup, the scalability
of OLC is near-linear up to 20 threads, even though the system has only 10 “real cores”. The OLC scalability for
insert is also respectable (though not quite as linear because multi-threaded insertion approaches the memory
bandwidth of our processor). The figure also shows that the results of traditional lock coupling with read/write

7An almost identical OLC implementation is available on github: https://github.com/wangziqi2016/
index-microbench/tree/master/BTreeOLC

8We use the following convenience wrapper: https://github.com/viktorleis/perfevent
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Figure 3: Scalability on 10-core system for B-tree operations (100M values).

locks are significantly worse than OLC. With 20 threads, lookup with OLC is 3.9× faster than traditional lock
coupling.

5 Summary

Optimistic Lock Coupling (OLC) is an effective synchronization method that combines the simplicity of traditional
lock coupling with the superior scalability of lock-free approaches. OLC is widely applicable and has already
been successfully used to synchronize several data structures, including B-trees, binary search trees, and different
trie variants. These features make it highly attractive for modern database systems as well as performance-critical
systems software in general.
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