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1 Introduction

Machine learning (ML) has gained widespread adoption in a variety of real-world problem domains, ranging
from business, to healthcare, to agriculture. However, the development of effective ML solutions requires
highly-specialized experts well-versed in both statistics and programming. This high barrier-of-entry stems from
the current process of crafting a customized ML solution, which often involves numerous manual iterative changes
to the ML workflow, guided by knowledge or intuition of how those changes impact eventual performance. This
cumbersome process is a major pain point for machine learning practitioners [4, 53] and has motivated our prior
work on Helix, a declarative ML framework [52] targeted at supporting efficient iteration.

To make ML more accessible and effortless, there has been recent interest in AutoML systems, both in
industry [2, 1, 21] and in academia [15, 37], that automatically search over a predefined space of ML models for
some high-level goal, such as prediction of a target variable. For certain tasks, these systems have been shown
to generate models with comparable or better performance than those generated by human ML experts in the
same time [35, 26]. However, our preliminary study of ML workflows on OpenML [48] (an online platform
for experimenting with and sharing ML workflows and results) shows that AutoML is not widely adopted in
practice—accounting for fewer than 2% of all users and workflows. While this may be due to a lack of awareness
of these tools, we believe that this sparse usage stems from a more fundamental issue: a lack of usability.

Our main observation is that the fully-automated setting that current AutoML systems operate on may not
be a one-size-fits-all solution for many users and problem domains. Recent work echoes our sentiment that
AutoML’s complete automation over model choices may be inadequate in certain problem contexts [18, 50]. The
lack of human control and interpretability is particularly problematic when the user’s domain knowledge may
influence the choice of workflow [18], in high-stakes decision-making scenarios where trust and transparency are
essential [50], and in exploratory situations where the problem is not well-defined [11]. This trade-off between
control and automation has been a century-long debate in HCI [23, 22, 44, 5], with modern reincarnations arising
in conversational agents, interactive visual analytics, and autonomous driving. A common interaction paradigm to
reconcile these two approaches is a mixed-initiative approach, where “intelligent services and users...collaborate
efficiently to achieve the user’s goals” [23].

Along the footsteps of these seminal papers, here, we outline our vision for a Mixed-Initiative machine
Learning Environment (MILE), by rethinking the role that automation and human supervision play across the
ML development lifecycle. MILE enables a better user experience, and benefits from system optimizations that
both leverage human input and are tailored to the fact that MILE interacts with a human in the loop. For example,
our earlier work HELIX [52] leveraged the fact that workflow development happens iteratively, to intelligently
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materialize and reuse intermediate data products to speed up subsequent iterations. Similarly, as discussed later in
this paper, leveraging user domain knowledge has the potential to drastically narrow down the exhaustive search
space typically employed by existing AutoML systems.

a) User-Driven c) Autopilotb) Cruise-Control

Figure 1: Three levels of autonomy in the ML lifecycle. The gray
box represents the space of all possible workflows for a given task.
Darker workflows have better performance, and the darkest workflow
at the bottom is the desired workflow. a) User-driven: the user
has to specify the next workflow to explore in every iteration; a
novice user (yellow arrows) might take more iterations than an
expert (blue arrows) to reach a “good” workflow. b) Cruise-control:
the user steers the system towards a set of changes (a black box)
to be explored automatically by the system. c) Autopilot: the user
specifies only the dataset and the ML objective for the machine to
automatically find the optimal workflow.

By considering the trade-offs between
system acceleration and user control, we or-
ganize our paper based on three increasing
levels of autonomy—user-driven, cruise-
control, and autopilot—drawing an anal-
ogy with driving. The different levels of
autonomy characterize the degree of user
control and specification of problem re-
quirements versus the amount of system au-
tomation in identifying desired workflows
(as illustrated in Figure 1). Starting from
the manual, user-driven setting (§2), we de-
scribe system challenges in enabling users
to rapidly try out different workflow vari-
ants, including techniques that speed up
execution time to achieve interactive re-
sponses, and those that improve debugging
and understanding of different workflow
versions. Next, in the cruise-control setting
(§3), the system works alongside users col-
laboratively in search of a workflow that
fits the user’s needs, by letting users declar-
atively specifying problem requirements,
and identifying desired workflows via a di-
alog with the user. Finally, in the fully-autonomous, autopilot setting (§4), we outline several techniques that
would improve and accelerate the search through different ML design decisions. At a high level, these techniques
hinge on accelerated search via AutoML-aware work-sharing optimizations and more intelligent search via
knowledge captured from user-driven ML workflows. Therefore, a holistic system for varying levels of autonomy
is crucial.

Our goal for characterizing the design space of such systems into the three representative levels is to bridge
the knowledge gap between novice and expert users and thereby democratize the process of ML development to a
wider range of end-users. For example, to build an image classifier, an expert user might want to explicitly choose
which model and preprocessing techniques to use, but leaving the manual search of the hyperparameter settings to
the system, whereas a novice might opt for the fully-autonomous setting to search for any optimal workflow. By
addressing the research challenges in each level of autonomy, we can envision an intelligent, adaptive, multi-tiered
system that dynamically adjusts to the appropriate balance between usability and customizability depending on
the amount of information present in the user input. In addition, by supporting different levels of autonomy in a
single system, the system can synthesize knowledge from expert users (such as knowing that a convolutional
neural network would be most suitable for building an image classifier) to help the non-experts.

Across the different levels of autonomy, we encounter research challenges from the fields of ML, databases
(DB), and HCI. The ML challenges include meta-learning techniques for intelligently traversing the search space
of models. The database challenges include optimization of time and resources required for this search process
leveraging common DB optimizations such as pipelining, materialization, and reuse. The HCI challenges include
designing abstractions that make it easy to communicate high-level problem requirements to the system, as well
as providing interpretable system outputs and suggestions. The challenges from these three fields are not isolated
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but instead impact each other. For example, developing DB optimizations that speed up execution time also leads
to a more responsive and interactive user experience. Creating more usable debugging tools also improves model
transparency and interpretability. For these reasons, in order to design a holistic solution, it is crucial to work at
the intersection of these fields to tackle the challenges across the different levels of autonomy.

Figure 2: MILE System Overview

In our envisioned Mixed-Initiative ma-
chine Learning Environment (MILE), users
work collaboratively with machines in
search for an optimal workflow that accom-
plishes the specified problem goals. As
illustrated in Figure 2, MILE is reminis-
cent of a relational database management
system (DBMS). At the top, different ap-
plication units and users can communicate
with the system via a declarative ML in-
tent query language called MILEAGE (de-
scribed in §3). Users do not have to use
this query language directly; instead, we
envision interactive interfaces that can gen-
erate such queries automatically based on
user interactions (analogous to form-based
interfaces generating SQL), as in our Helix IDE [51] or TensorBoard [36]. Given a MILEAGE query, the
optimizer represents and traverses through the search space defined by the MILEAGE query. The output of the
optimizer is a workflow, akin to a query execution plan, where the workflow’s overall performance is modeled as
a cost function. Similar to how operators can be reordered and pushed down to achieve the same result while
optimizing for performance in an DBMS, there may be certain ML workflow choices that have equivalent results,
but leads to better performance. The obtained workflow is provided to an execution engine that performs the
actions specified by the workflow, leading to a set of ML results (which can be labels for classification or a table
of prediction values). Finally, the ML results are communicated back to the users for debugging and analysis.

2 User-Driven

In this setting, the user makes all the modeling decisions, including the initial workflow and iterative changes
to the workflow to evaluate in subsequent iterations. The role of the system is to help users rapidly explore
the specified changes and to track the results across iterations. This setting affords the users full control of the
modeling process, which may be desirable for several reasons. For example, the application has stringent security,
privacy, or regulatory requirements; or the dataset is extremely large, limiting the number of experiments that
can be run. However, since MILE provides no input on modeling decisions, this setting is more suited for expert
ML users who demand full control of the modeling process. Even though expert ML users dictate the modeling
iterations, there are many challenges associated with focusing their attention on modeling and maximizing their
productivity. Below, we discuss concrete challenges in accelerating execution to increase interactivity and in
helping users interpret and debug ML outputs.

2.1 Interactivity

In each iteration, users rely on the results from the current and past models to make decisions about what to try
next, such as a new set of features, a different model hyperparameter value, or a new model type. Shortening
the execution time to obtain the model metrics and predictions would greatly improve interactivity and can be
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accomplished through several different system optimizations.
Materialization and reuse. From our preliminary study of ML workflows from OpenML, we observed that
from one iteration to the next, users tend to reuse a large portion of the workflow. About 80% of the iterations
on OpenML reuse over half of the operators from the previous iteration. Incremental changes, while desirable
for controlled experiments with quantifiable impact, result in a great deal of redundant computation that can be
materialized and reused in subsequent iterations to speed up iterative execution.

While materialization and reuse techniques in databases are well-studied, applying them to ML workflows
presents new challenges. First, naı̈ve solutions such as materializing all operator results can be wasteful and
detrimental to performance, and reuse is not always the optimal policy. In some cases, recomputing from inputs
can be more efficient than loading previous results. Interdependency of materialization and reuse decisions in a
workflow DAG complicates the storage and runtime tradeoff. For example, materializing all of the descendants of
an operator O precludes the need for materializing O, but O needs to be loaded in a subsequent iteration if any of
the descendants are modified. Additionally, users can make arbitrary changes in each iteration. Making effective
materialization decisions hinges upon the ability to anticipate iterative changes.

HELIX investigates some of these challenges and provides heuristics for solving the problem. The materializa-
tion problem is proven to be NP-hard [52]. As a next step, building a predictive model of what users may do next
may help prioritize what to materialize, given enough training data on how developers iterate on ML workflows.
OpenML is a great source for gathering such training data, as it records complete workflow traces. However, a
solution based purely on historical data may not respond adequately to the idiosyncrasies of a specific user—the
system must also be able to adapt quickly to the behaviors of a new user. To this end, reinforcement learning (RL)
can be used to explore complex materialization strategies, as others have done for query optimization [30] and
view maintenance [34].
End-to-end optimization. While materialization and reuse optimize across iterations, end-to-end optimization
focuses on the entire workflow in a single iteration. An important area that merits more research efforts is the
joint optimization of the data-preprocessing component, (primarily relational operators) and the ML component
(primarily linear algebra–or LA–operators) of the workflow. Relational operators deal in columns and rows, while
LA operators deal in vectors and matrices. Although there is an intuitive correspondence between the columns
and rows of a table and the columns and rows of a matrix, systems aimed at integrating ML into databases usually
do so via a special vector data type for performance reasons (see [31] for a survey). Chen et. al. propose a
formal framework to unify LA and relational operators in the context of factorized ML, in which ML operators
are decomposed and pushed through joins [12]. Their framework can be extended to support a wider range of
cross-relational and LA optimizations. For example, Sommer et. al. observe that sparsity arises from many
sources in ML and can be exploited to optimize the execution plan for LA operators [45]. If we were able to
connect each vector position to the corresponding columns between LA and relational operators, we can leverage
sparsity to optimize the relational portion of the workflow as well, e.g., automatically dropping, at the earliest
opportunity, columns that correspond to zero-weight features in the ML model. Extending the framework in
Chen [12] to support the sparsity optimization requires tracking additional column-wise provenance.

An orthogonal direction is to use approximation computing techniques such as sampling and quantization
to speed up end-to-end execution for rapid feedback to users regarding the quality of the current workflow. For
sampling, one needs to ensure that the sample is representative of the underlying dataset and that the same sample
is used throughout the workflow, ideally without modifying existing operators. Quantization pertains to using
imprecise weights represented by fewer bits to obtain model performance comparable with the full-precision
version [25].

2.2 Interpretability and Debuggability

Another important aspect of helping users make modeling decisions is assisting in the analysis of the artifacts
involved in the modeling process, including input data, intermediate results of operators within the workflow,
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models, and outputs [17]. Deciding on effective iterative changes requires a thorough understanding of the
behavior of the current model. To make sense of existing models, users might need to examine a number of
artifacts and the relationships between them. For example, to debug a bad prediction, the user might look at
the model and the most relevant training examples that led to the prediction. This process requires tracking a
combination of coarse-grained and fine-grained lineage across related artifacts.
Coarse-grained. Artifacts in this category include workflow versions and the metadata associated with each
version, such as model hyperparameters and performance metrics. A number of systems have been developed to
facilitate the recording of iterative workflow versions and metadata [49, 54, 17]. These systems enable tracking
via user-specified logging statements injected into their workflow programs. The goal is to be minimally intrusive
and lightweight—the system does not need to provide special implementations for each existing operator since
the user specifies the metrics of interest explicitly. However, a more automatic solution to log metadata can
leverage a combination of data lineage tracking and program analysis. Schelter et. al. propose a declarative
language for users to specify logging at the operator and workflow level instead of by individual metrics [41]. We
envision taking this one step further and completely automating the tracking of metadata, by injecting logging
statements inside the compiler via program analysis. With the ever-growing body of ML frameworks, it is
not scalable to implement solutions specific to each framework. Instead, we should focus on common model
representations, such as PMML1 and ONNX2, that are easily portable across frameworks, akin to how LLVM
handles many different languages with a unified intermediate representation (IR) for analysis. The model IRs
have unified representations of operator parameters and input/output types, as well as mechanisms for users to
annotate operators, which can be leveraged to specify custom logging requirements.
Fine-grained. As mentioned previously, fine-grained data lineage is helpful for diagnosing model issues, e.g.,
tracing back to the input data that led to a particular bad prediction. Supporting fine-grained data lineage in
data-intensive, ad-hoc analysis is challenging for several reasons: 1) the amount of possible lineage data to track
is often combinatorial with respect to the raw data; 2) the workloads are unpredictable; and 3) query results need
to be served in real-time. The common technique to address 3) is to leverage results precomputed offline, but 2)
makes it difficult to predict what precomputation would be beneficial and 1) makes it infeasible to precompute
all possible results in the absence of predictability. We identify three promising directions that can effectively
address all three confounding challenges.

During debugging, users create a great deal of ephemeral knowledge that could potentially help with future
debugging but is currently wasted. For example, a user runs a query to find outlier values for a given column.
The next time someone else needs to debug an application using data from the same column, the outliers could
potentially help explain anomalous behaviors, or the system could recommend outliers as a diagnostic for a
different column for related issues. Aghajanyan et. al. [3] propose a system for capturing insights from these
exploratory workloads to assist with future debugging. Doing so not only reduces redundant computation but
also makes future workloads more regular by guiding user exploration with predefined operations. Consequently,
the system can selectively store a small subset of fine-grained lineage most likely to accelerate user-interactivity
during debugging in a cost-effective manner. Research in systematizing ad-hoc workloads into knowledge that
assists with future debugging is still nascent and warrants further investigation.

Even with selective storage, the amount of fine-grained lineage data is still potentially huge and requires
carefully designed storage schemes. In HELIX, we have begun to explore storing lineage in the materialization of
workflow intermediates. The idea is that while it is prohibitive to store the fine-grained input-output relationship
for every single operator in the workflow, we can selectively store only the output of expensive operators and
replay the cheap operators on top of materialized intermediates to recover the full lineage. For serving fine-
grained lineage in real-time, SMOKE [40] is an in-memory database for serving fine-grained lineage for relations
operators at interactive speed, using heuristics to solve the problem of materialization and replay explored in

1http://dmg.org/pmml/v4-3/GeneralStructure.html
2https://onnx.ai/

63



HELIX. Whether SMOKE or the techniques within can be generalized for ML operators and to dataset that do not
fit in memory posits interesting research challenges.

3 Cruise-Control

Unfortunately, the fully user-driven setting is the modus operandi for ML application development supported
by the majority of existing tools, irrespective of user expertise. In this section and the next, we explore system
designs to help change the landscape of ML tooling, making it more accessible to a wider range of users.

In the cruise-control setting, the user specifies their problem requirements and any domain-specific knowledge
to MILE. MILE then automatically searches through the space of potential workflow options and recommends
an acceptable workflow that meets the specification, via a dialog with the user. Since the technology for
recommending acceptable/accurate models overlaps heavily with that the model search capabilities in the
autonomous setting (§4), here, we focus our discussion on the challenges associated with designing the appropriate
logical representation of the model space that the end-user interacts with. This logical representation abstracts
away the underlying details of how the search and inference are performed, so that changes or additions of new
search strategies and models would not affect end-user experience. As in Figure 2 and described in this section,
the logical representation consists of two components to facilitate a dialog between user and system (akin to a
dashboard). From user to system, we first describe a language that enables users to express their ML ‘intent’.
Then, going from system to user, we discuss interfaces that communicate system outputs to the user.

3.1 Declarative Specification of ML Intent

Unlike traditional programming where the problem solution is deterministic, since ML is data-dependent, even
an expert will only have a vague impression of what their optimal workflow would look like, based on their
desired properties for the eventual model outputs. However, users often have some preferences, constraints,
requirements, and knowledge regarding the problem context (collectively referred to as intent) constraining
the space of potential model solutions. We will first describe two characteristics of ML intents (ambiguity and
multi-granularity) that presents research challenges in operationalization. We illustrate these characteristics via a
hypothetical example of a user developing a cancer diagnostic model based on clinical data. Next, we describe
our proposed solution strategy in developing a declarative language, MILEAGE, that enable users to specify their
ML intent. While prior work has proposed declarative specification of ML tasks [29] and feature engineering
processes as UDFs [6], these endeavors have been focused on a specific aspect of the ML lifecycle. We argue for
a holistic view that enables users to express a wide range of high-level, nuanced ML intents to the system.
Ambiguous Intents. Our first challenge is that ML intents can often be ambiguous—in other words, high-level,
qualitative problem requirements are ambiguous and often do not translate exactly to a low-level workflow change
(e.g., hyperparameter setting, preprocessing choice). For instance, in the cancer diagnostic example, the ML
developer might indicate that the desired model should be interpretable to physicians and patients alike. In
addition, since records are transcribed by human clinicians, the model must be robust to noisy and potentially
erroneous data inputs, as well as missing values. Another reason why ML intents can be ambiguous is that
problem requirements often stem from ‘fuzzy’ domain-specific knowledge. For example, an oncologist may
indicate that because lung cancer is more fatal (higher mortality rates) than other types of cancer, false negatives
should be penalized more heavily in the lung cancer diagnosis model. There are many potential approaches to
operationalize these and other similar problem requirements, including modifying regularization, developing
a performance metric beyond traditional classification accuracy, or choosing a model that is robust to class
imbalance. The challenge therefore lies in understanding how can we can map these ambiguous high-level
problem requirements to suggest some combination of workflow changes.
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Multi-Granularity Intents. Another challenge in designing an ML intent language is that user requests are
multi-granularity, encompassing a variety of different input types at different levels of granularity. At the highest
level, a user can specify problem requirements, goals, or domain knowledge; at an intermediary level, users can
refine or prune out portions of the search space (ranges of parameter options), at the lowest level, users can fix
specific preprocessing procedures or hyperparameter values (similar to what one would do in the user-driven
setting). The multi-granularity nature of ML intent stems from users with different expertise levels. For example,
a clinician might only be able to specify the desired task goal (e.g., predict attribute ‘mortality rate’), whereas an
ML expert might have more specific model requirements (e.g., use a random forest with 10-50 trees, max tree
depth of 4-8, with entropy as split criteria). The research challenge lies in developing a specification framework
that can adapt and jointly perform inference based on signals from different granularities, as well as appropriate
interfaces to elicit different input requirements from users. Both of these challenges demand a more holistic
understanding of the interdependencies and impact of different ML design choices, and how they affect the
resulting workflow characteristics.
MILEAGE Improvements. Our proposed solution is to develop MILEAGE, a declarative specification language
that allows users to communicate their ML intent to the system. MILEAGE needs to be able to interpret two
different types of specifications, requests regarding problem details and requests involving domain knowledge.
Existing AutoML systems often require some form of problem specification [2, 1, 19], but do not account for
domain specification. Domain specification consists of domain-specific knowledge that influences workflow
decisions, such as the knowledge about mortality rates of different types of cancer and the presence of noisy
and missing values in the data collection process. While problem specification is a required component of
the query, domain specification is optional information that is helpful for improving the model. Together, the
MILEAGE query consisting of domain and problem specification causes the system to search through potential
workflow options, with the system returning a ranked list of optimal workflows. Each of these workflows may be
conveniently specified through something declarative like the Helix-DSL [52], or be compiled into imperative
scripts (such as TensorFlow and Scikit-Learn).

Further drawing from the analogy with SQL for DBMS, we outline several desired properties in the language
design for such a system. Starting from the top of the stack in Figure 2, the declarative language should act
as a logical representation that supports physical independence with respect to how the search is actually done
under-the-hood. Since ML research and practice is fast-paced and highly-evolving, the logical representation
established by the declarative language ensures that if we have new representations, models, knowledge sources,
or search strategies, the underlying changes can be completely hidden away from end-users. The declarative
language also serves as a common, unifying exchange format across different end-user applications. Apart
from the logical representation of the task definition in the problem specification, there are additional language
components for specifying views and constraints. View definitions specify what intermediate output from the
workflow can be materialized and reused in the later part of the workflow. Views can be defined explicitly by
the user or by an intelligent application (such as Helix [52], DeepDive [43]) to create and materialize views.
The intelligent application keeps track of what has been materialized and notifies the optimizer to reuse any
views that are already materialized whenever appropriate. Constraints are parts of the problem specification that
limits certain portions of the solution search space, in order to ensure the consistency and validity of the resulting
workflow. These constraints may be in the form of performance requirements, some measure of model robustness
or fairness (e.g., checking that training data is not biased towards a particular racial group), or specifying the
latency budget allocated to search. Both the view and constraint specification are optional declarations as part of
the language and accounted for inside the optimizer.

3.2 Communicating System Suggestions to Users

While the declarative query language enables users to communicate their intents to the system, there is also
research challenges in the reverse direction, in communicating system suggestions to users. In this section, we
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briefly outline several important unsolved research problems related to how the system communicates suggestions
to: 1) guide users towards better workflow decisions (guidance) and 2) correct and prevent users from overlooking
potential model errors (correction).
Guidance Towards Optimal Workflow Decisions. Given a declarative specification of ML intent, the system
automatically traverses through the search space and returns suggestions regarding the workflow choices. Existing
human-in-the-loop AutoML systems [50, 11] feature visualizations for model comparison, with users able to
assign a computational budget to the AutoML search, specify the search space and model choices, or modify
the problem specification. It remains an open research question as to what types of workflow recommendations
and end-user interaction for model-steering would be most useful to users. What is the appropriate granularity
of feedback to provide to the user that would be useful in guiding them towards an optimal workflow? Should
we be suggesting modifications to an existing workflow, offering users to chose between multiple workflows,
or recommending the entire workflow? Moreover, what aspects of the workflow development phase require
the most amount of guidance and assistance? For example, while most AutoML systems have focused on
model selection and hyperparameter search, it may possible that users actually need more assistance with feature
engineering or data preprocessing. One of our goals in studying workflows on OpenML is to understand where
existing ML developers struggle the most in the development lifecycle (spending most amount of time or with
minimal performance gains). These observations will guide our work to address existing pain-points in the ML
development lifecycle. A far-reaching research question is to examine whether workflow recommendations
from a well-designed guidance system have the potential to educate novice users about best practices in model
development. These best practices can include knowledge about what model to pick over another in certain
scenarios or preprocessing techniques when the input data exhibits certain characteristics. The recommendation
system acts as a personal coach that could teach the user practical ML skills while they are performing an ML
task.
Corrective Suggestions via Proactive Monitoring. Many recent examples pervasive in the media have high-
lighted how errors from production ML system can have detrimental and unintended consequences, from
systematic biases in a recidivism predictions3 to racist and vulgar responses in a public chatbot4. To this end,
several systems have been proposed to validate and monitor the quality of production ML workflows [10, 42, 13].
These systems monitor the model and raise a red-flag when the result from the deployed ML pipeline is potentially
erroneous (e.g., when the input data distribution changes drastically). If done properly, the proactive monitoring
capabilities of MILE may the potential for enhancing user’s trust in the final ML model that is developed, improve
the overall production model quality, and reduce the cost of model maintenance.

4 Autopilot

Depending on the user’s level of expertise, they may wish to maintain some degree of control (Figure 1b), steering
MILE between portions of the search space, or they may wish to delegate the entire search process to MILE
(Figure 1c), letting it decide how and where to search. Doing this correctly would be the “holy grail” of AutoML:
a general, hands-free technology capable of producing an ML workflow with adequate performance, within a
given time or resource budget.

We described some of the challenges associated with exposing these capabilities to the user in the previous
section; in this section, we focus on the system side. The major difficulty associated with driverless AutoML is
that the design space of possible ML workflows suffers from a combinatorial curse of dimensionality. Therefore,
the challenge is: how do we make the AutoML search process over this design space as efficient as possible?

There exists an enormous breadth of work from the AutoML community on how to best automate hyperpa-
rameter search [8, 7, 19], how to warm-start hyperparameter search [14, 16, 20], how to learn how to select good

3https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
4https://en.wikipedia.org/wiki/Tay (bot)
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workflow configurations5 [9, 47], how to trade-off model performance and search time by modeling the time bud-
get into multicriterion optimization problems, and even how to learn the structure of neural architectures [38, 55]
and other ML workflows. We foresee that MILE, which caters to multiple levels of expertise, can gather additional
data on effective ML workflows from expert users (beyond the traces available in public metadata repositories
such as OpenML [48]), or “meta-features”, that can then be leveraged by existing meta-learning techniques.
Beyond these existing techniques for smarter search, we envision that MILE will apply ideas from the DB
community for faster search. We propose two concrete realizations of this vision: First, MILE can work in tandem
with AutoML search strategies that operate on progressively larger samples of training data in order to evaluate
the “goodness” of particular configurations. In many cases, intermediates computed on smaller training data
samples can be reused for larger samples. These optimizations are inspired by prior work for employing smart
caching and reuse in large-scale [46] and iterative [52, 43] ML workflows for future use. Second, for AutoML,
we often know an entire up-front set of ML workflow configurations, unlike the iterative development setting
explored in Helix [52] where the configurations are revealed one-by-one. As such, MILE can identify and exploit
opportunities for workload sharing, whereby multiple workflows are combined, thereby making better use of
locality and data parallelism. We describe these two directions next.
Progressive Intermediate Reuse. Some modern, multi-fidelity Hyperparameter Optimization (HPO) techniques
approximately evaluate the generalization ability of ML workflow configurations by training on samples of the
training data; see [24, 28, 39] for examples. If a configuration C is promising on a subset S of the training data, it
might then be evaluated on a larger subset S′ of training data. How can we use the work already done for C on S
to speed up training on S′?

We propose that any processing composed of associative operations can be reused when increasing the
training data size. To give a concrete example, consider PCA, which computes principal components via a
singular value decomposition on the feature covariance matrix. To compute the principal components for the set
of feature values associated with S′, we first need a corresponding covariance matrix for S′. If we only have the
covariance matrix for S without any additional information, it is not enough to help us compute S′ — we must
start from scratch and perform a full pass over the training data. However, if we cache counts, sums, and pairwise
dot products for features in S, we can update these cached quantities with only the data in S′ \ S, thanks to the
associativity of (+), after which we can proceed with the SVD as normal.

The major research challenge is to develop an optimizer that automatically identifies computations composed
of associative operations. The output of such operations can be cached between runs on successively larger
subsets of the training data, leading to potential speedups.

Preprocessing
Preprocessing

Workflow

Preprocessing

…⇥N
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Figure 3: Compiling a logical specification of multiple workflow configu-
rations to a physical work-sharing plan.

Work-Sharing Optimizations. AutoML search
strategies typically must select from a number
of ML workflow configurations. The space of
configurations to evaluate, however, is typically
high-dimensional. Blackbox HPO methods like
grid search and random search [7] must per-
form large numbers of workflow evaluations, and
even multi-fidelity methods like successive halv-
ing [27], Hyperband [33] and ABC [24] that
leverage approximation to speed up workflow
evaluation must still try out a large number of
hyperparameter configurations.

Our key observation is that, at least in some
cases, the configurations share a large amount of identical computation. This, in turn, can be exploited to reduce
I/O and memory latency by using the same training batches to train multiple models simultaneously. Although

5An ML workflow configuration is comprised of the hyperparameter and other settings determining the workflow’s behavior.
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any single model will train more slowly than if it were to receive dedicated hardware resources, an ML workflow
in which N models are trained concurrently will be faster than separate workflows for which each model is
trained in series. Furthermore, if the training batches are preprocessed on-the-fly, the preprocessing need only be
done once for concurrent training, compared to N times for serial training.

Though this technique should generalize to many kinds of ML workflows, we envision that it will be especially
fruitful for training multiple neural network configurations simultaneously. As GPU and TPU accelerators increase
in speed, memory capacity, and memory bandwidth, it is increasingly challenging for CPU cores to handle ETL
tasks (reading from disk, parsing, shuffling, batching) so as to maximize accelerator utilization. Giving these
accelerators more work is one way to alleviate this bottleneck.

This observation thus motivates the research direction of compiling a logical specification of a set of ML
workflow configuration evaluations into a physical representation optimized for locality and data parallelism. Our
multi-configuration physical planner is illustrated abstractly in Figure 3.

Although the kinds of work-sharing optimizations described have the potential to accelerate search through
hyperparameter configurations, we foresee some difficulties along the road. First of all, MILE will need to
facilitate work-sharing without requiring separate, bespoke implementations of ML models specialized for work-
sharing. Secondly, we foresee that it will be nontrivial to make these work-sharing strategies operate with existing
strategies to avoid overfitting to a fixed validation set. For example, one strategy [32] uses a separate shuffling
of the training and validation splits for each workflow configuration to avoid overfitting to a static validation
set. Employing such a strategy in concert with work-sharing optimizations will require careful maintenance of
additional provenance information during training, so that some configuration C knows to selectively ignore the
examples that appear in other configurations’ training splits but also appear in C’s validation split.

5 Conclusion: Going the Extra MILE

Present-day ML is challenging: not everybody can get mileage out of it. While AutoML is a step in the
right direction, there are many real-world settings that require fine-grained human supervision. We propose
MILE, an environment where humans and machines together drive the search for desired ML solutions. We
identified three settings for MILE representing different levels of system automation over the design space of ML
workflows—user-driven, cruise-control, and autopilot. The hope is that regardless of your desired setting, MILE
gets you there faster. By catering to users with different levels of expertise, we hope to pool their collaborative
experience in improving search heuristics. We also explore research opportunities in accelerating execution by
applying traditional database techniques, such as materialization, lineage-tracking, and work-sharing. We hope
that our MILE vision serves as a roadmap for researchers to address the valuable opportunities that stem from
humans-in-the-loop of the machine learning lifecycle.
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