Bulletin of the Technical Committee on

Data .
Engineering

June 2019 Vol. 42 No. 2 @9* IEEE Computer Society
A4
Letters
Letter from the Editor-in-Chief. Haixun Wang 1
Letter from the Special Issue Editor. e Guoliang Li 2
Opinions
Resurrecting Middle-Tier Distributed Transactions.viiteireenn ... Philip A. Bernstein 3

Special Issue on DB4AI and AI4DB
Toward Intelligent Query ENgines.ttt e e

................... Matthaios Olma, Stella Giannakopoulou, Manos Karpathiotakis, Anastasia Ailamaki 7
doppioDB 1.0: Machine Learning inside a Relational Engine.
............................ Gustavo Alonso, Zsolt Istvan, Kaan Kara, Muhsen Owaida, David Sidler 19
External vs. Internal: An Essay on Machine Learning Agents for Autonomous Database Management Systems . .
... Andrew Pavlo,
Matthew Butrovich, Ananya Joshi, Lin Ma, Prashanth Menon, Dana Van Aken, Lisa Lee, Ruslan Salakhutdinov 31
Learning Data Structure Alchemy................ Stratos ldreos, Kostas Zoumpatianos, Subarna Chatterjee,
Wilson Qin, Abdul Wasay, Brian Hentschel, Mike Kester, Niv Dayan, Demi Guo, Minseo Kang, Yiyou Sun 46
A Human-in-the-loop Perspective on AutoML: Milestones and the Road Ahead.
.......... Doris Jung-Lin Lee, Stephen Macke, Doris Xin, Angela Lee, Silu Huang, Aditya Parameswaran 58
XuanYuan: An Al-Native Database. Guoliang Li, Xuanhe Zhou, Sihao Li 70
Conference and Journal Notices
TCDE Membership FOrm.o e 82

Editorial Board

Editor-in-Chief
Haixun Wang
WeWork Corporation
115 W. 18th St.
New York, NY 10011, USA

haixun.wang@wework.com

Associate Editors
Philippe Bonnet
Department of Computer Science
IT University of Copenhagen
2300 Copenhagen, Denmark

Joseph Gonzalez

EECS at UC Berkeley
773 Soda Hall, MC-1776
Berkeley, CA 94720-1776

Guoliang Li

Department of Computer Science

Tsinghua University

Beijing, China

Alexandra Meliou

College of Information & Computer Sciences

University of Massachusetts
Ambherst, MA 01003

Distribution
Brookes Little
IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, CA 90720
eblittle@computer.org

The TC on Data Engineering

Membership in the TC on Data Engineering is open to
all current members of the IEEE Computer Society who
are interested in database systems. The TCDE web page is
http://tab.computer.org/tcde/index.html.

The Data Engineering Bulletin

The Bulletin of the Technical Committee on Data Engi-
neering is published quarterly and is distributed to all TC
members. Its scope includes the design, implementation,
modelling, theory and application of database systems and
their technology.

Letters, conference information, and news should be sent
to the Editor-in-Chief. Papers for each issue are solicited
by and should be sent to the Associate Editor responsible
for the issue.

Opinions expressed in contributions are those of the au-
thors and do not necessarily reflect the positions of the TC
on Data Engineering, the IEEE Computer Society, or the
authors’ organizations.

The Data Engineering Bulletin web site is at
http://tab.computer.org/tcde/bull_about.html.

TCDE Executive Committee

Chair
Erich J. Neuhold
University of Vienna

Executive Vice-Chair
Karl Aberer
EPFL

Executive Vice-Chair
Thomas Risse
Goethe University Frankfurt

Vice Chair
Malu Castellanos
Teradata Aster

Vice Chair
Xiaofang Zhou
The University of Queensland

Editor-in-Chief of Data Engineering Bulletin
Haixun Wang
WeWork Corporation

Awards Program Coordinator
Amr El Abbadi
University of California, Santa Barbara

Chair Awards Committee
Johannes Gehrke
Microsoft Research

Membership Promotion
Guoliang Li
Tsinghua University

TCDE Archives
Wookey Lee
INHA University

Advisor
Masaru Kitsuregawa
The University of Tokyo

Advisor
Kyu-Young Whang
KAIST

SIGMOD and VLDB Endowment Liaison
Thab Ilyas
University of Waterloo

Letter from the Editor-in-Chief

One of the beauties of the Data Engineering Bulletin, with a history of 43 years and 157 issues, is that it chronicles
how topics of database research evolve and sometimes reinvent themselves over time. Phil Bernstein’s opinion
piece in this issue, titled “Resurrecting Middle-Tier Distributed Transactions,” is another testimony to this beauty.
Bernstein tells an interesting story of transaction processing monitors running on middle-tier servers, and predicts
the return of middle-tier distributed transactions to the mainstream after a 15-year decline.

Guoliang Li put together the current issue consisting of 6 papers on the interactions between database systems
and Al This is a fascinating topic. Traditional databases are heavily optimized monolithic systems designed
with heuristics and assumptions. But recent work has shown that critical data structures such as database indices
are merely models, and can be replaced with more flexible, faster, and smaller machine learned models such as
neural networks. This opens the door to using data driven approaches for system design. On the other hand, deep
learning is still facing the challenge in incorporating database accesses in end-to-end training, which hampers the
use of existing structured knowledge in learning.

Haixun Wang
WeWork Corporation

Letter from the Special Issue Editor

Databases have played a very important role in many applications and been widely deployed in many fields.
However, traditional database design is still based on empirical methodologies and specifications, and require
heavy human involvement to tune and maintain the databases. Recently there are many attempts that use Al
techniques to optimize database, e.g., learned index, learned cost estimation, learned optimizer, and learning-based
database knob tuning. In this issue, we discuss (1) how to adopt Al techniques to optimize databases and (2) how
to utilize database techniques to benefit Al and provide in-database capabilities.

The first paper integrates data preparation into data analysis and adapts data preparation to each workload
which can minimize response times.

The second paper discusses how to provide machine learning capabilities inside a database, which is an
FPGA-enabled database engine incorporating FPGA-based machine learning operators into a main memory,
columnar DBMS.

The third paper presents two engineering approaches for integrating machine learning agents in a DBMS.
The first is to build an external tuning controller that treats the DBMS as a black-box. The second is to integrate
the machine learning agents natively in the DBMS architecture.

The fourth paper proposes the construction of an engine, a Data Alchemist, which learns how to blend
fine-grained data structure design principles to automatically synthesize brand new data structures.

The fifth paper discusses the AutoML problem and proposes MILE, an environment where humans and
machines together drive the search for desired ML solutions.

The last paper proposes an Al-native database. On one hand, it integrates Al techniques into databases to
provide self-configuring, self-optimizing, self-monitoring, self-healing, self-diagnosis, self-security and self-
assembling capabilities for databases. On the other hand, it can enable databases to provide Al capabilities using
declarative languages, in order to lower the barrier of using Al

I would like to thank all the authors for their insightful contributions. I hope you enjoy reading the papers.

Guoliang Li
Tsinghua University

Resurrecting Middle-Tier Distributed Transactions

Philip A. Bernstein
Microsoft Research, Redmond, WA 98052

1 Introduction

Over the years, platforms and application requirements change. As they do, technologies come, go, and return
again as the preferred solution to certain system problems. In each of its incarnations, the technology’s details
change but the principles remain the same. One such technology is distributed transactions on middle-tier servers.
Here, we argue that after a 15-year decline, they need to return to the mainstream.

In the 1980’s, Transaction Processing (TP) monitors were a popular category of middleware product that
enabled customers to build scalable distributed systems to run transactions. Example products were CICS
(IBM), Tuxedo (AT&T for Unix), ACMS (DEC for VAX/VMS), and Pathway (Tandem for Guardian) [4]. Their
main features were multithreaded processes (not supported natively by most operating systems), inter-process
communication (usually a crude form of remote procedure call), and a forms manager (for end users to submit
transaction requests). The TP monitor ran on middle-tier servers that received transaction requests from front-end
processors that communicated with end-user devices, such as terminals and PC’s, and with back end database
servers. The top-level application code executed on the middle-tier and invoked stored procedures on the database
server.

In those days, database management systems (DBMS’s) supported ACID transactions, but hardly any of them
supported distributed transactions. The TP monitor vendors saw this as a business opportunity and worked on
adding a transaction manager feature that implemented the two-phase commit protocol (2PC). Such a feature
required DBMS’s to expose Start, Prepare, Commit, and Abort as operations that could be invoked by the TP
monitor. Unfortunately, most of them didn’t support Prepare, and even if they did, they didn’t expose it to
applications. They were willing to do so, but they didn’t want to implement a different protocol for each TP
monitor product. Thus, the XA standard was born, which defined TP monitor and DBMS interfaces (including
Prepare) and protocols that allowed a TP monitor to run a distributed transaction across DBMS servers [17].

This middle-tier architecture for distributed transactions was popular for about 20 years, into the late 1990s.
Then TP monitors were replaced by Application Servers, which integrated a TP monitor with web servers, so it
could receive transaction requests over HTTP, rather than receiving them from devices connected by a local area
or terminal network. Examples include Microsoft Transaction Server, later renamed COM+, and Java Enterprise
Edition (JEE), implemented by IBM’s WebSphere Application Server, Oracle’s WebLogic Application Server,
and Red Hat’s JBoss Application Server [12]. The back end architecture was the same as before. Each transaction
started executing on a middle-tier server and invoked stored procedures to read and write the database.

Although this execution model is still widely used, starting in the early 2000’s it fell out of favor for new
application development, especially for applications targeted for cloud computing. More database vendors offered
built-in support for distributed transactions, so there was less need to control the distributed transaction from
the middle tier. A larger part of database applications executed on data that was cached in the middle tier. And
the NoSQL movement argued that distributed transactions were too slow, that they limited scalability, and that
customers rarely needed them anyway [11]. Eventual consistency became all the rage [18].

The critics of distributed transactions had some good points. But in the end, developers found that mainstream

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

programmers really did need ACID transactions to make their applications reliable in the face of concurrent
access to shared data and despite server failures. Thus, some NoSQL (key-value) stores added transaction support
(e.g., CosmosDB [2], DynamoDB [8]). Google, which had initially avoided support for multi-row distributed
transactions in Bigtable [5], later introduced them in Spanner [6]. There are now many cloud storage services and
database products that support distributed transactions.

Like product developers, database researchers have also focused on distributed transactions for back-end
database systems. Almost universally, they assume that transactions execute as stored procedures and that
middle-tier applications invoke those stored procedures but do not execute the transaction logic themselves.

2 Stateful Middle-Tier Applications

This focus on stored procedures is well justified by the needs of traditional TP applications. However, stored
procedures are not a good way of encapsulating application logic for a growing fraction of stateful applications
that run on the middle tier. These include multi-player games, datacenter telemetry, Internet of Things, and social
and mobile applications. Objects are a natural model for the entities in these applications, such as games, players,
datacenter hardware, sensors, cameras, customers, and smart phones. Such applications have a large number of
long-lived stateful objects that are spread over many servers and communicate via message passing. Like most
new applications, these applications are usually developed to run on cloud computing platforms.

These applications typically execute on middle-tier servers, rather than as stored procedures in database
servers. They do this for many reasons. They need large main memory for the state of long-lived objects. They
often have heavy computation needs, such as rendering images or computing over large graphs. They use a lot of
computation for message passing between objects so they can scale out. And they need computation to be elastic,
independent of storage requirements. These needs are satisfied by compute servers that are cheaper than database
servers because they have less storage. Hence, these apps run on compute servers in the middle tier.

2.1 Requirements for Mid-Tier Cloud Transactions

Some middle-tier applications need transactions because they have functions that read and write the state of two
or more stateful objects. For example, a game may allow users to buy and sell virtual game objects, such as
weapons, shields, and vehicles. A telemetry application may need to process an event exactly once by removing
it from a queue and updating telemetry objects based on that event. A social application may need to add a user
to a group and modify the user’s state to indicate membership in that group. Each of these cases needs an ACID
transaction over two or more objects, which may be distributed on different servers. Since these applications are
usually developed to run on cloud computing platforms, distributed transaction support must be built into the
cloud platform, a capability that is rarely supported today for cloud computing.

Distributed transactions for middle-tier applications on a cloud computing platform have four requirements
that differ from those supported by the late-1990’s products that run transactions on the middle-tier. First, like all
previous transaction mechanisms, they need to offer excellent performance. But unlike previous mechanisms, it’s
essential that they be able to scale out to a large number of servers, leading to the first requirement: The system
must have high throughput and low transaction latency, at least when transactions have low contention, and in
addition must scale out to many servers.

To scale computation independently of storage, these applications typically save their state in cloud storage.
The developers’ choice of cloud storage service depends on their application’s requirements (e.g., records,
documents, blobs, SQL), their platform provider’s offerings (e.g., AWS, Azure, Google), their employer’s storage
standards, and their developers’ expertise. Thus, we have this second requirement: The transaction mechanism
must support applications that use any cloud storage service.

The transaction mechanism needs persistent storage to track transaction state: started, prepared, committed,

or aborted. Like the apps themselves, it needs to use cloud storage for this purpose, which is the third requirement:
The transaction mechanism must be able to use any of the cloud storage services used by applications.

The traditional data structure for storing transaction state is a log. The transaction manager relies on the order
of records in the log to understand the order in which transactions executed. Although cloud vendors implement
logs to support their database services, they do not expose database-style logging as a service for customers,
leading to a fourth requirement: The transaction mechanism cannot rely on a shared log, unless it implements the
log itself, in which case the log must run on a wide variety of storage services.

Due to the latency of cloud storage, requirements (2)-(4) create challenges in satisfying requirement (1).

The above requirements are a first cut, based on today’s applications and platforms. It is also worth targeting
variations. For example, requirement (1) could include cost/performance, which might require a tradeoff against
scalability. And (4) might go away entirely if cloud platforms offer high-performance logging as a service.

3 An Implementation in the Orleans Framework

The rest of this paper sketches a distributed transaction mechanism that satisfies the above requirements [9].
Our group built it for Microsoft’s actor-oriented programming framework, called Orleans, which is open source
and runs on both Windows and Linux [16]. The distributed transaction project is part of a longer-term effort
to enrich Orleans with other database features to evolve it into an actor-oriented database system that supports
geo-distribution, stream processing, indexing, and other database features [3].

3.1 Two-Phase Commit and Locking

For ACID semantics, Orleans transactions use two-phase commit (2PC) and two-phase locking (2PL). Our first
challenge was to obtain high throughput and scalability despite the requirement to use cloud storage. In our runs,
a write to cloud storage within a datacenter takes 20 ms and has high variance. With 2PC, a transaction does
two synchronous writes to storage. Therefore, if 2PL is used, a transaction holds locks for 40ms, which limits
throughput to 25 transactions/second (TPS). Low-latency SSD-based cloud storage is faster, but still incurs over
10 ms latency, plus higher cost. To avoid this problem, we extended early lock release to 2PC [1, 7, 10, 13, 14, 15].
After a transaction T1 terminates, it releases locks before writing to storage in phase one of 2PC. This allows a
later transaction T2 to read/update T1’s updated objects. Thus, while T1 is writing to storage, a sequence of later
transactions can update an object, terminate, and then unlock the object. To avoid inconsistency, the system delays
committing transactions that directly or indirectly read or overwrite T1’s writeset until after T1 commits. And if
T1 aborts, then those later dependent transactions abort too. Using this mechanism, we have seen transaction
throughput up to 20x that of strict 2PL/2PC.

3.2 Logging

Our initial implementation used a centralized transaction manager (TM) per server cluster [9]. It ran on an
independent server and was multithreaded. Since message-passing is a potential bottleneck, it batched its messages
to transaction servers. It worked well with throughput up to 100K TPS. However, it had three disadvantages:
it was an obvious bottleneck for higher transaction rates; a minimum configuration required two servers (i.e.,
primary and backup TM) in addition to servers that execute the application; and it added configuration complexity
since TM servers did not run Orleans and thus had to be deployed separately from application servers.

These disadvantages led us to redesign the system to avoid a centralized TM. Instead, we embed a TM in
each application object. Each TM’s log is piggybacked on its object’s storage. This TM-per-object design avoids
the above disadvantages and improves transaction latency by avoiding roundtrips to a centralized TM. However,
it doesn’t work for objects that have no updatable storage. For example, an object that performs a money transfer
calls two stateful objects, the source and target of the transfer, but it has no state itself. We allow such an object to

participate in a transaction by delegating its TM function to a stateful participant in the transaction, that is, one
that has updatable storage.

Orleans transactions write object state to a log to enable undo when a transaction aborts. This is impractical
for large objects and is a poor fit for concurrency control that exploits operation commutativity. We therefore
developed a prototype that logs operations.

4 Summary

Many new cloud applications run their logic on the middle tier, not as stored procedures. They need distributed
transactions. Thus, cloud computing platforms can and should offer scalable distributed transactions.

S Acknowledgments

I’m grateful to the team that built the initial and final implementations of Orleans transactions: Jason Bragg,
Sebastian Burckhardt, Tamer Eldeeb, Reuben Bond, Sergey Bykov, Christopher Meiklejohn, Alejandro Tomsic,
and Xiao Zeng. I also thank Bailu Ding and Dave Lomet for suggesting many improvements to this paper.

References

[1] Athanassoulis, Manos ; Johnson, Ryan ; Ailamaki, Anastasia ; Stoica, Radu, Improving OLTP Concurrency through
Early Lock Release, EPFL-REPORT-152158, https://infoscience.epfl.ch/record/152158 7In=en, 2009.

[2] Azure CosmosDB, https://azure.microsoft.com/en-us/services/cosmos-db/
[3] Bernstein, P.A., M., T. Kiefer, D. Maier: Indexing in an Actor-Oriented Database. CIDR 2017

[4] Bernstein, P. A., E. Newcomer: Chapter 10: Transactional Middleware Products and Standards, in Principles of
Transaction Processing, Morgan Kaufmann, 2nd ed., 2009.

[5] Chang, F.,J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A. Fikes, R.E. Gruber: Bigtable:
A Distributed Storage System for Structured Data. ACM Trans. Comput. Syst. 26(2): 4:1-4:26 (2008)

[6] Corbett, J.C. et al: Spanner: Google’s Globally Distributed Database. ACM Trans. Comput. Syst. 31(3): 8:1-8:22
(2013)

[7] DeWitt, D.J., R.H. Katz, F. Olken, L.D. Shapiro, M. Stonebraker, D.A. Wood: Implementation Techniques for Main
Memory Database Systems. SIGMOD 1984: 1-8

[8] DynamoDB, https://aws.amazon.com/dynamodb/

[9] Eldeeb, T. and P. Bernstein: Transactions for Distributed Actors in the Cloud. Microsoft Research Tech Report
MSR-TR-2016-1001.

[10] Graefe, G., M. Lillibridge, H. A. Kuno, J. Tucek, A.C. Veitch: Controlled lock violation. SIGMOD 2013: 85-96
[11] Helland, P., Life beyond Distributed Transactions: an Apostate’s Opinion. CIDR 2007: 132-141

[12] Java EE documentation, http://www.oracle.com/technetwork/?java/javaee/documentation/index.html

[13] Larson, P-A, et al.: High-Perf. Concurrency Control Mechanisms for Main-Memory Databases. PVLDB 2011

[14] Levandoski, L.J., D.B. Lomet, S. Sengupta, R. Stutsman, R. Wang: High Performance Transactions in Deuteronomy.
CIDR 2015

[15] David B. Lomet: Using Timestamping to Optimize Two Phase Commit. PDIS 1993: 48-55
[16] Orleans, http://dotnet.github.io/orleans

[17] The Open Group, Distributed Transaction Processing: The XA Specification,
http://pubs.opengroup.org/onlinepubs/009680699/toc.pdf.

[18] Vogels W., Eventually Consistent. ACM Queue 6(6): 14-19 (2008)

Toward Intelligent Query Engines

Matthaios Olma Stella Giannakopoulou = Manos Karpathiotakis ~ Anastasia Ailamaki
EPFL

Abstract

Data preparation is a crucial phase for data analysis applications. Data scientists spend most of
their time on collecting and preparing data in order to efficiently and accurately extract valuable insights.
Data preparation involves multiple steps of transformations until data is ready for analysis. Users often
need to integrate heterogeneous data; to query data of various formats, one has to transform the data
to a common format. To accurately execute queries over the transformed data, users have to remove
any inconsistencies by applying cleaning operations. To efficiently execute queries, they need to tune
access paths over the data. Data preparation, however is i) time-consuming since it involves expensive
operations, and ii) lacks knowledge of the workload; a lot of preparation effort is wasted on data never
meant to be used.

To address the functionality and performance requirements of data analysis, we re-design data
preparation in a way that is weaved into data analysis. We eliminate the transform-and-load cost using
in-situ query processing approaches which adapt to any data format and facilitate querying diverse
datasets. To address the scalability issues of cleaning and tuning tasks, we inject cleaning operations into
query processing, and adapt access paths on-the-fly. By integrating the aforementioned tasks into data
analysis, we adapt data preparation to each workload and thereby minimize response times.

1 Introduction

Driven by the promise of big data analytics, enterprises gather data at an unprecedented rate that challenge state-
of-the art analytics algorithms [43]. Decision support systems used in industry, and modern-day analytics involve
interactive data exploration, visual analytics, aggregate dashboards, and iterative machine learning workloads.
Such applications, rely heavily on efficient data access, and require real-time response times irrespective of the
data size. Besides the high volume of data, data analysis requires combining information from multiple datasets of
various data formats which are often inconsistent [15, 25]. Therefore, satisfying these requirements is a challenge
for existing database management systems.

To offer real-time support, database management systems require compute and data-intensive preprocessing
operations which sanitize the data through data loading and cleaning, and enable efficient data access through
tuning. These data preparation tasks rely heavily on assumptions over data distribution and future workload.
However, real-time analytics applications access data instantly after its generation and often workloads are
constantly shifting based on the query results [10]. Thereby, making a priori static assumptions about data or
queries may harm query performance [3, 17].

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

Figure 1: Data Processing pipeline.

Data preparation involves several steps of processing until raw data is transformed into a form that fits
data analysis. To enable queries that combine a variety of data formats, such as relational, or semi-structured
hierarchical formats which have become the state-of-the-art for data exchange, data scientists rely on database
management engines which offer a broad-range of analysis operations. To overcome this heterogeneity of data
formats, database management systems perform data loading which transforms raw data into a single relational
data format to allow for more flexibility in the operations that users can execute. As the data collected by the
application is often a result of combining multiple, potentially erroneous sources, it contains inconsistencies and
duplicates. To return correct results, database management systems must recognize such irregularities and remove
them through data cleaning before analyzing the data. Finally, to improve query performance and enable near
real-time query responses, database management systems avoid or reduce unnecessary data access by tuning
access paths (e.g., indexes) over the dataset. Figure 1 presents the data pipeline of a state-of-the-art data analytics
framework. The data to be analyzed is collected from a variety of sources, and might appear in various formats
(e.g., XML, CSV, etc.). The multiple input formats are transformed into a single uniform format by loading them
into a DBMS. Then, to remove any inconsistencies cleaning operations are applied. Finally, a tuner builds access
paths for efficient access. The final result is stored in a clean and tuned database, and is ready to receive query
requests.

The preprocessing steps are exploratory and data-intensive, as they involve expensive operations, and highly

depend on the data and the query workload. Data preparation tasks access the entire dataset multiple times: data
loading results in copying and transforming the whole dataset into a common format. Cleaning tasks perform
multiple passes over the data until they fix all the inconsistencies. Finally, to build indexes, an extra traversal of
the dataset is needed. Therefore, the increasing data volume limits the scalability of data preparation. Furthermore,
the benefits of data preparation depend highly on the to-be executed workload. Data transformation and cleaning
are only useful if the queries are data intensive and access the majority of data. Finally, tuning requires a priori
knowledge of queries to decide upon the most efficient physical design.
Data preparation is time consuming. Due to the influx of data, data preparation becomes increasingly expensive.
Figure 2 demonstrates the breakdown of the overall execution time of a typical data analysis scenario. The
breakdown corresponds to the time that a system requires to preprocess the data and execute a set of 10 queries.
The execution time reported at each step is based on recent studies on loading, cleaning, and tuning [29, 31].
Specifically, assuming an optimistic scenario in which data cleaning corresponds to 50% of the analysis time,
then based on [31], the rest 50% is mostly spent on loading and tuning. The loading percentage may become
even higher in the presence of non-relational data formats, such as XML, because a DBMS will have to flatten the
dataset in order to load it. Query execution takes 3% of the overall time. Therefore, data preparation incurs a
significant overhead to data analysis.

Despite enterprises collecting and preparing increasingly larger amounts of data for analysis, often the
effectively useful data is considerably smaller than the full dataset [4, 33]. The trend of exponential data growth
due to intense data generation and data collection is expected to persist, however, recent studies of the data
analysis workloads show that typically only a small subset of the data is relevant and ultimately used by analytical
and/or exploratory workloads [10]. Therefore, having to preprocess the whole dataset results in wasting effort
on data which are unnecessary for the actual analysis. Furthermore, modern-day analytics, are increasingly
tolerant to result imprecision. In many cases, precision to “last decimal” is redundant for a query answer. Quick

approximation with some error guarantee is adequate to provide insights about the data [11]. Thus, using query
approximation, one can execute analytical queries over small samples of the dataset, and obtain approximate
results within a few percents of the actual value [32].

Ever Changing Workload. Modern businesses and scientific applica-

Query tions require interactive data access, which is characterized by no or
3%

little a priori workload knowledge and constant workload shifting both
in terms of projected attributes and selected ranges of the data. For
example, an electricity monitoring company continuously collects infor-
mation about the current and aggregate energy consumption, and other
sensor measurements such as temperature. To optimize consumption,
the company performs predictive analytics over smart home datasets,
looking for patterns that indicate energy request peaks and potential
equipment downtime [21]. Analyses in this context start by identifying
relevant measurements by using range queries and aggregations to iden-
tify areas of interests. The analysis focuses on specific data regions for
a number of queries, but is likely to shift across the dataset to a different
subset. Due to the unpredictable nature of data analytics workloads,
where queries may change depending on prior query results, applica-
tions prepare all data for data access to avoid result inconsistencies.
This preparation requires investment of time and resources into data
that may be useless for the workload, thereby delaying data analysis.

Adapt to Data and Workload. To address the aforementioned shortcomings, we revisit the data processing
pipeline, and aim to streamline the process of extracting insights from data. We reduce the overall time of data
analysis by introducing approaches which adapt online to workload and dataset, which reduce the cost of each of
the steps of data analysis from data collection to result. Specifically, to reduce the cost of loading, we execute
queries over raw data files [5, 25, 26, 27], to reduce the cost of data cleaning we piggy-back operations over
query execution and we only sanitize data affected by the queries [17]. Finally, to reduce the cost of tuning, we
take advantage of data distribution as well as relaxed precision constraints of applications and adapt access paths
online and as a by-product of query execution to data and workload [31, 32]. Figure 3 demonstrates the revised
data analysis process which weaves data preprocessing into query execution by adapting to the underlying data,
as well as to the query workload.

At the core of our approach lies in-situ query processing, which allows the execution of declarative queries
over external files without duplicating or “locking” data in a proprietary database format. We extend in-situ
approaches [5, 23] by treating any data format as a first-class citizen. To minimize query response times, we build
a just-in-time query engine specialized for executing queries over multiple data formats. This approach removes
the need for transforming and loading, while also offering low data access cost. To reduce the cost of data
cleaning, we enhance query execution by injecting data cleaning operations inside the query plan. Specifically,
we introduce a query answer relaxation technique which allows repairing erroneous tuples at query execution
time. By relaxing the query answer, we ensure that the query returns all entities that may belong to the query
result (e.g., no missing tuples). Finally, similarly to data cleaning, building indexes over a dataset is becoming
increasingly harder due to (i) shifting workloads and (ii) increasing data sizes which increase access path size as
well. The decision on what access paths to build depends on the expected workload, thus, traditional database
systems assume knowledge of future queries. However, the shifting workload of modern data analytics can
nullify investments towards indexing and other auxiliary data structures. Furthermore, access path size increases
along with input data, thus, building precise access paths over the entire dataset limits the scalability of databases
systems. To address these issues, we adapt access paths to data distribution and precision requirements of the
result. This enables building data structures specifically designed to take advantage of different data distributions

Figure 2: Cost of Data Preprocessing

Online query execution

@ Raw data access < Data
Processing

Figure 3: Integrating Cleaning and Tuning to Data Access.

and create data summaries requiring less storage space.

In this paper we describe techniques that enable instant access to data irrespective of data format, and
enable data cleaning and tuning without interrupting query execution. Each technique addresses a step in the
preprocessing phase of data analysis, reducing the total data-to-insight time for users. Specifically, in Section 2,
we describe the design behind our just-in-time query engine which enables efficient query execution despite data
heterogeneity. In Section 3, we demonstrate a novel approach to intertwine query execution with data cleaning
through query answer relaxation. Our approach incrementally cleans only data that will be analyzed. In Section 4,
we present our approach to adapt access paths online to data distribution and to precision requirements, as well as
to available storage resources. Finally, in Section 5, we conclude by highlighting techniques and related open
problems for adaptive data management systems.

2 Adapting Data Access and Query Engine to Data Format

Data analysis requires combining information from numerous heterogeneous datasets. For example, applications
such as sensor data management and decision support based on web click-streams involve queries over data
of varying models and formats. To support analysis workloads over heterogeneous datasets, practitioners are
left with two alternatives: a) use a database engine that supports multiple operations [37], or b) execute their
analysis over dedicated, specialized systems for each of their applications [35]. The first approach might hurt
performance for scenarios involving non-relational data, but allows for extensive functionality and expressiveness.
The second approach requires using multiple tools, as well as writing custom scripts to combine the results.
Hence, performing analysis effortlessly and efficiently is challenging.

We present an approach that bridges the conflicting requirements for flexibility and performance when
analyzing data of various formats. We achieve that by combining an optimizable query algebra, richer than the
relational one, with on-demand adaptation techniques to eliminate numerous query execution overheads.

2.1 An Expressive Query Algebra

To support queries over heterogeneous data, we need a query algebra that treats all supported data types as
first-class citizens in terms of both expressive power and optimization capabilities. Specifically, our approach
is based on the monoid comprehension calculus [16]. A monoid is an algebraic construct term stemming from
category theory which can be used to capture operations between both primitive and collection data types.
Therefore, monoids are a natural fit for querying various data formats because they support operations over
several data collections (e.g., bags, sets, lists, arrays) and arbitrary nestings of them.

The monoid calculus provides the expressive power to manipulate different data formats, and optimizes
the resulting queries in a uniform way. First, the monoid calculus allows transformations across data models
by translating them into operations over different types of collections, hence we can produce multiple types of
output. The calculus is also expressive enough for other query languages to be mapped to it as syntactic sugar:
For relational queries over flat data (e.g., binary and CSV files), our design supports SQL statements, which it
translates to comprehensions. Similarly, for XML data, XQuery expressions can be translated into our internal

10

algebra. Thus, monoid comprehensions allow for powerful manipulations of complex data as well as for queries
over datasets containing hierarchies and nested collections (e.g., JSON arrays).

For each incoming query, the first step is mapping it into the internal language that is based on monoid
comprehensions. Then, the resulting monoid comprehension is rewritten to an algebraic plan of the nested
relational algebra [16]. This algebra resembles the relational algebra, with the difference that it allows more
complex operators, which are applicable over hierarchical data. For example, apart from the relational operators,
such as selection and join, it provides the unnest and outer unnest operators which “unroll” a collection field
path that is nested within an object. Therefore, the logical query plan allows for optimizations that combine the
aforementioned operators.

The optimizer is responsible for performing the query rewriting and the conversion of a logical to a physical
query plan. To apply the optimizations, the optimizer takes into consideration both the existence of hierarchical
data, as well as that the queries might be complex, containing multiple nestings. Therefore, the optimization
involves a normalization algorithm [16] which transforms the comprehension into a “canonical” form. The
normalization also applies a series of optimization rewrites. Specifically, it applies filter pushdown and operator
fusion. In addition, it flattens multiple types of nested comprehensions. Thus, using the normalization process,
the comprehension is mapped to an expression that allows efficient query execution.

The monoid comprehension calculus is a rich model, and therefore incurs extra complexity. The more complex
an algebra is, the harder it becomes to evaluate queries efficiently: Dealing with complex data leads to complex
operators, sophisticated yet inefficient storage layouts, and costly pointer chasing during query evaluation. To
overcome all previous limitations, we couple a broad algebra with on-demand customization.

2.2 Query Engines On-Demand

We couple this powerful query algebra with on-demand adaptation techniques to eliminate the query execution
overheads stemming from the complex operators. For analytical queries over flat (e.g., CSV) data, the system
must behave as a relational system. Similarly, for hierarchical data, it must be as fast as a document store.
Specifically, our design is modular, with each of the modules using a code generation mechanism to customize
the overall system across a different axis.

First, to overcome the complexity of the broad algebra,we avoid the use of general-purpose abstract operators.
Instead, we dynamically create an optimized engine implementation per query using code generation. Specifically,
using code generation, we avoid the interpretation overhead by traversing the query plan only once and generating
a custom implementation of every visited operator. Once all plan operators have been visited, the system can
produce a hard-coded query engine implementation which is expressed in machine code.

To treat all supported data formats as native storage, we customize the data access layer of the system based
on the underlying data format while executing the query. Specifically, we mask the details of the underlying
data values from the query operators and the expression generators. To interpret data values and generate code
evaluating algebraic expressions, we use input plug-ins where each input plug-in is responsible for generating
data access primitives for a specific file format.

Finally, to utilize the storage that better fits the current workload, we materialize in-memory caches and treat
them as an extra input. The shape of each cache is specified at query time, based on the format of the data that the
query accesses. We trigger cache creation i) implicitly, as a by-product of an operator’s work, or ii) explicitly, by
introducing caching operators in the query plan. Implicit caching exploits the fact that some operators materialize
their inputs: nest and join are blocking and do not pipeline data. Explicit caching places buffering operators at
any point in the query plan. An explicit caching operator calls an output plug-in to populate a memory block with
data. Then, it passes control to its parent operator. Creating a cache adds an overhead to the current query, but it
can also benefit the overall query workload.

Our design combines i) an expressive query algebra which masks data heterogeneity with ii) on-demand
customization mechanisms which produce a specialized implementation per query. Based on this design, we

11

build Proteus, a query engine that natively supports different data formats, and specializes its entire architecture
to each query and the data that it touches via code generation. Proteus also customizes its caching component,
specifying at query time how these caches should be shaped to better fit the overall workload.

3 Cleaning Data while Discovering Insights

Data cleaning is an interactive and exploratory process which involves expensive operations. Error detection
requires multiple pairwise comparisons to check the satisfiability of the given constraints [18]. Data repairing
adds an extra overhead since it requires multiple iterations in order to assign candidate values to the erroneous
cells until all constraints are satisfied [12, 15, 28, 38]. At the same time, data cleaning depends on the analysis
that users perform; data scientists detect inconsistencies, and determine the required data cleaning operations
while exploring through the dataset [40]. Therefore, the usage of offline data cleaning approaches requires long
running times in order to discover and fix the discrepancies that might affect data analysis.

To address the efficiency problem, as well as the subjective nature of data cleaning, there is need for a
data cleaning approach which is weaved into the data analysis process, and which also applies data cleaning
on-demand. Integrating data cleaning with data analysis efficiently supports exploratory data analysis [13], and
ad-hoc data analysis applications [20] by reducing the number and the cost of iterations required in order to
extract insights out of dirty data. In addition, by cleaning data on the fly, one only loads and cleans necessary data
thereby minimizing wasted effort whenever only a subset of data is analyzed.

We intermingle cleaning integrity constraint violations [14] with exploratory data analysis, in order to
gradually clean the dataset. Specifically, given a query and a dirty dataset, we use two levels of processing to
correctly execute the query by taking into consideration the existence of inconsistencies in the underlying dataset.
In the first level, we map the query to a logical plan which comprises both query and cleaning operators. The
logical plan takes into consideration the type of the query (e.g, Select Project, Join), and the constraints that the
dataset needs to satisfy in order to optimally place the cleaning operators inside the query plan. Then, in the
second level, the logical plan is executed by applying the cleaning tasks that are needed. To execute the plan, we
employ a query answer relaxation technique, which enhances the answer of the query with extra information
from the dataset in order to detect violations based on the output of each query operator that is affected by a
constraint. Then, given the detected violations, we transform the query answer into a probabilistic answer by
replacing each erroneous value with the set of values that represent candidate fixes for that value. In addition, we
accompany each candidate value with the corresponding probability of being the correct value of the erroneous
cell. After cleaning each query answer, the system extracts the changes made to the erroneous tuples, and updates
the original dataset accordingly. By applying the changes after each query, we can gradually clean the dataset.

3.1 Logical-level Optimizations

In the first stage, the system translates the query into a logical plan involving query and cleaning operators. The
cleaning operators are update operators which either operate over the underlying dataset, or over the condition
that exists below them in the query plan. To place the cleaning operators, the system determines whether it is
more efficient and/or accurate to integrate the query with the cleaning task, and partially clean the dataset, or to
fully clean the dataset before executing the query. To decide on the cleaning strategy, we employ a cost model
which exploits statistics regarding the type and frequency of the violations. To optimally place the cleaning
operators, the system examines: a) the approximate number of violations that exist in the dataset, and b) how the
query operators overlap with the erroneous attributes. Thus, the statistics provide an estimate of the overhead that
the cleaning task adds to each query, and determine the optimal placement of the cleaning operations.

At the logical plan level, we apply a set of optimizations by pruning unnecessary cleaning checks, and
unnecessary query operators. To apply the optimizations, we analyze how the input constraints that must hold in

12

the dataset affect the query result. For example, it is redundant to apply a cleaning task in the case of a query
that contains a filter condition over a clean attribute. Therefore, the logical plan will select the optimal execution
strategy of the queries given the cleaning tasks that need to be applied.

3.2 Relaxed query execution

In the final stage, the system executes the optimized logical plan, and computes a correct query answer by
applying the cleaning tasks at query execution. Regardless of the type of query, we need to enhance the query
answer with extra tuples from the dataset to allow the detection and repairing of errors. Executing queries over
dirty data might result in wrong query answers [19]; a tuple might erroneously satisfy a query and appear in the
query answer due to a dirty value, or similarly, it might be missing from the query answer due to a dirty value.

To provide correct answers over dirty data, we employ query answer relaxation [30, 36]. Query relaxation
has been used successfully to address the problem of queries returning no results, or to facilitate query processing
over incomplete databases. We define and employ a novel query answer relaxation technique in the context of
querying dirty data, which enhances the query answer with extra tuples from the dataset that allow the detection
of violations of integrity constraints. Then, given the detected errors, we propose candidate fixes by providing
probabilistic answers [39]. The probabilities are computed based on the frequency that each candidate value
appears - other schemes to infer the probabilities are also applicable. The purpose of the query answer relaxation
mechanism is to enhance the query answer with the required information from the dataset, in order to allow
correct answers to the queries.

To capture errors in query results, we first compute the dirty query answer, and then relax it by bringing extra
tuples from the dataset; the extra tuples, together with the tuples of the query answer represent the candidates for
satisfying the query. The set of extra tuples consist of tuples which are similar to the ones belonging to the query
answer; the similarity depends on the correlation that the tuples have with respect to the integrity constraints that
hold in the dataset [41]. After enhancing the query answer with the extra tuples, the cleaning process detects for
violations and computes the set of candidate values for each erroneous cell together with their probabilities.

By integrating data cleaning with query execution using the aforementioned two-level process, we minimize
the cost of data preparation; we efficiently clean only the part of the dataset that is accessed by the queries. In
addition, by providing probabilistic answers for the erroneous entities, we reduce human effort, since users can
select the correct values among the set of candidate values over the answers of the queries.

4 Adapting Data Access Paths to Workload and Resources

Apart from loading and cleaning decisions, as data-centric applications become more complex, users face
new challenges when exploring data, which are magnified with the ever-increasing data volumes. Data access
methods have to dynamically adapt to evolving workloads and take advantage of relaxed accuracy requirements.
Furthermore, query processing systems must be knowledgeable of the available resources and maximize resource
utilization thereby reduce waste. To address the variety of workloads we design different adaptive access path
selection approaches depending on application precision requirements.

Adaptive indexing over raw data. To achieve efficient data access for applications requiring precise results
despite dynamic workloads we propose adaptive indexing for in-situ query processing. We use state-of-the-art in-
situ query processing approaches to minimize data-to-query time. We introduce a fine-grained logical partitioning
scheme and combine it with a lightweight indexing strategy to provide near-optimal raw data access with minimal
overhead in terms of execution time and memory footprint. To reduce the index selection overhead we propose an
adaptive technique for on-the-fly partition and index selection using an online randomized algorithm.

Adapt access paths to approximation. Apart from adapting to data distribution, we need to enable scaling of
access paths despite ever-increasing datasets. We take advantage of the relaxed precision requirements posed by

13

data scientists who tolerate imprecise answers for better query performance [11]. Existing approaches [2, 8], either
require full a priori knowledge of the workload to generate the required approximate data structures or improve
performance through minimizing data access at query time. We design and demonstrate an adaptive approach
which generates synopses (summaries of the data, such as samples, sketches, and histograms) as a by-product of
query execution and re-uses them for subsequent queries. It dynamically decides upon synopsis materialization
and maintenance while being robust to workload and storage budget changes. To support interactive query
performance for ever increasing datasets and dynamic exploratory workloads there is need for relaxed precision
guarantees which enable the use of approximate data structures and reduce the size of stored and processed data.

These aforementioned observations serve as a platform to show the following key insights: i) Taking advantage
of data characteristics in files can complement in-situ query processing approaches by building data distribution
conscious access paths. Data properties such as ordering or clustering enable the construction of access paths
spanning subsets of a dataset thereby reducing the cost of tuning and storage, while minimizing data access costs
and further reducing the data-to-insight time. ii) Ever-increasing datasets make precise access paths prohibitively
expensive to build and store. Similarly, using data synopses as a drop-in replacement for indexes limits their
benefits. On the contrary, integrating synopses as a first-class citizen in query optimization and materializing
synopses during query execution and re-using them across queries improves scalability and reduces preprocessing.
iii) Static tuning decisions can be suboptimal in the presence of shifting exploratory workloads. On the other
hand, adapting access paths online, according to the workload while adhering to accuracy requirements is key to
provide high query performance in the presence of workload changes.

4.1 Adaptive indexing over Raw data files

Executing queries over raw data files, despite reducing cost through avoiding the initial data loading step, it
enables the access of data files by multiple applications thus it prohibits the physical manipulation of data
files. Building efficient data access paths requires physical re-organization of files to reduce random accesses
during query execution. To overcome this constraint we propose an online partitioning and indexing tuner for
in-situ query processing which when plugged into a raw data query engine, offers fast queries over raw data
files. The tuner reduces data access cost by: i) logically partitioning a raw dataset to virtually break it into
smaller manageable chunks without physical restructuring, and ii) choosing appropriate indexing strategies
over each logical partition to provide efficient data access. The tuner dynamically adapts the partitioning and
indexing scheme as a by-product of query execution. It continuously collects information regarding the values
and access frequency of queried attributes at runtime. Based on this information, it uses a randomized online
algorithm to define the logical partitions. For each logical partition, the tuner estimates the cost-benefit of building
partition-local index structures considering both approximate membership indexing (i.e., Bloom filters and zone
maps) and full indexing (i.e., bitmaps and B + trees). By allowing fine-grained indexing decisions our proposal
makes the decision of the index shape at the level of each partition rather than the overall relation. This has two
positive side-effects. First, there is no costly investment for indexing that might prove unnecessary. Second, any
indexing effort is tailored to the needs of data accesses on the corresponding range of the dataset.

4.2 Adapting to Relaxed Precision

State-of-the-art AQP engines are classified into two categories, depending on the assumptions they make about
the query workload. Offline AQP engines (e.g. BlinkDB [2] and STRAT [8]) target applications where the query
workload is known a priori, e.g., aggregate dashboards that compute summaries over a few fixed columns. Offline
AQP engines analyse the expected workload to identify the optimal set of synopses that should be generated
to provide fast responses to the queries at hand, subject to a predefined storage budget and error tolerance
specification. Since this analysis is time-consuming, both due to the computational complexity of the analysis
task, as well as the I/O overhead in generating the synopses, AQP engines perform the analysis offline, each time

14

the query workload or the storage budget changes. Offline AQP engines substantially improve query execution
time under predictable query workloads, however their need for a priori knowledge of the queries makes them
unsuitable for unpredictable workloads. To address unpredictable workloads online AQP techniques introduce
approximation at query runtime. State-of-the-art online AQP engines achieve this by introducing samplers during
query execution. By reducing the input tuples, samplers improve performance of the operators higher in the query
plan. In this way, online AQP techniques can boost unknown query workloads. However, query-time sampling is
limited in the scope of a single query, as the generated samples are not constructed with the purpose of reuse
across queries — they are specific to the query, and are not saved. Thus, online AQP engines offer substantially
constrained performance gains compared to their offline counterparts for predictable workloads.

In summary, all state-of-the-art AQP engines sacrifice either generality or performance, as they make static,
design-time decisions based on a fixed set of assumptions about the query workload and resources. However,
modern data analytics workloads are complex, far from homogeneous, and often contains a mix of queries that
vary widely with respect to the degree of approximability [2].

We design a self-tuning, adaptive, online AQP engine. Our design builds upon ideas from (adaptive) database

systems, such as intermediate result materialization, query subsumption, materialized view tuning and index
tuning, and adapts these in the context of AQP, while also enabling a combination and extension of the benefits of
both offline and online approximation engines. We extend the ideas of online AQP by injecting approximation
operators in the query plan, and enabling a broad range of queries over unpredictable workloads. By performing
online materialization of synopses as a byproduct of query execution, we provide performance on-par with
offline AQP engines under predictable workloads, yet without an expensive offline preparation phase. The main
components of our system are the enhanced optimizer which enables the use of approximate operators and
matches existing synopses, and the online tuner which decides on the materialization of intermediate results.
Integrating approximation to optimizer. Our system extends a query optimizer with just-in-time approximation
capabilities. The optimizer injects synopses operators into the query plan before every aggregation. Intuitively,
this represents the potential to approximate at that location. Subsequently, by using transformation rules, it pushes
the synopses operators closer to the raw input. The alternatives generated by rules have no worse accuracy but
can have better performance. The optimizer calculates the cost of each plan using data statistics to decide a plan
that adheres to user accuracy requirements and improves performance. Based on the generated query plans, the
optimizer compares whether any of the already materialized synopses may be re-used. To be re-used a synopsis
must (i) satisfy the accuracy guarantees requirements, and (ii) subsume the required set of data. If no existing
synopses are candidates for re-use, the optimizer interacts with the online tuner to decide whether to materialize
intermediate results.
Online Tuner. The optimizer feeds every prospective approximate plan to the online tuner which stores execution
metadata considering historical plans (e.g., appearance frequency, execution cost). Based on the historical plans,
the tuner decides whether to introduce a materializer operator to generate a summary. The tuner’s decisions are
driven by a cost:utility model, which leads to a formalization of the task as an optimization challenge. As the
optimizer already ensures the precision of the query results, the decisions made by the tuner affect solely query
performance, and not the required accuracy. Finally, the tuner keeps track of the available storage budget and
decides on storage location and replication for a materialized sub-plan. The tuner based on the available storage
and the cost:benefit model decides whether and which synopses to be stored or evicted.

By using approximate query processing one allows for low latency in return for relaxed precision. However,
the ever-increasing data sizes introduce challenges to such systems. Specifically, offine approximation approaches
in order to offer low response time, they require long pre-processing, full future workload knowledge and have
high storage requirements. On the other hand, online approximation approaches although have no preprocessing,
storage requirements and are workload-agnostic they have small performance gains. Our approach adaptively
combines the two approaches and trades precision and storage for performance at runtime offering the best of
both worlds.

15

5 Related Work

Our philosophy has been inspired by the omnipresent work on minimizing data-to-insight time. In-situ processing
approaches, such as the work by Idreos et al. [22] propose adaptive and incremental loading techniques in order
to eliminate the preparation phase before query execution. NoDB [6] advances this idea by making raw files first-
class citizens. NoDB introduces data structures to adaptively index and cache raw files, tightly integrates adaptive
loads, while implementing in-situ access into a modern DBMS. In the context of processing heterogeneous raw
data, Spark and Hadoop-based systems [1, 42] operate over raw data, while also supporting heterogeneous data
formats. RAW [27] allows queries over heterogeneous raw files using code generation. ViDa [26] envisions
effortlessly abstracting data out of its form and manipulating it regardless of its structure, in a uniform way.

Work on reducing the data cleaning cost by automating and optimizing common cleaning tasks significantly
reduces human effort and minimizes the preprocessing cost. BigDansing [28] is a scale-out data cleaning system
which addresses performance, and ease-of-use issues in the presence of duplicates and integrity constraint
violations. Tamr, the commercial version of Data Tamer [38], focuses on duplicate elimination by employing
blocking and classification techniques in order to efficiently detect and eliminate duplicate pairs. In the context of
adaptive and ad-hoc cleaning QuERYy [7] intermingles duplicate elimination with Select Project, and Join queries
in order to clean only the data that is useful for the queries. Transform-Data-by-Example [20] addresses the
problem of allowing on-the-fly transformations - a crucial part of data preparation.

Work on adaptive tuning focuses on incrementally refining indexes while processing queries. Database
Cracking approaches [23] operate over column-stores and incrementally sort the index column according to
the incoming workload, thus reducing memory access. COLT [34] continuously monitors the workload and
periodically creates new indexes and/or drops unused ones by adding an overhead to each query.

A plethora of research topics on approximate query processing is also relevant to our work. Offline sampling
strategies [2, 8] focus on computing the best set of uniform and stratified samples given a storage budget by
assuming some a priori knowledge of the workload. Online sampling approaches such as Quickr [24] take
samples during query execution by injecting samplers inside the query plan.

6 Summary and Next Steps

The constantly changing needs for efficient data analytics combined with the ever growing datasets, require a
system design which is flexible, dynamic and embraces adaptivity. We present techniques which streamline
processes that constitute bottlenecks in data analysis and reduce the overall data-to-insight time. To remove
data loading, we introduce a system that adapts to data heterogeneity and enables queries on variety of data
formats. To reduce data cleaning overheads, we overlap cleaning operations with query execution and finally, we
introduce physical tuning approaches which take advantage of data distribution as well as the reduced precision
requirements of modern analytics applications.

References

[1] Apache drill. https://drill.apache.org/.

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. BlinkDB: Queries with Bounded Errors
and Bounded Response Times on Very Large Data. In Proceedings of the ACM European Conference on Computer
Systems (EuroSys), pages 29-42, 2013.

[3] S. Agrawal, S. Chaudhuri, L. Kollar, A. P. Marathe, V. R. Narasayya, and M. Syamala. Database Tuning Advisor
for Microsoft SQL Server 2005. In Proceedings of the International Conference on Very Large Data Bases (VLDB),
pages 1110-1121, 2004.

[4] A. Ailamaki, V. Kantere, and D. Dash. Managing scientific data. Communications of the ACM, 53, 06 2010.

16

(5]

(6]

(7]

(8]

(9]

(10]

(1]

[12]

(13]

[14]
[15]
[16]
(17]

(18]

[19]

(20]

(21]

(22]

(23]

(24]

[25]

(26]

I. Alagiannis, R. Borovica, M. Branco, S. Idreos, and A. Ailamaki. NoDB: Efficient Query Execution on Raw Data
Files. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages 241-252, 2012.

I. Alagiannis, R. Borovica-Gajic, M. Branco, S. Idreos, and A. Ailamaki. NoDB: Efficient Query Execution on Raw
Data Files. Communications of the ACM, 58(12):112-121, 2015.

H. Altwaijry, S. Mehrotra, and D. V. Kalashnikov. QuERy: A Framework for Integrating Entity Resolution with Query
Processing. PVLDB, 9(3), 2015.

S. Chaudhuri, G. Das, and V. Narasayya. A Robust, Optimization-based Approach for Approximate Answering of
Aggregate Queries. In Proceedings of the ACM SIGMOD International Conference on Management of Data, pages
295-306, 2001.

S. Chaudhuri and V. R. Narasayya. An Efficient Cost-Driven Index Selection Tool for Microsoft SQL Server. In
Proceedings of the International Conference on Very Large Data Bases (VLDB), pages 146—155, 1997.

Y. Chen, S. Alspaugh, and R. H. Katz. Interactive Analytical Processing in Big Data Systems: A Cross-Industry Study
of MapReduce Workloads. Proceedings of the VLDB Endowment, 5(12):1802-1813, 2012.

G. Cormode, M. N. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for Massive Data: Samples, Histograms,
Wavelets, Sketches. Foundations and Trends in Databases, 4(1-3):1-294, 2012.

M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas, M. Ouzzani, and N. Tang. NADEEF: A Commodity
Data Cleaning System. In SIGMOD, 2013.

T. Dasu and T. Johnson. Exploratory Data Mining and Data Cleaning. John Wiley & Sons, Inc., New York, NY, USA,
1 edition, 2003.

W. Fan. Dependencies revisited for improving data quality. In PODS, 2008.
W. Fan. Data quality: From theory to practice. SIGMOD Rec., 44(3):7-18, Dec. 2015.
L. Fegaras and D. Maier. Optimizing Object Queries Using an Effective Calculus. TODS, 25(4):457-516, Dec. 2000.

S. Giannakopoulou. Query-driven data cleaning for exploratory queries. In CIDR 2019, 9th Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings, 2019.

S. Giannakopoulou, M. Karpathiotakis, B. Gaidioz, and A. Ailamaki. Cleanm: An optimizable query language for
unified scale-out data cleaning. Proc. VLDB Endow., 10(11):1466-1477, Aug. 2017.

P. Guagliardo and L. Libkin. Making sql queries correct on incomplete databases: A feasibility study. In Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS 16, pages 211-223,
New York, NY, USA, 2016. ACM.

Y. He, K. Ganjam, K. Lee, Y. Wang, V. Narasayya, S. Chaudhuri, X. Chu, and Y. Zheng. Transform-data-by-example
(tde): Extensible data transformation in excel. In Proceedings of the 2018 International Conference on Management
of Data, SIGMOD 18, pages 1785-1788, New York, NY, USA, 2018. ACM.

IBM. Managing big data for smart grids and smart meters. IBM White Paper, 2012.

S. Idreos, I. Alagiannis, R. Johnson, and A. Ailamaki. Here are my Data Files. Here are my Queries. Where are my
Results? In Proceedings of the Biennial Conference on Innovative Data Systems Research (CIDR), pages 57-68,
2011.

S. Idreos, S. Manegold, H. Kuno, and G. Graefe. Merging What’s Cracked, Cracking What’s Merged: Adaptive
Indexing in Main-Memory Column-Stores. Proceedings of the VLDB Endowment, 4(9):586-597, 2011.

S. Kandula, A. Shanbhag, A. Vitorovic, M. Olma, R. Grandl, S. Chaudhuri, and B. Ding. Quickr: Lazily Approximating
Complex AdHoc Queries in BigData Clusters. In SIGMOD, 2016.

M. Karpathiotakis, I. Alagiannis, and A. Ailamaki. Fast Queries Over Heterogeneous Data Through Engine Cus-
tomization. Proceedings of the VLDB Endowment, 9(12):972-983, 2016.

M. Karpathiotakis, I. Alagiannis, T. Heinis, M. Branco, and A. Ailamaki. Just-In-Time Data Virtualization: Lightweight
Data Management with ViDa. In Proceedings of the Biennial Conference on Innovative Data Systems Research
(CIDR), 2015.

17

[27]

(28]

(29]
(30]
(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

[43]

M. Karpathiotakis, M. Branco, I. Alagiannis, and A. Ailamaki. Adaptive Query Processing on RAW Data. Proceedings
of the VLDB Endowment, 7(12):1119-1130, 2014.

Z. Khayyat, L. F. Ilyas, A. Jindal, S. Madden, M. Ouzzani, P. Papotti, J.-A. Quiané-Ruiz, N. Tang, and S. Yin.
BigDansing: A System for Big Data Cleansing. In SIGMOD, 2015.

S. Lohr. For Big-Data Scientists, *Janitor Work’ Is Key Hurdle to Insights, The New York Times, 2014.
I. Muslea and T. J. Lee. Online query relaxation via bayesian causal structures discovery. In AAAI, 2005.

M. Olma, M. Karpathiotakis, I. Alagiannis, M. Athanassoulis, and A. Ailamaki. Slalom: Coasting Through Raw Data
via Adaptive Partitioning and Indexing. Proceedings of the VLDB Endowment, 10(10):1106-1117, 2017.

M. Olma, O. Papapetrou, R. Appuswamy, and A. Ailamaki. Taster: Self-Tuning, Elastic and Online Approximate
Query Processing. In Proceedings of the IEEE International Conference on Data Engineering (ICDE), 2019.

S. Papadomanolakis and A. Ailamaki. AutoPart: Automating Schema Design for Large Scientific Databases Using
Data Partitioning. In Proceedings of the International Conference on Scientific and Statistical Database Management
(SSDBM), page 383, 2004.

K. Schnaitter, S. Abiteboul, T. Milo, and N. Polyzotis. COLT: Continuous On-Line Database Tuning. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pages 793-795, 2006.

J. Shanmugasundaram, K. Tufte, C. Zhang, G. He, D. J. DeWitt, and J. F. Naughton. Relational databases for querying
xml documents: Limitations and opportunities. In Proceedings of the 25th International Conference on Very Large
Data Bases, VLDB ’99, pages 302-314, San Francisco, CA, USA, 1999. Morgan Kaufmann Publishers Inc.

S. Shen. Database relaxation: An approach to query processing in incomplete databases. Information Processing and
Management, 24(2):151 — 159, 1988.

M. Stonebraker. Technical perspective - one size fits all: an idea whose time has come and gone. Commun. ACM,
51:76, 2008.

M. Stonebraker, G. Beskales, A. Pagan, D. Bruckner, M. Cherniack, S. Xu, V. Analytics, L. F. Ilyas, and S. Zdonik.
Data Curation at Scale: The Data Tamer System. In CIDR, 2013.

D. Suciu, D. Olteanu, R. Christopher, and C. Koch. Probabilistic Databases. Morgan & Claypool Publishers, 1st
edition, 2011.

J. W. Tukey. Exploratory data analysis. Addison-Wesley series in behavioral science : quantitative methods.
Addison-Wesley, 1977.

M. Yakout, L. Berti-Equille, and A. K. Elmagarmid. Don’t be scared: Use scalable automatic repairing with maximal
likelihood and bounded changes. In Proceedings of the 2013 ACM SIGMOD International Conference on Management
of Data, SIGMOD 13, pages 553564, New York, NY, USA, 2013. ACM.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin, S. Shenker, and I. Stoica. Resilient
Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster Computing. In NSDI, 2012.

M. Zwolenski, L. Weatherill, et al. The digital universe: Rich data and the increasing value of the internet of things.
Australian Journal of Telecommunications and the Digital Economy, 2(3):47, 2014.

18

doppioDB 1.0: Machine Learning inside a Relational Engine

Gustavo Alonso!, Zsolt Istvan?, Kaan Kara!, Muhsen Owaida', David Sidler!
1Systems Group, Dept. of Computer Science, ETH Zurich, Switzerland
2IMDEA Software Institute, Madrid, Spain

Abstract

Advances in hardware are a challenge but also a new opportunity. In particular, devices like FPGAs and
GPUs are a chance to extend and customize relational engines with new operations that would be difficult
to support otherwise. Doing so would offer database users the possibility of conducting, e.g., complete
data analyses involving machine learning inside the database instead of having to take the data out,
process it in a different platform, and then store the results back in the database as it is often done today.
In this paper we present doppioDB 1.0, an FPGA-enabled database engine incorporating FPGA-based
machine learning operators into a main memory, columnar DBMS (MonetDB). This first version of
doppioDB provides a platform for extending traditional relational processing with customizable hardware
to support stochastic gradient descent and decision tree ensembles. Using these operators, we show
examples of how they could be included into SQL and embedded as part of conventional components of a
relational database engine. While these results are still a preliminary, exploratory step, they illustrate the
challenges to be tackled and the advantages of using hardware accelerators as a way to extend database
functionality in a non-disruptive manner.

1 Introduction

Data intensive applications are often dominated by online analytic processing (OLAP) and machine learning (ML)
workloads. Thus, it is important to extend the role of the database management system to a more comprehensive
platform supporting complex and computationally intensive data processing. This aspiration is, however, at odds
with existing engine architectures and data models. In this work, we propose to take advantage of the ongoing
changes in hardware to extend database functionality without having to completely redesign the relational engine.
The underlying hardware for this work, field programmable gate arrays (FPGAs), is becoming more common both
in cloud deployments (e.g., Microsoft’s Catapult or Amazon’s F1 instances) and in conventional processors (e.g.,
Intel’s hybrid architectures incorporating an FPGA into a CPU). FPGAs can be easily reprogrammed to provide
the equivalent of a customizable hardware architecture. Thus, the FPGA can be used as a hardware extension to
the database engine where additional functionality is implemented as a complement to that already available.
We have implemented this idea in a first prototype of doppioDB, identified here as doppioDB 1.0 to distinguish
it from future versions, showing how to integrate machine learning operators into the database engine in a way
that is both efficient (i.e., compute-intensive algorithms do not impose overhead on native database workloads)
and effective (i.e., standard operator models and execution patterns do not need to be modified). doppioDB runs

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

19

on top of Intel’s second generation Xeon+FPGA machine and it is based on MonetDB, an open source main
memory columnar database.

Combining machine learning (ML) tasks with database management systems (DBMS) is an active research
field and there have been many efforts exploring this both in research [1, 2, 3, 4, 33] and industry [5, 6]. This
combination is attractive because businesses have massive amounts of data in their existing DBMS and there is
a high potential for using ML to extract valuable information from it. In addition, the rich relational operators
provided by the DBMS can be used conveniently to denormalize a complex schema for the purposes of ML
tasks [7].

2 Prototyping Platform

2.1 Background on FPGAs

Field Programmable Gate Arrays (FPGAs) are reconfigurable hardware chips. Once configured, they behave as
application-specific integrated circuits (ASIC). Internally they are composed of programmable logic blocks and
a collection of small on-chip memories (BRAM) and simple arithmetic units (DSPs) [8]. Their computational
model is different from CPUs: instead of processing instruction by instruction, algorithms are laid out spatially
on the device, with different operations all performed in parallel. Due to the close proximity of logic and memory
on the FPGA, building pipelines is easy, and thanks to the flexibility of the on-chip memory, custom scratch-pad
memories or data structure stores can be created.

Current FPGA designs usually run at clock-rates around 200-400 MHz. To be competitive with a CPU,
algorithms have to be redesigned to take advantage of deep pipelines and spatial parallelism.

2.2 Intel Xeon+FPGA Platform

While the use of FPGAs for accelerating data processing has been studied in the past, it is the emergence of
hybrid CPU+FPGA architectures that enables their use in the context of a database with a similar overhead as
NUMA architectures. In the past, FPGAs and other hardware accelerators, such as GPUs, have been placed “on
the side” of existing database architectures much like an attachment rather than a component [9, 10, 11]. This
approach requires data to be moved from the main processing unit to a detached accelerator. As a result, system
designs where whole operators (or operator sub-trees) are offloaded to the accelerator are favored compared to
finer integration of the accelerated operators into the query plan. We have designed doppioDB for emerging
heterogeneous platforms where the FPGA has direct access to the main memory of the CPU, avoiding data copy.
These platforms have also opened up opportunities of accelerating parts of operators such as partitioning or
hashing [12] instead of full operations or even entire queries.

We use the second generation Intel Xeon+FPGA machine! (Figure 1) that is equipped with an Intel Xeon
Broadwell ES with 14 cores running at 2.4 GHz and, in the same package as the Xeon, an Intel Arria 10 FPGA.
The machine has 64 GB of main memory shared with the FPGA. Communication happens over 1 QPI and 2 PCle
links to the memory controller of the CPU. These are physical links as the FPGA is not connected via the PCle
bus. The resulting aggregated peak bandwidth is 20 GB/s.

On the software side, Intel’s Accelerator Abstraction Layer (AAL) provides a memory allocator to allocate
memory space shareable between the FPGA and the CPU. This allows data to be accessed from both the CPU
and the FPGA. Apart from the restrictions of the operating system, such as not supporting memory mapped files
for use in the FPGA, the rest of the memory management infrastructure has remained untouched.

'Results in this publication were generated using pre-production hardware and software donated to us by Intel, and may not reflect the
performance of production or future systems.

20

1x QPI, 2x PCle Up to X X
| Intel Framework |] Up to 20 GB/s 50 GB/s|*> | Intel Libraries |
t-----------------------------------. .------------------.
’
. Centaur (HW) . 1l gy prema L1y Centaur (SW) '
9 -HI Job \ELET(d Memory Workload o ’
: 0 0 (.-- .m DE]JOb (' '--') Manager: Manager: % [}
; -+ TTT) [cweves - f TN RS || £ ¢
0 U] v
' | Operator 0 | | Operator 1 | Shared NG 3 :
- = . one
: | Operator 2 | | Operator 3 | memory region .
[J X N N ¥ N N N N N N N ¥ X N N ¥ F N] ¥ N N N N N N X N N X N N X | N J I------------------.
FPGA DRAM (64 GB) CPU
Intel Arria 10 Xeon Broadwell E5

14 Cores @ 2.4 GHz

Figure 1: doppioDB using Centaur on Intel’s Xeon+FPGA second generation prototype machine.

2.3 MonetDB

We use MonetDB as the basis of doppioDB. MonetDB is an open source columnar read-optimized database
designed for fast analytics. It stores relational tables as a collection of columns. A column consists of a memory
heap with values and a non-materialized positional identifier. Because of this design, the values of a column are
always stored in consecutive memory (or a memory mapped file) and they are addressable by simple memory
pointers. MonetDB follows the operator-at-a-time paradigm and materializes the intermediate results of each
operator. These design features make MonetDB suitable for integrating a hardware accelerator as they often
require well-defined memory and execution boundaries per column and per operator.

3 doppioDB: Overview

Integrating machine learning operators in an OLAP-oriented database such as MonetDB requires to tackle several
challenges. Many ML operators are iterative and scan the data multiple times. For example, to train a model on
an input relation, the relation should be materialized before training starts. In a tuple-at-a-time execution model
of the operator tree, every operator is invoked once per input tuple. As a result, iterative ML operators cannot fit
in this execution model without changing the query execution engine. On the other hand, in an operator-at-a-time
execution model, an operator processes all the input tuples at once before materializing its result and passing it
to the next operator in the tree. In this execution model, the iterative nature of an ML operator is hidden inside
the operator implementation and does not require to be exposed to the query execution engine. In addition, an
operator-at-a-time execution model eliminates the cost of invoking the FPGA operator for every tuple.

Another challenge is the row-oriented data format required for ML operators. Column-oriented data fits
OLAP workloads well but most ML algorithms work at tuple-level and therefore require row-oriented data. This
puts databases in a difficult position: if data is stored in a row format, OLAP performance suffers. Keeping
two copies of the data, one in each format, would introduce storage overhead and would significantly slow
down updates. An alternative is to introduce a data transformation step to convert column-oriented data to a
row-oriented format. Transforming data on-the-fly using a CPU is possible, but leads to cache-pollution and
takes away computation cycles from the actual algorithm. However, on the FPGA, the transformation step can be
performed using extra FPGA logic and on-chip memory resources without degrading processing throughput or
adding overhead on the query runtime as we discuss in Section 4.2.

When adding new functionality to the database engine, a constant challenge is how to expose this functionality
at the SQL level. The use of user defined functions (UDFs) is a common practice, but there are some significant
drawbacks with this approach. First, UDFs limit the scope of applicability of the operator, e.g., they do not

21

support updates or they are applied to one tuple at a time. Second, usually a query optimizer perceives UDFs as
black boxes that are pinned down in the query plan, missing optimization opportunities. We believe extending
SQL with new constructs and keywords allows a better exposure of the functionality and the applicability of
complex operators. However, this is not easy to achieve, since the order of execution and the rules of the SQL
language has to be respected. Later in the paper we discuss different SQL extensions for ML operators.

Since FPGAs are not conventional compute devices, there is no general software interface for FPGA
accelerators. Typically, every accelerator has its own software interface designed for its purposes. However, in
the database environment where many different operators will use the FPGA, the customizable hardware needs
to be exposed as part of the platform, with general purpose communication and management interfaces. We
have implemented the communication between MonetDB and the FPGA using the open-source Centaur? [15]
framework, which we modify to provide better memory access and extend with a data transformation unit that
can be used by operators that require a row-oriented format instead of the default columnar format of MonetDB.

4 Database integration of FPGA based operators

4.1 Communication with the FPGA

There have been many efforts in the FPGA community to generalize FPGA accelerators through software ab-
stractions and OS-like services for CPU-FPGA communication. Examples of these efforts include hThreads [13],
ReconOS [14], and Centaur [15]. Since Centaur is developed for the Intel Xeon+FPGA prototype machine and it
is open source, we decided to use it in developing doppioDB. In this work, we port Centaur to Intel’s second
generation Xeon+FPGA (Broadwell+Arrial0) platform.

Centaur abstracts FPGA accelerators as hardware threads and provides a clean thread-like software interface,
called FThread, that hides the low level communication between FPGA and CPU. Its Workload Manager
(Figure 1) allows for concurrent access to different operators. It guarantees concurrency by allocating different
synchronous job queues for different operators types. Overall, this makes it possible to share FPGA resources
between multiple queries and database clients. Centaur’s F'Thread abstraction allows us to express FPGA operators
as separate threads which can be invoked from anywhere in doppioDB. For example, we can use data partitioning
on the FPGA as shown in Listing 1. We create an FThread specifying that we want to perform partitioning on
relation R with the necessary configuration, such as the source and destination pointers, partitioning fanout, etc.
After the FThread is created, the parent thread can perform other tasks and finally the FThread can be joined to
the parent similar to C++ threads.

By creating the FThread object, we communicate a request to the FPGA to execute an operator. Internally,
the request is first queued in the right concurrent job queue allocated in the CPU-FPGA shared memory region, as
shown in Figure 1. Then, Centaur’s Job Manager on the FPGA, monitoring the queues continuously, dequeues the
request and starts the execution of the operator. In case all operators of the requested type are already allocated on
the FPGA by previous requests, the Job Manager has to wait until an operator becomes free before dispatching the
new request. The Job Manager scans the different job queues in the shared memory concurrently and independent
of each other such that a job queue that has free operator is not blocked with another queue waiting on a busy
operator.

On the FPGA, Centaur partitions the FPGA into four independent regions each hosting an accelerator
(examples shown in Figure 1). Centaur’s Job Manager facilitates CPU-FPGA communication and enables
concurrent access to all accelerators. In addition, the Data Arbiter multiplexes the access to the memory interface
from multiple operators using a round-robin mechanism.

https://github.com/fpgasystems/Centaur

22

Listing 1: An FPGA operator representation in Centaur.

relation xR, xpartitioned_R;

// Create FPGA Job Config
PARTITIONER_CONFIG config_R;

config_R .source = R;
config_R.destination = partitioned_R;
config_R.fanout = 8192;

// Create FPGA Job
FThread R_fthread (PARTITIONER_OP_ID, config_-R);

// Do some other work

// Wait for FThreads to finish
R_fthread. join () ;

Porting Centaur to the target platform. Centaur’s Memory Manager implements a memory allocator that
manages the CPU-FPGA shared memory region. However, we discovered through our experiments that this
custom memory allocator incurs a significant overhead in certain workloads. This is mostly due to a single
memory manager having to serve a multi-threaded application from a single memory region. To overcome this,
we allow the database engine to allocate tables in the non-shared memory region using the more sophisticated
operating system memory allocation. Then, we perform memory copies from the non-shared to the shared
memory region only for columns used by the FPGA operators. This is not a fundamental requirement and is only
caused by the limitations of the current FPGA abstraction software stack: In future iterations of the Xeon+FPGA
machine, we expect that the memory management for FPGA abstraction libraries will be integrated into the
operating system, thus giving Centaur the ability to use the operating system memory allocation directly. The
FPGA can then access the full memory space, without memory copies.

Beyond the modification to the memory allocator, we changed the following in Centaur: First, we clocked up
Centaur FPGA architecture from 200 MHz to 400 MHz to achieve a 25 GB/s memory bandwidth. Operators can
still be clocked at 400 or 200 MHz. In addition, we replaced the FPGA pagetable, which is limited to 4 GB of
shared memory space, with the Intel’s MPF module which implements a translation look-aside buffer (TLB) on
the FPGA to support unlimited shared memory space. We also added a column to row conversion unit to support
operators which require row-oriented data format.

4.2 On-the-fly Data Transformation

In doppioDB we support machine learning operators on columnar data by adding a “transformation” engine that
converts data on-the-fly to a row-oriented representation (Figure 2). The engine is part of the Data Arbiter in
Figure 1 which is plugged in front of the operator logic. The design can be generalized and such transformations
can be done across many different formats (data encodings, sampling, compression/decompression, encryption/de-
cryption, summarization, etc.), a line of research we leave for future work. Such transformations are essentially
”for free” (without impacting throughput and using a small part of the resources) in the FPGA and, as such, will
change the way we look at fixed schemas in database engines.

When designing this engine we made several assumptions. First, data belonging to each dimension resides in
its own column, and the ordering of tuples per column is the same (there are no record-IDs, tuples are associated
by order instead) . This allows us to scan the different columns based on a set of column pointers only. While the
actual type of the data stored in each column is not important for this unit, our current implementation assumes

23

64B Cache-Line | From Memory

--------- <column,value> Rotate Left | (2
| Address Compute |

l
| Batching Address Generator | o
1

BRAM

BRAMs

Written i
in . Rotate Right |
same i [3)
- -

- - - EE

Figure 2: On the FPGA the transformation from columns to rows can be implemented as a streaming operation
that introduces latency but has constant bandwidth.

a data width of 4 Bytes per dimension. This is, however, not a fundamental limitation and the circuit could be
extended to support, for instance, 8§ Byte values as well.

The gather engine, as depicted in Figure 2, requests data belonging to different columns in batches to reach
high memory bandwidth utilization. A batch is a number of successive cache lines requested from a single
dimension column before reading from the next dimension column. Each cache line contains 16 entries of a
column (16*4 B=64 B). The incoming data is scattered across a small reorder memory such that, when read
sequentially, this memory returns one line per dimension (1). In the next step these lines are rotated and written
into smaller memories in a “diagonal” fashion (2). This means that if the first 4 bytes are written to address 0 of
the first memory, the second 4 bytes will go to address 1 of the second memory and so on. This layout ensures
that when reading out the same address in each of these small memories, the output will contain one 4 Byte
word from each dimension. With an additional rotate operation, we obtain a cache-line having values from each
column in their respective positions (3). Thus, the flexibility of the FPGA allows us to build a “specialized cache”
for this scatter-gather type of operation that would not be possible on a CPU’s cache.

The nominal throughput of this unit is 12.8 GB/s at 200 MHz and is independent of the number of dimensions.
As Figure 3 shows, throughput close to the theoretical maximum can already be achieved when batching 32 cache
lines. The effect of having multiple dimensions is visible because DRAM access is scattered over a larger space,
but with a sufficiently large batch size, all cases converge to 11.5 GB/s.

In terms of resource requirements, the number of BRAMSs needed to compose the scatter memory depends on
the maximum number of dimensions and the maximum batching factor, since at least one batch per dimension
has to be stored. The choice for both parameters is made at compile-time. At runtime it is possible to use less
dimensions and, in that case, the batching factor can be increased correspondingly. The number of the smaller
memories is fixed (16), but their depth depends on the maximum number of dimensions. Even when configured
for up to 256 dimensions with a batching factor of 4, only 128 kB of the on-chip BRAM resources are needed for
this circuit.

5 Stochastic Gradient Descent

Overview By including a stochastic gradient descent (SGD) in doppioDB, our goal is to show that the FPGA-
enabled database is capable of efficiently handling iterative model-training tasks. The SGD operator enables us to
train linear regression models and support vector machines (SVM) on the FPGA using relational data as input.
There has been many studies showing the effectiveness of FPGA-based training algorithms [16, 17, 18, 33, 35].
We based our design on open-sourced prior work by Kara et al. [18], which performs both gradient calculation

24

12

Throughput [GB/s]
o
[

—= Dim=16
—o— Dim=32

3+ —— Dim=64 |
—— Dim=128
0 | | | | | |
14 8 16 32 64

Batching factor

Figure 3: Streaming transformation from columns to rows reaches high throughput and is not impacted negatively
by the number of dimensions to be gathered.

Listing 2: Template queries to train models on relations and do inference with trained models

Q_train: CREATE MODEL model_name ON
(SELECT attrl , attr2, ..., label FROM data_set WHERE ...)
WITH model_type USING training_algorithm (algorithm_parameters);

/x Infer without modifying the table x/
Q_inferl: SELECT new_data_set.id,
INFER(’model_name’) FROM new _data_set;

/xInfer and save results into a table x/
Q_infer2: INSERT INTO inferred_data_set(label)
SELECT INFER(’model_name’) FROM new_data_set;

and model update on the FPGA using fine grained parallelism and a pipelined design. We integrated the SGD
training algorithm into a DBMS in two steps: We extended SQL to enable a user’s declarative interaction with
ML operators, followed by the physical integration of FPGA-accelerated ML operators into the DBMS.

SQL Integration There has been many efforts to enable the usage of ML operators directly from SQL. While
most efforts (MADIib [1], SAP HANA [5] and Oracle Data Miner [6]) expose ML operators as user defined
functions (UDFs), some recent work considered extending SQL with new keywords to make ML operators in
SQL more transparent. For instance, Passing et al. [2] propose to introduce the "ITERATE” keyword to SQL to
represent the iterative nature of ML training algorithms. To accomplish the same goal, Cai et al. [4] propose the
"FOR EACH” keyword. In this work, we argue that the interaction with ML operators in a DBMS should be
done in a more simple and intuitive way than previously proposed. To accomplish this, we propose a new SQL
structure as shown in Listing 2.

With the structure shown in Listing 2, the user specifies (1) the model name after CREATE MODEL, (2) the
attributes and the label that the model should be trained on after ON, (3) the type of the ML model after WITH
(e.g., support vector machine, logistic regression, decision trees, neural networks etc.), (4) the training algorithm
along with the parameters after USING (e.g., SGD, ADAM etc.). After the model is created, we can use it for
inference on new tables using the INFER keyword, passing the model name. A model in doppioDB contains

25

Listing 3: Queries to train various models on any desired projection using SGD.

Q1l: CREATE MODEL proteins_-model ON
(SELECT attrl , attr2, ..., attrl5, label FROM human_proteome)
WITH LINREG USING SGD(num_iterations , learning_rate);

Q2: CREATE MODEL detect_fraud ON
(SELECT Name, ..., IsFraud FROM transactions
WHERE IsFraud IS NOT NULL)
WITH SVM USING SGD(num _iterations , learning_rate);

Q3: CREATE MODEL stock_predictor ON
(SELECT Region, ..., OpenCloseValues.Close FROM Transactions , Actors,
Stocks , OpenCloseValues
WHERE Stocks.Region = ’Europe’ AND YEAR(OpenCloseValues.Date) > 2010 AND
Actors . Position = ’“Manager’)
WITH SVM USING SGD(num _iterations , learning_rate);

Listing 4: Inference queries to make predictions on tuples with empty labels.

Q1: SELECT human_proteome.id , INFER(’ proteins_model’) AS prediction
FROM human_proteome WHERE label IS NULL;

Q2: SELECT transactions .name, INFER(’ detect_fraud’)
FROM transactions WHERE IsFraud IS NULL;

Q3: SELECT Stocks.Name, INFER(’stock_predictor’)
FROM Transactions , Actors, Stocks, OpenCloseValues
WHERE OpenCloseValues.Close IS NULL;

besides the actual ML model parameters also meta-parameters, specifying which attributes it was trained on. The
INFER function ensures during query compilation that it receives all the attributes necessary according to the
meta-parameters of the model. Otherwise, the SQL compiler raises a compile time error.

Listing 3 shows how the syntax we introduce can be used on realistic scenarios. For instance, in O3, the ability
to perform multiple joins and selections on four relations and then to apply a training algorithm on the projection
is presented. This is a very prominent example showing the convenience of declarative machine learning. In
Listing 4, three inference queries with INFER are presented, using the models created by CREATE MODEL
queries, again showing the convenience of performing prediction on tuples with an empty label.

Physical Integration The trained model is stored as an internal data structure specific to given relational
attributes —similar to an index— in the database. Inside the CREATE MODEL query, the training (iterative
reading) happens over the resulting projection of the subquery inside ON(...). The operator-at-a-time execution of
MonetDB fits well here: The training-related data is materialized once and is read multiple times by the SGD
engine. In case of FPGA-based SGD, the pointers to the materialized data (multiple columns) are passed to
the FPGA, along with training related parameters such as the number of iterations and the learning rate. The
FPGA reads the columns corresponding to different attributes with the help of the gather engine as described in
Section 4.2, reconstructing rows on-the-fly. The reconstruction is needed, because SGD requires all the attributes
of a sample in the row-format to compute the gradient.

The tuples created by the subquery are read as many times as indicated by the number of iterations. For each

26

Table 1: Stochastic Gradient Descent Training Time

Data set ‘ #Tuples ‘ #Feat. ‘ #Epochs | doppioDB (CPU) | doppioDB (FPGA)

proteome 38 Mio. 15 10 10.55s 3.44s
transactions | 6.4 Mio. 6 100 7.35s 2.545s
stocks 850K. 5 100 0.92s 0.32s

received tuple, the SGD-engine computes a gradient using the model that resides on the FPGA-local on-chip
memory. The gradient is directly applied back to the model on the FPGA, so the entire gradient descent happens
using only the on-chip memory, reserving external memory access just for the training data input. After the
training is complete, the model is copied from on-chip memory to the main memory of the CPU, where doppioDB
can use it to perform inference.

Evaluation We use the following data sets in our evaluation: (1) A human proteome data set [19], consisting
of 15 protein-related features and 38 Million tuples (Size: 2.5 GB); (2) A synthetic financial data set for fraud
detection [20], consisting of 6 training-related features and 6.4 Million tuples (Size: 150 MB); and (3) A stock
exchange data set, consisting of 5 training-related features and 850 Thousand tuples (Size: 17 MB).

In Table 1, we present the time for training a linear SVM model on the data sets, using either the CPU or FPGA
implementation. In both cases, the number of epochs (one epoch is defined as a full iteration over the whole data
set) and learning rates are set to be equal. Therefore, the resulting models are statistically equal as well. Achieving
multi-core parallelism for SGD is a difficult task because of the algorithm’s iterative nature, especially for lower
dimensional and dense learning tasks. Therefore, we are using a single-threaded and vectorized implementation
for the CPU execution. We observe that the FPGA-based training is around 3x faster for both data sets, providing
a clear performance advantage. The FPGA-based implementation [18] offers finer grained parallelism, allowing
the implementation of specialized vector instructions just for performing SGD, and also puts these instructions in
a specialized pipeline, thereby providing higher performance. It is worth noting that the models we are training
are linear SVM models, which are relatively small and on the lower compute intensive side compared to other ML
models such as neural networks. For larger and more complex models, the performance advantage of specialized
hardware will be more prominent [21, 22].

6 Decision Tree Ensembles

Overview A decision tree is a supervised machine learning method used in a wide range of classification and
regression applications. There have been a large body of research considering the use of FPGAs and accelerators
to speedup decision tree ensemble-based inference [23, 24, 25, 26, 27]. The work of Owaida et al. [23, 24]
proposes an accelerator that is parameterizable at runtime to support different tree models. This flexibility is
necessary in a database environment to allow queries using different models and relations to share the same
accelerator. In doppioDB we base our FPGA decision tree operator on the design in [23].

Integration in doppioDB The original implementation works on row-oriented data, so as a first step, we
replaced the data scan logic with the gather engine described in Section 4.2. As a result our implementation
operates on columnar data in doppioDB without the need for any further changes to the processing logic. To
integrate the decision trees into doppioDB, we use the same SQL extensions proposed for SGD to create models
and perform inference as in Listing 2. In Listing 5 we show two examples of training and inference queries for the
higgs and physics relations. Since currently we do not implement decision tree training in doppioDB, the training
function DTree(filename’) imports an already trained model from a file. The trained model can be obtained from
any machine learning framework for decision trees such as XGBoost [28]. Inside doppioDB, the model is stored

27

Table 2: Runtime for Decision tree ensemble inference.
Query | #Tuples | CPU-1 | CPU-28 | doppioDB (FPGA)
Qinfer-1 | 1,000,000 | 47.62s 2.381s 0.481s
Qinfer-2 855,819 8.63s 0.428 s 0.270s

as a data structure containing information about the list of attributes used to train the model, the number of trees
in the ensemble, the maximum tree depth, the assumed value of a missing attribute during training, and a vector
of all the nodes and leaves of all the ensemble trees.

The INFER function invokes the FPGA decision tree operator by passing the model parameters and pointers
to all the attribute columns to the FPGA. The FPGA engine then loads the model and stores it in the FPGA local
memories. Then, the gather engine scans all the attribute columns and constructs tuples to be processed by the
inference logic.

Listing 5: Training and inference queries for decision trees on the Higgs and Physics relations.

Qtrain —1: CREATE MODEL higgs_model ON
(SELECT attrl , ..., attr28 , label FROM higgs)
WITH DECTREE USING DTree(’higgs_xgboost.model’);

Qtrain —2: CREATE MODEL physics_model ON
(SELECT attrl , ..., attr74, label FROM physics)
WITH DECTREE USING DTree(’ physics_xgboost.model’);

Qinfer —1: SELECT particles_new .Eventld,
INFER(’higgs_-model’) AS higgs_boson
FROM particles_new ;

Qinfer —2: SELECT physics_new.id,
INFER(’ physics_model’) AS prediction
FROM physics_new ;

Evaluation To evaluate the decision tree operator we used the "Higgs’ data set from [29] and the *Physics’ data
set from [30]. The "Higgs’ data set is collected from an experiment simulating proton-proton collisions using the
ATLAS full detector simulator at CERN. A tuple consists of 28 attributes (floating point values) which describe a
single particle created from the collisions. The experiment objective is to find the Higgs Boson. The training
produces a decision tree ensemble of 512 trees, each 7 levels deep. The 'Physics’ data set is collected from
simulated proton-proton collisions in the LHCb at CERN. The data set consists of 74 attributes. The attributes
describe the physical characteristics of the signal decays resulting from the collisions. The objective of the trained
model on the data is to detect lepton flavour decay in the proton-proton collisions. If such a decay is detected this
indicates physics beyond the standard model (BSM). The trained model consists of 200 trees, each 10 levels deep.

For training, we use XGBoost to train both data sets offline, then we import the trained models using the queries
QOtrain-1 and Qtrain-2. Once the models are created and imported into the the database, we run the two inference
queries in Listing 5. For comparisons with CPU performance, we use multi-threaded XGBoost implementation
as a baseline. Table 2 summarizes the runtime results for inference on FPGA and CPU. The evaluation results
demonstrate the superiority of the FPGA implementation over single threaded CPU implementation (CPU-1).
Using the full CPU compute power (CPU-28) brings the CPU runtime much closer to the FPGA runtime. However,
in a database engine typically there are many queries running at the same time sharing CPU resources, which
makes it inefficient to dedicate all the CPU threads to a compute intensive operator such as decision trees inference.
The FPGA achieves its superior performance by parallelizing the processing of large number of trees (256 trees

28

in our implementation are processed simultaneously) and eliminating the overhead of random memory accesses
through specialized caches on the FPGA to store the whole trees ensemble and data tuples being processed.

7 Conclusions

In this paper we have briefly presented doppioDB, a platform for future research on extending the functionality of
databases with novel, compute-intensive, operators. In this work we demonstrate that it is possible to include
machine learning functionality within the database stack by using hardware accelerators to offload operators that
do not fit well with existing relational execution models. As part of ongoing work, we are exploring more complex
machine learning operators more suitable to column store databases [31] and data representations suitable for
low-precision machine learning [32]. Apart from machine learning, more traditional data analytics operators such
as large scale joins, regular expression matching and skyline queries (pareto optimality problem) also benefit
from FPGA-based acceleration, as we have demonstrated in previous work [34].

Acknowledgements We would like to thank Intel for the generous donation of the Xeon+FPGA v2 prototype.
We would also like to thank Lefteris Sidirourgos for feedback on the initial design of doppioDB and contributions
to an earlier version of this paper.

References
[1] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li,
et al., “The MADIib analytics library: or MAD skills, the SQL,” PVLDB, vol. 5, no. 12, pp. 1700-1711, 2012.

[2] L. Passing, M. Then, N. Hubig, H. Lang, M. Schreier, S. Giinnemann, A. Kemper, and T. Neumann, “SQL-and
Operator-centric Data Analytics in Relational Main-Memory Databases.,” in EDBT’17.

[3] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L. Veldhuizen, and G. Washburn, “Design
and implementation of the LogicBlox system,” in SIGMOD’15.

[4] Z.Cai, Z. Vagena, L. Perez, S. Arumugam, P. J. Haas, and C. Jermaine, “Simulation of database-valued Markov chains
using SimSQL,” in SIGMOD’13.

[5] F. Firber, N. May, W. Lehner, P. Grof3e, 1. Miiller, H. Rauhe, and J. Dees, “The SAP HANA Database—An Architecture
Overview.,” IEEE Data Eng. Bull., vol. 35, no. 1, pp. 28-33, 2012.

[6] P. Tamayo, C. Berger, M. Campos, J. Yarmus, B. Milenova, A. Mozes, M. Taft, M. Hornick, R. Krishnan, S. Thomas,
M. Kelly, D. Mukhin, B. Haberstroh, S. Stephens, and J. Myczkowski, Oracle Data Mining, pp. 1315-1329. Boston,
MA: Springer US, 2005.

[71 A.Kumar, J. Naughton, and J. M. Patel, “Learning Generalized Linear Models Over Normalized Data,” in SIGMOD’15.

[8] J. Teubner and L. Woods, Data Processing on FPGAs. Synthesis Lectures on Data Management, Morgan & Claypool
Publishers, 2013.

[9] E. A. Sitaridi and K. A. Ross, “GPU-accelerated string matching for database applications,” PVLDB, vol. 25, pp. 719-
740, Oct. 2016.

[10] IBM, “IBM Netezza Data Warehouse Appliances,” 2012. http://www.ibm.com/software/data/
netezza/.

[11] S.-W. Jun, M. Liu, S. Lee, J. Hicks, J. Ankorn, M. King, S. Xu, and Arvind, “BlueDBM: An Appliance for Big Data
Analytics,” in ISCA’15.

[12] K. Kara, J. Giceva, and G. Alonso, “FPGA-Based Data Partitioning,” in SIGMOD’17.

[13] D. Andrews, D. Niehaus, R. Jidin, M. Finley, ef al., “Programming Models for Hybrid FPGA-CPU Computational
Components: A Missing Link,” IEEE Micro, vol. 24, July 2004.

29

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]
[29]
(30]

(31]

(32]

(33]

[34]

(35]

E. Liibbers and M. Platzner, “ReconOS: Multithreaded Programming for Reconfigurable Computers,” ACM TECS,
vol. 9, Oct. 2009.

M. Owaida, D. Sidler, K. Kara, and G. Alonso, “Centaur: A Framework for Hybrid CPU-FPGA Databases,” in 25th
IEEE International Symposium on Field-Programmable Custom Computing Machines (FCCM’17), 2017.

D. Kesler, B. Deka, and R. Kumar, “A Hardware Acceleration Technique for Gradient Descent and Conjugate
Gradient,” in SASP’11.

M. Bin Rabieah and C.-S. Bouganis, “FPGASVM: A Framework for Accelerating Kernelized Support Vector Machine,”
in BigMine’16.

K. Kara, D. Alistarh, C. Zhang, O. Mutlu, and G. Alonso, “FPGA accelerated dense linear machine learning: A
precision-convergence trade-off,” in FCCM’15.

M. Wilhelm, J. Schlegl, H. Hahne, A. M. Gholami, M. Lieberenz, M. M. Savitski, E. Ziegler, L. Butzmann, S. Gessulat,
H. Marx, et al., “Mass-spectrometry-based draft of the human proteome,” Nature, vol. 509, no. 7502, pp. 582-587,
2014.

E. Lopez-Rojas, A. Elmir, and S. Axelsson, “PaySim: A financial mobile money simulator for fraud detection,” in
EMSS’16.

Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre, and K. Vissers, “Finn: A framework for fast,
scalable binarized neural network inference,” in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pp. 65-74, ACM, 2017.

E. Nurvitadhi, G. Venkatesh, J. Sim, D. Marr, R. Huang, J. O. G. Hock, Y. T. Liew, K. Srivatsan, D. Moss, S. Sub-
haschandra, et al., “Can FPGAs Beat GPUs in Accelerating Next-Generation Deep Neural Networks?,” in FPGA,
pp- 5-14, 2017.

M. Owaida, H. Zhang, C. Zhang, and G. Alonso, “Scalable Inference of Decision Tree Ensembles: Flexible Design
for CPU-FPGA Platforms,” in FPL’17.

M. Owaida and G. Alonso, “Application Partitioning on FPGA Clusters: Inference over Decision Tree Ensembles,” in
FPL’17.

J. Oberg, K. Eguro, and R. Bittner, “Random decision tree body part recognition using FPGAS,” in Proceedings of the
22th International Conference on Field Programmable Logic and Applications (FPL’12), 2012.

B. V. Essen, C. Macaraeg, M. Gokhale, and R. Prenger, “Accelerating a Random Forest Classifier: Multi-Core,
GP-GPU, or FPGA?,” in 20th IEEE International Symposium on Field-Programmable Custom Computing Machines
(FCCM’12),2012.

Y. R. Qu and V. K. Prasanna, “Scalable and dynamically updatable lookup engine for decision-trees on FPGA,” in
HPEC’14.

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in KDD’16.
T. Salimans, “HiggsML,” 2014. https://github.com/TimSalimans/HiggsML.

LHCb Collaboration, “Search for the lepton flavour violating decay 7~ — u~u™p =, High Energy Physics, vol. 2015,
Feb. 2015.

K. Kara, K. Eguro, C. Zhang, and G. Alonso, “ColumnML: Column Store Machine Learning with On-the-Fly Data
Transformation”, in PVLDB’19

Z. Wang, K. Kara, H. Zhang, G. Alonso, O. Mutly, and C. Zhang, “Accelerating Generalized Linear Models with
MLWeaving: A One-Size-Fits-All System for Any-Precision Learning”, in PVLDB’19

D. Mahajan, J. K. Kim, J. Sacks, A. Ardalan, A. Kumar, and H. Esmaeilzadeh, “In-RDBMS Hardware Acceleration of
Advanced Analytics”, in PVLDB’18

D. Sidler, M. Owaida, Z. Istvan, K. Kara, and G. Alonso, “doppioDB: A Hardware Accelerated Database”, in
SIGMOD’17

Z. He, D. Sidler, Z. Istvan, G. Alonso, “A flexible K-means Operator for Hybrid Databases”, in FPL’18

30

External vs. Internal: An Essay on Machine Learning Agents for
Autonomous Database Management Systems

Andrew Pavlo!, Matthew Butrovich!, Ananya Joshi', Lin Ma',
Prashanth Menon!, Dana Van Aken!, Lisa Lee! ,Ruslan Salakhutdinov’,
!Carnegie Mellon University

Abstract

The limitless number of possible ways to configure database management systems (DBMSs) has rightfully
earned them the reputation of being difficult to manage and tune. Optimizing a DBMS to meet the needs
of an application has surpassed the abilities of humans. This is because the correct configuration of a
DBMS is highly dependent on a number of factors that are beyond what humans can reason about. The
problem is further exacerbated in large-scale deployments with thousands or even millions of individual
DBMS installations that each have their own tuning requirements.

To overcome this problem, recent research has explored using machine learning-based (ML) agents
for automated tuning of DBMSs. These agents extract performance metrics and behavioral information
Jfrom the DBMS and then train models with this data to select tuning actions that they predict will have
the most benefit. They then observe how these actions affect the DBMS and update their models to further
improve their efficacy.

In this paper, we discuss two engineering approaches for integrating ML agents in a DBMS. The first
is to build an external tuning controller that treats the DBMS as a black-box. The second is to integrate
the ML agents natively in the DBMS’s architecture. We consider the trade-offs of these approaches in the
context of two projects from Carnegie Mellon University (CMU).

1 Introduction

Tuning a DBMS is an essential part of any database application installation. The goal of this tuning is to improve
a DBMS’s operations based on some objective function (e.g., faster execution, lower costs, better availability).
Modern DBMSs provide APIs that allow database administrators (DBAs) to control their runtime execution and
storage operations: (1) physical design, (2) knob configuration, (3) hardware resource allocation, and (4) query
plan hints. The first are changes to the database’s physical representation and data structures (e.g., indexes, views,
partitioning). The second are optimizations that affect the DBMS’s behavior through its configuration knobs
(e.g., caching policies). Resource allocations determine how the DBMS uses its available hardware to store data
and execute queries; the DBA can either provision new resources (e.g., adding disks, memory, or machines) or
redistribute existing resources (e.g., partitioning tables across disks). Lastly, query plan tuning hints are directives
that force the DBMS’s optimizer to make certain decisions for individual queries (e.g., join orderings).

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

31

Given the notorious complexity of DBMS tuning, a reoccurring theme in database research over the last five
decades has been on how to automate this process and reduce the burden on humans. The first efforts in the
1970s were on building self-adaptive systems [30]. These were primarily recommendation tools that focused on
physical database design (e.g, indexes [31, 34], partitioning [32, 43], clustering [78]). They were also external
to the DBMS and meant to assist the DBA with the tuning process. In the 1990s, the database community
switched to using the moniker self-tuning systems [16, 73]. Like their predecessors, most of the self-tuning
systems targeted automated physical design [29, 17, 71]. But they also expanded their scope to include automatic
DBMS knob configuration [68, 20, 70]. This was necessary because by then the more mature DBMSs had
hundreds of tunable knobs and the problem of how to set them correctly because too arduous [72]. Another
notable difference was that while most of the self-adaptive methods were primarily in the context of standalone
recommendation tools that were external to the DBMS, some vendors added self-tuning components directly
inside of the DBMS [41, 67, 19].

The current research trend is on how to use of machine learning (ML) to devise “learned” methods for
automated DBMS tuning. Instead of relying on static heuristics or cost models (see Section 2), these newer
approaches train models using data collected about the DBMS’s runtime behavior under various execution
scenarios and configurations. The tuning agent then predicts the expected benefit of actions (e.g., add an index)
using these models and selects the one with the greatest expected reward. The agent then observes the affects of
the deployed action and integrates this new data back into the models to improve their efficacy for future decision
making. This last step removes the need for a human to make judgment calls about whether or not to make a
recommended change.

There are two ways developers can integrate such ML-based tuning methods for DBMSs. The first is to use
external agents that observe and manipulate a DBMS through standard APIs (e.g., JDBC, ODBC). This approach
is ideal for existing DBMSs where the software engineering effort required to retrofit the architecture to support
automated tuning is too onerous. The second is to integrate internal components that directly operate inside of
the DBMS. Building the ML components inside of the system obviates several problems related to training data
collection and modeling, as well as enables the agent to have fine-grained control of the system’s behavior. But
this integration requires such a tight coupling that it is often only viable for those organizations that are designing
a new system from scratch (i.e., a “greenfield” project) [59].

In this paper, we discuss the trade-offs between implementing ML-based tuning agents outside of the DBMS
versus designing a new DBMS around automation. Our analysis is based on our experiences developing ML-based
tuning tools for existing systems [72, 79, 58] and new autonomous architectures [9, 46, 57, 60, 81]. We begin
in Section 2 with an overview of how DBMS tuning algorithms work. Next, in Section 3 we describe how to
use ML-based agents to automatically tune systems. We then compare the benefits of the approaches, as well as
discuss some of their challenges and unsolved problems. We conclude with an overview of two DBMS projects
at CMU [1] on using ML for automated tuning. The first is OtterTune [5], an external knob tuning service for
existing DBMSs. The other is a new self-driving [57] DBMS called NoisePage [3] (formerly Peloton') that we
are designing to be completely autonomous.

2 Background

Previous researchers in the last 50 years have studied and devised several methods for automatically optimizing
DBMSs [12, 18, 16, 74]. As such, there is an extensive corpus of previous work, including both theoretical [14]
and applied research [24, 82, 75]. Before the 2010s, the core methodologies for automated DBMS tuning were
either (1) heuristic- or (2) cost-based optimization algorithms. We now briefly discuss this prior work to motivate
the transition to ML-based methods in Section 3.

"We are unable to continue with the Peloton [6] project due to the unholy combination of engineering, legal, and marital problems.

32

The most widely used approach in automated DBMS tuning is to use heuristic algorithms that are comprised
of hard-coded rules that recommend actions [32]. For example, IBM’s first release of their DB2 Performance
Wizard tool in the early 2000s asked the DBA questions about their application (e.g., whether it is OLTP or
OLAP) and then provides knob settings based on their answers [42]. It uses rules manually created by DB2
engineers and thus may not accurately reflect the actual workload or operating environment. IBM later released a
version of DB2 with a self-tuning memory manager that again uses rules to determine how to allocate the DBMS’s
memory to its internal components [67, 70]. Oracle has a similar “self-managing” memory manager in their
DBMS [19], but also provides a tool to identify bottlenecks due to misconfiguration using rules [21, 40]. Others
have used the same approach in tuning tools for Microsoft’s SQL Server [53], MySQL [2], and Postgres [7].

The other common approach for DBMS tuning is to use cost-based algorithms that programmatically search
for improvements to the DBMS’s configuration. These algorithms are guided by a cost model that estimates
the benefits of design choices based on a representative sample workload trace from the application. A cost
model allows a tool to identify good actions without having to deploy them for real on the DBMS, which
would is prohibitively expensive and slow. Previous work in this area has evaluated several search techniques,
including greedy search [17], branch-and-bound search [58, 82, 54], local search [77], genetic algorithms [54],
and relaxation/approximation [13].

To avoid the problem of a cost-based algorithm making choices that do not reflect what happens in the real
DBMS, the tuning tool can use the DBMS’s internal components to provide it with more accurate cost model
estimations. The first and most notable application of this optimization was Microsoft’s AutoAdmin use of
SQL Server’s built-in cost models from its query planner to estimate the utility of indexes [15]. Relying on the
DBMS for the cost model, however, does not work for knob configuration tuning algorithms. In the case of
Microsoft’s example of using the query planner to guide its search algorithms, these models approximate on
the amount of work to execute a query and are intended to compare alternative query execution strategies in
a fixed environment [65]. But knobs affect a DBMS’s behavior in ways that are not easily reflected (if even
possible) in the query planner’s cost model. For example, it is non-trivial for the planner to reason for a single
query about a knob that changes caching policies since the behavior can vary depending on the workload. Hence,
the major vendors’ proprietary knob configuration tools mostly rely on static heuristics and vary in the amount of
automation that they support [21, 40, 53, 2, 7].

The critical limitation in both of the above heuristic- and cost-based tuning methods is that they tune each
DBMS in isolation. That is, they only reason about how to tune one particular DBMS instance and do not
leverage information collected about previous tuning sessions. Heuristic-based methods rely on assumptions
about the DBMS’s workload and environment that may not accurately reflect the real-world. The lack of data
reuse increases the amount of time that it takes for cost-based algorithms to find improvements for the DBMS. To
avoid an exhaustive search every time, developers apply domain knowledge about databases to prune the solutions
that are unlikely to provide any benefit. For example, an index selection algorithm can ignore candidate indexes
for columns that are never accessed in queries. But database tuning problems are NP-Complete [52, 35], and thus
solving them efficiently even with such optimizations is non-trivial. This is where ML-based approaches can
potentially help by providing faster approximations for optimization problems.

3 Automated Tuning with Machine Learning

ML is a broad field of study that encompasses many disciplines and is applicable to many facets of DBMSs.
There are engineering and operational challenges in incorporating ML-based components into already complex
DBMS software stacks [61], such as explainability, maintainability/extendability, and stability. There are also
important problems on automatically provisioning resources for a fleet of DBMSs in a cloud environment. We
limit the scope of our discussion to the implications of integrating ML in DBMSs for tuning in either existing or
new system architectures.

33

ML-based agents for automated DBMS tuning use algorithms that rely on statistical models to select actions
that improve the system’s target objective. That is, instead of being provided explicit instructions on how to tune
the DBMS, the agent extracts patterns and inferences from the DBMS’s past behavior to predict the expected
behavior in the future to lean how to apply it to new actions. The agent selects an action that it believes will
provide the most benefit to its target objective function. It then deploys this action without having to request
permission from a DBA. This deployment can either be explicit (e.g., invoking a command to build an index) or
implicit (i.e., updating its models so that the next invocation reflects the change).

Agents build their models from training data that they collect from the DBMS and its environment. This
data can also come from other previous tuning sessions for other DBMSs if they provide the proper context (e.g.,
hardware profile). The type of data that an agent collects from the DBMS depends on its action domain. Some
agents target a specific sub-system in the DBMS, and thus they need training data related to these parts of the
system. For example, an agent that tunes the DBMS’s query optimizer [48, 56] collects information about the
workload (e.g., SQL queries) and the distribution of values in the database. Another agent that targets tuning the
DBMS’s knob configuration only needs low-level performance metrics as this data is emblematic of the overall
behavior of the system for a workload [72, 80, 24]. A holistic tuning agent that seeks to control the entire DBMS
collects data from every parts of the system because they must consider latent interactions between them [57].

How an agent acquires this data depends on whether it trains its models offline or online. Offline training
is where the agent replays a sample workload trace while varying the DBMS’s configuration in a controlled
environment. This arrangement allows the agent to guide its training process to explore unknown regions in
its solution space. Offline training also ensures that if the agent selects a bad configuration that it does not
cause observable problems in the production environment. With online training, the agent observes the DBMS’s
behavior directly as it executes the application’s workload. This approach does not require the system to provide
the agent a workload sample; this allows the agent to always have an up-to-date view of the workload. The
agent, however, may cause the system to make unexpected changes that hurt performance and require a human to
intervene. Note also that the offline versus online approaches are not mutually exclusive and a DBMS can use
both of them together.

ML methods are divided into three broad categories: (1) supervised, (2) unsupervised, and (3) reinforcement
learning. There are existing DBMS tuning agents that use either one category of algorithms or some combination
of them. We now describe these approaches in the context of DBMS tuning:

Supervised Learning: The agent builds models from training data that contains both the input and expected
output (i.e., labels). The goal is for the models learn how to produce the correct answer for new inputs. This
approach is useful for problems where the outcome of an action is immediately observable. An example
of a supervised learning DBMS tuning method is an algorithm that predicts the cardinality of query plan
operators [36, 45, 76, 37]. The training data input contains encoded vectors of each operator’s salient features
(e.g., type, predicates, input data sizes) and the output is the cardinality that the DBMS observed when executing
the query. The objective for this agent is to minimize the difference between the predicted and actual cardinalities.
Supervised learning has also been applied to tune other parts of a DBMS, including approximate indexes [39],
performance modeling [26, 49], transaction scheduling [60, 63], query plan tuning [23], and knob tuning [72].

Unsupervised Learning: With this approach, the agent’s training data only contains input values and not the
expected output. It is up to the agent to infer whether the output from the models are correct. An example of this
is an agent that clusters workloads into categories based on their access patterns patterns [51, 28]. The assigned
categories have no human decipherable meaning other than the workloads in each category are similar in some
way. Although not directly related to tuning, another use of unsupervised ML in DBMSs is for automatically
detecting data anomalies in a database: the agent does not need to be told what are “correct” values to figure out
what values do not look like the others [10].

Reinforcement Learning: Lastly, reinforcement learning (RL) is similar to unsupervised ML in that there

34

is no labeled training data. The agent trains a policy model that selects actions that will improve the target
objective function for the current environment. RL approaches in general do not make assumptions about priors
and the models are derived only from the agent’s observations. This is useful for problems where the benefit or
effect of an action are not immediately known. For example, the agent may choose to add an index to improve
query performance, but the DBMS will take several minutes or even hours to build it. Even after the DBMS
builds the index, the agent may still only observe its reward after a period of time if the queries that use do
not come until later (e.g., due to workload pattern changes). Given the general purpose nature of RL, it is one
of the most active areas of DBMS tuning research in the late 2010s. Researchers have applied RL for query
optimization [48, 56, 50], index selection [11, 62, 23], partitioning [25, 33], and knob tuning [80].

We next discuss how to integrate agents that use the above ML approaches into DBMSs to enable them to
support autonomous tuning and optimization features. We begin with an examination of strategies for running
agents outside of the DBMS in Section 3.1. Then in Section 3.2 we consider the implications of integrating the
agents directly inside of the DBMS. For each of these strategies, we first present the high-level approach and then
list some of the key challenges that one must overcome with them.

3.1 External Agents

An external agent tunes a DBMS without requiring specialized ML components running inside of the system.
The goal is to reuse the DBMS’s existing APIs and environment data collection infrastructure (e.g., query traces,
performance metrics) without having to modify the DBMS itself or for the DBMS to be even aware that software
and not a human is managing it. Ideally a developer can create the agent in a general purpose such that one can
reuse its backend ML component across multiple DBMSs.

An agent receives its objective function data either directly from the DBMS or through additional third-party
monitoring tools (e.g., Prometheus, Druid, InfluxDB). The latter scenario is common in organizations with a
large number of DBMS instances. Although the agent’s ML algorithms are not tailored to any particular DBMS,
there is DBMS-specific code to prepare the training data for consumption by the algorithm. This is colloquially
known as glue code in ML parlance [61]. For example, the agent has to encode configuration knobs with fixed
“enum” values, known as a categorical variables, as separate one-hot encoded features since ML algorithms cannot
operate on strings [72]. To do this encoding correctly, the agent must obviously be aware of all possible values a
knob can take; it is too difficult and a waste of time to try to infer this on its own.

Agents may also need an additional controller running on the same machine as the DBMS or within the
same administrative domain [72]. This controller is allowed to install changes that are not accessible through the
DBMS’s APIs. For example, DBMSs that read configuration files at start-up on local disk will overwrite any
previously set knob values. Thus, unless the agent is able to write these files, then it will not be able to persist
changes. The controller may need to also restart the DBMS because many systems are not able to apply changes
until after a restart.

Challenges: There are several challenges in tuning an existing DBMS that was not originally designed for
autonomous operation. Foremost is that almost every major DBMS that we have examined does not support
making changes to the system’s configuration without periods of unavailability, either due to restarts or blocking
execution [59]. Requiring the DBMS to halt execution in order to apply a change makes it difficult for agents
to explore configurations in production systems and increases the time it takes to collect training data. There
are methods for reducing start-up times [8, 27], but the agent still must also account for this time in their reward
functions, which are often non-deterministic.

The second issue is that an agent is only able to collect performance metrics that the system already exposes.
This means that if there is additional information that the agent needs, then it is not immediately available. The
other issue is that is that there is often an overabundance of data that makes it difficult to separate signals from the
noise [72]. Furthermore, DBMSs also do not expose information about their underlying hardware so the system

35

can reuse training data across operating environments. In many cases these metrics were originally meant to assist
humans with diagnosing performance problems. That is, the developers added metrics assuming that they were
meant for human consumption and not for enabling autonomous control. Many DBMSs do not report metrics at
consistent intervals using the same unit of measurement.

Lastly, every DBMS has knobs that requires human knowledge in order to know how to set it correctly. There
are obvious cases, like knobs that define file paths or port numbers, where the system will not function if they are
set incorrectly. But there are other knobs where if an agent sets it incorrectly then the system will not become
inoperable; instead, they will subtly affect the database’s correctness or safety. The most common example of this
that we found is whether to require the DBMS to flush a transaction’s log records to disk before it is committed.
Turning off this flushing improves performance but may lead to data loss on failures. If an agent discovers that
changing this knob improves the objective function, then it will make that change. But the agent is unable to
know what the right choice is because it requires a human to decide what is allowed in their organization. The
agent’s developers must mark such knobs as untunable in the glue code so that an agent do not modify them.

3.2 Internal Agents

An alternative to treating the DBMS like a black-box and tuning it with an external agent is to design the system’s
architecture to natively support autonomous operation. With this approach, the DBMS supports one or more
agents running inside of the system. These agents collect their own training data, apply changes to the DBMS
(ideally without restarting), and then observe how those changes affect the objective. The system does not require
guidance or approval from a human for any of these steps. The benefit of running agents inside of the DBMS is
that it exposes more information about the system’s runtime behavior and can potentially enable more low-level
control of the DBMS than what is possible with an external agent.

Most of the proposed ML tuning agents that are available today are designed to extend or replace components
in existing DBMSs. One of the first of these was IBM’s Learning Optimizer from the early 2000s that used a
feedback mechanisms to update the query planner’s cost models with data that the system observed during from
query execution [66]. There are now more sophisticated proposals for changing the cost model with learned
models to estimate cardinalities [36, 45, 76, 37] or even generate the query plan itself [56, 47]. These agents can
also leverage the DBMS’s existing components to help them “bootstrap” their models and provide them with a
reasonable starting point. One notable example of augmenting an existing DBMS with ML agents is Oracle’s
cloud-based autonomous DBMS offering [4]. Although there is little public information about its implementation,
our understanding from discussions with their developers is that it uses Oracle’s previous independent tuning
tools in a managed environment with limited centralized coordination.

Instead of augmenting an existing DBMS, others have looked into creating new DBMS architectures that are
designed from the ground up for autonomous control [57, 62, 38]. With a new system, the developers can tailor
its implementation to make its components easier to model and control. They can also customize the architecture
to be more friendly to automated agents (e.g., avoiding the need to restart the system when changing knobs,
having a unified action deployment framework) [59].

Challenges: The biggest problem with replacing a DBMS’s existing components with new ML-based
implementations is that it is hard to capture the dependencies between them. That is, if each tuning agent
operates under the assumption that the other parts of the system are fixed, then their models will encapsulate this
assumption. But then if each agent modifies their part of the DBMS that they control, then it will be hard to
make accurate predictions. Consider a tuning agent that controls the DBMS’s memory allocations. Suppose the
agent initially assigns a small amount of memory for query result caching and a large amount to the buffer pool.
Another index tuning agent running inside of the same DBMS then chooses to build an index because memory
pressure in the buffer pool is low. But then the memory agent decides on its own to increase the result cache size
and decrease the buffer pool size. With this change, there is now less memory available to store the index and

36

data pages, thereby increasing the amount of disk I/O that the DBMS incurs during query execution. Thus, the
index that the second agent just added is now a bad choice because of change in another part of the system that it
does not control.

There are three possible ways to overcome this problem but each of them have their own set of issues. The
first is to use a single centralized agent rather than separate agents. This is potentially the most practical but
greatly increases the dimensionality (i.e., complexity) of the models, which requires significantly more training
data. The second is to have each individual agent provide a performance guarantee about what its changes in the
DBMS. The agents provide this information to a central coordinator that is in charge of resource allocations. The
last approach is to have a decentralized architecture where agents communicate and coordinate with each other.
We suspect that this will prove to be too difficult to achieve reasonable stability or explainability.

One of the most expensive parts of these agents is when they build their models from the training data. The
DBMS must prevent the agents from degrading the execution performance of the regular workload during this
process. Thus, even though the agent runs inside of the DBMS, it could offload this step to auxiliary computational
resources (i.e., GPUs, other machines).

4 OtterTune — Automated Knob Tuning Service for Existing DBMSs

OtterTune is an external knob configuration tuning service that works with any DBMS [72, 79, 5]. It maintains a
repository of data collected from previous tuning sessions, and uses this data to build models of how the DBMS
responds to different knob configurations. For a new application, it uses these models to guide experimentation
and recommend optimal settings. Each recommendation provides OtterTune with more information in a feedback
loop that allows it to refine its models and improve their accuracy.

As shown in Section 1, OtterTune’s architecture is made up of a client-side controller and a server-side
tuning manager. The controller acts as a conduit between the target DBMS and the tuning manager. It contains
DBMS-specific code for collecting runtime information from the target DBMS (e.g., executing SQL commands
via JDBC) and installs configurations recommended by the tuning manager. Again, the high-level operations
are the same for all DBMSs but the exact commands differ for each DBMS: the controller updates the DBMS’s
configuration file on disk and then restarts the system using the appropriate administrative tool. The tuning
manager updates its repository and internal ML models with the information provided by the controller and then
recommends a new configuration for the user to try.

To initialize a new tuning session, the user first selects which metric should be the target objective for
OtterTune to optimize when selecting configurations. OtterTune retrieves this information either from (1) the
DBMS itself via its query API, (2) a third-party monitoring service, or (3) a benchmarking framework [22].
OtterTune also requests other necessary information from the user about the target DBMS at this time, such as
the DBMS’s version and connection information.

OtterTune then begins the first observation period where the controller connects to the the DBMS and runs
the sample workload. Once the observation period is over, OtterTune collects the DBMS’s runtime metrics and
configuration knobs, and then delivers this information to the tuning manager. The result from the first observation
period serves as a baseline since it reflects the DBMS’s performance using its original configuration.

OtterTune’s tuning manager receives the result from the last observation period from the controller and stores
it in its repository. Next, the tuning manager selects the next configuration to try on the target DBMS. This
process continues until the user is satisfied with the improvements over the original configuration.

4.1 Machine Learning Pipeline

OtterTune’s ML pipeline uses a combination of supervised and unsupervised methods. It processes, analyzes,
and builds models from the data in its repository. Both the Workload Characterization and Knob Identification

37

Client Side Server Side

Controller
! Tuning Manager Job Scheduler

1 1 1
1 1 1
1 Data Collector | 1 . 1
1 N N | JSON| | Data Processor Periodic Tasks 1
n
1 m I:I 1 N Workload Knob 1
1 JSON ! Tok 1 m Rse ?:ﬁ::z:c:; Characterization Identification 1
1 @ oken

1 - JSON 1
A 1 Stored in Repo |

1 | | pog, [ew gog, metrcs|| 8285 [wnons
I I o °|l | |28 — @8 I

Knobs New 1 Ready? _
1 Metrics Config | — | Web Interface 1 ! 1
| | | L J |
1 — | @ Config | 1
.
1 Target | ! Data ;
n |
: RENMS 1 : Repository |
|

N e e e e e e e e e e = = = N e _- - ——— -)

Figure 1: OtterTune Architecture Overview — The controller connects to the target DBMS, collects its knob/-
metric data, transforms the collected information into a JSON document, and sends it to the server-side tuning
manager. The tuning manager stores the information in the data repository and schedules a new task with the job
scheduler to compute the next configuration for the target DBMS to try. The controller (1) sends the information
to the tuning manager, (2) gets a token from the tuning manager, (3) uses this token to check status of the tuning
job, and (4) gets the recommended configuration when the job finishes and then the agent installs it in the DBMS.

modules execute as a background task that periodically updates their models as new data becomes available in the
repository. The tuning manager uses these models to generate new knob configurations for the target DBMS.
OtterTune’s ML pipeline has three modules:

Workload Characterization: This first component compresses all of the past metric data in the repository
into a smaller set of metrics that capture the distinguishing characteristics for different workloads. It uses factor
analysis (FA) to model each internal runtime metric as linear combinations of a few factors. It then clusters the
metrics via k-means, using their factor coefficients as coordinates. Similar metrics are in the same cluster, and it
selects one representative metric from each cluster, namely, the one closest to the cluster’s center.

Knob Identification: The next component analyzes all past observations in the repository to determine
which knobs have the most impact on the DBMS’s performance for different workloads. OtterTune uses a popular
feature-selection technique, called Lasso [69], to determine which knobs have the most impact the system’s
overall performance. Lasso is similar to the least-squares model, except that it uses L1 regularization. It forces
certain coefficients to be set to zero. The larger weight of L1 penalty is, the more coefficients become zero.

Automated Tuner: In the last step, the tuner analyzes the results it has collected so far in the tuning session
to decide which configuration to recommend next. It performs a two-step analysis after each observation period.
First, the system uses the performance data for the metrics identified in the Workload Characterization component
to identify the workload from a previous tuning session that best represents the target DBMS’s workload. It
compares the metrics collected so far in the tuning session with those from previous workloads by calculating the
Euclidean distance, and finds the previous workload that is most similar to the target workload, namely, the one
with smallest Euclidean distance.

S NoisePage — A Self-Driving DBMS Architecture

NoisePage is a new DBMS that we are developing at CMU to be self-driving [57, 3]. This means that the
system is able to tune and optimize itself automatically without any human intervention other than selecting the
target objective function on start-up. The DBMS’s core architecture is a Postgres-compatible HTAP system. It
uses HyPer-style MVCC [55] over Apache Arrow in-memory columnar storage [44]. We chose an in-memory

38

DBMS Runtime Modeling Module

S e ~
| Ig
1) SQL Traces @ —
I Query Planner <= | Q Workload Monitor |-—I—>
| 1 Query History Forecast Models
! v ! -~ @
1 1 Wy?
1 ‘ . Action Executors Acﬁlons Runtime Metrics System Models
1 Execution Engine 1
1 <= q Perf. Monitor I .
| Planning Module
1
I ty Y ~— 4
1 S | ”’ Policy Network
1 Application Training Runtime 1 ; =R
| Data Data Metrics | Action Acton ~ *
| 1 Sequence Search Value Network
———————————————————————— -’

Figure 2: NoisePage Architecture Overview — The DBMS contains workload and performance monitors that
collect runtime data about the system. It then stores this information in a separate training data repository. The
Modeling module retrieves this information and builds forecasting models. These models are then used to guide
the Planning module’s search process for selecting actions that it believes will improve the DBMS’s objective
function.

architecture to enable the system to apply actions in minutes (instead of hours) with minimal impact on the
application’s performance. Faster action deployment enables the system to quickly explore solutions and collect
new training data. This enables the system to react better to changes in the application’s workload and its
operating environment.

The DBMS’s control agent runs in a continuous loop where it selects actions to deploy that it estimates
will improve the target objective. NoisePage supports actions that affect (1) database physical design (e.g.,
add/drop indexes), (2) knob configuration (e.g., memory allocation), and (3) hardware resources (e.g., scaling
up/down). We are not currently investigating how to automatically support query plan tuning as these requires
more fine-grained models that can reason about individual sessions.

Because the DBMS is built from scratch for autonomous control, we designed the architecture in a modular
manner to allow agents to collect training data offline more efficiently. That is, one can start just a single
component in the DBMS (e.g., the transaction manager) and then perform a parameter sweep across many
configurations without having to go through the DBMS’s entire execution path. This reduces the number of
redundant configurations that the system observes to (1) improve data collection efficiency and (2) reduce model
over-fitting. The DBMS then combines this offline data with data collected online during query execution to
improve it accuracy.

5.1 Machine Learning Pipeline

We next provide an overview of NoisePage’s self-driving pipeline. Section 2 illustrates the overall architecture of
the DBMS with its modeling and planning modules. The DBMS is instrumented with a workload and performance
monitors that collect information about the entire system during both query execution and action deployment.

Modeling: This first module is responsible for training prediction models using data that the monitors collect
from observing its runtime operations. There are two categories of models. The first are forecast models that
predict the application’s future workload and database state. Forecasting is necessary so that DBMS can prepare
itself accordingly, much like a self-driving car has to predict the road condition up ahead. But instead of using
cameras and LIDAR like a car, a self-driving DBMS uses workload traces and database statistics to generate
forecast models [46]. These models are independent of the DBMS’s configuration since they are determined by
the application. The second category of models predict how the DBMS’s internal sub-systems will respond to

39

configuration changes made by actions. The DBMS trains these models from its internal metrics collected by its
performance monitors. It then computes how changes in these models affect the target objective function. This is
known as the “value function” in ML algorithms.

Planning: In the second module, the DBMS use the models generated in the previous step to select actions
that provide the best reward (i.e., objective function improvement) given the current state of the system. This
reward includes an estimation the cost of deploying each action. The system estimates the application’s behavior
for some finite prediction horizon using its workload forecast models. It then searches for an action that achieves
the best reward without violating human-defined constraints (e.g., hardware budgets, SLOs). This search can use
either (1) tree-based optimization methods, such as a Monte Carlo search tree [64] or (2) RL methods using deep
neural networks for policy and value functions. The search can be weighted so that it is more likely to consider
the actions that provide the most benefit for the current state and avoid recently reversed actions.

To avoid having to consider all possible actions at each iteration (e.g., indexes for every possible combination
of columns), there is a large corpus of previous work on pruning less effective or useless actions [16]. Since the
set of relevant candidate actions is dependent on the DBMS environment, it can change multiple times during
the day. Thus, one key unsolved problem, however, is how to represent this dynamic action set in the DBMS’s
models’ fixed-length feature vectors.

Deployment: For a given action selected in the planning module, the next step is for the DBMS to deploy it.
This part includes the mechanisms to efficiently execute the action’s sub-tasks, as well as the ability to observe
the action’s effect on its performance both during and after the deployment. The DBMS’s planning modules use
the data that it collects during this phase to update their models and improve their decision making.

6 Conclusion

Autonomous DBMSs will enable organizations to deploy database applications that are more complex than what
is possible today, and at a lower cost in terms of both hardware and personnel. In this paper, we surveyed the
approaches for adding automatic tuning agents based on ML to DBMSs. We discussed the high-level differences
of external versus and internal agents, as well as the separate challenges in these approaches. We then discussed
two examples of these architectures from CMU: (1) OtterTune [5] and (2) NoisePage [3]. Although there is
still a substantial amount of research needed in both systems and ML before we achieve fully autonomous (i.e.,
self-driving) DBMSs, we contend that the field has made several important steps towards this goal in recent years.

One final point that we would like to make is that we believe that autonomous DBMSs will not supplant
DBAs. We instead envision these systems will emancipate them from the burdens of arduous low-level tuning
and allow them to pursue higher minded tasks, such as database design and development.

7 Acknowledgments
This work was supported (in part) by the National Science Foundation Intel Science and Technology Center

for Visual Cloud Systems, Google Research Grants, AWS Cloud Credits for Research, and the Alfred P. Sloan
Research Fellowship program.

References

[1] Carnegie Mellon Database Group. https://db.cs.cmu.edu.

[2] MySQL Tuning Primer Script. https://launchpad.net/mysgl-tuning-primer.

40

[3] NoisePage. https://noise.page.

[4] Oracle Self-Driving Database. https://www.oracle.com/database/
autonomous—-database/index.html.

[5] OtterTune. https://ottertune.cs.cmu.edu.
[6] Peloton. https://pelotondb.io.
[7] PostgreSQL Configuration Wizard. https://pgtune.leopard.in.ua.

[8] L. Abraham, J. Allen, O. Barykin, V. Borkar, B. Chopra, C. Gerea, D. Merl, J. Metzler, D. Reiss, S. Subrama-
nian, J. L. Wiener, and O. Zed. Scuba: Diving into data at facebook. Proc. VLDB Endow., 6(11):1057-1067,
Aug. 2013.

[9] J. Arulraj, A. Pavlo, and P. Menon. Bridging the archipelago between row-stores and column-stores for
hybrid workloads. In Proceedings of the 2016 International Conference on Management of Data, SIGMOD
’16, pages 583-598, 2016.

[10] P.Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, and S. Suri. Macrobase: Prioritizing attention in fast
data. In Proceedings of the 2017 ACM International Conference on Management of Data, SIGMOD ’17,
pages 541-556, 2017.

[11] D. Basu, Q. Lin, W. Chen, H. T. Vo, Z. Yuan, P. Senellart, and S. Bressan. Cost-Model Oblivious Database
Tuning with Reinforcement Learning, pages 253-268. 2015.

[12] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-Molina, J. Gray, J. Held, J. Hellerstein,
H. Jagadish, et al. The asilomar report on database research. SIGMOD record, 27(4):74-80, 1998.

[13] N. Bruno and S. Chaudhuri. Automatic physical database tuning: a relaxation-based approach. In SIGMOD,
pages 227-238, 2005.

[14] S. Ceri, S. Navathe, and G. Wiederhold. Distribution design of logical database schemas. IEEE Trans. Softw.
Eng., 9(4):487-504, 1983.

[15] S. Chaudhuri and V. Narasayya. Autoadmin “what-if”” index analysis utility. SIGMOD Rec., 27(2):367-378,
1998.

[16] S. Chaudhuri and V. Narasayya. Self-tuning database systems: a decade of progress. In VLDB, pages 314,
2007.

[17] S. Chaudhuri and V. R. Narasayya. An efficient cost-driven index selection tool for microsoft SQL server.
In VLDB, pages 146-155, 1997.

[18] S. Chaudhuri and G. Weikum. Rethinking database system architecture: Towards a self-tuning RISC-style
database system. In VLDB, pages 1-10, 2000.

[19] B. Dageville and M. Zait. Sql memory management in oracle9i. In Proceedings of the 28th International
Conference on Very Large Data Bases, VLDB ’02, pages 962-973, 2002.

[20] B. Debnath, D. Lilja, and M. Mokbel. SARD: A statistical approach for ranking database tuning parameters.
In ICDEW, pages 11-18, 2008.

[21] K. Dias, M. Ramacher, U. Shaft, V. Venkataramani, and G. Wood. Automatic performance diagnosis and
tuning in oracle. In CIdR, 2005.

41

[22] D. E. Difallah, A. Pavlo, C. Curino, and P. Cudré-Mauroux. OLTP-Bench: An extensible testbed for
benchmarking relational databases. PVLDB, 7(4):277-288, 2013.

[23] B. Ding, S. Das, R. Marcus, W. Wu, S. Chaudhuri, and V. Narasayya. Ai meets ai: Leveraging query
executions to improve index recommendations. In Proceedings of the 2019 ACM International Conference
on Management of Data, SIGMOD 19, 2019.

[24] S. Duan, V. Thummala, and S. Babu. Tuning database configuration parameters with iTuned. VLDB,
2:1246-1257, August 2009.

[25] G. C. Durand, M. Pinnecke, R. Piriyev, M. Mohsen, D. Broneske, G. Saake, M. S. Sekeran, F. Rodriguez,
and L. Balami. Gridformation: Towards self-driven online data partitioning using reinforcement learning.
aiDM’18, pages 1:1-1:7, 2018.

[26] A. Ganapathi, H. Kuno, U. Dayal, J. L. Wiener, A. Fox, M. Jordan, and D. Patterson. Predicting multiple
metrics for queries: Better decisions enabled by machine learning. In International Conference on Data
Engineering, pages 592-603. IEEE, 2009.

[27] G. Graefe, W. Guy, and C. Sauer. Instant Recovery with Write-Ahead Logging: Page Repair, System Restart,
and Media Restore. Synthesis Lectures on Data Management. Morgan & Claypool Publishers, 2014.

[28] C. Gupta, A. Mehta, and U. Dayal. PQR: Predicting Query Execution Times for Autonomous Workload
Management. In ICAC, pages 13-22, 2008.

[29] H. Gupta, V. Harinarayan, A. Rajaraman, and J. D. Ullman. Index selection for olap. In ICDE, pages
208-219, 1997.

[30] M. Hammer. Self-adaptive automatic data base design. In National Computer Conference, AFIPS *77,
pages 123-129, 1977.

[31] M. Hammer and A. Chan. Index selection in a self-adaptive data base management system. In SIGMOD,
pages 1-8, 1976.

[32] M. Hammer and B. Niamir. A heuristic approach to attribute partitioning. In SIGMOD, pages 93-101, 1979.

[33] B. Hilprecht, C. Binnig, and U. Rohm. Towards learning a partitioning advisor with deep reinforcement
learning. In aiDM @SIGMOD, pages 6:1-6:4, 2019.

[34] S. E. Hudson and R. King. Cactis: A self-adaptive, concurrent implementation of an object-oriented
database management system. ACM Trans. Database Syst., 14(3):291-321, Sept. 1989.

[35] M. Y. L. Ip, L. V. Saxton, and V. V. Raghavan. On the selection of an optimal set of indexes. IEEE Trans.
Softw. Eng., 9(2):135-143, 1983.

[36] O. Ivanov and S. Bartunov. Adaptive cardinality estimation. CoRR, abs/1711.08330, 2017.

[37] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating
correlated joins with deep learning. In CIDR, 2019.

[38] T. Kraska, M. Alizadeh, A. Beutel, E. H. Chi, A. Kristo, G. Leclerc, S. Madden, H. Mao, and V. Nathan.
Sagedb: A learned database system. In CIDR, 2019.

[39] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures. In
Proceedings of the 2018 International Conference on Management of Data, pages 489-504, 2018.

42

[40] S. Kumar. Oracle Database 10g: The self-managing database, Nov. 2003. White Paper.

[41] E. Kwan, S. Lightstone, A. Storm, and L. Wu. Automatic configuration for IBM DB2 universal database.
Technical report, IBM, jan 2002.

[42] E. Kwan, S. Lightstone, A. Storm, and L. Wu. Automatic configuration for IBM DB2 universal database.
Technical report, IBM, jan 2002.

[43] K. D. Levin. Adaptive structuring of distributed databases. In National Computer Conference, AFIPS ’82,
pages 691-696, 1982.

[44] T. Li, M. Butrovich, A. Ngom, W. McKinney, and A. Pavlo. Mainlining databases: Supporting fast
transactional workloads on universal columnar data file formats. 2019. Under Submission.

[45] H. Liu, M. Xu, Z. Yu, V. Corvinelli, and C. Zuzarte. Cardinality estimation using neural networks. CASCON
’15, pages 53-59, 2015.

[46] L. Ma, D. V. Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J. Gordon. Query-based workload forecasting
for self-driving database management systems. In Proceedings of the 2018 ACM International Conference
on Management of Data, SIGMOD 18, 2018.

[47] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil, and N. Tatbul. Neo: A
learned query optimizer. CoRR, abs/1904.03711, 2019.

[48] R. Marcus and O. Papaemmanouil. Deep reinforcement learning for join order enumeration. In
aiDM@SIGMOD, pages 3:1-3:4, 2018.

[49] R. Marcus and O. Papaemmanouil. Plan-structured deep neural network models for query performance
prediction. CoRR, abs/1902.00132, 2019.

[50] R. Marcus and O. Papaemmanouil. Towards a hands-free query optimizer through deep learning. In CIDR
2019, 9th Biennial Conference on Innovative Data Systems Research, 2019.

[51] B. Mozafari, C. Curino, A. Jindal, and S. Madden. Performance and resource modeling in highly-concurrent
oltp workloads. In Proceedings of the 2013 ACM SIGMOD International Conference on Management of
Data, SIGMOD ’13, pages 301-312, 2013.

[52] R. Mukkamala, S. C. Bruell, and R. K. Shultz. Design of partially replicated distributed database systems:
an integrated methodology. SIGMETRICS Perform. Eval. Rev., 16(1):187-196, 1988.

[53] D. Narayanan, E. Thereska, and A. Ailamaki. Continuous resource monitoring for self-predicting DBMS.
In MASCOTS, pages 239-248, 2005.

[54] R. Nehme and N. Bruno. Automated partitioning design in parallel database systems. In SIGMOD,
SIGMOD, pages 1137-1148, 2011.

[55] T. Neumann, T. Miihlbauer, and A. Kemper. Fast serializable multi-version concurrency control for
main-memory database systems. SIGMOD, 2015.

[56] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning state representations for query optimization
with deep reinforcement learning. DEEM’ 18, pages 4:1-4:4, 2018.

[57] A.Pavlo, G. Angulo, J. Arulraj, H. Lin, J. Lin, L. Ma, P. Menon, T. Mowry, M. Perron, I. Quah, S. Santurkar,
A. Tomasic, S. Toor, D. V. Aken, Z. Wang, Y. Wu, R. Xian, and T. Zhang. Self-driving database management
systems. In CIDR 2017, Conference on Innovative Data Systems Research, 2017.

43

[58] A. Pavlo, C. Curino, and S. Zdonik. Skew-Aware Automatic Database Partitioning in Shared-Nothing,
Parallel OLTP Systems. In SIGMOD, pages 61-72, 2012.

[59] A. Pavlo et al. Make Your Database Dream of Electric Sheep: Engineering for Self-Driving Operation.
2019. Under Submission.

[60] A.Pavlo, E. P. Jones, and S. Zdonik. On predictive modeling for optimizing transaction execution in parallel
oltp systems. Proc. VLDB Endow., 5:85-96, October 2011.

[61] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, and M. Young. Machine
learning: The high interest credit card of technical debt. In SE4ML: Software Engineering for Machine
Learning (NIPS 2014 Workshop), 2014.

[62] A. Sharma, F. M. Schuhknecht, and J. Dittrich. The case for automatic database administration using deep
reinforcement learning. CoRR, abs/1801.05643, 2018.

[63] Y. Sheng, A. Tomasic, T. Zhang, and A. Pavlo. Scheduling OLTP transactions via learned abort prediction.
In aiDM@SIGMOD, pages 1:1-1:8, 2019.

[64] D. Silver, A. Huang, C.J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou,
V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap,

M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of go with deep neural
networks and tree search. Nature, 529:484-503, 2016.

[65] A. A. Soror, U. F. Minhas, A. Aboulnaga, K. Salem, P. Kokosielis, and S. Kamath. Automatic virtual
machine configuration for database workloads. In SIGMOD, pages 953-966, 2008.

[66] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - DB2’s LEarning Optimizer. In Proceedings of
the 27th International Conference on Very Large Data Bases, VLDB ’01, pages 19-28, 2001.

[67] A.J. Storm, C. Garcia-Arellano, S. S. Lightstone, Y. Diao, and M. Surendra. Adaptive self-tuning memory
in DB2. In VLDB, pages 1081-1092, 2006.

[68] D. G. Sullivan, M. 1. Seltzer, and A. Pfeffer. Using probabilistic reasoning to automate software tuning.
SIGMETRICS, pages 404405, 2004.

[69] T.Hastie, R.Tibshirani, and J.Friedman. The Elements of Statistical Learning. Springer, 2001.

[70] W. Tian, P. Martin, and W. Powley. Techniques for automatically sizing multiple buffer pools in DB2. In
CASCON, pages 294-302, 2003.

[71] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and A. Skelley. DB2 advisor: an optimizer smart enough to
recommend its own indexes. In ICDE, pages 101-110, 2000.

[72] D. Van Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic database management system tuning through
large-scale machine learning. In Proceedings of the 2017 ACM International Conference on Management of
Data, SIGMOD ’17, pages 1009-1024, 2017.

[73] G. Weikum, C. Hasse, A. Monkeberg, and P. Zabback. The COMFORT automatic tuning project. Information
Systems, 19(5):381-432, July 1994.

[74] G. Weikum, A. Moenkeberg, C. Hasse, and P. Zabback. Self-tuning database technology and information
services: From wishful thinking to viable engineering. In Proceedings of the 28th International Conference
on Very Large Data Bases, VLDB ’02, pages 20-31, 2002.

44

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

D. Wiese, G. Rabinovitch, M. Reichert, and S. Arenswald. Autonomic tuning expert: A framework for
best-practice oriented autonomic database tuning. In Proceedings of the 2008 Conference of the Center for
Advanced Studies on Collaborative Research: Meeting of Minds, CASCON ’08, pages 3:27-3:41, 2008.

L. Woltmann, C. Hartmann, M. Thiele, D. Habich, and W. Lehner. Cardinality estimation with local deep
learning models. In aiDM @SIGMOD, pages 5:1-5:8, 2019.

B. Xi, Z. Liu, M. Raghavachari, C. H. Xia, and L. Zhang. A smart hill-climbing algorithm for application
server configuration. In WWW, pages 287-296, 2004.

C.T. Yu, C.-m. Suen, K. Lam, and M. K. Siu. Adaptive record clustering. ACM Trans. Database Syst.,
10(2):180-204, June 1985.

B. Zhang, D. V. Aken, J. Wang, T. Dai, S. Jiang, J. Lao, S. Sheng, A. Pavlo, and G. J. Gordon. A
demonstration of the ottertune automatic database management system tuning service. PVLDB, 11(12):1910-
1913, 2018.

J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang, T. Cheng, L. Liu, M. Ran, and Z. Li.
An end-to-end automatic cloud database tuning system using deep reinforcement learning. In Proceedings
of the 2019 ACM International Conference on Management of Data, SIGMOD ’19, 2019.

T. Zhang, A. Tomasic, Y. Sheng, and A. Pavlo. Performance of OLTP via intelligent scheduling. In ICDE,
pages 1288-1291, 2018.

D. C. Zilio, J. Rao, S. Lightstone, G. Lohman, A. Storm, C. Garcia-Arellano, and S. Fadden. DB2 design
advisor: integrated automatic physical database design. In VLDB, pages 1087-1097, 2004.

45

Learning Data Structure Alchemy

Stratos Idreos Kostas Zoumpatianos Subarna Chatterjee Wilson Qin Abdul Wasay
Brian Hentschel Mike Kester Niv Dayan Demi Guo Minseo Kang Yiyou Sun

Harvard University

Abstract

We propose a solution based on first principles and Al to the decades-old problem of data structure design.
Instead of working on individual designs that each can only be helpful in a small set of environments, we
propose the construction of an engine, a Data Alchemist, which learns how to blend fine-grained data
structure design principles to automatically synthesize brand new data structures.

1 Computing Instead of Inventing Data Structures

What do analytics, machine learning, data science, and big data
systems have in common? What is the major common component
for astronomy, biology, neuroscience, and all other data-driven
and computational sciences? Data structures.

Data structures are one of the most fundamental areas of
computer science. They are at the core of all subfields, includ-
ing data systems, compilers, operating systems, human-computer
interaction systems, networks, and machine learning. A data
structure defines how data is physically stored. For all algo-
rithms that deal with data, their design starts by defining a
data structure that minimizes computation and data movement
[1, 10, 37, 31, 63, 65, 97, 98, 22]. For example, we can only
utilize an optimized sorted search algorithm if the data is sorted
and if we can maintain it efficiently in such a state.

,,,

Data
Access Patterns

Hardware)

Cloud costs
Read Memory

Figure 1: Design trade-offs.

A Hard, Open, and Continuous Problem. Since the early days of computer science dozens of new data
structures are published every year. The pace has increased over the last decade, with 50-80 new data structures
yearly according to data from DBLP [25]. This is because of 1) the growth of data, 2) the increasing number
of data-driven applications, 3) more fields moving to a computational paradigm where data collection, storage,
and analysis become critical, and 4) hardware changes that require a complete redesign of data structures and
algorithms. Furthermore, for the past several decades, the hardware trend is that computation (e.g., CPUs, GPUs)
becomes increasingly faster relative to data movement (e.g, memory, disks). This makes data structure design
ever more critical as the way we store data dictates how much data an algorithm moves.

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

46

There Is No Perfect Data Structure Design. Each design is a compromise among the fundamental trade-
offs [10]: read, update, and memory amplification. This is depicted visually in Figure 1. Read amplification is
how much excess data an algorithm is forced to read; due to hardware properties such as page-based storage, even
when reading a single data item, an algorithm has to load all items of the respective page. Write amplification is
how much excess data an algorithm has to write; maintaining the structure of the data during updates typically
causes additional writes. Memory amplification is how much excess data we have to store; any indexing that helps
navigate the raw data is auxiliary data. Overall, this complex three-way tradeoff causes each design to be effective
for only specific workloads [10]. For example, a Log-Structured Merge-tree (LSM-tree) relies on batching and
logging data without enforcing a global order. While this helps with writes, it hurts reads since now a single read
query (might) have to search all LSM-tree levels. Similarly, a sorted array enforces an organization in the data
which favors reads but hurts writes, e.g., inserting a new item in a sorted (dense) array requires rewriting half the
array on average. In this way, there is no universally good design. To get good performance, the design of a data
structure has to be tailored to the data, queries, and hardware of the target application.

The Vast Design Space Slows Progress. The design of a data structure consists of 1) a data layout, and 2)
algorithms that support basic operations (e.g., put, get, update). The data layout design itself may be further
broken down into 1) the base data layout, and 2) an index which helps navigate the data, i.e., the leaves of a
Btree and its inner nodes, or the buckets of a hash table and the hash-map. We use the term data structure design
throughout the proposal to refer to the overall design of the base data layout, indexing, and the algorithms together.
A data structure can be as simple as an array or as arbitrarily complex as using sophisticated combinations of
hashing, range and radix partitioning, careful data placement, and encodings. There are so many different ways to
design a data structure and so many moving targets that it has become a notoriously hard problem; it takes several
months even for experts to design and optimize a new structure. Most often, the initial data structure decisions
for a data-intensive system remain intact; it is too complex to redesign a data structure, predict what its impact
would be as workload and hardware change, implement it, and integrate it within a complex system or pipeline.
Along the same lines, it is very hard to know when and why the core data structure within a complex system will
“break”, i.e., when performance will drop below an acceptable threshold.

The Problem In Sciences. For data-driven fields without computer science expertise, these low-level choices
are impossible to make. The only viable solution is using suboptimal off-the-shelf designs or hiring expensive
experts. Data science pipelines in astronomy, biology, neuroscience, chemistry and other emerging data-driven
scientific fields, exhibit exactly those characteristics [88, 89]. Recognizing these needs, new systems with novel
storage schemes appear continuously for targeted problems [28, 75, 82, 83, 96] and exploratory workloads
[54, 92, 39, 45]. However, given the vast design space (we provide more intuition on that later), the likelihood
that a single off-the-shelf data structure fits an evolving and complex scientific scenario with unpredictable and
exploratory access patterns, is extremely small. We include a relevant quote from Efthimios Kaxiras, Prof. of Pure
and Applied Physics at Harvard University: “In chemistry and materials science, there exist a huge number of
possible structures for a given chemical composition. Scientists are struggling to find ways to sort through these
structures in an efficient way. The development of tailored database platforms would open great opportunities for
new research in materials and molecular design.”

The Problem In Business. For both established companies and data-driven startups, the complexity leads to
a slow design process and has severe cost side-effects [14, 18]. Time to market is of extreme importance, so data
structure design stops when a design “is due” and only rarely when it “is ready”. We include a quote from Mark
Callahan, a data systems architect with more than two decades of experience: “Getting a new data structure into
production takes years. Assumptions made about the workload and hardware are likely to change. Decisions
today are frequently based on expert opinions, and these experts are in short supply.”

The Problem In Clouds. In today’s cloud-based world even slightly sub-optimal designs, e.g., by 1%,
translate to a massive loss in energy utilization [61] for the cloud provider and cloud expenses for the user. This
implies two trends. First, getting as close to the optimal design is as critical as ever. Second, the way a data
structure design translates to cost needs to be embedded in the design process, i.e., being able to trade among

47

read, write, and memory as the relative costs of these resources change. Furthermore, cost policies can vary
significantly among cloud providers which implies that for the same data, queries, and hardware, the optimal data
structure can be different across different cloud providers. In sciences, for universities and labs that maintain their
own cluster and thus are affected by energy costs, or use cloud infrastructure and thus are affected by operating
costs, it is critical to manage those costs.

The Research Challenge. The long-term challenge is whether we can easily or even automatically find the
optimal storage design for a given problem. This has been recognized as an open problem since the early days of
computer science. In his seminal 1978 paper, Turing award winner Robert Tarjan includes this problem in his list
of the five major challenges for the future (which also included P vs. N P) [90]: “Is there a calculus of data
structures by which one can choose the appropriate data representation and techniques for a given problem?” .
This is exactly the problem we attack. We identify the source of the problem to be that there is currently no
good way to predict the performance impact of new workloads, hardware, and data structure designs; we need
a full implementation and extensive testing. Similarly, there is no good way to enumerate the possible designs
so we can choose among them. We make three critical observations.

1. Each data structure design can be described as a set of design concepts. These are all low-level design
decisions, such as using partitioning, pointers, or direct addressing.

2. Each new data structure can be classified in two ways: it contains a) a new combination or tuning of
existing design concepts, or b) at least one new design concept.

3. By now the research community has invented so many fundamental design concepts that most new designs
are combinations or tunings of existing concepts.

Thesis: If we knew the possible design space of data structures, i.e., the exhaustive set of fundamental design
principles, and the performance properties we get when we synthesize them in arbitrary (valid) permutations,
then we can create an engine that allows us to reason about every design, no matter how complex. The challenge
then translates to being able to search the massive design space.

Data Structure Alchemy. We set out to discover the first prin-
ciples of data structure design and develop algorithms to search
through the massive design space they form. Our goal is to be able
to reason about their combinations, tunings, and the performance
777777777777777 de;% i properties they bring. Effectively, the principles and their structure

% Fatdareaupy /“:’P*M .+ form a “grammar” with which we can describe any data structure in
‘2 design sp " a systematic way, including designs that have not been discovered
92 =~ Z"dce yet. New designs can be “calculated” from the design space given

g = . :;j' ! — = constraints such as the expected workload, and hardware environ-
ment. If we focus on understanding and managing the core design
elements, then new designs can be derived and existing designs can
be transformed as if by magic - thus “alchemy”.

The vision and components of the engine we propose are captured in Figure 2. We call this engine the Data
Alchemist. Its functionality is to design a close-to-optimal data structure given a workload and hardware. The
Data Alchemist takes four inputs: 1) the workload (queries and data) for which we would like to design an
effective data structure, 2) a hardware profile where the data structure is expected to live, 3) optional performance
and budget restrictions (e.g., point queries should be answered < .3 seconds), and 4) optional constraints for the
search algorithms such as acceptable distance to the estimated optimal, a cap for the search time, and an initial
design to bootstrap the search. Then, the Data Alchemist outputs the resulting data structure design (abstract
syntax tree) and its implementation in C++ code.

The architecture of the Data Alchemist gives us a clear path and methodology to make a dent in the decades-
old problem of data structure design. Specifically, it boils down to the following contained challenges: 1)

Design Primitives

Figure 2: Design from first principles.

48

identifying the fundamental design principles, 2) creating methods that can estimate the behavior of full designs
that blend more than one design primitives, and 3) creating practical search algorithms that utilize the previous
two components and input constraints to generate designs automatically. In the rest of this paper, we summarize
our existing work towards the first two goals and we focus on sketching the main research challenges and describe
ideas on how to approach the goal of automated design.

2 Design Space and Cost Calculation via Model Synthesis.

Blending Design Principles. The core idea is that the Data Alchemist contains a library of first principles which
can be synthesized in arbitrary ways to give full data structure designs within a massive design space. We define
the design of a data structure as the set of all decisions that characterize its data layout and algorithms, e.g.,
“Should data nodes be sorted?”, “Should they use pointers?”, and “How should we scan them exactly?”. We define
a first principle as a design concept that is not possible to break into more fine-grained concepts. For example,
consider the design choice of linking two nodes of a data structure with a pointer. While there are potential tuning
options (e.g., the size of the pointer), it is not possible to break this decision further; we either introduce a pointer
or not. We separate design principles that have to do with the layout of a data structure from those that have to do
with how we access the data. The bottom part of Figure 2 shows examples of data layout and access primitives for
the key-value model. Overall, a core part of our effort is in analyzing how fine-grained data structure principles
behave in terms of critical performance metrics: read, write, concurrency, and storage size. We build models
for those behaviors, and then develop methods that synthesize more complex data structure designs by putting
together the models of multiple fine-grained design principles.

We made a step toward towards this goal by introducing the design space of data structures supporting the
key-value model [47]. The design space of data structures is defined by all designs that can be described as
combinations and tunings of the “first principles of data layout design”. As an analogy consider the periodic table
of elements in chemistry; it sketched the design space of existing elements based on their fundamental components,
and allowed researchers to predict the existence of unknown, at the time, elements and their properties, purely by
the structure of the design space. In the same way, we created the periodic table of data structures [46] which
describes more data structure designs than stars on the sky and can be used as a design discovery guide.

Naturally, a design space does not necessarily describe ““all possible data structures”; a new design concept
may be invented and cause an exponential increase in the number of possible designs. However, after 50 years
of computer science research, the chances of inventing a fundamentally new design concept have decreased
exponentially; many exciting innovations, in fact, come from utilizing a design concept that, while known, it was
not explored in a given context before and thus it revolutionizes how to think about a problem. Using Bloom
filters as a way to filter accesses in storage and remote machines, scheduling indexing construction actions lazily
[41], using ML models to guide data access [63], storage [55] and other system components [62], can all be
thought of as such examples. Design spaces that cover large fundamental sets of concepts can help accelerate
progress with figuring out new promising directions, and when new concepts are invented they can help with
figuring out the new possible derivative designs. For example, using models as part of the data structure design is
an exciting recent idea, e.g., to replace the index layer or part of it [63, 62]. Such design options can become part
of the design space for a more holistic design [43].

Algorithm and Cost Synthesis from Learned Cost Models. To fully utilize the knowledge of the vast
design space we need to be able to compare different designs in terms of expected performance. Complexity
analysis explains how the properties of a design scale with data but does not give a precise performance
computation given a workload and hardware. On the other hand, full implementation and testing on the target
workload and hardware provide the exact performance. The combination of both complexity analysis and
implementation gives the complete picture. The problem is that with so many designs possible in the design space,
it is not feasible to analyze, implement, and test the numerous valid candidates. A less explored option is building

49

High confidence

,,,,,,, ----------~_ Update design Design Search
! Partial design ! R Iterative Search
I i AR/
Il 1 e
1 ! Output
i — .
| i Design Continuums Memoization k L
! ' . Data structure
[’ i East analytical : E Reinforcement 3
! (R ! model optimisation H/W Pruning Learning i design
I i
i i
i i
] i
i i
I i

|

Input 2 2
5 E|§ £
g < & 85| 5
u Workload % t N a8 5
£ s 2 £ E|l <
] VoY © ol Bl ©
D Hardware 2 o Expert Rules 8 g 2 %
Q ! o8
E ! Cs\:)r‘rj::v Not yet solved Is it a design 1 = o AST
g ! continuum? B
SLA: o P L Lt LE T T R 4 @
0 S =g Tl
8 Systematically evaluate Estimation/ %
Performance 2 Node by node various designs Synthesis & c++ I
Constraints * design process for each node (/X))
- Initial design s Otherwise
- Time threshold
- Distance to optimal . - -
Layout Primitives Overall Designs Data Access Primitives Cost Synthesizer Equality Scan
s P SOLRLETET PR T e N Serial Scan Machine Learnin
{ Data Node (Element) o 0T Fter ey 3 (N o 9
: Design Space & el 48 : — K Equality Scan] Micro-benchmarks train
: & N 1 5 Y £ ;
: & « False 1%, "\ b T : 3] models on different hardware | : g, S
Key Value : Node has DA s N [: ER 5 profiles, ange Scan
Data Structures ~ : partitioning? ' ‘(\i\\‘*&b . . Y : r—(Range Scan S -
: [¥] : e} A .,
: Node has ' (I : : 3 fol J@)rErretie=n Code
<k v> =] Bloom filters? [Y N ‘9) Sorted Search g {3} f@) =az+b = Generator
: = A [, i %t 1 . : o
: Node has v | ® : Binary Search L Binary Search
i | Zone maps? -~ - 1 /
' 3 Random Probe
- . 3 Design T Hardware Profiles LN =30
: Data Node (Element) : Space [- =] —
: Library P E |
) @ e ® i 1 (Operation Synthesis (R
P : : Operation Synthesis (Level 1) Hardware Conscious Synthesis (Level 2)
P\ \ E/ Z\? ! %‘D %c} Level 1to g»- %. < Space
D BiTree e ® o 3’: Level 2 Efficiency
Uinternal BT pegign) i] 00 QD © pRten ?1 ® e Optimization
: Internal Continuums Data Page 1 L Put Get Delete Bulk Load Put Get Delete Bulk Load
{ D_EEE_DConcurrency & Updates =—0 } L)

Generalized Cost and Algorithm Synthesis

Data Layout and |ndex Synthesi . @
ﬁlgure “The Data Alchemist architecture.

generalized hardware-conscious cost models [70, 97]. Similar to a full implementation, such models provide
results very close to ground truth, and similar to complexity analysis they provide hints on how performance
scales. However, building generalized models is nearly equally hard to a full implementation given the level of
detail and hardware-conscious properties needed [56]. In addition, any change in hardware properties requires
retuning the model. Overall, arguing formally about the performance of diverse data structures designs, especially
as workload and hardware properties change, is a notoriously hard problem [16, 56, 70, 91, 97, 99, 100]. In our
case we want to perform this task for a massive number of candidate designs concurrently.

We have shown that given a data structure definition that describes its layout, it is possible to automatically
design the data access algorithms and compute their cost by synthesizing operations from fundamental access
primitives on blocks of data [47, 48]. There always exists a one-to-one mapping from a basic data layout to a
high-level access pattern, e.g., if a data block is sorted we can utilize a sorted search. However, the performance
that we would get out of a sorted search depends on 1) the exact algorithm (binary search, interpolation search,
etc.), 2) the specific hardware, and 3) the exact engineering (e.g., using a new set of SIMD instructions). The
Data Alchemist will synthesize the detailed algorithm and compute the cost via a hybrid of analytical models,
implementation, and machine learning. We call these learned cost models. For each generic class of access
pattern (e.g., sorted search) on a block of data there exist many instances of algorithms and implementations.
These are short implementations that capture the exact access pattern. For example, for a binary search, the
implementation consists of an array of sorted integers where we perform a series of searches. During a training
phase, this code runs on the desired hardware and we learn a model as data scales (across the memory hierarchy).
Each model captures the subtle performance details of diverse hardware settings and the exact engineering used
to build the code for each access pattern. To make training easier, our models start as analytical models since
we know how these access patterns will likely behave. Using learned cost models, it is possible to compute the
accurate performance even in the presence of skew, capturing caching effects and other hardware and workload
properties [47, 48]. The bottom right part of Figure 2 depicts examples of access principles and cost synthesis.

50

3 Learning to Design Data Structures

Once we know what performance we get when we blend two or more design principles, then the next big challenge
is to design algorithms that can try out different combinations to reach a good result in terms of performance (e.g.,
response time, storage space, budget). The design space, however, is not enough. The problem is that the design
space is truly vast. For example, only for the key-value model [47, 48] and without considering the extended
design space needed for updates, concurrency control, and ML models, we estimate that the number of possible
valid data structure designs explodes to >> 1032 even if we limit the overall design to only two different kinds of
nodes (e.g., as is the case for BT tree).

Thus, it is hard even for experts to “see” the optimal solutions even if we give them the design space. We need
search algorithms that navigate the possible design space to automatically design data structures which
are close to the best option (if not the best) given a desired workload and hardware. Using brute force and even
dynamic programming variations leads to either impractical search times or we can only search through a small
part of the design space. We study the properties of the design space as well as the properties of the applications
using data structures to turn the search process into a tractable problem in practice. Our solutions lie in
machine learning based algorithms that utilize model synthesis, hardware-conscious termination triggers, expert
knowledge to lead the search algorithms in the right direction, and when possible closed-form models to quickly
search within sub-spaces of the larger space. Our agenda involves designing four components:

1. Design Continuums that allow us to search fast within pockets of the design space.
2. Performance Constraints that provide application, user, and hardware based bounds.
3. Learned Shortcuts to accelerate a new search by learning from past results.

4. Practical Search Algorithms that utilize continuums, constraints, and shortcuts.

The overall search functionality is depicted at the top of Figure 2 and allows building and experimenting with
many variations of search algorithms, constraints, and continuums. The high-level idea is that these algorithms
treat the design space components of the Data Alchemist (bottom part of Figure 2) as a black box to try out
different combinations of design principles. For each combination, the estimated performance feeds into the
search algorithm’s policy. Next we describe each one of four components in more detail to discuss the vision and
preliminary results.

Design Continuums. A key ingredient in any algorithm is to induce domain-specific knowledge. Our insight
is that there exist “design continuums” in the design space of data structures which can accelerate the search
algorithms. An intuitive way to think of design continuums is as a performance hyperplane that connects a subset
of data structure designs. It can be thought of as a super-structure that encapsulates all those designs by taking
advantage of the notion that those designs are synthesized from the same set of fundamental principles.

A design continuum contains a set of rules to instantiate each one of its members and crucially a cost model
with a single closed-form equation for each one of the core performance metrics (read, write, memory size)
which applies across all member designs. In turn, closed-form models can be computed instantly to reason about
this part of the design space. Thus we can search that part of the design space quickly to augment the search
algorithms.

We introduced the first design continuum that connects a set of key-value structures [40]. Specifically, we have
shown that it is possible to connect diverse designs including Tiered LSM-tree [50, 20, 21, 24, 64], Lazy Leveled
LSM-tree [23], Leveled LSM-tree [73, 20, 27, 30], COLA [13, 52], FD-tree [66], B¢tree [15, 8, 13, 51, 52, 76],
and Bttree [12].

Our goal is to discover and formalize as many design continuums as possible and connect them to our search
algorithms such that when a search algorithm “hits” a continuum, it can instantaneously get the best design within
that space using the closed-form models as shown at the top part of Figure 2. One of the most exciting challenges
here is to formalize design continuums that are based as much as possible on average case analysis as opposed to

51

worst case as in [40]. This requires building unifying models that take into account properties such as data and
query distribution as well as the state of the target data structure in a workload that contains a sequence of steps.

Additional opportunities in creating ‘“searchable” pockets of the design space include the use of integer
solvers. This is for small parts of the design space which are potentially hard to formalize in a continuum but
can be modeled as an integer problem. For example, consider partitioning of an array for optimal performance
of a mix of point read, range read, update, delete, and insert operations. This is a small space that needs to
be navigated by most data structures which contain blocks of data and partitioning can be a good option for
each block. Each operation benefits or is hurt by partitioning in a different way, and so finding the right layout
depending on the workload is a delicate balance. This problem can be mapped as a binary integer optimization
problem and assigned directly to an integer solver. The Data Alchemist may contain numerous “searchable
pockets” in the design space each one relying either on closed-form formulas or integer solvers.

Performance Constraints. The larger the number of continuums we manage to create, the more tractable
the search process becomes. However, due to the complexity of the design space, we expect that we will be able
to generate many small continuums rather than few big ones (in terms of the number of designs they contain).
As such, given the astronomical size of the design space, search algorithms will intuitively still have a massive
number of candidates to consider. To provide the next level of speed-up we are working towards performance
constraints that bound search algorithms based on application, hardware and user context.

First, we observe that the ultimate possible performance is limited by the underlying hardware in any
given scenario. For example, if an application or a researcher/engineer enter a query to the Data Alchemist to find
a good data structure design on hardware H, then immediately we can consult the learned models which were
trained on H for the best read, and write performance possible, e.g., reading or writing a single page from disk
for a point read or write. Once a search algorithm finds a design within k% of these hardware imposed bounds, it
can stop trying to improve as no further substantial improvements are possible. Parameter k% can be exposed as
input as it is an application/user level decision.

Another performance constraint is to use a data structure design (full or partial) that the user suggests as
starting point. This allows to induce expert and application knowledge in the search algorithm. The search process
then can auto-complete the design without having to reconsider the initial decisions (this feature can also be
used to detect a “bad” original design). Other examples of constraints include a time bound on the overall time a
search algorithm should run, i.e., returning a best effort result once this time passes as well as returning top-k
results which includes classes of promising design decisions it did not have time to consider. The top left and
central part of Figure 2 shows examples of constraints and how they can be used as part of a search algorithm to
accelerate the search.

Learned Shortcuts. Another critical component to speed up the search algorithms is learning from past
results. We design and employ diverse neural network ensamples which are fed by an embedding generated using
the input query, data, and hardware of every request and then it is “labeled” by the resulting output data structure
design. Our goal is to create shortcuts through supervised learning that can practically instantly answer future
queries without going through the search process, or alternatively the output of the neural network can work as a
good starting point for a search. The top left part of Figure 2 shows how this fits in a search algorithm. Our work
also includes accelerating the training and inference of neural network ensamples to achieve interactive speed and
quick reaction to new workloads [93].

Algorithms. We design black box optimization algorithms that utilize continuums, constraints, and shortcuts
to find a good design as fast as possible given a request. This includes Genetic Algorithms (GA) [44], Bayesian
Optimization (BO), and Deep Reinforcement Learning (DRL). There are numerous challenges. For example, let
us consider reinforcement learning. First, we must formalize the space of actions and rewards in data structure
design. We experiment with both policy-based approaches that design the entire data structure at a time, and
action-based approaches that design individual nodes at a time as well as hybrids. One approach is to model the
design of a data structure as a multi-armed bandit problem. That is, we have a design space of design decisions
that can be synthesized to a massive number of “design elements” as shown in Figure 2. Each element can be

52

seen as a bandit that can be chosen for any node of a data structure. Then, the problem is bounded by the number
of different types of nodes we would like to include in the final data structure design. For example, the majority
of the published key-value data structures consist of two node types, the index and the data, with Masstree [71]
and Bounded Disorder [67] being exceptions that consist of three types of node. With the Data Alchemist we
have the opportunity to explore designs with an arbitrary number of node types.

We expect that no single algorithm will be a universal solution. This is because of the core principles
of how these families of algorithms behave in terms of convergence and response time. In the case of GA,
exploration happens through mutation, exploitation is a result of the crossover and the selection process, whereas
history is maintained implicitly through the surviving population. When it comes to BO, exploration happens by
selecting solutions with high variance (i.e., solutions we are less certain about), exploitation, on the other hand,
happens through selecting solutions with high mean (i.e., solutions we are quite sure about). History is maintained
by a combination of the acquisition function and the probabilistic model. Finally, DRL makes conditional choices
to explore the solution space, picks solutions with a high expected reward to exploit existing knowledge, and
history is maintained in a deep neural network. As such, they all behave differently depending on the complexity
of the problem at hand, desired span of the search through the design space, convergence speed, and the desired
properties of the resulting data structure design (robustness vs. ultimate performance). The Data Alchemist
incorporates several algorithms as shown at the top part of Figure 2 and choose the right one depending on the
context.

Learned Models for Complex Patterns. The Data Alchemist constructs the cost of data structure designs
out of fine-grained primitives for which it knows learned models. However, a complex design inevitably loses
accuracy when synthesized out of many models. A solution is to generate the code for sets of design primitives
and learn a single compound model for all of them via on-the-fly experiments during the search algorithm (there
are too many possible compound models to train for all of them a priori). Results can also be cached in the
learned models library for future use. Such compound models can increase the accuracy of the search algorithms,
leading to better data structure designs. We build a compiler to generate this code by directly utilizing the fact
that we already have the code of the individual learned models in the library. This compiler can also be used to
output starter code for the resulting design of a search using the abstract syntax tree of the design and the code of
the learned models that were chosen by the search algorithm. This makes it easier to adopt, extend, and fine-tune
designs.

4 Inspiration

Our work is inspired by numerous efforts that also use first principles and clean abstractions to understand
a complex design space. John Ousterhout’s project Magic allows for quick verification of transistor designs
so that engineers can easily test multiple designs synthesized by basic concepts [74]. Leland Wilkinson’s
“grammar of graphics” provides structure and formulation on the massive universe of possible graphics [95].
Timothy G. Mattson’s work creates a language of design patterns for parallel algorithms [72]. Mike Franklin’s
Ph.D. thesis explores the possible client-server architecture designs using caching based replication as the main
design primitive [29]. Joe Hellerstein’s work on Generalized Search Trees makes it easy to design and test
new data structures by providing templates which expose only a few options where designs need to differ
[37, 6, 7, 58, 57, 59, 60]. S. Bing Yao’s [97] and Stefan Manegold’s [70] work on generalized hardware
conscious cost models showed that it is possible to synthesize the costs of complex operations from basic access
patterns. Work on data representation synthesis in programming languages enables synthesis of representations
out of small sets of (3-5) existing data structures [79, 80, 19, 86, 84, 35, 34, 69, 87]. Work on tuning [49, 17]
and adaptive systems is also relevant as conceptually any adaptive technique tunes along part of the design
space. For example, work on hybrid data layouts and adaptive indexing automates selection of the right layout
[9, 3, 33, 41, 26, 81, 4, 68, 20, 78, 32, 77, 101, 42, 53, 85]. Similarly works on tuning via experiments [11],

53

learning [6], and tuning via machine learning [2, 36] can adapt parts of a design using feedback from tests.

S Summary and Future Steps

We describe the path toward automating data structure invention and design from first principles and Al. The
secret sauce is in finding the first principles of design, mapping the design space that they form, being able to
reason about the expected performance of designs, and finally building practical Al algorithms that can navigate
this space to design new data structures. Searching the whole massive space is not likely possible so the key is in
translating as much design and application knowledge into the search algorithms. Our ongoing efforts include
applying this same methodology of first principles and Al beyond traditional key-value structures, focusing on
forming the design space of statistics computation [94], neural networks [93], and sketches [38].

References

(1]

(2]

(3]
(4]

(3]

(6]
(7]

(8]
(9]

(10]

(1]

[12]

[13]

(14]

[15]
[16]

(17]
(18]

D. J. Abadi, P. A. Boncz, S. Harizopoulos, S. Idreos, and S. Madden. The Design and Implementation of Modern
Column-Oriented Database Systems. Foundations and Trends in Databases, 5(3):197-280, 2013.

D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic Database Management System Tuning Through
Large-scale Machine Learning. ACM SIGMOD, 2017.

I. Alagiannis, S. Idreos, and A. Ailamaki. H20: A Hands-free Adaptive Store. ACM SIGMOD, 2014.

V. Alvarez, F. M. Schuhknecht, J. Dittrich, and S. Richter. Main Memory Adaptive Indexing for Multi-Core Systems.
DAMON, 2014.

M. R. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M. J. Cafarella, A. Kumar, F. Niu, Y. Park, C. Ré, and C. Zhang.
Brainwash: A Data System for Feature Engineering. CIDR, 2013.

P. M. Aoki. Generalizing ”Search” in Generalized Search Trees (Extended Abstract). IEEE ICDE, 1998.

P. M. Aoki. How to Avoid Building DataBlades That Know the Value of Everything and the Cost of Nothing. SSDBM,
1999.

L. Arge. The Buffer Tree: A Technique for Designing Batched External Data Structures. Algorithmica, 2003.

J. Arulraj, A. Pavlo, and P. Menon. Bridging the Archipelago between Row-Stores and Column-Stores for Hybrid
Workloads. ACM SIGMOD, 2016.

M. Athanassoulis, M. S. Kester, L. M. Maas, R. Stoica, S. Idreos, A. Ailamaki, and M. Callaghan. Designing Access
Methods: The RUM Conjecture. EDBT, 2016.

S. Babu, N. Borisov, S. Duan, H. Herodotou, and V. Thummala. Automated Experiment-Driven Management of
(Database) Systems. HotOS, 2009.

R. Bayer and E. M. McCreight. Organization and Maintenance of Large Ordered Indexes. ACM SIGFIDET Workshop
on Data Description and Access, 1970.

M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. Fogel, B. C. Kuszmaul, and J. Nelson. Cache-Oblivious
Streaming B-trees. SPAA, 2007.

P. A. Bernstein and D. B. Lomet. CASE Requirements for Extensible Database Systems. IEEE Data Engineering
Bulletin, 10(2):2-9, 1987.

G. S. Brodal and R. Fagerberg. Lower Bounds for External Memory Dictionaries. SODA, 2003.

A. F. Cardenas. Evaluation and Selection of File Organization - a Model and System. Communications of the ACM,
(9):540-548, 1973.

S. Chaudhuri, V. R. Narasayya. An Efficient Cost-Driven Index Selection Tool for Microsoft SQL Server. VLDB’97.
A. Cheung. Towards Generating Application-Specific Data Management Systems. CIDR, 2015.

54

(19]
(20]
(21]
(22]

(23]

[24]
[25]
(26]
(27]
(28]

[29]

(30]
(31]
(32]
(33]
[34]
(35]
(36]

(37]
(38]

[39]
(40]

[41]
[42]
[43]

[44]
[45]
[46]

[47]

(48]

D. Cohen and N. Campbell. Automating Relational Operations on Data Structures. IEEE Software, 1993.
N. Dayan, M. Athanassoulis, and S. Idreos. Monkey: Optimal Navigable Key-Value Store. ACM SIGMOD, 2017.
N. Dayan, M. Athanassoulis, S. Idreos. Optimal Bloom Filters and Adaptive Merging for LSM-Trees. TODS’18.

N. Dayan, P. Bonnet, and S. Idreos. GeckoFTL: Scalable Flash Translation Techniques For Very Large Flash Devices.
ACM SIGMOD, 2016.

N. Dayan and S. Idreos. Dostoevsky: Better Space-Time Trade-Offs for LSM-Tree Based Key-Value Stores via
Adaptive Removal of Superfluous Merging. ACM SIGMOD, 2018.

N. Dayan and S. Idreos. The log-structured merge-bush & the wacky continuum. ACM SIGMOD, 2019.
DBLP. Computer Science Bibliography. https.://dblp.uni-trier.de, 2019.

J. Dittrich and A. Jindal. Towards a One Size Fits All Database Architecture. CIDR, 2011.

Facebook. RocksDB. https://github.com/facebook/rocksdb.

R. C. Fernandez, Z. Abedjan, F. Koko, G. Yuan, S. Madden, and M. Stonebraker. Aurum: A data discovery system.
IEEE ICDE, 2018.

M. J. Franklin. Caching and Memory Management in Client-Server Database Systems. PhD thesis, University of
Wisconsin-Madison, 1993.

Google. LevelDB. https://github.com/google/leveldb/.

G. Graefe. Modern B-Tree Techniques. Foundations and Trends in Databases, 3(4):203—-402, 2011.

G. Graefe, F. Halim, S. Idreos, H. Kuno, S. Manegold. Concurrency control for adaptive indexing. PVLDB’12.

R. A. Hankins and J. M. Patel. Data Morphing: An Adaptive, Cache-Conscious Storage Technique. VLDB, 2003.
P. Hawkins, A. Aiken, K. Fisher, M. C. Rinard, and M. Sagiv. Concurrent data representation synthesis. PLDI, 2011.
P. Hawkins, A. Aiken, K. Fisher, M. C. Rinard, and M. Sagiv. Data Representation Synthesis. PLDI, 2011.

M. Heimel, M. Kiefer, and V. Markl. Self-Tuning, GPU-Accelerated Kernel Density Models for Multidimensional
Selectivity Estimation. ACM SIGMOD, 2015.

J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Generalized Search Trees for Database Systems. VLDB, 1995.

B. Hentschel, M. S. Kester, and S. Idreos. Column Sketches: A Scan Accelerator for Rapid and Robust Predicate
Evaluation. ACM SIGMOD, 2018.

S. Idreos. Big Data Exploration. In Big Data Computing. Taylor and Francis, 2013.

S. Idreos, N. Dayan, W. Qin, M. Akmanalp, S. Hilgard, A. Ross, J. Lennon, V. Jain, H. Gupta, D. Li, and Z. Zhu.
Design continuums and the path toward self-designing key-value stores that know and learn. CIDR, 2019.

S. Idreos, M. L. Kersten, and S. Manegold. Database Cracking. CIDR, 2007.
S. Idreos, M. L. Kersten, S. Manegold. Self-organizing Tuple Reconstruction in Column-Stores. ACM SIGMOD’ (9.

S. Idreos and T. Kraska. From auto-tuning one size fits all to self-designed and learned data-intensive systems. ACM
SIGMOD, 2019.

S. Idreos, L. M. Maas, and M. S. Kester. Evolutionary Data Systems. CoRR, abs/1706.0, 2017.
S. Idreos, O. Papaemmanouil, and S. Chaudhuri. Overview of Data Exploration Techniques. ACM SIGMOD, 2015.

S. Idreos, K. Zoumpatianos, M. Athanassoulis, N. Dayan, B. Hentschel, M. S. Kester, D. Guo, L. M. Maas, W. Qin,
A. Wasay, and Y. Sun. The Periodic Table of Data Structures. IEEE Data Engineering Bulletin, 41(3):64-75, 2018.

S. Idreos, K. Zoumpatianos, B. Hentschel, M. S. Kester, and D. Guo. The Data Calculator: Data Structure Design and
Cost Synthesis from First Principles and Learned Cost Models. ACM SIGMOD, 2018.

S. Idreos, K. Zoumpatianos, B. Hentschel, M. S. Kester, and D. Guo. The Internals of The Data Calculator. CoRR,
abs/1808.02066, 2018.

55

[49]
[50]

[51]

(52]

(53]
[54]

[55]
[56]

[57]
(58]

[59]
(60]

[61]

[62]

[63]
[64]
[65]

[66]
[67]
(68]
[69]
[70]

[71]
[72]
(73]

[74]
[75]
[76]

Y. E. Ioannidis and E. Wong. Query Optimization by Simulated Annealing. ACM SIGMOD, 1987.

H. V. Jagadish, P. P. S. Narayan, S. Seshadri, S. Sudarshan, and R. Kanneganti. Incremental Organization for Data
Recording and Warehousing. VLDB, 1997.

W. Jannen, J. Yuan, Y. Zhan, A. Akshintala, J. Esmet, Y. Jiao, A. Mittal, P. Pandey, P. Reddy, L. Walsh, M. A. Bender,
M. Farach-Colton, R. Johnson, B. C. Kuszmaul, and D. E. Porter. BetrFS: A Right-optimized Write-optimized File
System. FAST, 2015.

C. Jermaine, E. Omiecinski, and W. G. Yee. The Partitioned Exponential File for Database Storage Management. The
VLDB Journal, 16(4):417-437, 2007.

O. Kennedy and L. Ziarek. Just-In-Time Data Structures. CIDR, 2015.

M. L. Kersten, S. Idreos, S. Manegold, and E. Liarou. The Researcher’s Guide to the Data Deluge: Querying a
Scientific Database in Just a Few Seconds. PVLDB, 2011.

M. L. Kersten and L. Sidirourgos. A database system with amnesia. CIDR, 2017.

M. S. Kester, M. Athanassoulis, and S. Idreos. Access Path Selection in Main-Memory Optimized Data Systems:
Should I Scan or Should I Probe? ACM SIGMOD, 2017.

M. Kornacker. High-Performance Extensible Indexing. VLDB, 1999.

M. Kornacker, C. Mohan, and J. M. Hellerstein. Concurrency and Recovery in Generalized Search Trees. ACM
SIGMOD, 1997.

M. Kornacker, M. A. Shah, J. M. Hellerstein. amdb: An Access Method Debugging Tool. ACM SIGMOD’98.

M. Kornacker, M. A. Shah, and J. M. Hellerstein. Amdb: A Design Tool for Access Methods. IEEE Data Engineering
Bulletin, 26(2):3-11, 2003.

D. Kossman. Systems Research - Fueling Future Disruptions. In Keynote talk at the Microsoft Research Faculty
Summit, Redmond, WA, USA, aug 2018.

T. Kraska, M. Alizadeh, A. Beutel, E. Chi, A. Kristo, G. Leclerc, S. Madden, H. Mao, and V. Nathan. Sagedb: A
learned database system. CIDR, 2019.

T. Kraska, A. Beutel, E. H. Chi, J. Dean, N. Polyzotis. The Case for Learned Index Structures. ACM SIGMOD’18.
A. Lakshman and P. Malik. Cassandra - A Decentralized Structured Storage System. ACM SIGOPS, 2010.

T. J. Lehman and M. J. Carey. A Study of Index Structures for Main Memory Database Management Systems. VLDB,
1986.

Y. Li, B. He, J. Yang, Q. Luo, K. Yi, and R. J. Yang. Tree Indexing on Solid State Drives. PVLDB, 2010.
W. Litwin and D. B. Lomet. The Bounded Disorder Access Method. IEEE ICDE, 1986.

Z. Liu and S. Idreos. Main Memory Adaptive Denormalization. ACM SIGMOD, 2016.

C. Loncaric, E. Torlak, and M. D. Ernst. Fast Synthesis of Fast Collections. PLDI, 2016.

S. Manegold, P. A. Boncz, and M. L. Kersten. Generic Database Cost Models for Hierarchical Memory Systems.
VLDB, 2002.

Y. Mao, E. Kohler, and R. T. Morris. Cache Craftiness for Fast Multicore Key-value Storage. EuroSys, 2012.
T. Mattson, B. Sanders, and B. Massingill. Patterns for Parallel Programming. Addison-Wesley Professional, 2004.

P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil. The log-structured merge-tree (LSM-tree). Acta Informatica,
33(4):351-385, 1996.

J. K. Ousterhout, G. T. Hamachi, R. N. Mayo, W. S. Scott, G. S. Taylor. Magic: A VLSI Layout System. DAC’84.
S. Papadopoulos, K. Datta, S. Madden, and T. Mattson. The TileDB Array Data Storage Manager. PVLDB, 2016.

A. Papagiannis, G. Saloustros, P. Gonzalez-Férez, and A. Bilas. Tucana: Design and Implementation of a Fast and
Efficient Scale-up Key-value Store. USENIX ATC, 2016.

56

[77]
(78]

[79]

[80]

[81]
[82]
[83]

[84]

[85]
[86]
[87]

[88]
[89]

(90]
[91]
[92]

(93]

[94]

[95]
[96]

[97]
(98]
[99]

E. Petraki, S. Idreos, and S. Manegold. Holistic Indexing in Main-memory Column-stores. ACM SIGMOD, 2015.

H. Pirk, E. Petraki, S. Idreos, S. Manegold, and M. L. Kersten. Database cracking: fancy scan, not poor man’s sort! In
Proceedings of the International Workshop on Data Management on New Hardware (DAMON), pages 1-8, 2014.

E. Schonberg, J. T. Schwartz, and M. Sharir. Automatic data structure selection in setl. In Proceedings of the 6th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages, pages 197-210, 1979.

E. Schonberg, J. T. Schwartz, and M. Sharir. An automatic technique for selection of data representations in setl
programs. ACM Trans. Program. Lang. Syst., 3(2):126—-143, apr 1981.

F. M. Schuhknecht, A. Jindal, and J. Dittrich. The Uncracked Pieces in Database Cracking. PVLDB, 2013.
SciDB. SciDB-Py. http://scidb-py.readthedocs.io/en/stable/, 2016.

A. Seering, P. Cudré-Mauroux, S. Madden, and M. Stonebraker. Efficient versioning for scientific array databases.
IEEE ICDE, 2012.

O. Shacham, M. T. Vechev, and E. Yahav. Chameleon: Adaptive Selection of Collections. In Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages 408—418, 2009.

D. D. Sleator and R. E. Tarjan. Self-Adjusting Binary Search Trees. Journal of the ACM, 32(3):652-686, 1985.
Y. Smaragdakis and D. S. Batory. DiSTiL: A Transformation Library for Data Structures. USENIX DSL, 1997.

M. J. Steindorfer and J. J. Vinju. Towards a Software Product Line of Trie-Based Collections. ACM SIGPLAN GPCE,
2016.

M. Stonebraker, A. Ailamaki, J. Kepner, and A. S. Szalay. The future of scientific data bases. IEEE ICDE, 2012.

M. Stonebraker, J. Duggan, L. Battle, and O. Papaemmanouil. Scidb DBMS research at M.I.T. IEEE Data Eng. Bull.,
36(4):21-30, 2013.

R. E. Tarjan. Complexity of Combinatorial Algorithms. SIAM Review, 20(3):457-491, 1978.
T. J. Teorey, K. S. Das. Application of an Analytical Model to Evaluate Storage Structures. ACM SIGMOD’76.

A. Wasay, M. Athanassoulis, and S. Idreos. Queriosity: Automated Data Exploration. IEEE International Congress on
Big Data, 2015.

A. Wasay, Y. Liao, and S. Idreos. Rapid training of very large ensembles of diverse neural networks. CoRR,
abs/1809.04270, 2018.

A. Wasay, X. Wei, N. Dayan, and S. Idreos. Data Canopy: Accelerating Exploratory Statistical Analysis. ACM
SIGMOD, 2017.

L. Wilkinson. The Grammar of Graphics. Springer-Verlag, 2005.

H. Xing, S. Floratos, S. Blanas, S. Byna, Prabhat, K. Wu, and P. Brown. ArrayBridge: Interweaving Declarative Array
Processing in SciDB with Imperative HDF5-Based Programs. IEEE ICDE, 2018.

S. B. Yao. An Attribute Based Model for Database Access Cost Analysis. TODS, 1977.
S. B. Yao and D. DeJong. Evaluation of Database Access Paths. ACM SIGMOD, 1978.
S. B. Yao and A. G. Merten. Selection of File Organization Using an Analytic Model. VLDB, 1975.

[100] M. Zhou. Generalizing Database Access Methods. PhD thesis, University of Waterloo, 1999.

[101] K.Zoumpatianos, S. Idreos, T. Palpanas. Indexing for interactive exploration of big data series. ACM SIGMOD’ 14.

57

A Human-in-the-loop Perspective on AutoML:
Milestones and the Road Ahead

Doris Jung-Lin Lee'*, Stephen Macke**, Doris Xin'*, Angela Lee*, Silu Huang?, Aditya Parameswaran®
{dorislee,dorx,adityagp } @berkeley.edu | {smacke,alee107,shuang86}®@illinois.edu
tUniversity of California, Berkeley | *University of Illinois, Urbana-Champaign | *Equal Contribution

1 Introduction

Machine learning (ML) has gained widespread adoption in a variety of real-world problem domains, ranging
from business, to healthcare, to agriculture. However, the development of effective ML solutions requires
highly-specialized experts well-versed in both statistics and programming. This high barrier-of-entry stems from
the current process of crafting a customized ML solution, which often involves numerous manual iterative changes
to the ML workflow, guided by knowledge or intuition of how those changes impact eventual performance. This
cumbersome process is a major pain point for machine learning practitioners [4, 53] and has motivated our prior
work on Helix, a declarative ML framework [52] targeted at supporting efficient iteration.

To make ML more accessible and effortless, there has been recent interest in AutoML systems, both in
industry [2, 1, 21] and in academia [15, 37], that automatically search over a predefined space of ML models for
some high-level goal, such as prediction of a target variable. For certain tasks, these systems have been shown
to generate models with comparable or better performance than those generated by human ML experts in the
same time [35, 26]. However, our preliminary study of ML workflows on OpenML [48] (an online platform
for experimenting with and sharing ML workflows and results) shows that AutoML is not widely adopted in
practice—accounting for fewer than 2% of all users and workflows. While this may be due to a lack of awareness
of these tools, we believe that this sparse usage stems from a more fundamental issue: a lack of usability.

Our main observation is that the fully-automated setting that current AutoML systems operate on may not
be a one-size-fits-all solution for many users and problem domains. Recent work echoes our sentiment that
AutoML’s complete automation over model choices may be inadequate in certain problem contexts [18, 50]. The
lack of human control and interpretability is particularly problematic when the user’s domain knowledge may
influence the choice of workflow [18], in high-stakes decision-making scenarios where trust and transparency are
essential [50], and in exploratory situations where the problem is not well-defined [11]. This trade-off between
control and automation has been a century-long debate in HCI [23, 22, 44, 5], with modern reincarnations arising
in conversational agents, interactive visual analytics, and autonomous driving. A common interaction paradigm to
reconcile these two approaches is a mixed-initiative approach, where “intelligent services and users...collaborate
efficiently to achieve the user’s goals” [23].

Along the footsteps of these seminal papers, here, we outline our vision for a Mixed-Initiative machine
Learning Environment (MILE), by rethinking the role that automation and human supervision play across the
ML development lifecycle. MILE enables a better user experience, and benefits from system optimizations that
both leverage human input and are tailored to the fact that MILE interacts with a human in the loop. For example,
our earlier work HELIX [52] leveraged the fact that workflow development happens iteratively, to intelligently

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

58

materialize and reuse intermediate data products to speed up subsequent iterations. Similarly, as discussed later in

this paper, leveraging user domain knowledge has the potential to drastically narrow down the exhaustive search

space typically employed by existing AutoML systems.
By considering the trade-offs between

system acceleration and user control, we or-

]
a
v

ganize our paper based on three increasing

levels of autonomy—user-driven, cruise- / \
control, and autopilot—drawing an anal-

ogy with driving. The different levels of 4

autonomy characterize the degree of user = \ =

coptrol and specification of problem re- X &
quirements versus the amount of system au- L]

tomation in identifying desired workflows ,;_;1‘/ &
(as illustrated in Figure 1). Starting from

the manual, user-driven setting (§2), we de- a) User-Driven @ b) Cruise-Control N@ ¢) Autopilot <

scribe system challenges in enabling users
to rapidly try out different workflow vari-
ants, including techniques that speed up
execution time to achieve interactive re-
sponses, and those that improve debugging
and understanding of different workflow
versions. Next, in the cruise-control setting
(§3), the system works alongside users col-
laboratively in search of a workflow that
fits the user’s needs, by letting users declar-
atively specifying problem requirements,
and identifying desired workflows via a di-
alog with the user. Finally, in the fully-autonomous, autopilot setting (§4), we outline several techniques that
would improve and accelerate the search through different ML design decisions. At a high level, these techniques
hinge on accelerated search via AutoML-aware work-sharing optimizations and more intelligent search via
knowledge captured from user-driven ML workflows. Therefore, a holistic system for varying levels of autonomy
is crucial.

Our goal for characterizing the design space of such systems into the three representative levels is to bridge
the knowledge gap between novice and expert users and thereby democratize the process of ML development to a
wider range of end-users. For example, to build an image classifier, an expert user might want to explicitly choose
which model and preprocessing techniques to use, but leaving the manual search of the hyperparameter settings to
the system, whereas a novice might opt for the fully-autonomous setting to search for any optimal workflow. By
addressing the research challenges in each level of autonomy, we can envision an intelligent, adaptive, multi-tiered
system that dynamically adjusts to the appropriate balance between usability and customizability depending on
the amount of information present in the user input. In addition, by supporting different levels of autonomy in a
single system, the system can synthesize knowledge from expert users (such as knowing that a convolutional
neural network would be most suitable for building an image classifier) to help the non-experts.

Across the different levels of autonomy, we encounter research challenges from the fields of ML, databases
(DB), and HCI. The ML challenges include meta-learning techniques for intelligently traversing the search space
of models. The database challenges include optimization of time and resources required for this search process
leveraging common DB optimizations such as pipelining, materialization, and reuse. The HCI challenges include
designing abstractions that make it easy to communicate high-level problem requirements to the system, as well
as providing interpretable system outputs and suggestions. The challenges from these three fields are not isolated

Figure 1: Three levels of autonomy in the ML lifecycle. The gray
box represents the space of all possible workflows for a given task.
Darker workflows have better performance, and the darkest workflow
at the bottom is the desired workflow. a) User-driven: the user
has to specify the next workflow to explore in every iteration; a
novice user (yellow arrows) might take more iterations than an
expert (blue arrows) to reach a “good” workflow. b) Cruise-control:
the user steers the system towards a set of changes (a black box)
to be explored automatically by the system. c) Autopilot: the user
specifies only the dataset and the ML objective for the machine to
automatically find the optimal workflow.

59

but instead impact each other. For example, developing DB optimizations that speed up execution time also leads
to a more responsive and interactive user experience. Creating more usable debugging tools also improves model
transparency and interpretability. For these reasons, in order to design a holistic solution, it is crucial to work at
the intersection of these fields to tackle the challenges across the different levels of autonomy.
In our envisioned Mixed-Initiative ma- —

chine Learning Environment (MILE), users =2 &

work collaboratively with machines in
search for an optimal workflow that accom-

plishes the specified problem goals. As Logical Layer Q MILEAGE Query Debug & Analysis

illustrated in Figure 2, MILE is reminis- =77 Problem Specification Monitoring

cent of a relational database management = Domain Specification ﬂ@

system (DBMS). At the top, different ap- == === s s e e e c e e e e s e e e s e e e e se e en N

plication units and users can communicate Physical Layer WE 4
Collaborative @ ¢ @ ¢i§}\ Optimizer:

with the system via a declarative ML in- Knowledge s

tent query language called MILEAGE (de- yeiaiize ¢t§| Workflow: Mermediate Reuse
scribed in §3). Users do not have to use Views [=1 " Work-Sharing

this query language directly; instead, we gﬂj‘{' e
.. . . . Lineage
envision interactive interfaces that can gen- 9 ¢ End-to-End Opt.) (Sampling ¢@ ML Results

erate such queries automatically based on) .

. . Figure 2: MILE System Overview
user interactions (analogous to form-based
interfaces generating SQL), as in our Helix IDE [51] or TensorBoard [36]. Given a MILEAGE query, the
optimizer represents and traverses through the search space defined by the MILEAGE query. The output of the
optimizer is a workflow, akin to a query execution plan, where the workflow’s overall performance is modeled as
a cost function. Similar to how operators can be reordered and pushed down to achieve the same result while
optimizing for performance in an DBMS, there may be certain ML workflow choices that have equivalent results,
but leads to better performance. The obtained workflow is provided to an execution engine that performs the
actions specified by the workflow, leading to a set of ML results (which can be labels for classification or a table
of prediction values). Finally, the ML results are communicated back to the users for debugging and analysis.

Intelligent Applications User

=) Guidance

Representation

Traversal

2 User-Driven

In this setting, the user makes all the modeling decisions, including the initial workflow and iterative changes
to the workflow to evaluate in subsequent iterations. The role of the system is to help users rapidly explore
the specified changes and to track the results across iterations. This setting affords the users full control of the
modeling process, which may be desirable for several reasons. For example, the application has stringent security,
privacy, or regulatory requirements; or the dataset is extremely large, limiting the number of experiments that
can be run. However, since MILE provides no input on modeling decisions, this setting is more suited for expert
ML users who demand full control of the modeling process. Even though expert ML users dictate the modeling
iterations, there are many challenges associated with focusing their attention on modeling and maximizing their
productivity. Below, we discuss concrete challenges in accelerating execution to increase interactivity and in
helping users interpret and debug ML outputs.

2.1 Interactivity

In each iteration, users rely on the results from the current and past models to make decisions about what to try
next, such as a new set of features, a different model hyperparameter value, or a new model type. Shortening
the execution time to obtain the model metrics and predictions would greatly improve interactivity and can be

60

accomplished through several different system optimizations.

Materialization and reuse. From our preliminary study of ML workflows from OpenML, we observed that
from one iteration to the next, users tend to reuse a large portion of the workflow. About 80% of the iterations
on OpenML reuse over half of the operators from the previous iteration. Incremental changes, while desirable
for controlled experiments with quantifiable impact, result in a great deal of redundant computation that can be
materialized and reused in subsequent iterations to speed up iterative execution.

While materialization and reuse techniques in databases are well-studied, applying them to ML workflows
presents new challenges. First, naive solutions such as materializing all operator results can be wasteful and
detrimental to performance, and reuse is not always the optimal policy. In some cases, recomputing from inputs
can be more efficient than loading previous results. Interdependency of materialization and reuse decisions in a
workflow DAG complicates the storage and runtime tradeoff. For example, materializing all of the descendants of
an operator O precludes the need for materializing O, but O needs to be loaded in a subsequent iteration if any of
the descendants are modified. Additionally, users can make arbitrary changes in each iteration. Making effective
materialization decisions hinges upon the ability to anticipate iterative changes.

HELIX investigates some of these challenges and provides heuristics for solving the problem. The materializa-
tion problem is proven to be NP-hard [52]. As a next step, building a predictive model of what users may do next
may help prioritize what to materialize, given enough training data on how developers iterate on ML workflows.
OpenML is a great source for gathering such training data, as it records complete workflow traces. However, a
solution based purely on historical data may not respond adequately to the idiosyncrasies of a specific user—the
system must also be able to adapt quickly to the behaviors of a new user. To this end, reinforcement learning (RL)
can be used to explore complex materialization strategies, as others have done for query optimization [30] and
view maintenance [34].

End-to-end optimization. While materialization and reuse optimize across iterations, end-to-end optimization
focuses on the entire workflow in a single iteration. An important area that merits more research efforts is the
joint optimization of the data-preprocessing component, (primarily relational operators) and the ML component
(primarily linear algebra—or LA—operators) of the workflow. Relational operators deal in columns and rows, while
LA operators deal in vectors and matrices. Although there is an intuitive correspondence between the columns
and rows of a table and the columns and rows of a matrix, systems aimed at integrating ML into databases usually
do so via a special vector data type for performance reasons (see [31] for a survey). Chen et. al. propose a
formal framework to unify LA and relational operators in the context of factorized ML, in which ML operators
are decomposed and pushed through joins [12]. Their framework can be extended to support a wider range of
cross-relational and LA optimizations. For example, Sommer et. al. observe that sparsity arises from many
sources in ML and can be exploited to optimize the execution plan for LA operators [45]. If we were able to
connect each vector position to the corresponding columns between LA and relational operators, we can leverage
sparsity to optimize the relational portion of the workflow as well, e.g., automatically dropping, at the earliest
opportunity, columns that correspond to zero-weight features in the ML model. Extending the framework in
Chen [12] to support the sparsity optimization requires tracking additional column-wise provenance.

An orthogonal direction is to use approximation computing techniques such as sampling and quantization
to speed up end-to-end execution for rapid feedback to users regarding the quality of the current workflow. For
sampling, one needs to ensure that the sample is representative of the underlying dataset and that the same sample
is used throughout the workflow, ideally without modifying existing operators. Quantization pertains to using
imprecise weights represented by fewer bits to obtain model performance comparable with the full-precision
version [25].

2.2 Interpretability and Debuggability

Another important aspect of helping users make modeling decisions is assisting in the analysis of the artifacts
involved in the modeling process, including input data, intermediate results of operators within the workflow,

61

models, and outputs [17]. Deciding on effective iterative changes requires a thorough understanding of the
behavior of the current model. To make sense of existing models, users might need to examine a number of
artifacts and the relationships between them. For example, to debug a bad prediction, the user might look at
the model and the most relevant training examples that led to the prediction. This process requires tracking a
combination of coarse-grained and fine-grained lineage across related artifacts.

Coarse-grained. Artifacts in this category include workflow versions and the metadata associated with each
version, such as model hyperparameters and performance metrics. A number of systems have been developed to
facilitate the recording of iterative workflow versions and metadata [49, 54, 17]. These systems enable tracking
via user-specified logging statements injected into their workflow programs. The goal is to be minimally intrusive
and lightweight—the system does not need to provide special implementations for each existing operator since
the user specifies the metrics of interest explicitly. However, a more automatic solution to log metadata can
leverage a combination of data lineage tracking and program analysis. Schelter et. al. propose a declarative
language for users to specify logging at the operator and workflow level instead of by individual metrics [41]. We
envision taking this one step further and completely automating the tracking of metadata, by injecting logging
statements inside the compiler via program analysis. With the ever-growing body of ML frameworks, it is
not scalable to implement solutions specific to each framework. Instead, we should focus on common model
representations, such as PMML! and ONNX?, that are easily portable across frameworks, akin to how LLVM
handles many different languages with a unified intermediate representation (IR) for analysis. The model IRs
have unified representations of operator parameters and input/output types, as well as mechanisms for users to
annotate operators, which can be leveraged to specify custom logging requirements.

Fine-grained. As mentioned previously, fine-grained data lineage is helpful for diagnosing model issues, e.g.,
tracing back to the input data that led to a particular bad prediction. Supporting fine-grained data lineage in
data-intensive, ad-hoc analysis is challenging for several reasons: 1) the amount of possible lineage data to track
is often combinatorial with respect to the raw data; 2) the workloads are unpredictable; and 3) query results need
to be served in real-time. The common technique to address 3) is to leverage results precomputed offline, but 2)
makes it difficult to predict what precomputation would be beneficial and 1) makes it infeasible to precompute
all possible results in the absence of predictability. We identify three promising directions that can effectively
address all three confounding challenges.

During debugging, users create a great deal of ephemeral knowledge that could potentially help with future
debugging but is currently wasted. For example, a user runs a query to find outlier values for a given column.
The next time someone else needs to debug an application using data from the same column, the outliers could
potentially help explain anomalous behaviors, or the system could recommend outliers as a diagnostic for a
different column for related issues. Aghajanyan et. al. [3] propose a system for capturing insights from these
exploratory workloads to assist with future debugging. Doing so not only reduces redundant computation but
also makes future workloads more regular by guiding user exploration with predefined operations. Consequently,
the system can selectively store a small subset of fine-grained lineage most likely to accelerate user-interactivity
during debugging in a cost-effective manner. Research in systematizing ad-hoc workloads into knowledge that
assists with future debugging is still nascent and warrants further investigation.

Even with selective storage, the amount of fine-grained lineage data is still potentially huge and requires
carefully designed storage schemes. In HELIX, we have begun to explore storing lineage in the materialization of
workflow intermediates. The idea is that while it is prohibitive to store the fine-grained input-output relationship
for every single operator in the workflow, we can selectively store only the output of expensive operators and
replay the cheap operators on top of materialized intermediates to recover the full lineage. For serving fine-
grained lineage in real-time, SMOKE [40] is an in-memory database for serving fine-grained lineage for relations
operators at interactive speed, using heuristics to solve the problem of materialization and replay explored in

"http://dmg.org/pmml/v4-3/GeneralStructure.html
’https://onnx.ai/

62

HELIX. Whether SMOKE or the techniques within can be generalized for ML operators and to dataset that do not
fit in memory posits interesting research challenges.

3 Cruise-Control

Unfortunately, the fully user-driven setting is the modus operandi for ML application development supported
by the majority of existing tools, irrespective of user expertise. In this section and the next, we explore system
designs to help change the landscape of ML tooling, making it more accessible to a wider range of users.

In the cruise-control setting, the user specifies their problem requirements and any domain-specific knowledge
to MILE. MILE then automatically searches through the space of potential workflow options and recommends
an acceptable workflow that meets the specification, via a dialog with the user. Since the technology for
recommending acceptable/accurate models overlaps heavily with that the model search capabilities in the
autonomous setting (§4), here, we focus our discussion on the challenges associated with designing the appropriate
logical representation of the model space that the end-user interacts with. This logical representation abstracts
away the underlying details of how the search and inference are performed, so that changes or additions of new
search strategies and models would not affect end-user experience. As in Figure 2 and described in this section,
the logical representation consists of two components to facilitate a dialog between user and system (akin to a
dashboard). From user to system, we first describe a language that enables users to express their ML ‘intent’.
Then, going from system to user, we discuss interfaces that communicate system outputs to the user.

3.1 Declarative Specification of ML Intent

Unlike traditional programming where the problem solution is deterministic, since ML is data-dependent, even
an expert will only have a vague impression of what their optimal workflow would look like, based on their
desired properties for the eventual model outputs. However, users often have some preferences, constraints,
requirements, and knowledge regarding the problem context (collectively referred to as intent) constraining
the space of potential model solutions. We will first describe two characteristics of ML intents (ambiguity and
multi-granularity) that presents research challenges in operationalization. We illustrate these characteristics via a
hypothetical example of a user developing a cancer diagnostic model based on clinical data. Next, we describe
our proposed solution strategy in developing a declarative language, MILEAGE, that enable users to specify their
ML intent. While prior work has proposed declarative specification of ML tasks [29] and feature engineering
processes as UDFs [6], these endeavors have been focused on a specific aspect of the ML lifecycle. We argue for
a holistic view that enables users to express a wide range of high-level, nuanced ML intents to the system.

Ambiguous Intents. Our first challenge is that ML intents can often be ambiguous—in other words, high-level,
qualitative problem requirements are ambiguous and often do not translate exactly to a low-level workflow change
(e.g., hyperparameter setting, preprocessing choice). For instance, in the cancer diagnostic example, the ML
developer might indicate that the desired model should be interpretable to physicians and patients alike. In
addition, since records are transcribed by human clinicians, the model must be robust to noisy and potentially
erroneous data inputs, as well as missing values. Another reason why ML intents can be ambiguous is that
problem requirements often stem from ‘fuzzy’ domain-specific knowledge. For example, an oncologist may
indicate that because lung cancer is more fatal (higher mortality rates) than other types of cancer, false negatives
should be penalized more heavily in the lung cancer diagnosis model. There are many potential approaches to
operationalize these and other similar problem requirements, including modifying regularization, developing
a performance metric beyond traditional classification accuracy, or choosing a model that is robust to class
imbalance. The challenge therefore lies in understanding how can we can map these ambiguous high-level
problem requirements to suggest some combination of workflow changes.

63

Multi-Granularity Intents. Another challenge in designing an ML intent language is that user requests are
multi-granularity, encompassing a variety of different input types at different levels of granularity. At the highest
level, a user can specify problem requirements, goals, or domain knowledge; at an intermediary level, users can
refine or prune out portions of the search space (ranges of parameter options), at the lowest level, users can fix
specific preprocessing procedures or hyperparameter values (similar to what one would do in the user-driven
setting). The multi-granularity nature of ML intent stems from users with different expertise levels. For example,
a clinician might only be able to specify the desired task goal (e.g., predict attribute ‘mortality rate’), whereas an
ML expert might have more specific model requirements (e.g., use a random forest with 10-50 trees, max tree
depth of 4-8, with entropy as split criteria). The research challenge lies in developing a specification framework
that can adapt and jointly perform inference based on signals from different granularities, as well as appropriate
interfaces to elicit different input requirements from users. Both of these challenges demand a more holistic
understanding of the interdependencies and impact of different ML design choices, and how they affect the
resulting workflow characteristics.

MILEAGE Improvements. Our proposed solution is to develop MILEAGE, a declarative specification language
that allows users to communicate their ML intent to the system. MILEAGE needs to be able to interpret two
different types of specifications, requests regarding problem details and requests involving domain knowledge.
Existing AutoML systems often require some form of problem specification [2, 1, 19], but do not account for
domain specification. Domain specification consists of domain-specific knowledge that influences workflow
decisions, such as the knowledge about mortality rates of different types of cancer and the presence of noisy
and missing values in the data collection process. While problem specification is a required component of
the query, domain specification is optional information that is helpful for improving the model. Together, the
MILEAGE query consisting of domain and problem specification causes the system to search through potential
workflow options, with the system returning a ranked list of optimal workflows. Each of these workflows may be
conveniently specified through something declarative like the Helix-DSL [52], or be compiled into imperative
scripts (such as TensorFlow and Scikit-Learn).

Further drawing from the analogy with SQL for DBMS, we outline several desired properties in the language
design for such a system. Starting from the top of the stack in Figure 2, the declarative language should act
as a logical representation that supports physical independence with respect to how the search is actually done
under-the-hood. Since ML research and practice is fast-paced and highly-evolving, the logical representation
established by the declarative language ensures that if we have new representations, models, knowledge sources,
or search strategies, the underlying changes can be completely hidden away from end-users. The declarative
language also serves as a common, unifying exchange format across different end-user applications. Apart
from the logical representation of the task definition in the problem specification, there are additional language
components for specifying views and constraints. View definitions specify what intermediate output from the
workflow can be materialized and reused in the later part of the workflow. Views can be defined explicitly by
the user or by an intelligent application (such as Helix [52], DeepDive [43]) to create and materialize views.
The intelligent application keeps track of what has been materialized and notifies the optimizer to reuse any
views that are already materialized whenever appropriate. Constraints are parts of the problem specification that
limits certain portions of the solution search space, in order to ensure the consistency and validity of the resulting
workflow. These constraints may be in the form of performance requirements, some measure of model robustness
or fairness (e.g., checking that training data is not biased towards a particular racial group), or specifying the
latency budget allocated to search. Both the view and constraint specification are optional declarations as part of
the language and accounted for inside the optimizer.

3.2 Communicating System Suggestions to Users

While the declarative query language enables users to communicate their intents to the system, there is also
research challenges in the reverse direction, in communicating system suggestions to users. In this section, we

64

briefly outline several important unsolved research problems related to how the system communicates suggestions
to: 1) guide users towards better workflow decisions (guidance) and 2) correct and prevent users from overlooking
potential model errors (correction).

Guidance Towards Optimal Workflow Decisions. Given a declarative specification of ML intent, the system
automatically traverses through the search space and returns suggestions regarding the workflow choices. Existing
human-in-the-loop AutoML systems [50, 11] feature visualizations for model comparison, with users able to
assign a computational budget to the AutoML search, specify the search space and model choices, or modify
the problem specification. It remains an open research question as to what types of workflow recommendations
and end-user interaction for model-steering would be most useful to users. What is the appropriate granularity
of feedback to provide to the user that would be useful in guiding them towards an optimal workflow? Should
we be suggesting modifications to an existing workflow, offering users to chose between multiple workflows,
or recommending the entire workflow? Moreover, what aspects of the workflow development phase require
the most amount of guidance and assistance? For example, while most AutoML systems have focused on
model selection and hyperparameter search, it may possible that users actually need more assistance with feature
engineering or data preprocessing. One of our goals in studying workflows on OpenML is to understand where
existing ML developers struggle the most in the development lifecycle (spending most amount of time or with
minimal performance gains). These observations will guide our work to address existing pain-points in the ML
development lifecycle. A far-reaching research question is to examine whether workflow recommendations
from a well-designed guidance system have the potential to educate novice users about best practices in model
development. These best practices can include knowledge about what model to pick over another in certain
scenarios or preprocessing techniques when the input data exhibits certain characteristics. The recommendation
system acts as a personal coach that could teach the user practical ML skills while they are performing an ML
task.

Corrective Suggestions via Proactive Monitoring. Many recent examples pervasive in the media have high-
lighted how errors from production ML system can have detrimental and unintended consequences, from
systematic biases in a recidivism predictions? to racist and vulgar responses in a public chatbot*. To this end,
several systems have been proposed to validate and monitor the quality of production ML workflows [10, 42, 13].
These systems monitor the model and raise a red-flag when the result from the deployed ML pipeline is potentially
erroneous (e.g., when the input data distribution changes drastically). If done properly, the proactive monitoring
capabilities of MILE may the potential for enhancing user’s trust in the final ML model that is developed, improve
the overall production model quality, and reduce the cost of model maintenance.

4 Autopilot

Depending on the user’s level of expertise, they may wish to maintain some degree of control (Figure 1b), steering
MILE between portions of the search space, or they may wish to delegate the entire search process to MILE
(Figure 1c), letting it decide how and where to search. Doing this correctly would be the “holy grail” of AutoML.:
a general, hands-free technology capable of producing an ML workflow with adequate performance, within a
given time or resource budget.

We described some of the challenges associated with exposing these capabilities to the user in the previous
section; in this section, we focus on the system side. The major difficulty associated with driverless AutoML is
that the design space of possible ML workflows suffers from a combinatorial curse of dimensionality. Therefore,
the challenge is: how do we make the AutoML search process over this design space as efficient as possible?

There exists an enormous breadth of work from the AutoML community on how to best automate hyperpa-
rameter search [8, 7, 19], how to warm-start hyperparameter search [14, 16, 20], how to learn how to select good

3 https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
*https://en.wikipedia.org/wiki/Tay_(bot)

65

workflow configurations® [9, 47], how to trade-off model performance and search time by modeling the time bud-
get into multicriterion optimization problems, and even how to learn the structure of neural architectures [38, 55]
and other ML workflows. We foresee that MILE, which caters to multiple levels of expertise, can gather additional
data on effective ML workflows from expert users (beyond the traces available in public metadata repositories
such as OpenML [48]), or “meta-features”, that can then be leveraged by existing meta-learning techniques.
Beyond these existing techniques for smarter search, we envision that MILE will apply ideas from the DB
community for faster search. We propose two concrete realizations of this vision: First, MILE can work in tandem
with AutoML search strategies that operate on progressively larger samples of training data in order to evaluate
the “goodness” of particular configurations. In many cases, intermediates computed on smaller training data
samples can be reused for larger samples. These optimizations are inspired by prior work for employing smart
caching and reuse in large-scale [46] and iterative [52, 43] ML workflows for future use. Second, for AutoML,
we often know an entire up-front ser of ML workflow configurations, unlike the iterative development setting
explored in Helix [52] where the configurations are revealed one-by-one. As such, MILE can identify and exploit
opportunities for workload sharing, whereby multiple workflows are combined, thereby making better use of
locality and data parallelism. We describe these two directions next.

Progressive Intermediate Reuse. Some modern, multi-fidelity Hyperparameter Optimization (HPO) techniques
approximately evaluate the generalization ability of ML workflow configurations by training on samples of the
training data; see [24, 28, 39] for examples. If a configuration C' is promising on a subset S of the training data, it
might then be evaluated on a larger subset S’ of training data. How can we use the work already done for C' on S
to speed up training on S’?

We propose that any processing composed of associative operations can be reused when increasing the
training data size. To give a concrete example, consider PCA, which computes principal components via a
singular value decomposition on the feature covariance matrix. To compute the principal components for the set
of feature values associated with .S’, we first need a corresponding covariance matrix for S’. If we only have the
covariance matrix for S without any additional information, it is not enough to help us compute S’ — we must
start from scratch and perform a full pass over the training data. However, if we cache counts, sums, and pairwise
dot products for features in S, we can update these cached quantities with only the data in S" \ S, thanks to the
associativity of (+), after which we can proceed with the SVD as normal.

The major research challenge is to develop an optimizer that automatically identifies computations composed
of associative operations. The output of such operations can be cached between runs on successively larger
subsets of the training data, leading to potential speedups.

' Work-Sharing Optimizations. AutoML search
strategies typically must select from a number
of ML workflow configurations. The space of

e, configurations to evaluate, however, is typically
K J P high-dimensional. Blackbox HPO methods like
W W grid search and random search [7] must per-
Logical to O\./O form large numbers of workflow evaluations, and
Prg’;{f;:;'f” ~XN|" Workflow even multi-fidelity methods like successive halv-
' ing [27], Hyperband [33] and ABC [24] that
XN Workflow . .
X “ leverage approximation to speed up workflow

evaluation must still try out a large number of
Figure 3: Compiling a logical specification of multiple workflow configu- hyperparameter configurations.

tions t hysical k-shari lan. N .
rations 1o & physical Work-stiaring pian Our key observation is that, at least in some

cases, the configurations share a large amount of identical computation. This, in turn, can be exploited to reduce
I/O and memory latency by using the same training batches to train multiple models simultaneously. Although

> An ML workflow configuration is comprised of the hyperparameter and other settings determining the workflow’s behavior.

66

any single model will train more slowly than if it were to receive dedicated hardware resources, an ML workflow
in which N models are trained concurrently will be faster than separate workflows for which each model is
trained in series. Furthermore, if the training batches are preprocessed on-the-fly, the preprocessing need only be
done once for concurrent training, compared to N times for serial training.

Though this technique should generalize to many kinds of ML workflows, we envision that it will be especially
fruitful for training multiple neural network configurations simultaneously. As GPU and TPU accelerators increase
in speed, memory capacity, and memory bandwidth, it is increasingly challenging for CPU cores to handle ETL
tasks (reading from disk, parsing, shuffling, batching) so as to maximize accelerator utilization. Giving these
accelerators more work is one way to alleviate this bottleneck.

This observation thus motivates the research direction of compiling a logical specification of a set of ML
workflow configuration evaluations into a physical representation optimized for locality and data parallelism. Our
multi-configuration physical planner is illustrated abstractly in Figure 3.

Although the kinds of work-sharing optimizations described have the potential to accelerate search through
hyperparameter configurations, we foresee some difficulties along the road. First of all, MILE will need to
facilitate work-sharing without requiring separate, bespoke implementations of ML models specialized for work-
sharing. Secondly, we foresee that it will be nontrivial to make these work-sharing strategies operate with existing
strategies to avoid overfitting to a fixed validation set. For example, one strategy [32] uses a separate shuffling
of the training and validation splits for each workflow configuration to avoid overfitting to a static validation
set. Employing such a strategy in concert with work-sharing optimizations will require careful maintenance of
additional provenance information during training, so that some configuration C' knows to selectively ignore the
examples that appear in other configurations’ training splits but also appear in C’s validation split.

5 Conclusion: Going the Extra MILE

Present-day ML is challenging: not everybody can get mileage out of it. While AutoML is a step in the
right direction, there are many real-world settings that require fine-grained human supervision. We propose
MILE, an environment where humans and machines together drive the search for desired ML solutions. We
identified three settings for MILE representing different levels of system automation over the design space of ML
workflows—user-driven, cruise-control, and autopilot. The hope is that regardless of your desired setting, MILE
gets you there faster. By catering to users with different levels of expertise, we hope to pool their collaborative
experience in improving search heuristics. We also explore research opportunities in accelerating execution by
applying traditional database techniques, such as materialization, lineage-tracking, and work-sharing. We hope
that our MILE vision serves as a roadmap for researchers to address the valuable opportunities that stem from
humans-in-the-loop of the machine learning lifecycle.

References

[1] Automated ML algorithm selection & tuning - Azure Machine Learning service. https://docs.microsoft.com/
en-us/azure/machine-learning/service/concept-automated-ml.

[2] AutoML: Automatic Machine Learning. http://docs.h20.ai/h20/latest-stable/h20-docs/automl.html.

[3] S. Aghajanyan, R. Batoukov, and J. Zhang. Signal Fabric—An Al-assisted Platform for Knowledge Discovery in
Dynamic System. Santa Clara, CA, 2019. USENIX Association.

[4] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan, B. Nushi, and T. Zimmermann. Software
engineering for machine learning: A case study. IEEE Computer Society, May 2019.

[5] S. Amershi et al. Guidelines for Human-Al Interaction. CHI 2019, pages 13-26.
[6] M. Anderson et al. Brainwash: A Data System for Feature Engineering. CIDR, 2013.

67

(7]

(8]

(9]

[10]
[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]
[20]

[21]
[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of Machine Learning Research,
13(Feb):281-305, 2012.

J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimization. In Advances in
neural information processing systems, pages 2546-2554, 2011.

P. B. Brazdil, C. Soares, and J. P. Da Costa. Ranking learning algorithms: Using ibl and meta-learning on accuracy
and time results. Machine Learning, 50(3):251-277, 2003.

E. Breck, N. Polyzotis, S. Roy, S. E. Whang, and M. Zinkevich. Data Validation For Machine Learning. Sysml, 2019.

D. Cashman, S. R. Humayoun, F. Heimerl, K. Park, S. Das, J. Thompson, B. Saket, A. Mosca, J. Stasko, A. Endert,
M. Gleicher, and R. Chang. Visual Analytics for Automated Model Discovery. arXiv:1809.10782, 2018.

L. Chen, A. Kumar, J. Naughton, and J. M. Patel. Towards linear algebra over normalized data. Proceedings of the
VLDB Endowment, 10(11):1214-1225, 2017.

Y. Chung, T. Kraska, N. Polyzotis, and S. E. Whang. Slice Finder: Automated Data Slicing for Model Interpretability.
SysML, pages 1-13, 2018.

M. Feurer et al. Using meta-learning to initialize bayesian optimization of hyperparameters. In Proceedings of the
2014 International Conference on Meta-learning and Algorithm Selection-Volume 1201, pages 3—10. Citeseer, 2014.

M. Feurer et al. Efficient and robust automated machine learning. In NeurIPS’15, 2015.

N. Fusi, R. Sheth, and M. Elibol. Probabilistic matrix factorization for automated machine learning. In Advances in
Neural Information Processing Systems, pages 3348-3357, 2018.

R. Garcia, V. Sreekanti, N. Yadwadkar, D. Crankshaw, J. E. Gonzalez, and J. M. Hellerstein. Context: The missing
piece in the machine learning lifecycle. In KDD CMI Workshop, volume 114, 2018.

Y. Gil et al. Towards human-guided machine learning. In [UI '19, pages 614-624, New York, NY, USA, 2019. ACM.
D. Golovin et al. Google vizier: A service for black-box optimization. In SIGKDD’17, pages 1487-1495. ACM, 2017.

T. A. Gomes, R. B. Prudéncio, C. Soares, A. L. Rossi, and A. Carvalho. Combining meta-learning and search
techniques to select parameters for support vector machines. Neurocomputing, 75(1):3-13, 2012.

Google. AutoML Tables. https://cloud.google.com/automl-tables/.

J. Heer. Agency plus automation: Designing artificial intelligence into interactive systems. Proceedings of the National
Academy of Sciences, 116(6):1844-1850, 2019.

E. Horvitz. Principles of mixed-initiative user interfaces. Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 159—-166, 1999.

S. Huang, C. Wang, B. Ding, and S. Chaudhuri. Efficient identification of approximate best configuration of training
in large datasets. In AAAI/IAAI (to appear), 2019.

I. Hubara et al. Quantized neural networks: Training neural networks with low precision weights and activations.
JMLR, 18(1):6869-6898, 2017.

F. Hutter, L. Kotthoff, and J. Vanschoren, editors. Automatic Machine Learning: Methods, Systems, Challenges.
Springer, 2018. In press, available at http://automl.org/book.

K. Jamieson and A. Talwalkar. Non-stochastic best arm identification and hyperparameter optimization. In Artificial
Intelligence and Statistics, pages 240-248, 2016.

R. Kohavi and G. H. John. Automatic parameter selection by minimizing estimated error. In Machine Learning
Proceedings 1995, pages 304-312. Elsevier, 1995.

T. Kraska, A. Talwalkar, J. C. Duchi, R. Griffith, M. J. Franklin, and M. 1. Jordan. MLbase: A Distributed Machine-
learning System. In CIDR, volume 1, pages 2-9, 2013.

S. Krishnan, Z. Yang, K. Goldberg, J. Hellerstein, and 1. Stoica. Learning to optimize join queries with deep
reinforcement learning. arXiv preprint arXiv:1808.03196, 2018.

68

[31]

[32]
[33]

[34]

[35]
[36]
[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]
[45]
[46]

[47]

[48]

[49]
[50]

[51]

[52]

[53]

[54]

[55]

A. Kumar, M. Boehm, and J. Yang. Data management in machine learning: Challenges, techniques, and systems. In
Proceedings of the 2017 ACM International Conference on Management of Data, pages 1717-1722. ACM, 2017.

J.-C. Lévesque. Bayesian hyperparameter optimization: overfitting, ensembles and conditional spaces. 2018.

L. Li, K. Jamieson, G. DeSalvo, A. Rostamizadeh, and A. Talwalkar. Hyperband: A novel bandit-based approach to
hyperparameter optimization. Journal of Machine Learning Research, 18(185):1-52, 2018.

X. Liang, A. J. Elmore, and S. Krishnan. Opportunistic view materialization with deep reinforcement learning. arXiv
preprint arXiv:1903.01363, 2019.

Y. Lu. An End-to-End AutoML Solution for Tabular Data at KaggleDays, May 2019.
D. Mané et al. Tensorboard: Tensorflow’s visualization toolkit, 2015. https://www.tensorflow.org/tensorboard.

R. S. Olson and J. H. Moore. Tpot: A tree-based pipeline optimization tool for automating machine learning. In Hutter
et al. [26], pages 163—173. In press, available at http://automl.org/book.

H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean. Efficient neural architecture search via parameter sharing. In
International Conference on Machine Learning, pages 4092-4101, 2018.

F. Provost, D. Jensen, and T. Oates. Efficient progressive sampling. In KDD’99, pages 23-32. ACM, 1999.

F. Psallidas and E. Wu. Smoke: Fine-grained lineage at interactive speed. Proceedings of the VLDB Endowment,
11(6):719-732, 2018.

S. Schelter, J.-H. Boese, J. Kirschnick, T. Klein, and S. Seufert. Automatically tracking metadata and provenance of
machine learning experiments. In Machine Learning Systems workshop at NIPS, 2017.

S. Schelter, D. Lange, P. Schmidt, M. Celikel, F. Biessmann, and A. Grafberger. Automating large-scale data quality
verification. Proceedings of the VLDB Endowment, 11(12):1781-1794, 2018.

J. Shin, S. Wu, F. Wang, C. De Sa, C. Zhang, and C. Ré. Incremental knowledge base construction using deepdive.
Proc. VLDB Endow., 8(11):1310-1321, July 2015.

B. Shneiderman and P. Maes. Direct manipulation vs. interface agents. Interactions, 4(6):42—-61, 1997.
J. Sommer et al. Mnc: Structure-exploiting sparsity estimation for matrix expressions. In SIGMOD’19. ACM, 2019.

E. Sparks. End-to-End Large Scale Machine Learning with KeystoneML. PhD thesis, EECS Department, University of
California, Berkeley, Dec 2016.

L. Todorovski, H. Blockeel, and S. Dzeroski. Ranking with predictive clustering trees. In European Conference on
Machine Learning, pages 444—455. Springer, 2002.

J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. Openml: Networked science in machine learning. SIGKDD
Explorations, 15(2):49-60, 2013.

M. Vartak et al. Modeldb: a system for machine learning model management. In HILDA’16, page 14. ACM, 2016.

Q. Wang et al. Atmseer: Increasing transparency and controllability in automated machine learning. In CHI’19, pages
681:1-681:12, New York, NY, USA, 2019. ACM.

D. Xin, L. Ma, J. Liu, S. Macke, S. Song, and A. Parameswaran. Helix: accelerating human-in-the-loop machine
learning. Proceedings of the VLDB Endowment, 11(12):1958-1961, 2018.

D. Xin, S. Macke, L. Ma, J. Liu, S. Song, and A. Parameswaran. Helix: Holistic optimization for accelerating iterative
machine learning. Proceedings of the VLDB Endowment, 12(4):446—460, 2018.

Q. Yang, J. Suh, N.-C. Chen, and G. Ramos. Grounding interactive machine learning tool design in how non-experts
actually build models. In Proceedings of the 2018 on Designing Interactive Systems Conference 2018, pages 573-584.
ACM, 2018.

M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwinski, S. Murching, T. Nykodym, P. Ogilvie,
M. Parkhe, et al. Accelerating the machine learning lifecycle with mlflow. Data Engineering, page 39, 2018.

B. Zoph and Q. V. Le. Neural architecture search with reinforcement learning. arXiv:1611.01578, 2016.

69

XuanYuan: An AI-Native Database

Guoliang Li, Xuanhe Zhou, Sihao Li
Department of Computer Science,Tsinghua University, Beijing, China
Gauss Database Group, Huawei Company
liguoliang @tsinghua.edu.cn

Abstract

In big data era, database systems face three challenges. Firstly, the traditional empirical optimization
techniques (e.g., cost estimation, join order selection, knob tuning) cannot meet the high-performance
requirement for large-scale data, various applications and diversified users. We need to design learning-
based techniques to make database more intelligent. Secondly, many database applications require to
use Al algorithms, e.g., image search in database. We can embed Al algorithms into database, utilize
database techniques to accelerate Al algorithms, and provide Al capability inside databases. Thirdly,
traditional databases focus on using general hardware (e.g., CPU), but cannot fully utilize new hardware
(e.g., ARM, GPU, Al chips). Moreover, besides relational model, we can utilize tensor model to accelerate
Al operations. Thus, we need to design new techniques to make full use of new hardware.

To address these challenges, we design an Al-native database. On one hand, we integrate Al
techniques into databases to provide self-configuring, self-optimizing, self-monitoring, self-diagnosis,
self-healing, self-assembling, and self-security capabilities. On the other hand, we enable databases to
provide Al capabilities using declarative languages in order to lower the barrier of using Al

In this paper, we introduce five levels of Al-native databases and provide several open challenges of
designing an Al-native database. We also take autonomous database knob tuning, deep reinforcement
learning based optimizer, machine-learning based cardinality estimation, and autonomous index/view
advisor as examples to showcase the superiority of Al-native databases.

1 INTRODUCTION

Databases have played a very important role in many applications and been widely deployed in many fields. Over
the past fifty years, databases have undergone three main revolutions.

The first generation is stand-alone databases, which address the problems of data storage, data management
and query processing [2]. The representative systems include PostgreSQL and MySQL.

The second generation is cluster databases, which aim to provide high availability and reliability for critical
business applications. The representative systems include Oracle RAC, DB2 and SQL server.

The third generation is distributed databases (and cloud-native databases), which aim to address the problems
of elastic computing and dynamic data migration in the era of big data [3]. The representative systems include

Copyright 2019 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

70

Aurora ! and GaussDB 2.

However, the traditional databases still have several limitations in the big data era, due to the large-scale data,
various applications/users and diversified computing power.

(1) Traditional database design is still based on empirical methodologies and specifications, and require
heavy human involvement (e.g., DBAs) to tune and maintain the databases. We use several examples to show
that databases can be improved using Al techniques. First, databases have hundreds of knobs and it requires
DBAs to tune the knobs to adapt to different scenarios. Recently the database committee attempts to utilize
machine learning techniques [1, 9, 20] to automatically tune the knobs, which can achieve better results than
DBAs. Second, database optimizer relies on cost and cardinality estimation but traditional techniques cannot
provide accurate estimation. Recently deep learning based techniques [6, 14] are proposed to estimate the cost
and cardinality which also achieve better results. Moreover, learning-based optimizers [8, 12], learning-based
index recommendation [15], learning-based automatic view generation [10] provide alternative optimization
opportunities for database design. Third, traditional databases are designed by database architects based on their
experiences. Recently some learning-based self-designed techniques are proposed, e.g., learned indexes [7] and
learned NoSQL database design [5]. Thus we can utilize Al techniques to enhance databases and make databases
more intelligent [18, 17].

(2) Traditional databases focus on relational model and provide relational data management and analysis
ability. However, in the big data era, there are more and more diverse data (e.g., graph data, time-series data,
spatial data, array data) and applications (e.g., machine learning and graph computing). It calls for a new database
system that can integrate multiple models (e.g., relational model, graph model, tensor model) to support diversified
applications (e.g., relational data analysis, graph computing and machine learning). Moreover, we can embed
Al algorithms into databases, design in-database machine learning frameworks, utilize database techniques to
accelerate Al algorithms, and provide Al capability inside databases.

(3) Transitional databases only consider general-purpose hardware, e.g., CPU, RAM and disk, but cannot
make full use of new hardware, e.g., ARM, Al chips, GPU, FPGA, NVM, RDMA. It calls for a heterogeneous
computing framework that can efficiently utilize diversified computing powers to support data management, data
analysis, and in-database machine learning.

To address these problems, we propose an Al-native database (XuanYuan), which not only integrates
Al techniques into database to make database more intelligent but also provides in-database Al capabilities.
In particular, on one hand, XuanYuan integrates Al techniques into databases to provide self-configuring,
self-optimizing, self-monitoring, self-diagnosis, self-healing, self-security and self-assembling capabilities for
databases, which can improve the database’s availability, performance and stability, and reduce the burden of
intensive human involvement. On the other hand, XuanYuan enables databases to provide Al capabilities using
declarative languages, in order to lower the barrier of using AI. Moreover, XuanYuan also fully utilizes diversified
computing power to support data analysis and machine learning.

An Al-native database can be divided into five stages. The first is Al-advised database, which takes an Al
engine as a plug-in service and provides offline database suggestions, e.g., offline index advisor, offline knob
tuning. The second stage is Al-assisted database, which takes an Al engine as a built-in service and provides
online monitoring and suggestions, e.g., online statistics collection, online database state monitoring, and online
diagnosis. The third is Al-enhanced database. One one hand, it provides Al based database components, e.g.,
learned index, learned optimizer, learned cost estimation, learned storage layout. On the other hand, it provides
in-database Al algorithms and accelerators. The fourth is Al-assembled database, which provides multiple
data models (e.g., relational model, graph model, tensor model) and fully utilizes the new hardware to support
heterogeneous computing. It can provide multiple options for each component, e.g., learned optimizer, cost-based
optimizer, and rule-based optimizer, and thus can automatically assemble the components to form a database in

"https://aws.amazon.com/cn/rds/aurora/
Zhttps://e.huawei.com/en/solutions/cloud-computing/big-data/gaussdb-distributed-database

71

Table 3: Five levels of Al-native database

Level Feature Description Example

o Workload Management (e.g., workload scheduling)

o SQL Optimization (e.g., SQL rewriter, index/view advisor)
o Database Monitor (e.g., knob tuner, system statistics)

o Database Security (e.g., autonomous auditing/masking)

1 Al-advised | Plug-in Al engine

o Self-configuring (e.g., online knob tuning)

e Self-optimizing (e.g., SQL optimization, data storage)
o Self-healing (e.g., fault recovery, live migration)

e Self-diagnosis (e.g., hardware/software error)

e Self-monitoring (e.g., monitor workload/system state)
e Self-security (e.g., tractable, encryption, anti-tamper)

2 Al-assisted | Built-in Al engine

o Learning-based Database Component
e [earning-based rewriter
e [earning-based cost estimator
3 Al-enhanced | Hybrid DB&AI engine e [earning-based optimizer
e [earning-based executor
e [earning-based storage engine
e Learning-based index
o Declarative Al (UDF; view; model-free; problem-free)

o Self-assembling

4 Al-assembled | Heterogeneous processing o Support new hardware (e.g., ARM, GPU, NPU)

5 Al-designed | The life cycle is Al-based | Design, coding, evaluation, monitor, and maintenance

order to achieve the best performance for different scenarios. This is similar to AlphaGO, which can explore
more optimization spaces than humans. The fifth is Al-designed database, which integrates Al into the life cycle
of database design, development, evaluation, and maintenance, which provides the best performance for every
scenario.

In this paper, we first present the details of Al-native databases and then provide the research challenges and
opportunities for designing an Al-native database.

2 Al-Native Database

We present the design of Al-native databases and Figure 1 shows the architecture. Next we discuss the five levels
of Al-native databases as shown in Table 3.

2.1 Level 1: AI-Advised Database

The first level, Al-advised databases, provides offline optimization of the database through automatic sugges-
tions [1, 9, 13]. The plugged-in Al engine is loosely coupled with databases. Limited by available resources, the
Al engine mainly provides auxiliary tools from four aspects.

Workload Management. Al-based models can be used to control the workload from three aspects. First,
Al-based models can benefit workload modeling. Directly modeling a workload with independent features (e.g.,
tables, columns, predicates) may lead to great information loss, such as the reference correlations among different
tables. So instead we use an encoder-decoder model to learn an abstract representation of user workloads, which
can reflect the correlation among the basic features. Second, Al-based models can be used for workload scheduling.
Considering hybrid OLAP and OLTP workloads, Al-based models can estimate the required resources (e.g., CPU,

72

Unified SQL Interface

Self-Configuring Self-Healing Self-Security
Workl(?ad Worklo‘:id Wor!(lqad Kn9b Softw?re Softwa}'e Fault Recovery Masking
Modeling Scheduling Predicting Tuning Patching Upgrading
.. Live Migration
Self-Optimizing Auditing
SQL Optimization Self-Diagnosis
SQL Index View Partition
Rewriter Advisor Advisor Advisor Hardware Error Access Control
Query Optimizer Software Error
Cardinality Cost Join Order Learned Immutability
Estimation Estimation Selection L Y Optimizer S
Self-Monitoring
Executor Engine Data Statistics Traceability
| Row | | Column | | Vectorization |
System Statistics
Data Storage Transparent
o | Column | fremory Workload Statistics g

Self-Assembling

Al Framework

| Al as UDF | | Al as View | | Model-Free | | Problem-Free | | Full-Automatic |

Heterogeneous Computing Framework

| Relational Model | | Graph Model | | Time-series Model | | Tensor Model |

| xs6 | | ARM | | Geu | | NeU | | FPGA |

Figure 1: The architecture of AI-Native databases

RAM, DISK) and running time of each query. Then Al-based models can prioritize the workload, assign a high
priority for the mission-critical queries, and defer the execution of queries that require heavy resources. Moreover,
resource scheduling depends heavily on some parameters related to resource control, e.g., maximum concurrent
IO throughput. But these parameters are static and need to be manually configured. Reinforcement learning
can be used to learn relations between database (physical/logical) states, workload and database resources, and
provides a reasonable and robust scheduling mechanism. Third, Al-based models can be used for workload
prediction. We can predict the possible workloads in order to adapt to future workloads. Traditional workload
prediction methods rely on database experts based on statistical data, which can not guarantee high accuracy.
Instead, machine learning methods for workload forecasting [11] have better adaptability to different workloads.
SQL Optimization. It optimizes SQL queries from the following aspects. First, SOL rewriter can rewrite the
poor SQL queries issued by ordinary users into well-formulated queries in order to improve the performance.
Traditional methods rely on DBAs, which are impractical for heavy workloads. So Al-based methods can provide
a rewriting tool to learn the principles of SQL writing (e.g., avoiding full table scanning, selecting indexed

73

columns for joins) and optimize the SQL structure. Second, index advisor can be optimized by Al-based methods.
Database indexes are very important to improve the efficiency of SQL queries on complex data sets [4]. However,
the traditional methods build the indexes based on DBAs’ experiences, which cannot scale to thousands of tables.
Al-based models can learn the benefit and cost to build an index given a query workload, and then automatically
recommend the index based on the learned information. Third, view advisor can be optimized by Al-based
models. Given a set of queries, we can first extract the equivalent sub-queries, select the sub-queries with high
frequency, and learn the benefit and cost of building views on the sub-queries. Then materialized views can be
automatically recommended by Al-based models. Fourth, partition advisor can be optimized by Al-based models.
Traditionally the partitions are generated based on some primary keys or manually specified keys by DBAs.
However, these methods may not find the best partition strategy. Instead, the Al-based models can learn the
possible distribution of the partitions, estimate the benefits for different workloads, and recommend high-quality
partitions.

Database Monitor. It monitors the database states, tunes database configuration and avoids database fail-overs.
First, for data statistics, it automatically monitors the access frequency on table columns, data updates, and
data distribution among different shards. Second, for system statistics, it automatically monitors the status of
the database system (e.g., the number of batch requests per second, the number of user connections, network
transmission efficiency). Then it analyzes those indicators using machine learning algorithms, tunes system
parameters and provides early warnings for abnormal events. Third, for workload statistics, it monitors the
performance of user workload and profiles on how workload varies. It can also predict future workloads.

DB Security. It combines security and cryptography technology with Al techniques to enhance the security
of databases. First, autonomous masking aims to hide privacy data such as ID number. Autonomous masking
judiciously selects which columns to be masked based on historical data and user-access patterns. Second,
autonomous auditing optimizes the auditing from two aspects: data pre-processing and dynamic analysis.
Traditional auditing often requires auditors to obtain a large number of business data, which is hard to obtain.
Autonomous auditing not only saves manpower cost, but also helps auditors to make better decisions by providing
useful information from massive data. Third, autonomous access control can automatically detect system
vulnerabilities. Existing autonomous detecting methods are mainly to retrieve through security scanning, but
cannot detect unknown security vulnerabilities. Al-based models can discover security vulnerabilities [22], which
not only detect the most known vulnerabilities in a vulnerability database, but also predict and evaluate potential
vulnerabilities.

2.2 Level 2: AI-Assisted Database

The second level, Al-assisted databases, integrates an Al engine into the database kernel for run-time optimization.
Al components (e.g., tuning model, workload scheduling, view advisor) can be merged into the corresponding
database components [10]. In this way, Al capabilities are integrated into the working procedure of the database.
For example, if embedding the tuning model into the query optimizer, we can first conduct query tuning for
each query (e.g., tuning user-level parameters to better adapt to the query features), and then normally generate
and execute the query plan. The advantage of Al-assisted databases is that 1) it can provide more fine-grained
optimization; 2) it can reduce more overhead by embedding an Al engine into the kernel.

Moreover, built-in Al engine can provide self-configuring, self-optimizing, self-monitoring, self-healing,
self-diagnosis, and self-security services.
Self-configuring. Database can automatically tune their own configuration to adapt to changes in workload and
environment. First, the workload can be self-configured. Database can execute queries in different granularities
in parallel, each of which has various requirement of system resources and performance. Database can configure
the workload based on the workload features, which are obtained by conducting workload modeling, scheduling
and predicting. Second, databases include several configuration mechanisms, such as knob tuning, software
patching, software upgrading and etc. For example, all databases have hundreds of tunable knobs, which are

74

vital to nearly every aspect of database maintenance, such as performance, availability, robustness, etc. However,
these configurations require to be tuned manually, which not only is time consuming but also cannot find optimal
configurations. Al based methods, e.g., deep reinforcement learning, can automatically tune the database knobs.
Moreover, other configurations (e.g., software bugs, partition scheme) can also be optimized by Al-based methods.
Self-optimizing. First, we can design a learning-based query optimizer in cost/cardinality estimation, join order
selection and data structures. 1) Al techniques can optimize cost/cardinality estimation, which is vital to query
plan selection. However, database mainly estimates cardinality based on raw statistics (e.g., number of distinct
values, histograms) and is poor in estimating the resulting row number of each query operator (e.g., hash join,
aggregate, filter), by using histograms. Al-based methods, e.g., Tree-LSTM, can learn data distribution in
depth and provide more accurate cost/cardinality estimation. 2) Al techniques can optimize join order selection.
Different join schemes have a great impact on query performance and finding the best plan is an NP-hard problem.
With static algorithms (e.g., dynamic programming, heuristics algorithm), the performance of join order selection
in databases is limited by the quality of the estimator. Al-based methods can better choose between different
join order plans by taking one-step join as the short-term reward and the execution time as the long-term reward.
3) Data partitions, indexes, and views can also be online recommended by built-in AI models. Second, we can
utilize learning-based models to optimize executor engine and data storage. For executor engine, we consider two
aspects. 1) We provide hybrid query executing methods such as row-based and column-based. Here Al can serve
different data applications (e.g., row-based for OLTP, column-based for OLAP). 2) We provide tensor processing
engine to execute Al models. To enhance Al techniques to optimize database components, databases can execute
Al models natively with a vectorization engine.

Self-monitoring. Database can automatically monitor database states (e.g., read/write blocks, concurrency state,
working transactions) and detect operation rules, e.g., root cause analysis rules. It can monitor database states
(e.g., data consistency, DB health) in the life-cycle. The monitored information can be used by self-configuring,
self-optimizing, self-diagnosis, and self-healing. Note that it may have some overhead to monitor the database
states and we need to minimize the overhead for monitoring database states.

Self-diagnosis. Self-diagnosis includes a set of strategies to diagnose and correct abnormal conditions in
databases, which are mostly caused by errors in hardware (e.g., I/O error, CPU error) and software (e.g., bugs,
exceptions). Self-diagnosis helps to guarantee services even if some database nodes work unexpectedly. For
example, in case of data-access error, memory overflow or violation of some integrity restrictions, database can
automatically detect the root causes using the monitored states and thus cancel the corresponding transactions in
time.

Self-healing. Databases can automatically detect and recover from database problems (e.g., poor performance,
hardware/software fail-overs). First, it isolates different sessions or users and avoids affecting others users when
encountering errors. Second, it adopts Al-advised database tools to reduce the recovery time and saves humans
from the failure-recovery loop. Third, it can kill some abnormal queries that take too many resources.
Self-security. Self-security includes several features. First, the data in the life-cycle (including storage, memory
and CPU) are always encrypted, which should be unreadable for the third party. Second, the data access records
should be tractable in order to get the access history of the data. Third, the data should be tamper-proofed in
order to prevent malicious modification of data. Fourth, Al-based models can be used to automatically learn the
attacking rules and prevent the unauthorized access and attack patterns. Fifth, it can automatically detect sensitive
data using Al-based models.

2.3 Level 3: AI-Enhanced Database

The third level, Al-enhanced database, not only uses Al techniques to improve the database design but also
provides in-database Al capabilities.

75

2.3.1 Learning-based Database Components

Most of database core components are designed by humans based on their experiences, e.g., optimizer, cost
estimation, index. However, we find that many components can be designed by Al-based models. First, the
traditional indexes, e.g., B-tree, R-tree, can be designed by Al-based models. For example, learned indexes are
verified that they can reduce the index size and improve the query performance [7]. Second, the cost/cardinality
estimation can be optimized by deep learning, because the empirical methods cannot capture the correlations
among different tables/columns while deep learning can capture more information using deep neural networks.
Third, the join order selection problem is an NP-hard problem and traditional heuristics methods cannot find
the best plan; while the deep reinforcement learning techniques can learn more information and get better plan.
Fourth, query optimizer replies on cost/cardinality estimation, indexes, join order selection, etc, and an end-to-end
learning based optimizer is also promising.

Thus many database components can be enhanced by Al-based methods, which can provide alternative
strategies beyond traditional empirical techniques.

2.3.2 In-Database AI Capabilities

Although Al can address many real-world problems, there is no widely deployed Al systems that can be used in
many different fields, because Al is hard to be used by ordinary users. Thus we can borrow database techniques
to lower the barrier of using Al. First, SQL is easy to be used and widely accepted, and we can also extend SQL
to support Al. Second, we can utilize database optimization techniques to accelerate Al algorithms, e.g., indexing,
incremental computing, and sharing computations.

We categorize the techniques of supporting Al capabilities in database in five levels.
Al Models As UDFs. We embed Al frameworks (e.g., MADIib, TensorFlow, Scikit-learn) in database and
provide user-defined functions (UDFs) or stored procedures (SPs) for each algorithm. Then users can call UDFs
or SPs from databases to use Al algorithms.
Al Models As Views. If a user wants to use Al algorithms (e.g., random forests) in the first level, the user
requires to first train the model and then use the trained model. In the second level, we can take an Al algorithm
as a view, which is shared by multiple users. If an algorithm is used by a user, we can materialize the model and
other users can directly use the model. The model can also be updated by incrementally training.
Model-free Al In the first and second levels, the user must specify the concert algorithms (e.g., k-means for
clustering). Actually, users may only know which problems should be addressed, e.g., clustering or classification,
but do not know which algorithms should be used. In this way, database can automatically recommend the
algorithms that best fit the user scenarios.
Problem-free AI. The users even cannot specify the problems that require to be addressed, e.g., classification
and clustering. Given the database, the problem-free Al can automatically find which problems can be addressed
by Al algorithms and recommend suitable Al algorithms.
Full-automatic. The system can automatically discover Al opportunities, including discovering the problems,
the models, the algorithms, relevant data, and training methods.

2.3.3 Hybrid AI and DB Engine

The above methods still use two engines: Al engine and DB engine. It calls for a hybrid Al and DB engine
that provides both Al and DB functionalities. Then given a query, the SQL parser parses the SQL query and
produces a general-purpose query plan. Based on the operators in the plan, it decides whether it utilizes relational
data models or utilizes Al models. For relational data models, the query plan is sent to the database executor;
otherwise, it is sent to the Al executor. Moreover, it also calls for new models to support both relational algebra
and tensor models, and in this way, we can utilize a unified model to support both Al and database.

76

2.4 Level 4: AI-Assembled Database

The fourth level, Al-assembled database, not only automatically assembles database components to generate a
database that can best fit a given scenario, but also schedules the tasks to diversified hardware.
Self-assembling. First, each database component has multiple options. For example, optimizers include cost-
based model, rule-based model, and learned-based model. We first take each component variant as a service. Then
we select the best components based on users’ requirements. Note that different variants of the same component
should adopt the same standard interface such that the components can be assembled.

Thus we propose a self-assembling module.
For different scenarios, we can dynamically se-
lect the appropriate components in each layer of -
service and assemble the appropriate execution @ Bt @ully) | | Meries et

(o=

. ~— —«
path. The execution path can be seen as a natu- Rewriter p— i Frw
ptimizer(Optimizer(Optimizer(
ral language sequence (NLS), such as (SQL;,) Cost) ey
[/
Executor Executor Executor
(Row) (Column) (Computational Graph)

parser_pg, optimizer_RBO, storage row, acceler-
| __———

ator), in which each position has only discrete
~— "
Storage Storage Storage
(Row) (Column) (Memory)

token options. So the problem is how to generate Storage
NLS in the query level. One possible method is

to use reinforcement learning (RL) algorithm. It e

takes the whole path sequence as an episode and (ARM)

a single action as an epoch. Under each epoch, Figure 2: Al-Assembled Database

the agent chooses the next component (action),

which executes the query, leading to a state transition (e.g., the query status changes into syntax tree). In this
problem, action is discrete, so DDQN algorithm [16] can be used. Compared with other RL algorithms with
discrete outputs, DDQN eliminates the problem of overestimation (deviate greatly from the optimal solution) by
choosing decoupling actions and calculating the target Q value.

However, the RL-based routing algorithm has two problems. Firstly, Q network will not generate scores until
the last node is generated. It is insensitive to the choice of intermediate nodes. However, for the entire path, it is
necessary to give an action a comprehensive score on current and future impacts. Secondly, when training with
epoch as a unit, each node of a path is scattered in a training sample, instead of being used as a whole to calculate
the gradient.

Generative Adversarial Network (GAN) [21] can better solve those problems of end-to-end path selection. We
use G network to generate path vectors based on the workload, database state and component characteristics, and
we use D network as the performance model. But the traditional GAN network model is not fully applicable to our
problem. Because it is mainly used to generate data with continuous range of values, and it is difficult to generate
path vectors with discrete tokens. That is because G-networks need to be fine-tuned based on gradient descent
and regress towards the expectation. But when the data is discrete tokens, fine-tuning is often meaningless. So we
choose to combine RL algorithm with GAN [19]. Firstly, G network is used as an agent in the RL algorithm:
action is the next service node; state includes not only query status, database status, but also generated node
information. Each iteration generates a complete path. Secondly, unlike the traditional RL algorithm, each action
is scored by D network to guide the generation of the whole path sequence.

Heterogeneous Computing. We need to make full use of diversified computing power. Note that DB and Al
usually require different computing power and hardware. For DB, traditional optimizer processes queries with
CPU. While Al requires new Al chips to support parallel processing (e.g., GPU and NPU) and self-scheduling.
And now many applications need to use both DB and Al techniques, especially in large data analysis scenarios.
Thus we need to support multiple models, e.g., relation model, graph model, stream model and tensor model.
We can automatically select which models should be used. We also need to be able to switch computing powers
based on the models. For example, for the tuning module in the optimizer, when training the tuning model, we

saL

Optimizer

77

fetch training data into memory with Al chips and conduct backward propagation (training the neural network)
with NPU. For the join and selection operations, we may still use the traditional hardware. We also need to study
whether a model (e.g., relational model) can be transformed into other models (e.g., tensor model). The ultimate
objective is to fully unleash the power of diversified computing, including x86, ARM, GPU, NPU. We aim to
continuously push our Al strategy forward and foster a complete computing ecosystem.

2.5 Level 5: Al-Designed Database

The fifth level, Al-designed databases, is fully designed by Al, including design, coding, evaluation, monitoring
and maintenance. In this way, Al techniques are integrated into the whole database life cycle so as to achieve the
best performance for both DB and Al

3 Challenges and Opportunities

It brings new research challenges and opportunities to design an Al-native database, which aims to support data
management, data analysis, machine learning together in the same system.

3.1 From one-size-doesn’t-fit-all to one-stack-fits-all

Michael Stonebraker argues that one size does not fit all, due to various applications (e.g., OLTP, OLAP, stream,
graph) and diversified hardware (e.g., CPU, ARM, GPU, FPGA, NVM). Note that the database components and
their variants are limited, but the number of possible combinations for these components to assemble a database is
huge. So the database architects design the database architectures by combining different variants of techniques
based on their empirical rules and experience. Thus these human-designed databases may not be optimal because
they may fall into a local optimum. It calls for automatically designing a database using Al techniques, which can
adapt to different scenarios.

We argue that one stack fits all. The basic idea is to first implement the database components, e.g., indexes,
optimizers, storage, where each component has multiple variants/options, then use Al techniques to assemble
these components to form some database candidates, and finally select a database that best suits a given scenario.
In this way, we can automatically verify different possible databases (i.e., different combinations of components),
explore many more possible database designs than human-based deign, and could design more powerful databases.
This is similar to AlphaGO, where the learning-based method beats humans, because the machines can explore
more unknown spaces.

There are several challenges in one-stack-fits-all. First, each component should provide standard interfaces
such that different components can be integrated together. Second, each component should have different variants
or implementations, e.g., different indexes, different optimizers. Third, it calls for a learning-based component
to assemble different components. Fourth, the assembled database can be evaluated and verified before the
database is deployed in real applications. Fifth, each component should be run on different hardware, e.g., learned
optimizers should be run on Al chips and traditional cost-based optimizers should be run on general-purpose
chips. It calls for effective methods to schedule the tasks.

3.2 Next Generation Analytic Processing: OLAP 2.0

Traditional OLAP focuses on relational data analytics. However, in the big data era, many new data types have
emerged, e.g., graph data, time-series data, spatial data, it calls for new data analytics techniques to analyze these
multi-model data. Moreover, besides traditional aggregation queries, many applications require to use machine
learning algorithms to enhance data analytics, e.g., image analysis. Thus it is rather challenging to integrate Al

78

and DB techniques to provide new data analytics functionality. We think that hybrid DB and Al online analytic
processing on multi-model data should be the next generation OLAP, i.e., OLAP 2.0.

There are several challenges in supporting OLAP 2.0. First, different data types use different models, e.g.,
relational model, graph model, KV model, tensor model, and it calls for a new model to support multi-model data
analytics. Second, OLAP 2.0 queries may involve both database operations and Al operations, and it needs to
design new optimization model to optimize these heterogeneous operations across different hardware.

3.3 Next Generation Transaction Processing: OLTP 2.0

Traditional OLTP mainly uses general-purpose hardware, e.g., CPU, RAM and Disk, but cannot make full use of
new hardware, e.g., Al chips, RDMA, and NVM. Actually, we can utilize new hardware to improve transaction
processing. First, based on the characteristics of NVM, including non-volatile, read-write asymmetry speed, and
wear-leveling, we need to reconsider the database architecture. For example, we can utilize NVM to replace RAM
and replace page-level storage with record-level storage on NVM. Second, we can utilize RDMA to improve
the data transmission in databases. Moreover, we can use the programmable feature of intelligent Ethernet card
to enable filtering on RDMA and avoid unnecessary processing in RAM and CPU. Third, there are some Al
chips which are specially designed hardware, and it is also promising to design database-oriented chips that are
specially defined hardware for databases.

There are several challenges in supporting OLTP 2.0. First, it is challenging to fully utilize new hardware to
design a new generation database. Second, it is hard to evaluate and verify whether the new hardware can benefit
the database architecture. Third, it calls for an effective tool to automatically evaluate a feature or a component
(even a database).

3.4 AI4DB

There are several challenges that embed Al capabilities in databases.

Training Samples. Most Al models require large-scale, high-quality, diversified training data to achieve good
performance. However, it is rather hard to get training data in databases, because the data either is security critical
or relies on DBAs. For example, in database knob tuning, the training samples should be gotten based on DBAs’
experiences. Thus it is hard to get a large number of training samples. Moreover, the training data should cover
different scenarios, different hardware environments, and different workloads.

Model Selection. There are lots of machine learning algorithms and it is hard to automatically select an
appropriate algorithm for different scenarios. Moreover, the model selection is affected by many factors, e.g.,
quality, training time, adaptability, generalization. For example, deep learning may be a better choice for cost
estimation while reinforcement learning may be a better choice for join order selection. The training time may
also be important, because some applications are performance critical and cannot tolerate long training time.
Model Convergence. It is very important that whether the model can be converged. If the model cannot be
converged, we need to provide alternative ways to avoid making bad decisions. For example, in knob tuning, if
the model is not converged, we cannot utilize the model for knob suggestion.

Adaptability. The model should be adapted to different scenarios. For example, if the hardware environments
are changed, the model can adapt to the new hardware.

Generalization. The model should adapt to different database settings. For example, if the workloads are
changed, the model should support the new workloads. If the data are updated, the model should be generalized
to support new data.

79

3.5 DB4AI

Accelerate Al algorithms using indexing techniques. Most of studies focus on the effectiveness of Al algo-
rithms but do not pay much attention to the efficiency, which is also very important. It calls for utilizing database
techniques to improve the performance of Al algorithms. For example, self-driving vehicles require a large
number of examples for training, which is rather time consuming. Actually, it only requires some important
examples, e.g., the training cases in the night or rainy day, but not many redundant examples. Thus we can index
the samples and features for effective training.

Discover AI Models. Ordinary users may only know their requirements, e.g., using a classification algorithm to
address a problem, but do not know which Al algorithms should be used. Thus it is important to automatically
discover Al algorithms. Moreover, it is also challenging to reuse the well-trained Al models by different users.

3.6 Edge Computing Database

Most databases are designed to be deployed on servers. With the development of 5G and IOT devices, it calls for
a tiny database embedded in small devices. There are several challenges in designing such a tiny database. The
first is database security to protect the data. The second is real-time data processing. The small device has low
computing power, and it is rather challenging to provide high performance on such small devices. The third is
data migration among different devices. Some devices have small storage and it is challenging to migrate the data
across different devices.

4 CONCLUSION

We proposed an Al-native database XuanYuan, which not only utilizes Al techniques to enable self-configuring,
self-optimizing, self-monitoring, self-healing, self-diagnosis, self-security, and self-assembling, but also provides
in-database Al capabilities to lower the burden of using Al. We categorized Al-native databases into five levels,
Al-advised, Al-assisted, Al-enhanced, Al-assembled, and Al-designed. We also discussed the research challenges
and provided opportunities in designing an Al-native database.

References

[1] D. V. Aken, A. Pavlo, G. J. Gordon, and B. Zhang. Automatic database management system tuning through
large-scale machine learning. In SIGMOD, pages 1009-1024, 2017.

[2] C.J. Date. An introduction to database systems (7. ed.). Addison-Wesley-Longman, 2000.

[3] G. Figueiredo, V. Braganholo, and M. Mattoso. Processing queries over distributed XML databases. JIDM,
1(3):455-470, 2010.

[4] A. Gani, A. Siddiqa, S. Shamshirband, and F. H. Nasaruddin. A survey on indexing techniques for big data:
taxonomy and performance evaluation. Knowl. Inf. Syst., 46(2):241-284, 2016.

[5] S. Idreos, N. Dayan, W. Qin, M. Akmanalp, S. Hilgard, A. Ross, J. Lennon, V. Jain, H. Gupta, D. Li, and
Z. Zhu. Design continuums and the path toward self-designing key-value stores that know and learn. In
CIDR, 2019.

[6] A. Kipf, T. Kipf, B. Radke, V. Leis, P. A. Boncz, and A. Kemper. Learned cardinalities: Estimating
correlated joins with deep learning. In CIDR, 2019.

80

[7] T. Kraska, A. Beutel, E. H. Chi, J. Dean, and N. Polyzotis. The case for learned index structures. In
SIGMOD, pages 489-504, 2018.

[8] S. Krishnan, Z. Yang, K. Goldberg, J. M. Hellerstein, and I. Stoica. Learning to optimize join queries with
deep reinforcement learning. CoRR, abs/1808.03196, 2018.

[9] G.Li, X. Zhou, B. Gao, and S. Li. Qtune: A query-aware database tuning system with deep reinforcement
learning. In VLDB, 2019.

[10] X. Liang, A. J. Elmore, and S. Krishnan. Opportunistic view materialization with deep reinforcement
learning. CoRR, abs/1903.01363, 2019.

[11] L. Ma, D. V. Aken, A. Hefny, G. Mezerhane, A. Pavlo, and G. J. Gordon. Query-based workload forecasting
for self-driving database management systems. In Proceedings of the 2018 International Conference on
Management of Data, SIGMOD Conference 2018, Houston, TX, USA, June 10-15, 2018, pages 631-645,
2018.

[12] R. Marcus and O. Papaemmanouil. Deep reinforcement learning for join order enumeration. In Proceedings
of the First International Workshop on Exploiting Artificial Intelligence Techniques for Data Management,
aiDM@SIGMOD 2018, Houston, TX, USA, June 10, 2018, pages 3:1-3:4, 2018.

[13] M. Mitzenmacher. A model for learned bloom filters and related structures. CoRR, abs/1802.00884, 2018.

[14] J. Ortiz, M. Balazinska, J. Gehrke, and S. S. Keerthi. Learning state representations for query optimization
with deep reinforcement learning. In SIGMOD, pages 4:1-4:4, 2018.

[15] W. G. Pedrozo, J. C. Nievola, and D. C. Ribeiro. An adaptive approach for index tuning with learning
classifier systems on hybrid storage environments. In HAIS, pages 716-729, 2018.

[16] H. van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double g-learning. In AAAI,
pages 2094-2100, 2016.

[17] W. Wang, G. Chen, T. T. A. Dinh, J. Gao, B. C. Ooi, K. Tan, and S. Wang. SINGA: putting deep learning in
the hands of multimedia users. In SIGMM, pages 25-34, 2015.

[18] W. Wang, M. Zhang, G. Chen, H. V. Jagadish, B. C. Ooi, and K. Tan. Database meets deep learning:
Challenges and opportunities. SIGMOD Record, 45(2):17-22, 2016.

[19] L. Yu, W. Zhang, J. Wang, and Y. Yu. Seqgan: Sequence generative adversarial nets with policy gradient. In
AAAI, pages 2852-2858, 2017.

[20] J. Zhang, Y. Liu, K. Zhou, and G. Li. An end-to-end automatic cloud database tuning system using deep
reinforcement learning. In SIGMOD, 2019.

[21] Z.Zhou, J. Liang, Y. Song, L. Yu, H. Wang, W. Zhang, Y. Yu, and Z. Zhang. Lipschitz generative adversarial
nets. CoRR, abs/1902.05687, 2019.

[22] S. Zong, A. Ritter, G. Mueller, and E. Wright. Analyzing the perceived severity of cybersecurity threats
reported on social media. CoRR, abs/1902.10680, 2019.

81

)ﬁ. Data

%X\ Engineering

TCDE

tab.computer.org/tcde/

It’s FREE to join!

The Technical Committee on Data Engineering (TCDE) of the IEEE Computer Society is concerned with the role of
data in the design, development, management and utilization of information systems.

e Data Management Systems and Modern Hardware/Software Platforms

e Data Models, Data Integration, Semantics and Data Quality

e Spatial, Temporal, Graph, Scientific, Statistical and Multimedia Databases

e Data Mining, Data Warehousing, and OLAP

e Big Data, Streams and Clouds

e Information Management, Distribution, Mobility, and the WWW

e Data Security, Privacy and Trust

e Performance, Experiments, and Analysis of Data Systems

The TCDE sponsors the International Conference on Data Engineering (ICDE). It publishes a quarterly newsletter, the
Data Engineering Bulletin. If you are a member of the IEEE Computer Society, you may join the TCDE and receive
copies of the Data Engineering Bulletin without cost. There are approximately 1000 members of the TCDE.

Join TCDE via Online or Fax

ONLINE: Follow the instructions Name

IEEE Member #
Mailing Address

on this page:

www.computer.org/portal/web/tandc/joinatc

FAX: Complete your details and

Country

fax this form to +61-7-3365 3248 Email

TCDE Mailing List

TCDE will occasionally email
announcements, and other
opportunities available for
members. This mailing list will
be used only for this purpose.

Phone

Membership Questions?

Xiaoyong Du

Key Laboratory of Data Engineering
and Knowledge Engineering
Renmin University of China

Beijing 100872, China
duyong@ruc.edu.cn

82

TCDE Chair
Xiaofang Zhou

School of Information Technology and
Electrical Engineering

The University of Queensland
Brisbane, QLD 4072, Australia
zxf@uq.edu.au

IEEE Computer Society
10662 Los Vaqueros Circle
Los Alamitos, CA 90720-1314

Non-profit Org.
U.S. Postage
PAID
Los Alamitos, CA
Permit 1398

