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Abstract
The goal of this article is to propose an optimization framework by acknowledging human factors to
enable label acquisition through active learning . In particular, we are interested to investigate tasks,
such as, providing (collecting or acquiring) and validating labels, or comparing data using active
learning techniques. Our basic approach is to take a set of existing active learning techniques for a few
well known supervised and unsupervised algorithms, but study them in the context of crowdsourcing,
especially considering worker-centric optimization (i,e., human factors). Our innovation lies in designing
optimization functions that appropriately capture these two fundamental yet complementary facets,
performing systematic investigation to understand the complexity of such optimization problems, and
designing efficient solutions with theoretical guarantees.

1 Introduction
Human workers or crowd can be used as a building block in data-intensive applications, especially for acquiring
and validating data. One such fundamental crowdsourcing task is labeling, where a human worker is asked to
provide one or multiple labels for the underlying observation. A plethora of applications in cyber human system
directly benefit from such efforts, where the objective is to design automated classification/prediction algorithms
but require labeled data for that. Even though human intelligence provides substantial benefit to computation,
incorporating humans in the computational loop incurs additional burden - it becomes time-consuming, monetarily
expensive, or both in such cyber-human systems.

Active learning principles [34, 36] are proposed to optimize system-centric criteria in classification problems,
by employing human workers judiciously only for a few tasks. When crowd is involved in data acquisition,
additional challenges emerge: (1) contribution from crowd is potentially noisy, (ii) to ensure higher engagement
and productivity, one has to understand worker-centric criteria [39], such as, worker skill, motivation, that
are referred to as human factors in the literature [2, 48, 31, 8]. In a hybrid human-machine computational
environment, an opportunity exists in laying a scientific foundation for predictive analytics that combines system-
centric optimization derived from active learning [34, 36] principles and worker-centric optimization through
human factors modeling.

Imagine that a computational ecologist wants to design a binary classifier [15] that accurately predicts the
presence or the absence of species given environmental covariates (such as geographical coordinates, elevation,
soil type, average precipitation, etc). In order to learn the classifier, the ecologist needs annotated data (i.e.,
identify the presence or absence of a species in a given location). Indeed, as shown in Figure 1, there exists
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Figure 1: Unidentified Species at iNaturalist Website

unidentified species at large-scale citizen science based platforms like iNaturalist that are to be crowdsourced to
be labeled by their registered workers. While doing that, we however need to find the most “suitable” worker
taking into account worker-centric criteria, such as, her geographic distance from the observation location, her
expertise and/or motivation to identify insects, by considering her past activities/tasks. The goal is to focus on
applications, where the workers (e.g., registered citizen scientists of iNaturalist) are involved in completing tasks
that are repetitive in characteristics and do not evolve much over the time. We propose to develop an optimized
human-machine intelligence framework for such cyber-human systems for single and multi-label classification
problems [27, 55] through active learning.

Our effort will be investigate and adapt existing active learning techniques for a few well known supervised
algorithms for single-label and multi-label classification in the context of crowdsourcing, especially considering
worker-centric optimization through human factors modeling. The general idea behind active learning is to select
the instances that are likely to be most informative. Then the selected instances are annotated by human, and
the computation loop is repeated. Our innovations lie in appropriately capturing these two fundamental yet
complementary facets in a single optimization function, performing systematic investigation to these problems
and designing innovative solutions.

Example 1: Motivating Example: The iNaturalist platform contains photo vouchered independently verified
species occurrence records by the citizen scientists across the world and is one of the fastest growing source of
contributions to the global biodiversity information facility. We focus on such platforms, where tasks are repetitive
in nature, do not change over the time, and one can retain all the past tasks undertaken by the registered workers
(citizen scientists). A computational ecologist makes use of such platforms to develop species distribution models
using environmental covariates. Thus, she aims to design a crowdsourcing effort to judiciously obtain single
and/or multiple label(s) to annotate some of the unidentified images (refer to Figure 1). A single label acquisition
is about identifying the insect (which will then be augmented with the location information), whereas, multiple
labels will require identifying the Kingdom, Phylum, Class, Order, Sub-Order, Family, Sub-family of the insect in
the image.

For these examples, label acquisition involves human workers. On the other hand, domain expert may not
have many human workers at her disposal who are qualified for the task - even if there are workers, they may
not be motivated to undertake these tasks. Furthermore, workers may even have constraints (e.g., only likes to
watch birds, can not travel more than 25 miles from her location). Therefore, which task(s) are to be selected and
assigned to which worker(s) remain to be a problem.

Desirable properties: To generalize, the above scenarios call out for the following desirable characteristics:
(1) An “activized” label acquisition is desirable - i.e., acquire more data only when it optimizes the underlying
computational task considering system-centric criteria. (2) At the same time, select workers and assign tasks to
enable worker-centric optimization. (3) We argue the necessity of studying these two facets together as a single

9



optimization problem, as a staged solution (first select sub-tasks based on active learning, then assign those to the
workers to enable worker-centric optimization) may be inadequate, as tasks selected by active learning techniques
may end up having a very low worker-centric optimization, resulting in poor outcome overall.

High level approach: (1) We propose worker-centric optimization by characterizing human factors in the
crowdsourcing context by adapting well-known theories of behavioral psychology [48, 31, 8]. (2) We propose
system-centric optimization by adapting a set of well-known active learning techniques for supervised algorithms
[34, 36, 51, 52, 10, 21, 17, 23, 55, 24, 35, 61] and augment them by combining worker-centric optimization
through human factors modeling. (3) We propose systematic investigations on how the two aforementioned
optimization problems could be combined and propose effective solutions.

Additionally, we will design both retrospective as well as prospective studies. We will perform these
evaluations using publicly available citizen science datasets.

Novelties: To the best of our knowledge, no existing work has studied what we propose. The closest
related works for active learning through crowdsourcing are for single label acquisition [64, 62, 41, 16, 18].
Worker-centric optimization is not considered there. Active learning research for multi-labels remains in a rather
nascent state [55, 24, 35, 61]. These aforementioned studies do not investigate the problem in the context of
crowdsourcing. Therefore, the necessity of worker-centric optimization does not even arise there. Our designed
prototypes on iNaturslist platform will bear a long-lasting effect to understand global bio-diversity.

1.1 Research Objectives
Our long term vision is to optimize knowledge discovery processes for cyber-human systems. We are interested
in designing effective solutions and support both worker and system criteria through active learning and human
factors modeling. The research proposed here puts us on track to achieving this vision by addressing a first series
of concrete challenges on a very important application domain.
(1) Optimized single-label acquisition involving crowd: In this research aim, we strive to propose optimization
guided hybrid human-machine algorithms considering active learning for single label acquisition. Active learning
is popular in single label supervised algorithms, where the key idea is that a machine learning algorithm can
achieve greater accuracy with fewer training labels, if it is allowed to choose the data from which it learns
[34, 36, 51, 52], where each data has a single label.

We will study and adapt a set of well-known active learning techniques, such as, uncertainty sampling [34],
query-by-committee [52, 42], or expected-error reduction[47] that are popularly used in well-known classification
algorithm, such as, Naive Bayes’ Classifier, Support Vector Machine [58, 50], Decision Trees [37], or ensemble
classification algorithms [32]. Similarly, we will characterize human factors of the workers [48, 31, 8], such as
skill, motivation and then design principled optimization functions that combines task-centric and worker-centric
optimization. These complex optimization functions will guide the selection of the right training sample (i.e, task)
for further labeling and request the appropriate workers to undertake that task. Using Example 1, this is akin to
selecting the most appropriate observation site and select the most appropriate workers to observe the presence or
absence of the species there. When multiple workers with varying level of expertise are involved to undertake
the same labeling task, we will study how to aggregate their annotations to infer the truth considering weighted
majority voting or iterative approach [20, 25]. We will formalize stopping conditions - i.e., when to terminate
this labeling process by exploiting the confidence [63] of the classification tasks, available budget, or availability
of the human workers. We will investigate effective scalable algorithms to solve these problems by exploiting
discrete optimization techniques.
(2) Optimized multi-labels acquisition involving crowd : In this aim, we will investigate how to enable active
learning principles for multiple-labels classification tasks involving crowd (Recall 1). Multi-labels classification
is different from multi-class classification, where only a single label needs to be predicted per data point for the
latter, albeit there are more than two possible labels. Unlike its single-label counterpart, multi-labels classification
using active learning is far less studied, except for a few recent works [55, 24, 35, 61]. In fact, to acquire multiple
labels, we are unaware of any related work that attempts to design active learning like techniques involving crowd.
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Akin to previous aim, we will adapt a few known active learning algorithms for multi-labels classifications
using Support Vector Machine (SVM), Naive Bayes, or Ensemble classifiers [55, 24, 35, 61]. Using this, our
objective is to select tasks that will be maximally informative for the classifier. Alternatively, task selection can
be guided by a version space analysis such that it will give rise to maximum reduction in the version space of the
classifier [57]. We will then augment them with worker-centric optimization through human factors modeling,
such as worker skill or motivation and design a combined optimization function. This function will dictate
which task is to be selected for which worker. Using Example 1, this is akin to selecting the most appropriate
unidentified image of the species and select the most appropriate workers to label it. Since a task could be
labeled by multiple workers, we will study how to aggregate multiple responses and infer the correct labels (truth
inference problem) of a task. We will design an iterative algorithm to effectively infer each task’s correct labels.
We will also explore the use of correlations among different labels to improve the inference quality. Finally, we
will investigate the stopping condition of multi-labels acquisition tasks based on various convergence criteria.

We first introduce and characterize different variables (Section 2) pertinent to workers and tasks to describe
human factors, then propose worker-centric optimization (Section 3). Both of these are pivotal to investigate
crowdsourced single and multi-label tasks through active learning (Sections 3.3 and 4).

2 Data Model
We introduce different variables and characterize human factors [48, 40, 26, 31, 8, 54, 11]. A crowdsourcing
platform typically comprises of workers and tasks that serve as the foundation of the framework we propose.
We also note that not all the variables are pertinent to every application domain (for example, citizen science
applications are usually voluntary contributions). Our effort is to propose a generalization nevertheless.

Domains/types: A set D = {d1, d2, . . . , dl} of given domains is used to describe the different types of tasks
in an application. Using Example 1, a particular species may construe a domain.

Workers: A set of m human workers U = {u1, u2, . . . , um} are available in a crowdsourcing platform.
Tasks and sub-tasks: A task T is a hybrid human-machine computational task (classification for example),

with a quality condition QT and an overall monetary budget BT that decide its termination. Using Example 1, T
is a classification task which terminates, when QT = 80% accuracy is achieved, or BT = $100 is exhausted.

Without loss of generality, T comprises of a set of n subtasks, i.e., T = {t1, t2, . . . , tn}. These sub-tasks are
of interests to us, as workers will be involved to undertake these sub-tasks. Each sub-task can either be performed
by human workers or computed (inferred) by machine algorithms. We consider pool based active learning, where
a finite pool of sub-tasks exists and given.

Sub-tasks: For single label, a sub-task is an unlabeled instance of the data that requires labeling. Considering
Example 1, this is analogous to confirming the presence or absence of a species in a particular geographic location.
For multi-label scenario, a sub-task requires multiple labels to be obtained. Using Example 1, this is analogous to
obtaining Kingdom, Phylum, Class, Order, etc of the insect.

Worker Response: We assume that a worker u’s response to a particular sub-task t may be erroneous, which
is used by the machine algorithm in one or more rounds of interactions. Our framework may ask multiple workers
to undertake the same task to reduce the error probability, and may decide which questions to ask in the next
round to whom based on the answers obtained in the previous round.

Human Factors: These are the variables that characterize the behavior of the workers in a crowdsourcing
platform [48, 40, 26, 31, 8, 54, 11].

Skill (Expertise/Accuracy): Worker’s skill in a domain is her expertise/accuracy. Skill of a worker in a domain
d is quantified in a continuous [0, 1] scale (to allow a probabilistic interpretation). A worker u may have skills in
one or more domains (e.g., different species observation accuracy).

Wage: A worker u may have a fixed wage wu, or may have to accept the wage a particular task offers. u’s
may have different wage for different types of tasks.

Motivation: Motivation aims at capturing the worker’s willingness to perform a task. A related work [31]
proposes a theoretical foundation in motivation theory in crowdsourcing platform and characterizes them in two
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different ways:
(a) Intrinsic motivation: Intrinsic motivation exists if an individual works for fulfillment generated by the

activity (e.g. working just for fun). Furthermore, related works [31, 8, 54] have identified that intrinsic motivation
emerges in the following ways: (1) skill variety (refers to the extent to which a worker can utilize multiple skills),
(2) task identity (the degree to which an individual produces a whole, identifiable unit of work, versus completion
of a small unit which is not an identifiable final product), (3) task significance (the degree to which the task has
an influence over others), (4) autonomy (the degree to which an individual holding a job is able to schedule his or
her activities), (5) feedback (the extent to which precise information about the effectiveness of performance is
conveyed).

(b) Extrinsic motivation: Extrinsic motivation is an instrument for achieving a certain desired outcome (e.g.
making money).

The challenge however is, either the values of these factors have to be explicitly given or they have to be
estimated. Related works, including our own, have proposed solutions to estimate skill [46, 30] by analyzing
historical data. Nevertheless, we are not aware of any effort that models motivational factors or design optimization
involving them.

Worker specific constraints: Additionally, a worker may specify certain constraints (e.g., can not work more
than 6 hours, or travel farther than 10 miles from her current location).

Characterizing sub-tasks considering human factors: It is easy to notice that the motivational factors
described above are actually related to tasks (i.e, sub-tasks).

Formally, we describe that a set A of attributes or meta-data is available to characterize each sub-task t.
They are its required skill-domain1 st , cost/wage wt, duration timet, location locationt, significance sigt,
identity ident, autonomy autot, task feedback fbt. Each t, if performed correctly, contributes by a quantity qt to
QT . These contributions are purely dictated by the active learning principles, such as how much it reduces the
uncertainty.

3 Worker-Centric Optimization through Human Factors Modeling
Recall Section 1 and note that worker-centric optimization is a common theme across single and multi-labels
tasks, which we first examine here.

Objectives: Our objective here is to explore mathematical models for worker-centric optimization in crowd-
sourcing platforms. Specifically, given an available pool of tasks and workers where workers perform repetitive
tasks, we first obtain human factors of the workers by analyzing their past tasks and then study the problem of
task assignment to enable worker-centric optimization. A recent work performs an ethnomethodological study at
Turker Nation2 and argues [39] that it is critical to enable worker-centric optimization. Our effort here is to make
a formal step towards that goal, independent of any specific system-centric optimization (i.e., the active learning
principles). Therefore, such a study has a much broader applicability that goes beyond active learning. Of course,
our framework will ultimately combine both system and worker-centric criteria.

Challenges: While the significance of human factors is well-acknowledged in crowdsourcing, the challenge
is to be able to estimate them effectively and propose appropriate models that could capture them during task
assignment. Added to the fact is the dependence of the underlying crowdsourcing domain, which makes some of
these factors more important than the rest (e.g., unlike AMT, there is no monetary pay-offs in citizen science
activity, but skill variety is acknowledged to be critical to avoid monotony).

3.1 Proposed Directions
First, we propose how to model and estimate human factors [48, 40, 26, 31, 8, 54, 11] that are pertinent to capture
motivation using the variables that are described in Section 2. Then, we describe mathematical models that

1for simplicity, we assume that each sub-task requires one skill, whereas, in reality, multiple skills may be needed for a
sub-task. The latter assumption is trivially extensible by our framework.

2http://www.turkernation.com/
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leverages these estimated human factors to explicitly assign tasks to workers.
Estimating human factors: We leverage the past task completion history of the workers as well as the new

tasks to compute a Boolean task completion matrix T , where the rows are the workers and the columns are the
(sub)-tasks. If a worker u has completed a (sub)-task t successfully in the past, the corresponding entry gets a 1,
it gets a 0 otherwise. We assume that the factors that capture intrinsic motivation, i.e., skill variety, task identity,
task significance, autonomy, feedback are independent yet latent variables. The second matrix we consider is the
task factor matrix F , where the rows are the tasks and the columns are the motivation related latent variables.
The final matrix is the user factor matrix U where rows are the factors and columns are the users. This matrix
could be fully latent or observed. In case it is latent, we minimize the error function, as defined below:∑

i,j

(tij − UiFj)
2 + λ(‖U‖2 + ‖F‖2) (1)

Here, λ is the regularization parameter. The goal is to find U and F such that it minimizes the error. For any
new worker and new task, the predicted task completion score is calculated by multiplying Ui with Fj . Here, the
important thing is to notice that the optimization function only minimizes the error for which ratings are present.
We apply the alternating least square approach [56] to solve this problem. This is an iterative approach, where at
each iteration, we fix the tasks’ latent factor matrix F in order to solve for U and vice versa. We have designed a
similar solution for predicting tasks to workers considering implicit workers’ feedback[45].

Worker-Centric Task Assignment: The solution above only estimates the intrinsic motivational factors, but
does not describe how to aggregate them together or combine with extrinsic motivation to perform worker-centric
task assignment.

Psychologists Hackman and Oldham [19] have combined factors associated to intrinsic motivations defined
motivating potential score (MPS) :

MPS =
skill-variety + task-identity + task-significance

3
∗ autonomy ∗ feedback (2)

Considering this aforementioned formulation, we study the worker-centric task assignment as a global
optimization problem to maximize the aggregated intrinsic and extrinsic motivation. For a given set of tasks Stu ,
V (Stu) represents the overall motivation for worker u, by combining her extrinsic motivation (EXTM) (recall
Section 2 that EXTM could be modeled using wage wt) and intrinsic motivation, i.e, motivating potential score
(MPS)(refer to Equation 2) [19]. In our initial effort, we combine them linearly, as that allows us to design efficient
algorithms. Assigning a set of tasks per worker is reasonable as well as desirable from worker’s perspective,
because workers in a typical crowdsourcing platform intend to undertake multiple tasks as opposed to a single
task. Workers may also have constraints, such as, not spend more than Xu hours, or the aggregated wage must at
least be bu dollars.

Technically, we want to assign tasks to the workers to maximize the aggregated motivation, such that the
assignment satisfies each worker-specific constraints. One such optimization function is described in Equation 3
(Recall Section 2 where timet and wt are the duration and wage of sub-task t, respectively).

Maximize
∑
u∈U

[V (Stu) = EXTM(Stu) +MPS(Stu)] (3)

V (Stu) =

 if
∑

t∈Stu time
t ≤ Xu and

∑
t∈Stu w

t ≥ bu

0 otherwise

As a simple example, given two tasks i and j, we can add the individual significance sigi + sigj , identity
ideni + idenj , autonomy autoi + autoj , or feedback fbi + fbj . Similarly, the wage of two tasks could also be
added and normalized to compute EXTM. Alternative problem formulation is explored below.
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3.2 Open Problems
Solving the optimization problem: How to design an effective solution to maximize worker motivation based
on the aforementioned objective function formulation is challenging. We observe that the proposed optimization
problem is NP-hard [14], using a reduction from the assignment problems [49]. In a recent work, we have
modeled motivation using only skill-variety and we have proved that the problem is NP-hard using a reduction
from the Maximum Quadratic Assignment Problem [3]. For our problem, we note that an integer programming
based solution is simply not scalable. We will explore greedy heuristic strategies that are effective and efficient.
For example, we will assign tasks to the workers greedily based on the marginal gain [49].
Complex modeling for estimating intrinsic motivation & task assignment: In our preliminary direction, we
have assumed that variables associated with intrinsic motivations are independent and could be combined as
suggested by Hackman and Oldham [19], or intrinsic and extrinsic motivation could be combined linearly. In
reality, that may not be the case. In this open problem, we will study the feasibility of a probabilistic model [67],
namely a hierarchical Bayesian framework [38] for this problem. If the worker is completely new in the platform,
we will bootstrap to collect a small set of evidence. We will consider each of the variables associated with worker
motivation as a random variable and present a model using hierarchical Bayesian Networks [29] by encoding a
joint distribution of these variables over a multi-dimensional space. This model will first establish the relationship
among the intrinsic motivational variables themselves and then between intrinsic and extrinsic motivation to
capture a workers’ “preference” to a given task. We will apply Constraint Based, Score-Based, and Hybrid
methods to learn the structure of the network [59]. We will leverage Bayesian Parameter Estimation as well as
Maximum Likelihood Estimation techniques to learn the parameters of the constructed network. For efficient
parameter estimation considering this complex joint distribution, we will use Gibbs sampling [7].
3.3 Optimized Single-Label Acquisition Involving Crowd
We now investigate our proposed optimization framework for single-label acquisition. This problem is examined
by augmenting active learning principles with worker-centric optimization (refer to Section 3).

Objectives: We are assuming a setting where single-label acquisition is difficult, expensive, and time
consuming (such as, Example 1). We adapt a set of popular as well as well-known active learning principles[34,
52, 42, 47] that are proposed to optimize system-centric cirteria, such as, minimizing uncertainty or maximizing
expected error-reduction that are known to be effective in supervised (classification) algorithms [58, 50, 37, 32].
We augment these active learning principles with worker-centric optimization. Given a pool of unlabeled instances
(of sub-tasks) and an available set of workers, the objective is to select sub-tasks for further labeling and assign
workers for annotations, such that, the assignment optimizes both system and workers. The same sub-task may be
annotated by multiple workers.

Challenges: An oracle, who knows the ground truth, no longer exists in crowdsourcing; instead, multiple
workers, with varying expertise (skill), are available. Under this settings, how to realign traditional active learning
goals that are system-centric (i.e., optimizes underlying computational task) requires further investigations. How
to systematically design optimization function, i.e., one that combines worker-centric optimization in traditional
active learning settings [64, 62] is the second important challenge. An equally arduous challenge is the efficiency
issue which is mostly overlooked in the existing research. Finally, when to terminate further label acquisition also
needs to be examined.

3.4 Proposed Directions
Our overall approach is iterative, where, in each round a set of sub-tasks are selected for annotation and a set of
workers are chosen. Once annotations are received, the underlying classification model is retrained. After that,
either the process terminates or we repeat. It has three primary directions: (1) in a given round, which sub-tasks
are to be selected for annotation and assigned to which workers? (2) how to aggregate multiple annotations to
obtain the “true” label? (3) when to stop?

Which sub-tasks are to be selected and assigned to which workers? We take a set of well-known active learning
techniques, such as, uncertainty sampling [34], query-by-committee [52, 42], or expected-error reduction [47],
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used in popular classification algorithms, such as, Naive Bayes [53], SVM [58, 50], Decision Trees [37], or
ensemble classification[32] and study them in crowdsourcing.

When a single classifier with a binary classification task is involved and the classifier is probabilistic (such
as Naive Bayes), we consider existing uncertainty sampling [34] techniques. We use entropy [53] to model
uncertainty to choose that sub-task for labeling whose posterior probability of being positive is closest to 0.5. For
non-probabilistic classifiers (such as SVM or Decision Tree), we explore heterogeneous approach [33], in which
a probabilistic classifier selects sub-tasks for training the non-probabilistic classifier. We also study existing
expected-error reduction [47] techniques that select the sub-tasks to minimize the expected future error of the
supervised algorithm, considering log-loss or 0/1-loss. We study the query-by-committee[52, 42] technique, we
choose that sub-task for further labeling which has the highest disagreement.

Active learning principles mentioned above are too ideal to be useful in a crowdsourcing platform. A simple
alternative is to design a staged solution, where we first select the tasks and then the workers [64]. For us, we
can take the task-selection solution from [64] and then plug in our worker-centric optimization (Section 3) to
compose tasks for the workers. We, however, argue that such a staged solution is sub-optimal, simply because,
tasks selected by active learning techniques may end up having a very low worker-centric optimization, resulting
in poor outcome overall. We therefore propose a global optimization that combines (1) worker-centric goals
(recall Equation 3). (2) active learning principles considering workers with varying expertise.

Recall Section 2 and note that qt represents sub-task t’s contribution towards a given active learning goal (for
example, how much t reduces uncertainty or expected-error) at a given iteration. Let Stu represent the sub-tasks
assigned to u with value V (Stu) (recall Equation 3). Considering worker’s skill sut as a probability, u’s expected
contribution to t is sut ∗ qt [9]. One possible way to combine them is as a multi-objective global optimization
function where the objective is to select sub-tasks and workers that maximize a weighted linear aggregation of
worker and task-centric optimization (Equation 4, where W1,W2 are specific weights). While linear aggregation
is not the only way, it is more likely to admit efficient solutions, where the weights are tunable by domain experts
(by default, W1 =W2 = 0.5).

Maximize V =
∑
u∈U

[W1 ∗ V (Stu) +W2 ∗
∑
t∈Stu

(sut ∗ qt)] (4)

Additionally, if a task has a cost budget associated that could be assigned either as a constraint to this
optimization problem, or we could use cost as another objective as part of the optimization function, akin to
one of our recent works [49]. Nevertheless, we acknowledge that designing the “ideal” optimization model that
suffices the need of every application is practically impossible. We address this in the open problems.

Aggregating multiple annotations: Another challenge is how to combine annotations from multiple workers
with varying expertise to obtain the “true” label. We apply weighted majority voting types of approach [20],
where the weights are chosen according to the skills of the workers. We also consider iterative algorithm for this
purpose. Examples of iterative techniques include EM or Expectation Maximization[25]. The main idea behind
EM is to compute in the E step the probabilities of possible answers to each task by weighting the answers of
workers according to their current expertise, and then to compute in the M step re-estimates of the expertise of
workers based on the current probability of each answer. The two steps are iterated until convergence. We explore
Bayesian solution [9] to probabilistically obtain the true label, i.e., given workers’ annotations and skill, compute
Pr(t = 0) and Pr(t = 1) and choose the one which has the higher probability.

3.5 Open Problems
Solving the optimization problem Solving the optimization problem described above is challenging. In a very
recent work, we have formalized task assignment as a linear combination of task relevance (based on a Boolean
match between worker expertise and the skill requirements of a task) and skill-diversity [43] and proved the
problem to be NP-Complete [13, 12]. We use Maximum Quadratic Assignment Problem (MAXQAP in short) [3]
to design an efficient algorithm with approximation factor 1/4. For our problem, we will examine if it is at
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all possible to design an objective function (perhaps as a special case) to exploit its nice structural properties,
such as, sub-modularity or cancavity. Such an effort is made for active learning problems recently [22] without
considering human workers. We will also study the possibility of staged algorithms and heuristic solutions, as
described above. To make the algorithm computationally efficient, we will examine how to design incremental
active learning strategies [44], such as finding the new classification model that is most similar to the previous
one, under a set of constraints.

Complex function design and stopping condition We note that the formulation described in Equation 4 is
rather simple - a linear function may not be adequate to combine worker and task-centric optimization. We will
explore non-linear multiplicative functions. Another possible way is to formalize this as a bi-criteria optimization
problem and design pareto-optimal solution that does not require us to assign any specific weight to the individual
functions [6, 2, 4]. Finally, we will examine when to terminate this iterative process. For the overall classification
task T , when quality threshold is not reached or budget is not exhausted (these are two hard stopping conditions),
we will design stopping condition by measuring the confidence [63] of the classification model, or availability of
suitable workers.

Develop a number of optimization models that are likely to cover a variety of scenarios We realize that
what constitutes the “ideal” optimization model is an extremely difficult problem and highly application dependent
(e.g., Which factors are important? Should we add or multiply different human factors? In the case of linear
weighting, what should be the weighting coefficients?). Even a domain expert who is very knowledgeable about
the specific application may not be able to shed enough light on this. We hope to develop a rich set of different
models that will cover the various types of applications. This idea of developing a set of optimization models
draw parallels from Web Search and Information Retrieval - where a set of alternative criteria, such as relevance,
diversity, and coverage, are considered [5]. In our case, this is analogous to developing models that only consider
workers skills/expertise, or cost, or motivation, or includes a subset of human factors that we are interested to
study in this project.

4 Optimized Multi-Labels Acquisition Involving Crowd
We now investigate the multi-labels acquisition scenario. We are unaware of any related work that performs
multi-label acquisition in an active learning settings involving crowd. Although one can transform a multi-label
task to several single-label tasks, this simple approach can generate many tasks, incurring a high cost and
latency. Akin to the previous section, our effort is to design solutions that adapt a few recent active learning
works [55, 24, 35, 61] for multi-label acquisition and combine that with worker-centric optimization, described in
Section 3.

Objectives: We will adapt a few known active learning algorithms for multi-label classifications using
Support Vector Machine (SVM), Naive Bayes, or Ensemble classifiers [55, 24, 35, 61]. We will combine and
augment them with worker-centric optimization through human factors modeling. Using Example 1, this is
akin to selecting the most appropriate unidentified image of the species and select the most appropriate workers
to provide multiple labels. Since a task could be labeled by multiple workers, we will study how to aggregate
multiple responses and infer the correct labels (truth inference problem) of a task. We will also explore the use of
correlations among different labels to improve the inference quality. Finally, we will investigate the stopping
condition or convergence criteria.

Challenges: Workers may exhibit different characteristics in multi-label tasks: a conservative worker would
only select labels that the worker is certain of, while a casual worker may select more labels. To determine the
multi-label tasks’ results, the key is to devise the so-called “worker model” to accurately express the behavior of
the worker in answering multi-labels. Furthermore, different from single-label tasks, correlations among labels
inherently exist in multi-label tasks. For Example 1, consider one pairwise label dependency: if the insect in
the image is labeled as Papilionidae (Family name) , then it is highly probable that it also has label Swallowtail
(Sub-family name). Therefore, how to understand and leverage label correlation is another challenge. Finally,
how to systematically design optimization function, i.e., one that combines worker-centric optimization in active
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learning settings [55, 24, 35, 61] is the final important challenge.

4.1 Proposed Directions
Our overall approach is iterative here as well, where, in each round a set of sub-tasks are selected to be annotated
with multi-labels and a set of workers are chosen. Once multiple labels are acquired, the underlying classification
model is retrained. After that, either the process terminates or we repeat. It has three primary directions: (1)
Task assignment (2) Truth Inference, i.e., aggregate multiple annotations to obtain the “true” labels. (3) Label
Correlation.

Task Assignment: In our preliminary investigation, we have studied the active learning problem for the
multi-label scenario considering the widely popular SVM classifier using the Maximum-Margin Uncertainty
Sampling. Uncertainty sampling [34] is one of the simplest and most effective active learning strategies used for
single-label classification. The central idea of this strategy is that the active learner should query the instance
which the current classifier is most uncertain about. For binary SVM classifiers, the most uncertain instance
can be interpreted as the one closest to the classification boundary by selecting the sample with the smallest
classification margin. Multi-label active learning methods simply extend this binary uncertainty concept into the
multi-label learning scenarios by integrating the binary uncertainty measures associated with each individual class
in independent manners, such as taking the minimum over all classes, and taking the average over all classes.

In our initial direction, given the active learning principle, we combine that with worker-centric optimization
and design an objective function akin to Equation 4, as described in Section 3.3. Obviously, exploring alternative
optimization models, or how to design a set of optimization functions that can handle a variety of scenarios,
or when to stop the iterative process are additional challenges. Once we understand these challenges for the
single-label acquisition problem in Section 3.3, we believe they will extend for the multi-label scenarios.

Truth Inference Problem: The truth inference problem, i.e, how to aggregate the annotations provided by
multiple workers and generate the actual set of labels requires deeper attention for the multi-label scenario. As
the correct set of labels associated with each sub-task is unknown (ground-truth is unknown), the accuracy or
expertise of a worker can only be estimated based on the collected answer. To model worker expertise, we
compute the following two measures, True Positive (TP) and False Positive (FP). TP is the number of labels that a
worker selected correctly and FP is the number of labels she selected incorrectly. Unlike a prior work [67], False
Negative and True Negative are not relevant, if the workers annotate the labels. In the case where workers validate
the given labels, these latter two measures are also relevant. Once these measures are computed, we design a
worker’s contingency table and calculate her expertise. After that, we design an iterative approach, which can
jointly infer the correct labels associated with the tasks and the expertise of the workers. Our iterative solution is
motivated by the Expectation Maximization (EM) algorithms and comprises of the following two steps: (step
1), we assume that the worker expertise is known and constant, and infer the probabilistic truth of each object
and label pair. (step 2), based on the computed probabilistic truth of each object and label pair, we re-estimate
workers expertise.

Label correlation: Since the annotated labels of an object are not independent (Recall Example 1 and note
that Papilionidae (Family name) and Swallowtail (Sub-family name) are highly correlated), we study how label
correlations can be inferred and facilitate truth inference. In our initial direction, we leverage the existing label
correlation techniques [65, 66] to generate the pairwise label correlations and regard them as prior input to our
problem. For example, the conditional dependency of two labels defines the probability that one label is correct
for an object under the condition that the other label is correct. Capturing the higher order label correlations
requires computing the joint probability which could be computationally expensive. Once label correlation is
computed, we shall explore how to use that information for improved truth inference.

4.2 Open Problems
Alternative Active Learning Strategy Design In our initial direction, we have discussed how to adapt uncertainty
sampling to design active learning strategies for SVM classifier for multi-label scenario. The average number of
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correct labels assigned to each instance in a multi-label data set is called its label cardinality. Thus the number of
predicted labels of an unlabeled instance is expected to be consistent with the label cardinality computed on the
labeled data. For an unlabeled instance, this inconsistency measure could be defined as the distance between the
number of correctly predicted labels so far and the label cardinality of the labeled data. We will study this label
cardinality inconsistency [60] to select that sub-task where the label inconsistency is highest. Additionally, we
will also study the active learning strategies known for other classifiers, such as Naive Bayes and Ensemble
methods could be adapted to our problem [55, 24, 35, 61]. Alternatively, task selection can be guided by a version
space analysis such that it will give rise to maximum reduction in the version space of the classifier [57].
Truth Inference with Label Correlation We will study how to use the information obtained from label correla-
tion to improve the truth inference. Intuitively, our truth inference problem could benefit from label correlation
in the following way: using Example 1, if label correlation infers high correlation among two labels, let’s say,
Papilionidae and Swallowtail (family and sub-family of butterflies), it is likely that Papilionidae and Mimic
Sulfurs (which is a sub-family of butterflies, but Mimic Sulfurs belong to a different family (Pieridae) will have
a very low correlation. Therefore, the probabilistic truth of the labels which have Mimic Sulfurs should be
downgraded to reflect that fact. It has been shown in Information Retrieval that the more frequent two words
occur together in text corpus, the more similar their vectors are [5]. We will regard each label as a word and
compute the similarity (e.g., cosine similarity) between the vectors of two labels. We will explore widely popular
Sigmoid function [28] to map a probability value to a real value, re-scale the value based on label correlation, and
then revert the re-scaled correlation back to a probability score using the Sigmoid function again.

5 Conclusion
The goal of this article is to propose an an optimized human-machine intelligence framework for single and
multi-label tasks through active learning. We conceptualize an iterative framework that judiciously employs
human workers to collect single or multiple labels associated with such tasks, which, in turn are used by the
supervised machine algorithms to make intelligent prediction. Our basic approach is adapt a few existing active
learning techniques for single and multi-label classification, but study them in the context of crowdsourcing,
especially considering worker-centric optimization, i,e., human factors. Our innovation lies in systematically
characterizing variables to model human factors, designing optimization models that appropriately combine
system and worker-centric goals, and designing effective solutions.
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