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1 Introduction

Enterprises are creating domain-specific knowledge bases by curating and integrating all their business data,

structured, unstructured and semi-structured, and using them in enterprise applications to derive better business

decisions. One distinct characteristic of these enterprise knowledge bases, compared to the open-domain general

purpose knowledge bases like DBpedia [16] and Freebase [6], is their deep domain specialization. This deep

domain understanding empowers many applications in various domains, such as health care and finance.

Exploring such knowledge bases, and operational data stores requires different querying capabilities. In

addition to search, these databases also require very precise structured queries, including aggregations, as well

as complex graph queries to understand the various relationships between various entities of the domain. For

example, in a financial knowledge base, users may want to find out “which startups raised the most VC funding

in the first quarter of 2017”; a very precise query that is best expressed in SQL. The users may also want to

find all possible relationships between two specific board members of these startups, a query which is naturally

expressed as an all-paths graph query. It is important to note that general purpose knowledge bases could also

benefit from different query capabilities, but in this paper we focus on domain-specific knowledge graphs and

their query needs.

Instead of learning and using many complex query languages, one natural way to query the data in these

cases is using natural language interfaces to explore the data. In fact, human interaction with technology through

conversational services is making big strides in many application domains in recent years [13]. Such interfaces

are very desirable because they do not require the users to learn a complex query language, such as SQL, and

the users do not need to know the exact schema of the data, or how it is stored.

There are several challenges in building a natural language interface to query data sets. The most difficult

task is understanding the semantics of the query, hence the user intent. Early systems [3, 30] allowed only a set

of keywords, which had very limited expressive power. There have been works to interpret the semantics of a

full-blown English language query. These works in general try to disambiguate among the potentially multiple

meanings of the words and their relationships. Some of these are machine-learning based [5, 24, 29] that require

good training sets, which are hard to obtain. Others require user feedback [14, 17, 18]. However, excessive user

interaction to resolve ambiguities can be detrimental to user experience.

In this paper, we describe a unique end-to-end ontology-based system for natural language querying over

complex data sets. The system uses domain ontologies, which describe the semantic entities and their relation-

ships, to reason about and capture user intent. To support multiple query types, the system provides a poly store
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architecture, which includes a relational database, an inverted index document store, a JSON store, and a graph

database. As a result, we support very precise SQL queries, document search queries, JSON queries, as well as

graph queries.

Once the data is stored in the appropriate backends, we also need to provide the appropriate abstractions to

query the data without knowing how data is stored and indexed in multiple data stores. We propose a unique

two-stage approach: In the first stage, a natural language query (NLQ) is translated into an intermediate query

language, called Ontology Query Language (OQL), over the domain ontology. In the second stage, each OQL

query is translated into a backend query (e.g., SQL) by using the mapping between the ontology and the corre-

sponding data schema of the backend.

In this two-stage approach, we propose an interpretation algorithm that leverages the rich semantic informa-

tion available in the ontology, and produces a ranked list of interpretations for the input NLQ. This is inspired

by the search paradigm, and minimizes the users’ interaction for disambiguation. Using an ontology in the in-

terpretation provides a stronger semantic basis for disambiguation compared to operating on a database schema.

OQL provides a powerful abstraction layer by encapsulating the details of the underlying physical data

storage from the NLQ interpretation, and relieving the users from understanding what type of backend stores are

utilized, and how the data is stored in them. The users only need to know the domain ontology, which defines

the entities and their relationships. Our system understands the mappings of the various ontology concepts to

the backend data stores as well as their corresponding schemas, and provides query translators from OQL to the

target query language of the underlying system, providing physical independence.

The NLQ interpretation engine uses database data and synonyms to map the tokens of the textual query

to various ontology elements like concepts, properties, and relations between concepts. Each token can map

to multiple ontology elements. We produce an interpretation by selecting one such mapping for each token

in the NLQ, resulting in multiple interpretations for a given NLQ. Each interpretation is then translated into

an OQL query. The second step in the process translates OQL to the underlying target data store, using the

ontology-to-schema mappings.

Conversational interfaces are the natural next step, which extends one-shot NLQ to a dialog between the

system and the user, bringing the context into consideration, and allowing informed and better disambiguation.

In this paper, after we describe our end-to-end NLQ system, we also discuss how to extend and adapt our

ontology-based NLQ system for conversational services, and discuss the challenges involved.

In the following, we first describe how we use ontologies, and the ontology query language (Sections 2 and

3), followed by the overall system description (Section 4). The translation index is used to capture the domain

vocabulary and the domain taxonomies (Section 5). Section 6 discusses the details of the NLQ engine and

Section 7 discusses the challenges in NLQ and conversational interfaces. We highlight some use cases where

use our end-to-end system in Section 8, review related work in Section 9, and finally conclude in Section 10.

2 Ontology

2.1 Ontology Basics

The domain ontology is a core piece of technology, which is central to our system. It describes the domain and

provides a structured entity-centric view of the data corresponding to the domain. Specifically, the ontology

describes the entities relevant to the domain, the properties associated with the entities, and the relationships

among different entities. We use OWL to describe our ontologies. It provides a very rich and expressive data

model that can capture a variety of relationships between entities such as functional, inheritance, unions, etc.

We use the domain ontology to just describe the schema of the domain capturing its meta-data. As such, in our

proposed system, ontologies do not contain any instance data.

Figure 1(a) shows a small portion of an ontology that we use in a finance application [26, 8]. It includes

concepts such as Company, Person, Transaction, Loan agreement etc. Each of these concepts are associated
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(a) A semantic graph of partial finance ontology
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(b) Ontology generation from schema

Figure 1: Sample Ontology and Ontology Generation

with a set of data properties: For example, the concept Company is associated with name, stock symbols, etc.

Object properties represent the associations between the concepts. For example, Securities are issued by a Public

Company where issued by is an object property. In this paper, we will use the extended version of this financial

ontology to illustrate system functionality.

2.2 Generating Ontologies from Data

There are many cases where the ontology is provided, especially if the data is curated, but there are also cases

where we only have the data without a corresponding ontology. To provide NLQ over such data sets, we provide

techniques to infer the ontology, i.e., the concepts and their relationships relevant to the domain, from the

underlying data and its schema.

Ontology generation from JSON data. This process involves the discovery of the domain ontology from all the

JSON documents stored in a document store. This is a multi-step process. The first step involves the extraction

of the schema tree from the nested JSON structure of each individual document. These individual schema trees

are merged into a single schema, similar to the data guide generation process of Goldman et al. [11]. In the

second step, we use the following rules to convert the schema into an ontology.

Path A.b ⇒ Concept A, Property b of A

Path A.B.c ⇒ Concept A, Concept B, Relation A to B, Property c of B

The ontology to physical schema mappings are an essential part of query translation, and are generated as

part of ontology discovery. Figure 1(b) shows the schema that is generated by our techniques and the ontology

generated from the schema, respectively.

Ontology generation from relational databases. Various ontology elements can be inferred from an RDBMS.

Table Inference. Ontology supports two different types of relations - functional and ISA. The table inference is

nontrivial as they depend on the Unique (Primary) Key and Foreign Key interactions, and quite often these keys

are not specified in the database, especially when the database is created from raw data files. The steps are as

follows:

• Identifying Unique Key and Foreign keys: For each table, we identify unique keys by comparing the count

of the distinct values of the column and the total row count in the table. If they are identical, we assert a

unique key constraint. Similarly, for foreign key, we check if the rows in the join of the two tables based on

the selected columns are equal to the total rows of the referring table.

• Inferring ISA relation: Once all the unique keys and FKs have been derived, we find all the tables having a

single column, which is both a unique key and the FK for the table. In such a case, we assert an ISA relation
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between this table and the referred table. There might be spurious ISA relation if there are auto-incremented

columns in two otherwise unrelated tables. To eliminate such cases, we check if the values in the column of

the referencing table are consecutive integers. The rest of the tables are deemed functional.

• Inferring cardinality of functional relations: For inferring m:n relations, we find tables with exactly two

columns, and both acting as foreign keys to different tables in the data base. If such a case occurs, the two

tables that are being referred to are mapped in an m:n relation and the join table does not take part in any

relation. We identify the relations with unique values in the FK and mark it as 1:1, and the rest as 1:n.

Concepts and Properties. Each table is mapped to a concept except the ones that form the join tables for the m:n

relations, and all columns except the foreign keys in that table map to the data properties of that concept. The

data type of the properties are also extracted from the data type of the table columns. The resulting ontology is

stored in OWL2 [1] format.

3 Ontology Query Language

We propose OQL, a query language expressed against the domain ontology as an abstraction to query the data

without knowing how data is stored and indexed in multiple data stores. OQL represents queries that operate on

a set of concepts and relationships in an ontology. OQL is inspired by SQL and its object-oriented extensions,

and it provides very similar constructs, including SELECT, FROM, WHERE, HAVING, GROUP BY and OR-

DER BY clauses. As such, OQL can express sophisticated queries that include aggregations, unions, nested sub

queries, document, fielded search over document stores, as well as JSON paths, etc.

OQL allows several types of predicates in the WHERE clause including: (1) predicates used to compare

concept properties with constant values (or sets of values), (2) predicates used to express joins between concepts,

(3) predicates that use binary operations such as MATCH for full text search or fielded search over documents,

and (4) predicates that use path expressions to specify the application of a predicate along a particular path

over the domain ontology. In general OQL is composable and allows arbitrary level of nesting in the SELECT,

FROM, WHERE and HAVING clauses.

Example 1: Show me all loans taken by Caterpillar by lender. This query joins the following concepts in

the ontology: lender, borrower, commitment and loanAgreement. In this query, Caterpillar is the borrower.

The condition br = la→borrowedBy indicates that the borrower instance should be reachable by following the

borrowedBy relationship from the LoanAgreement concept.

SELECT Sum(la.amount)

FROM Lender ld, Borrower br, Commitment c, LoanAgreement la

WHERE br.name IN (‘Caterpillar’, ‘Caterpillar Inc.’) AND ld = c→lentBy

AND la = c→has AND br = la→borrowedBy

GROUP BY ld.name

Example 2: The following query applies a fielded search using the MATCH binary operation for a person whose

name contains the word Adam and has held the position/title of President in a company.

SELECT oPerson.name, oEmployment.position, oEmployment.title, oCompany.name

FROM Person oPerson, Employment oEmployment, Company oCompany

WHERE oPerson.name MATCH (‘Adam’) AND oEmployment.title=‘PRESIDENT’

AND oEmployment→for=oPerson AND oEmployment→from = oCompany

4 System Architecture

Figure 2 shows the overall system architecture. It serves a wide variety of applications including NLQ Service,

Conversational Services that enable chat bots, and other applications that use programmatic APIs. These ap-
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plications use OQL queries to explore and analyze the underlying data, stored in one of the supported backend

stores.

!""#$%&'$()* +,-./)'012&%0 34&'.5('*

!"#$"%&&%'()*+!,- ./0*12"3()2
4#532"-%'(#5%6*

12"3()2

6)'(#(78.-9018.,&)79&70.:6-,;

<(=&$).

6)'(#(78

70/*082"9*4#&:(62"

70/;10/

<"%5-6%'#"

70/;12%")=

<"%5-6%'#"

70/;>17.

<"%5-6%'#"

70/;?"%:=

<"%5-6%'#"

@26%'(#5%6*

1'#"2

A#)8&25'*

1'#"2

>17.

1'#"2

?"%:=*

1'#"2

>1&)*?

#&'$()

/)@0A

B48*$%&#.

C%40=&

6)'(#(78.

'(.

C%40=&.

D&""$)7

Figure 2: System Architecture

The OQL query compiler and the OQL query

translators together translate the OQL query into the

target back-end query using the ontology to physical

schema mappings. By decoupling the semantic do-

main schema from the actual data storage and organi-

zation, our system enables independent optimization

of each layer, and allows the applications to reason at

the semantic level of domain entities and their rela-

tionships.

OQL Query Compiler. The OQL query compiler in-

cludes an OQL query parser, and a set of query trans-

lators one for each back-end. The query parser takes

an OQL query as input and generates a logical repre-

sentation of the query in the form of a Query Graph

Model (QGM) [22]. Using QGM as the logical repre-

sentation of the query defers the choice of the actual

physical execution plan to the underlying data store

that would be responsible for the execution of the query. The query compiler identifies which backend store

contains the data needed by the query, and routes the query to that target. It may also generate a multi-store

execution plan, which is optimized to minimize data movement between data stores.

OQL Query Translation. The query fragments expressed over the ontology are translated into appropriate

back-end queries to be executed against the physical schema of the stored data. We have developed several

query translators (one per type of back-end store) for this purpose. Query translation requires appropriate schema

mappings that map concepts and relations represented in the domain ontology to appropriate schema objects in

the target physical schema.

Query translation also needs to handle union and inheritance relationships, and translate path traversals to

a series of join conditions. Depending on the physical data layout these are translated to appropriate operations

supported by the back-end stores. For document oriented stores the translator needs to make distinctions between

fielded and document oriented search. For querying JSON data it needs to understand where to apply predicates

along specific paths in the nested schema.

5 Translation Index

Translation Index (TI) is a standalone component that captures the domain vocabulary, providing data and meta-

data indexing for data values, and for concepts, properties, and relations, respectively. TI helps the NLQ engine

to identify the entities in the query, and their corresponding ontology properties.

TI captures both internal as well as external vocabularies. For the internal ones, TI is populated from the

underlying data stores during an offline initialization phase. For example, if the input query contains the token

“Alibaba”, TI captures that “Alibaba” is a data value for the name column in the Company table in the relational

back-end store. Note that “Alibaba” can be mapped to multiple ontology elements (e.g., InvestorCompany or

Lender), and TI captures all of them. TI provides powerful and flexible matching by using semantic variant

generation schemes. Essentially, for the data values indexed in TI, we not only index the actual values (e.g.,

distinct values appearing in Company.name), but also variants of those distinct values. TI leverages semantic

variant generators (SVGs) for several common types, including person and company names, among others. For

example, given an input string “Alibaba Inc”, the company name SVG produces the following list of variants:
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{“Alibaba”, “Alibaba Inc”, “Alibaba Inc.”, “Alibaba Incorporated”}. This allows the NLQ engine to formulate

the queries by using any of the indexed variants of a data value (e.g., “Alibaba” vs. “Alibaba Inc”), or use these

indexed variants in an IN (list) predicate.

Internal vocabulary is not always sufficient. Suppose “renal impairment” is a data value in the back-end

store. If the query term is “kidney disease”, TI would not be able to return “renal impairment” even though

“renal impairment” is a more specific term for “kidney disease”. To address this issue, TI also leverages external

knowledge sources, such as standard taxonomies, domain lexicons, dictionaries, etc. To continue our example of

searching for “kidney disease”, TI uses SNOMED [2], a systematically organized taxonomy of medical terms,

to connect “kidney disease” with “renal impairment” via the ISA relationship in SNOMED. Hence with more

domain knowledge, the semantically related matches can be found by TI, improving recall for the query.

6 Natural Language Querying

In this section, we describe how the NLQ Engine takes a natural language query (NLQ) and interprets it over

the domain ontology to produce an OQL query. The transformation of NLQ to OQL query happens in mul-

tiple phases. We describe each of the phases with a running example from the finance domain as captured in

Figure 1(a) for natural language query: “Show me total loan amount given by Citibank to Caterpillar in 2016”.

Evidence Generation. In the very first step, NLQ Engine tries to identify all the different mentions of ontology

elements in the NLQ. So the algorithm first iterates over all the word tokens in the NLQ and collects evidences

of one or more ontology elements (concept, relation, and property) which have been referenced in the input

NLQ.

In general, a token can match multiple elements in the ontology. For example, the token “Citibank” is

mapped to Lender.name and Borrower.name (considering Citibank may have acted as a borrower as well as

a lender) and the phrase “loan amount” is mapped to LoanCommitment.amount. The phrase “given by” gets

mapped to the lent by relation in the ontology. “Caterpillar” is also mapped to Lender.name and Borrower.name.

The temporal expression “in 2016” gets mapped to LoanCommitment.year.

An evidence can be of three types: 1) a metadata evidence is generated by matching the synonyms associated

with the ontology elements (e.g., “loan amount”), 2) a data-value evidence is generated by looking up a token

in the Translation Index (e.g., “Citibank”,”Caterpillar”), and 3) a typed evidence is generated by recognizers

such as temporal expressions that recognize date/time related expressions and maps them to date/timestamp

typed properties in the ontology. For example, “in 2016” is detected and mapped to LoanCommitment.year. The

evidence for a token can either be metadata or data-value, but not both. Note that if a token matches a data-value

corresponding to an inherited property of a child concept then it should also match with the same property of the

parent. For example, if “Citibank” data-value matches Lender.Name then it should also match Company.Name.

The metadata matching uses synonyms associated with the ontology elements. The NLQ engine relies on

the given set of synonyms associated with ontology elements. It also uses publicly available synonym databases

such as PPDB [10] to create additional synonyms for the given set of terms.

Interpretation Generation. Note that, only one element from the evidence set of each token corresponds to

the correct query. In this phase, the NLQ engine tries all such combination of elements from each evidence

set. Each such combination, called selection set, is used to generate an interpretation, which is represented as a

subgraph in the semantic graph connecting one evidence for each token respecting ontology-related constraints.

This semantically grounds the words in the natural language to specific meanings by referring to elements in

the semantic graph. Connecting these referred elements produces a unique interpretation for the given natural

language query based on the ontology semantics.

For each selection set, a subtree, called Interpretation Tree, is computed (if possible) which uniquely identi-

fies the relationship paths among the evidences in the selected set. It is computed by connecting all the elements

in the selected set in the semantic graph and satisfying two constraints. One such constraint is the relationship
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constraint which asserts that between evidence mapping “loan amount”, “given by”, and “Citibank” there should

be a path in the interpretation tree connecting them in order. When “Citibank” is mapped to Borrower then this

constraint will not be satisfied. The other constraint is called inheritance constraint. Inheritance constraint in-

validates those interpretation trees which have a parent (or union) concept as a chosen element and it connects

to a property or a relation which belongs to one of its child (or member) concepts in the ontology.

Note that many interpretations can arise since there can be many possible subtrees connecting elements of

a selected set in addition to many possible selected sets. We use a Steiner-tree-based algorithm to generate a

single interpretation of minimal size from a selected set. The rationale of computing Steiner trees to derive the

minimal sized connected tree follows from the intuition that among the different possible subtrees, the most

compact one has the most direct and straight forward meaning in the ontology and thus is the most likely in-

tent of the user query. Following the same intuition, it also employs a ranking criteria to choose one or more

interpretations across all selected sets depending on the number of edges present in the minimal Steiner tree

computed from a specific selected set. Fewer edges in the Steiner tree results into higher rank of the interpreta-

tion. For example, the top ranked interpretation as found from selected set is ITree = {(LoanCommitment→lent

by→Lender), (LoanCommitment→has→LoanAgreement), (LoanAgreement→borrowed by→Borrower)}. Note

that, the ranking can result in multiple interpretations with the top rank score, if there are multiple minimal

Steiner trees with the same number of edges. In that case NLQ will provide multiple answers to the user as

obtained from multiple interpretations for the question.

OQL Query Generation. As described in the previous section, our interpretation algorithm produces a ranked

list of interpretations for a given NLQ. The goal of the Ontology Query Builder is to represent each interpretation

in that list as an OQL query. In the final step, the constituent clauses of an OQL query corresponding to a given

interpretation tree (ITree) and a selected set (SS) are generated as follows.

• FROM Clause. The FROM clause is formed by the evidence concepts in the interpretation graph. The path

between the root node to other evidence nodes in the tree denote the join path between the concepts. Thus,

the FROM clause for the example ITree will be FROM Lender LenderObject, Borrower BorrowerObject,

LoanCommitment LoanCommitmentObject.

• WHERE clause. The WHERE clauses are generated based on the filter conditions specified. For example,

to generate equality condition in the WHERE clause, data value evidences are used to determine the equality

between the ontology property and the original value in the data value evidence. We uses a large vocabulary

(e.g., more than, less than, etc.) for creating expressions. We also employ a grammar to recognize time-related

expressions. For example, the WHERE clause corresponding to the example ITree will be WHERE Lender-

Object.name = ‘Citibank’ AND BorrowerObject.name = ‘Caterpillar’ and LoanCommitmentObject.year =

2016.

• SELECT clause. The SELECT clause contains a list of ontology properties which are categorized as aggrega-

tion properties and display properties depending on whether an aggregation function is applied to them. The

OQL query generation algorithm identifies explicit references to aggregation functions (e.g., SUM/total) in

the NLQ by employing a lexicon of terms corresponding to the common aggregation functions. In this ex-

ample, the expression, SUM(LoanCommitmentObject.amount)), will be created. The display/non-aggregation

properties of the SELECT clause are generated by finding ontology properties which appear after the head

phrases such as “Show me”, “Tell me” and not associated with another keyword such as “per” which can

signify GROUPBY clause.

• GROUPBY clause. It specifies an ordered list of ontology properties that the user wishes to group the results

by. A group by operation is recognized by presence of specific keywords like ”by” , ”for each” etc. followed

by an ontology property.
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• ORDERBY clause. The ORDERBY clause specifies an ordered list of ontology properties (or aggregations

over properties) that the user wishes to order the results by. Like group by, order by operation is also recog-

nized by presence of specific keywords like ”order by”, ”sort by” followed by a property in the ontology.

7 Challenges and Vision

In this section we will discuss some of the common challenges encountered by the NLQ Engine. These are still

open problems where active research is being done. Then, we also present our vision on how NLQ Engine can

be extended to create a Conversational System that can resolve ambiguity via user interaction, which is also one

of the core challenges in NLQ Engine.

7.1 Ongoing Work

Spurious Mapping in Evidence Generation. Consider an example query in “Show me companies Caterpillar

has borrowed money from”. In this example, the token “money” happens to match a person name in the un-

derlying data store and therefore associates the candidate Person.Name property to that token. Such mapping is

an instance of spurious mapping. Detecting and handling spurious mapping remains a challenge in developing

robust interpretation generation algorithms. A possible way to do this is to use the contextual knowledge from

the input query to identify the query is asking about “Loans” and “Loans” does not involve “Person” as per the

ontology model. This knowledge can be utilized to prune out such spurious mappings from being included in

the interpretation process.

Nested Query Handling. Although OQL grammar supports multiple levels of nesting, detecting an NLQ which

is to be translated to a nested OQL query and subsequently producing correct OQLs for it remains an open chal-

lenge. A part of the difficulty lies in taking clues from the natural language for detecting different cases of

possible nesting. A harder challenge is to identify the sub-queries and the correct join condition to stitch the

results of the sub-queries. Although this still remains an open problem, here we try to provide a high-level

overview of our ongoing effort to address this problem. We employ a nested query detector, which builds on

different lexicon rules to detect different cases of nesting. For each of the different cases, a reasoning engine can

work towards building different sub-queries. Consider an example question as “show me all IBM transactions

with value more than average selling price”, this can be detected as a nested query by the presence of comparator

phrases like “more than” in the input query and a comparison against another aggregation value like “average

selling price”. A possible way to handle this query is to decompose the input NLQ text into two sentences

across the comparator phrase i.e., LHS sentence as “show me all transactions with value” which corresponds

to the outer OQL query, and RHS sentence “average selling price” which corresponds to the inner OQL query.

The inner query, in this example, represents a predicate on a property referenced in the outer query i.e., Trans-

action.amount. At the next step, the Ontology-driven Interpretations Generator can be invoked on the LHS and

RHS sentences, and then the Ontology Query Builder can generate two OQL queries corresponding to the two

sentences. The reasoning engine can figure out the correct join between the inner and outer query result. For

example, if they are aggregation comparisons on both sides, then the inner query can be incorporated in the

HAVING clause of the outer query, or else if it is a property value comparison, like in this example question,

then a simple property value comparison in the WHERE clause is performed between outer query and inner

query result; e.g., Transaction.amount > Average(Price).

7.2 Extending NLQ for Conversation

Typical natural language interfaces are stateless and so they are oblivious to the history of the questions being

asked in the past. Users, while asking questions to the NLQ interfaces, are latently aware of the context and

ask questions keeping that in mind. Consider the following interaction in the finance domain - (i) What is the
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loan amount given by Citibank to Caterpillar in each year? (ii) Who are its lenders? Here, the second question

is dependent on the context of the first question. These are natural interactions for users. The conversational

interface enables users to automatically exploit the latent semantic context of the conversation, thereby making

it simpler to express complex intents in a natural, piece-wise manner.

There are several challenges in supporting such conversational interfaces. These challenges arise in in-

terpreting the contextual questions in the presence of the context. In the subsequent subsections, we list the

challenges and how they are supported via extending the Natural Language Querying described in section 6.

Co-reference Resolution. In a natural language dialog, users often use co-references to refer to the entities in

the previously asked question. These co-references are typically pronouns, anaphora, cataphora, and sometimes

split antecedents. There are many state of the art solution for co-reference resolution, but all of them are trained

on general purpose news data [15, 19, 21, 23]. They fail to identify the subtleties of any specific domain because

of the lack of training data.

For example a follow up query - “Who are its lenders?” to the base query - “What is the loan amount

given by Citibank to Caterpillar?”, contains a pronoun its that needs to be resolved. There are two candidate

to its viz. (i) Citibank (the lender) and (ii) Caterpillar (the borrower). Any state of the art system will fail the

subtle difference between the companies, which are taking different roles in the domain. To circumvent this

weakness, we use signals from the Ontology to resolve co-references. In this particular case, from the ontology

described in Figure 1, a borrower can only have lenders (determined through path between the concepts), and

hence correct resolution will associate the co-referent its to Caterpillar. Thus, using domain specific ontology

augments existing techniques and yields improved accuracy.

Ellipsis Resolution. Another challenge in conversational interface is to support ellipsis (Non Sentential Ut-

terances) [9]. Ellipsis are partial questions that modify the previously asked question. A sample interaction

involving ellipsis is as follows - (i) “What is the loan amount given by Citibank to Caterpillar?”, (ii) “in 2015?”

Here, the second question cannot be interpreted on its own and modifies the previously asked question. In this

particular case, a WHERE clause on the loan period should be added to the previous query.

To resolve the ellipsis, we use the Ontology to find the annotations (select, where) in the follow up query

and then use these annotations to apply transformations to the previous query. For the example described above,

the annotations in the base query are - loan amount is part of SELECT clause, Citibank and Caterpillar are part

of WHERE clause. This process is described in detail in section 6. For the follow up query, we identify the

temporal condition as a WHERE clause predicate, and since there is no existing temporal clause in the previous

query, we add it to the previous query.

Disambiguation. Often times in natural language queries, users employ terms that are ambiguous, e.g., South-

west as (i) Southwest Airlines or (ii) Southwest Securities. A conversational interface can help resolving these

ambiguities via interaction in natural language. Sometimes these ambiguities can be automatically resolved if

the users have mentioned the unambiguous choices in the previous questions. If no such clarity is available from

the context, the interaction proceeds by asking the user to clarify.

Context Management. Since a conversational interface needs to maintain the context of the previously asked

questions and answers, the interface can no longer be stateless. Context manager is responsible for updating

the context as conversation proceeds. The conversation is initialized with an empty context. When user asks

a question, all the information related to that question(including annotations, answers, etc.) are packaged as a

context object and pushed to the context, which is represented as a stack. If additional user input is required

for disambiguation, a new context state is created specifically for the disambiguation. Once an answer to dis-

ambiguation question is detected, the entire disambiguation object is removed from the context, and the last

question that caused the ambiguity is interpreted with the received answer.
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8 Use Cases

The NLQ system has been applied in various domains. Here we describe the some of the important use-cases.

Finance. We instantiated the NLQ system for the finance domain by taking data from 5 years of SEC and FDIC

filings which amounts to 1.5 TB of raw data. We created an ontology combining information from two standard

finance-domain ontology called FIBO (Financial Industry Business Ontology) and FRO (Financial Regulation

Ontology) with the help of domain experts. We processed the data such that it adheres to our ontology and

instantiated our NLQ system on top of it. The main challenge of this use case was to overcome ambiguities

across various entities e.g., there are 202 different entity matches just for the token IBM, spreading across 6

different roles such as Company, Subsidiary, Lender, Startup, Investor, and Investee. Our interpretation engine

showed great precision and recall [26] in handling such cases.

Healthcare. We also worked on a healthcare use case by building a natural language conversation service to en-

able the pharmacists, physicians, and nurses to easily access various drug information. In particular, information

pertaining to drug classes, drug synonyms, side effects, adverse effects, symptoms, general doses is accessed

from a relational database through a conversation interface. The database is described using an ontology, and the

conversation service intents and entities are identified with the guidance from the ontology. The interactive na-

ture of the conversation service allows the system to resolve ambiguities and narrow down on specific answers,

e.g., if a user asks “what is the side effect of Aspirin” then the system can ask “for an adult or for a child” to

give specific information.

SAP-ERP. In this use-case, we extended the NLQ technology to interact with the SAP-ERP system. Because

of the large size of SAP-ERP domain (100K tables and 5M relations), this use-case posed multiple challenges

regarding automatically creating the ontology, capturing the domain vocabulary and populating the translation

index, as well as the query translator, which required adaptations to the SAP SQL dialect. SAP-ERP has around

63 domains and 2K sub-domains, and we have created a goal-directed algorithm to create and instantiate NLQ

for each specific domain/sub-domain, leveraging meta-data information from SAP’s data dictionary tables. We

have instantiated our system for different domains like Sales and Distribution, FICO (FInancial accounting) and

Security Administration. The details of our solution are described in [27].

Weather. We have instantiated the NLQ system on weather data such that users can ask various weather-related

questions in natural language. Two important features of this use-case were 1) handling time-related expressions,

and 2) domain rules related to weather and time. Consider the question - “Will it be hot tomorrow afternoon?”

In this case, we have to map “hot” to a temperature using a domain rule (hot : temperate ⋗ 40-degree celsius)

and afternoon implies 12 pm to 6 pm. We also have to enable interactive disambiguation for location entities

(e.g., Columbus could mean Columbus, OH or Columbus, GA).

9 Related Work

In the context of data management, natural language interfaces for relational databases (NLIDB) have been

studied for several decades [4, 28]. As noted in [4, 17], early NLIDBs were based on grammars designed

particularly for a specific database, thus making it difficult to incorporate other databases. The most recent work

in the area is the NaLIR system [4], which operates directly on the database schema as opposed to our two-stage

approach that provides physical independence, and exploits the powerful semantics of the ontology. Moreover,

NaLIR mainly relies on user interaction to find the correct interpretation for ambiguous NLQs. Our system, on

the other hand, provides an interpretation ranking mechanism that almost eliminates user interaction. Similar

to NaLIR, Nauda [14] is an early interactive NLIDB. However, its main focus is to provide additional useful

information to user, more than what is explicitly asked in the question. The PRECISE system [25] defines a

subset of NLQs as semantically tractable, and generates SQL queries only for these NLQs. Similar to NaLIR,

PRECISE operates directly on the database schema and thus cannot exploit the rich semantics of the ontology.
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Moreover, PRECISE is not able to rank the NLQ interpretations but returns all of them to the user. We believe

that interpretation ranking provides a better user experience.

Ontology-driven data access systems [7, 26, 12, 20] capture the domain semantics and provide a standard

description of the domain for applications to use. Some of these works [7, 26] either focus on specific application

domains or offer ontology-based data access through description logic or semantic mappings that associate

queries with the underlying data stores to the elements in the ontology. However, they either fail to support

multiple query types in a poly store architecture or lack a natural language interface to explore the data stored in

multiple backends.

10 Conclusion

In this paper, we described our ontology-based end-to-end NLQ system to explore databases and knowledge

bases. We argued the importance of using domain ontologies and entity-based reasoning in interpreting natural

language queries. We illustrated our experience of instantiating the system on top of various domains. As future

work, we plan to extend NLQ to support more complicated nested queries. We are also investigating how to

bootstrap a conversation service using an ontology, and leverage our NLQ stack for domain specific chat bots.
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