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Abstract

In the age big data, uncertainty in data constantly grows with its volume, variety, and velocity. Data

is noisy, biased and error-prone; blindly applying even the most advanced data analysis techniques

can easily mislead users to incorrect analytical conclusions. Also, compounding the problem of un-

certain data is the uncertainty in data analysis and exploration. A typical end-to-end data analysis

pipeline involves cleaning and processing the data, summarizing different characteristics and running

more complex machine learning algorithms to extract interesting insights. The problem is that each step

in the pipeline is error-prone and imperfect. From the input to the output, the uncertainty propagates

and compounds. This paper discusses the challenges in dealing with various forms of uncertainty in

data analysis and provides an overview of our work on Quantifying the Uncertainty in Data Exploration

(QUDE), a toolset for safe and reliable data analysis.

1 Introduction

Tableau, scikit-learn, RapidMiner, Trifacta, Tamr, or Vizdom/IDEA are just a small collection of tools [2, 1, 18],

which aim to make Data Science more accessible for everyone. However, democratizing Data Science also

comes with a risk. For example, many of the “new” users these tools try to reach are not trained in statistics and

thus, do not understand the nuances of the algorithms they use. Visual tools, like Tableau, make it possible to

quickly test hundreds of hypotheses, and thus, it significantly increases the risk of finding false insights. Data

integration tools, like Trifacta and Tamr, make it easier to integrate data, but might also hide data errors. Putting

all these together in an end-to-end data analysis and exploration pipeline compounds and further increases the

risks of uncertainty.

In this paper, we discuss several potential uncertainty in data analytics, and provide an overview of our

work on Quantifying the Uncertainty in Data Exploration (QUDE): a new tool set to automatically quantify

the different types of uncertainty/errors within data exploration pipelines. In one hand, there are the obvious

types of uncertainty, such as outliers, which can be easily detected via simple visualizations (e.g., error bars,

scatter plots). On the other hand, there are various types of uncertainty that are critical for reliable analysis

results, but often overlooked. The goal of the QUDE project is to provide techniques for automatically detecting

and quantifying such missed types of the uncertainty. This can help users without deep statistical or machine

learning backgrounds to derive more safe and reliable data analytical conclusions.
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Figure 1: Data analysis & exploration workflow (top) and an example pipeline (bottom).

1.1 Types of Uncertainty in Data Analysis

A typical end-to-end data analysis pipeline involves collecting and cleaning data, summarizing different char-

acteristics and running complex machine learning algorithms. At a high level, a data analysis and exploration

workflow involves multiple stages illustrated in Figure 1. Namely, we need to extract high quality data from

multiple data sources (or samples), clean the data to remove the inconsistency and merge the same entity in het-

erogeneous formats (i.e., de-duplication), apply data analysis techniques (e.g., simple aggregate queries or more

complex machine learning algorithms) to extract useful information and extract interesting insights. Finally, we

need to present the results in the right context for the interpretation.

While similar data analysis best practices can produce actionable insights and discoveries, one should not

take anything at face value. The size and complexity, noise and incompleteness with big data not only impede

the progress of the pipeline, but also make each step in the pipeline more error-prone. The uncertainty around

the quality of the intermediate results propagates and compounds, making it even more difficult to validate the

output results. Worse yet, the nature of data analysis and exploration tasks requires testing multiple hypothe-

ses, applying different testing procedures with different combinations of data analysis techniques over the input

data. The problem is that this “repeated attempts to find interesting facts, increases the chance to observe seem-

ingly significant correlations by chance” [46], which is more formally known as Multiple Comparisons Problem

(MCP) [28]. Obviously, many quality-related concerns exist in the entire pipeline from entity resolution prob-

lems up to Simpson-Paradox problems for aggregated results. In the following, we therefore highlight five types

of uncertainty, which have been less explored in the literature and/or no automatic techniques exist to control

the uncertainty type.

A. Missing Unknown Data Items [39, 15, 16]: Incompleteness of the data is one of the most common sources

of uncertainty in practice. For instance, if unknown data items are missing (i.e., we can’t tell if the

database is complete or not) from the unknown target population, even a simple aggregate query result,

like SUM, can be questionable. It is challenging to make sure that we have collected all the important data

items to derive correct data analysis. On the contrary, the traditional survey and sampling methodologies

work under a closed-world assumption, where there exist no unknown items.

B. Undetected Data Errors [14]: Complicating the challenges of incomplete data is also the quality of the

collected data items. Real-world data is noisy and almost always comes with a variety of errors. Such
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Table 1: More commonly-studied data analysis errors/uncertainty [12, 36, 26, 31, 35, 19, 20]. QUDE focuses on

other types of uncertainty that are crucial for safe and reliable data analysis, but often overlooked in practice.

Data Extraction Data Integration Data processing Exploratory Queries & ML Interpretation

Sample selection bias Entity resolution Combination of error types Model selection Human involvement

Data source validity Un-/semi-structured data Data cleaning & coverage Hyper-parameter tuning Visualization selection

Disparate data sources Data enrichment Human involvement Model bias & variance Deceptive visualizations

Missing information Data under-/over-fitting

Feature engineering

Concept/distribution shift

“dirty” data must be removed or corrected because errors can and will bias the results. There are many

techniques to identify and repair the errors, but no single technique can guarantee a perfect error coverage.

The challenge is that, one should use a number of orthogonal cleaning techniques or hire a lot of crowd-

workers without knowing when to stop. Thus, we want to estimate how many errors are still remaining

in the data set, without knowing the ground truth (a complete/perfect set of constraint rules or the true

number of errors in the data set).

C. False Discovery [46]: Extracting insights from data requires repeated analysis and adjustment of hypothe-

ses. With every new hypothesis and insight, the probability of encountering an interesting discovery by

chance increases (also known as the MCP). Unfortunately, the problem is often overlooked in data analy-

sis. In fact, many reported results, including published scientific findings, are false discoveries [27]. Thus,

it is very important to control the MCP to ensure reliable data analysis and exploration.

D. Model Quality [13]: ML is one of the most popular tools for learning and making predictions on data. For its

use, ensuring good ML model quality leads to more accurate and reliable data analysis results. The most

common practice for model quality control is to consider various test performance metrics on separate

validation data sets (e.g., cross-validation); however, the problem is that the overall performance metrics

can fail to reflect the performance on smaller subsets of the data. At the same time, evaluating the model

on all possible subsets of the data is prohibitively expensive, which is one of the key challenges in solving

this uncertainty problem. Furthermore, missing unknown data items or sampling bias, in general, can

also degrade the quality of the model. The challenge is that most ML/inference models perform badly on

unseen instances, if similar examples are not learned during training.

E. Data Sharing Environments: When data is shared, a host of new problems increase uncertainty in data

analysis. Namely, controlling false discoveries becomes much harder across several institutions or re-

search groups given that the many hypotheses are posed against the shared data. A naı̈ve solution would

be to regulate the data sharing all together via a third-party service (or don’t share at all). But this hinders

scientific progress and is too costly to implement.

1.2 Our Goal and Contributions

As part of QUDE, we set out to quantify the uncertainty around the data analysis pipeline, which, in turn, should

provide various measures to correct and validate the output results and discoveries. In this work, we provide an

overview of our ongoing research, elaborating the uncertainty and its impact on the data analysis and exploration

results, as well as the challenges associated with each case of uncertainty. Our initial prototype of QUDE focuses

on the above five uncertainty types for two reasons: One, they are important for safe and reliable data analysis;

Two, they are overlooked by the common data analysis and data wrangling systems [2, 1, 38, 3, 18]. Table 1

lists other types of errors or uncertainty that are more commonly considered in practice.
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In the remainder of this paper, we discuss the above uncertainty cases in more detail and propose techniques

to quantify and control the uncertainty (Sections 2, 3, 4, 5, 6); we conclude in Section 7 with some ideas on

promising research directions as future work.

2 Uncertainty as Missing Unknown Data Items

First, we look at how uncertainty in a form of missing unknown data items (a.k.a., unknown unknowns [15,

16]) affects aggregate query results (e.g., AVG, COUNT, MIN/MAX), which are common in exploratory data

analysis. It is challenging to make sure that we have collected all the important data items to derive correct data

analysis, especially when we deal with real-world big data; there is always a chance that some items of unknown

impacts are missing from the collected data set. To this end, we propose sound techniques to derive aggregate

queries with the open-world assumption (the data set may or may not be complete).

2.1 An Illustrative Example

To demonstrate the impact of unknown unknowns, we pose a simple aggregate query to calculate the number of

all employees in the U.S. tech industry, SELECT SUM(employees) FROM us tech companies, over a

crowdsourced data set. We used techniques from [24] to design the crowdsourcing tasks on Amazon Mechanical

Turk (AMT) to collect employee numbers from U.S. tech companies.1 The data was manually cleaned before

processing (e.g., entity resolution, removal of partial answers). Figure 2 shows the result.

Figure 2: Employees in the U.S. tech sector

The red line represents the ground truth (i.e., the total num-

ber of employees in the U.S. tech sector) for the query, whereas

the grey line shows the result of the observed SUM query over

time with the increasing number of received crowd-answers. As

the ground-truth, we used the US tech sector employment re-

port from the Pew Research Center [37]. The gap between the

observed and the ground truth is due to the impact of the un-

known unknowns, which gets smaller at a diminishing rate as

more crowd-answers arrive.

While the experiment was conducted in the context of crowd-

sourcing, the same behavior can be observed with other types of data sources, such as web pages.

2.2 Estimating The Impact of Unknown Unknowns

Estimating the impact of unknown unknowns for SUM queries is equivalent to solving two sub-problems: (1)

estimating how many unique data items are missing (i.e., the unknown unknowns count estimate), and (2) es-

timating the attribute values of the missing data items (i.e., the unknown unknowns value estimate). The naı̈ve

estimator uses the Chao92 [9] species estimation technique to estimate the number of the missing data items,

and mean substitution [36] to estimate the values of them.

Let φK =
∑

r∈K
attr(r) be the current sum over the integrated database, then we can more formally define

our naı̈ve estimator for the impact of unknown unknowns as:

∆naive =
φK

c
︸︷︷︸

Value estimate

· (N̂ − c)
︸ ︷︷ ︸

Count estimate

(1)

1More precisely, we only asked for companies with a presence in Silicon Valley, as we found it provides more accurate results.
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N̂ is the estimate of the number of unique data items in the ground truth D, and c is the number of unique entities

in our integrated database K (thus, N̂ − c is our estimate of the number of the unknown data items). φK/c is

the average attribute value of all unique entities in our database K.

Figure 3: Employees in the U.S. tech sector es-

timation. While, Naı̈ve approach heavily over-

estimates, Bucket estimator achieves the best re-

sults.

Figure 3 shows the results of the U.S. tech sector employ-

ment estimation. The Naı̈ve approach heavily overestimates,

since most observed companies are large (i.e., larger compa-

nies are more popular and likely to be sampled) and the value

estimation is much higher than the true average number of em-

ployees. To account for this publicity-value correlation, we

have proposed several estimators [16], and the Bucket estima-

tor yielded the best results across different real-world data sets.

The idea of the Bucket estimator is to divide the attribute

value range into smaller sub-ranges called buckets, and treat

each bucket as a separate data set. We can then estimate the

impact of unknown unknowns per bucket (e.g., large, medium,

or small companies) and aggregate them to the overall effect:

∆bucket =
∑

i

∆(bi) (2)

Here ∆(bi) refers to the estimate per bucket and both the fre-

quency or naı̈ve estimator could be used. The challenge with

the bucket estimator is to determine the right size for each bucket. If the bucket size is too small, the bucket

contains too few data items for any meaningful estimation. If the bucket size is too big, then the publicity-value

correlation can still bias the estimate. Our Bucket estimator automatically splits the attribute value range to

define buckets, which gives the most safe, conservative overall estimates.

The same techniques for SUM-aggregates can be applied to other aggregates for estimating the impact of

unknown unknowns. For more details, as well as other proposed estimation techniques, we refer interested

readers to our previous work [16].

3 Uncertainty as Undetected Data Errors

It is almost guaranteed that any real-world data sets contain some types of error (e.g., missing values, inconsistent

records, duplicate entities). This is an important source of uncertainty in data analysis because those errors

would almost surely corrupt the analysis results. Unfortunately, there has not been much work to measure the

data quality or estimate the number of undetected/remaining data errors in a data set; the best practices in data

cleaning basically employ a number of orthogonal data cleaning algorithms or crowd-source the task in a hope

that the increased cleaning efforts would result in a perfect data set. As part of QUDE, we developed a new Data

Quality Metric [14], which can guide the cleaning efforts.

3.1 An Illustrative Example

While this is a seemingly simple task, it is actually extremely challenging to define data quality without knowing

the ground truth; previous works define data quality through counting the losses to gold standard data or viola-

tions of the constraint rules set forth by domain-specific heuristics and experts [44, 8, 11, 17, 32]. In practice,

however, such ground truth data or rules are not readily available and are incomplete (i.e., there exists a “long

tail” of errors). For instance, take a simple data cleaning task where we want to identify (and manually fix)

malformed US home addresses in the database, shown in Figure 4. As in Guided Data Repair (GDR) [44], we
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Figure 5: Total error estimates using the simulated datasets. The vanilla species estimation (Chao92) heavily over-

estimates in the presence of false positive errors; SWITCH is the most robust estimator against all error types.

might have a set of repair rules for missing values (r1, r2) and functional dependency violations (r1, r3, r6).

However, the repair rules may not cover US state/city name misspellings (r3, r4) or wrong home addresses (r5,

r6). Once errors are identified, a human can verify the proposed errors and automatic repairs. Similarly, as in

CrowdER [42], we can run inexpensive heuristics to identify errors and ask crowd-workers to confirm. In both

of these cases, the fallibility of the system in the form of false negative (e.g., “long tail” or missed errors) and

false positive (e.g., even humans can make mistakes) errors is a big concern.

3.2 Data Quality Metric (DQM)

Figure 4: Erroneous US home addresses: r1 and r2 con-

tain missing values; r3 and r4 contain invalid city names

and zip codes; r1, r3, and r6 violate a functional depen-

dency (zip → city, state); r5 is not a home address, and

r6 is a fake home address in a valid format.

We want to design a statistical estimator to address

both of the issues. That is, we need to estimate

the number of remaining errors without knowing the

ground truth in the presence of false negative and false

positive errors. A simple approach is to extrapolate

the number of errors from a small “perfectly clean”

sample [43]: (1) we take a small sample, (2) perfectly

clean it manually or with the crowd, and (3) extrapo-

late our findings to the entire data set. For example, if

we found 10 new errors in a sample of 1000 records

out of 1M records, we would assume that the total

data set contains 10000 additional errors. However,

this naı̈ve approach presents a chicken-and-egg para-

dox. If we clean a very small sample of data, it may not be representative and thus will give an inaccurate

extrapolation or estimates based off it. For larger samples, how can the analyst know that the sample itself

is perfectly clean without a quality metric? In our work [14], we propose a more robust and efficient way to

estimate the number of all (eventually) detectable errors.

Interestingly, this problem is related to estimating the completeness of query results using species estimation

techniques as first proposed in [40]. For the ease of exposition, let us assume that, as with most practical

data cleaning tools, we rely on humans to verify the errors via crowd-sourcing (e.g., CrowdER [42]). Also, to

overcome the human errors, we hire multiple workers to review each item. In this setting, we can think of our

data quality problem as estimating the size of the set containing all distinct errors that we would discover upon

adding more workers. The idea is to estimate the number of distinct records that will be marked erroneous if an

infinite number of workers/resources are added, using species estimation techniques. Unfortunately, it turns out

that false positives have a profound impact on the estimation quality of how many errors the data set contains.

Figure 5 shows the estimation results using different proposed techniques proposed. Note that the vanilla

species estimation (Chao92) heavily overestimates in the presence of false positive errors. This is because
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species estimators rely on the number of observed “rare” items as a proxy for the number of remaining species,

and this number can be highly sensitive to a small number of false positive errors. To cope with the problem, we

propose a more robust estimator (SWITCH) that estimates how the majority consensus on the items would flip.

Ideally, we want to estimate how many errors are still remaining in a data set. Instead, SWITCH estimates the

total number of expected switches before the majority consensus converges to the ground truth (i.e., assuming

workers are better than a random-guesser, the majority will eventually converge to the ground truth with enough

votes). Switches act as a proxy to actual errors and, in many cases, might actually be more informative. However,

since a record can switch from clean to dirty and then again from dirty to clean, it is not the same as the amount

of dirty records or remaining errors in the data set. We estimate the total number of switches as with infinite

workers, using the same Chao92 estimation technique; using this estimated quantity, we can adjust the current

majority consensus to reach the ground truth:

majority(I) + ξ+ − ξ− (3)

where positive switch ξ+ is defined as switches from the “clean” label to the “dirty” label and negative switch

ξ− as switches from “dirty” to “clean.” It is important to note that this estimator is more robust against false

positives, as it becomes less likely that, as the number of votes per item increases, a false positive will flip the

consensus.

4 Uncertainty as False Discovery

Extracting insights from data requires repeated analysis and adjustment of hypotheses. With every new hypoth-

esis and insight, the probability of encountering a chance correlation increases. This phenomenon is formally

known as the multiple comparisons problem (MCP) and, when done intentionally, is often referred to as “p-

hacking” [27] or “data dredging”.

4.1 An Illustrative Example

Suppose we are looking for indicators in a census dataset that affects salary distribution. To examine factors

such as “age” or “education”, we set up the corresponding null hypothesis that states the proposed attribute has

no correlation with the salary distribution. We then use a statistical test to infer the likelihood of observing a

likewise spurious correlation under the null hypothesis. If this likelihood, commonly referred to as the p-value,

is lower than the chosen significance level such as 0.05, then the null hypothesis is rejected, and the alternative

hypothesis that the proposed attribute is correlated with salary is deemed statistically significant.

However, if we keep searching through different indicators in the dataset, we are almost guaranteed to find

a statistically significant correlation. For example, choosing a significance level for each test of 0.05 means that

statistically we have a 5% chance of falsely rejecting a given null hypothesis; even if the dataset contains com-

pletely random data, we would, on average, falsely discover a spurious correlation that passes our significance

level after only 20 hypothesis tests.

4.2 Safe Visual Data Exploration

Visual data exploration tools such as Vizdom [18] or Tableau amplify this problem by allowing users to examine

lots of visual “hypotheses” (e.g., comparing visualizations) in a short amount of time. In one of our experiments

[45], where we used synthetic data sets with known ground truth labels, we found that by not accounting for all

comparisons made during exploration, users are left with a high rate of false discoveries even if user-generated

insights are followed up with statistical tests. Perhaps even more concerning is the increasing trend towards

creating recommendation engines that propose interesting visualizations [41, 22] or automatically test for corre-

lations [10]. Those systems are potentially checking thousands of hypotheses in just a few seconds. As a result,
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it is almost guaranteed that such a system will find something “interesting” regardless of whether the observed

phenomenon is statistically relevant or not [7].

Figure 6: Example of a visualization network where users

might be led to false discoveries without automatic hy-

pothesis formulation. (A) two separate visualizations

showing preferences for watching movies and how many

people believe in alien existence; (B) the two visualizations

combined where the bottom one shows proportions of be-

lief in alien existence for only people who like to watch

movies on DVD, displaying a noticeable difference com-

pared to the overall population. (C) same visualizations

as before but now with automatic hypothesis formulation

turned on, highlighting that the observed effect is not sta-

tistically significant.

While there exists a variety of statistical tech-

niques to control for the MCP [21, 5] they are not

easily applicable in visual data exploration tools as

they require knowledge about all the hypotheses be-

ing evaluated upfront, whereas in this context, the

hypotheses are generated incrementally. To address

this, we developed an MCP procedure [46] that al-

lows specifying hypotheses incrementally. Further-

more, we show preliminary results on how such a pro-

cedure can be fully integrated into a data exploration

system where visual comparisons are automatically

tracked and controlled for [47]. Figure 6 shows an ex-

ample of this. When we analyzed data from a survey

on personal habits and opinions [7], we observed that

the preference on watching films on DVD produced

visually different proportions of belief in aliens, as

shown in Figure 6 (A and B). Just by visually ex-

amining these charts, users often falsely assumed that

people who prefer to watch movies on DVD are more

prone to believe in aliens even though this effect is not

statistically significant. When automatic testing and

tracking is turned on, the system will try to formulate

hypotheses for such cases (e.g., when users are com-

paring subsets against the global population), include

them to the MCP control procedure and inform the user about the outcome of the test (Figure 6 C).

5 Uncertainty as Model Quality

ML is one of the most popular tools for uncovering hidden insights and patterns in data analysis. In fact, ensuring

model quality leads to more accurate and reliable data analysis results. In this section, we discuss ML model

quality as a form of uncertainty in data analysis. Namely, we look at a couple ML model quality issues that are

often overlooked in practice. Model validation and quality assurance is an important component for QUDE.

5.1 An Illustrative Example

To ensure that a given model is performing well at a given task, people consider various test performance metrics

(e.g., log loss, accuracy, recall, etc.). The problem, which is often overlooked is that the overall performance

metrics can fail to reflect the performance on smaller subsets of the data. For example, we want to avoid a model

that works well on average with the entire customer data, but fails with a female, teenage demographic in the

U.S., especially, if it is one of the key market segments for the application. Here, we present an automated data

slicing tool for model validation. The key challenge there is identifying a proper subset or data slice that is large,

problematic and interpretable to the user; the search space is exponentially large with the number of features

(and their value ranges).
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Figure 7: Ideally, we want the generalization gap between the training score and the testing score to be minimal

(left); however, the model performs much worse if trained on a biased sample or fails to generalize to the actual

testing data (middle). Accounting for unknown unknowns can improve the model generalizability (right).

5.2 Automated Data Slicing

While a well-known problem [33], current techniques to determine under-performing slices largely rely on

domain experts to define important sub-populations (or at least specify a feature dimension to slice by) [30].

Unfortunately, ML practitioners do not necessarily have the domain expertise to know all important under-

performing slices in advance, even after spending a significant amount of time exploring the data. In [13], we

present an automated data slicing tool for model validation, called Slice Finder. The goal of Slice Finder is

to identify a handful (e.g., top-K) of the largest problematic slices, that are also interepretable. Larger slices

are preferable because they carry more examples, and thus, more impactful to model quality. On the contrary,

debugging the model on a tiny slice would not mean much to the overall model quality. Plus, we want to bring

the user’s attention to the slices that are interpretable. For instance, country = US is more interpretable than

country = US ∧ age = 20-40 ∧ zip = 12345, with a fewer number of common features. We find that the

interepretability is a key for understanding the model quality problem. The resulting slices are presented via an

interactive visualization front-end, which helps users to quickly browse through the slices.

5.3 Unknown Unknowns for ML

Another important aspect of ML model quality is generalizability, which measures how accurately an ML model

can predict on new unseen examples. This is also important because ML-model-based analysis is often done to

forecast or predict the future instances. Unseen examples during the training present a challenge to any inference

model.

Figure 7 illustrates the problem. In the toy example, the target population is hidden (only used for testing),

but the training data, which is a biased sample from the population, is missing some of the examples with smaller

A values (e.g., smaller companies less likely to be sampled). The fitted regression model can still perform well

on the training set, but will fail in testing. The wide gap between the training and the testing scores (middle)

indicates this failure of model generalization. Now, by accounting for the unknown unknowns (e.g., injecting the

generated unseen examples), we can improve the model generalizability. Of course, estimating the number, as

well as the values of the unseen examples is not straight-forward.
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6 Uncertainty in Data Sharing Environments

QUDE is much more challenging when data is shared or made public. Controlling false discoveries, discussed

in Section 4, becomes more problematic when data is shared across institutions or research groups given the

difficulty of establishing effective MCP control procedures in sharing environments. Even if just one member

deviates from the exact testing protocol, uncertainty is immediately introduced into the results. Moreover, when

data is made public, avoiding uncertainty as a result of the MCP (whether introduced intentionally or otherwise)

becomes almost impossible given the inordinate amount of coordination and oversight required by all parties

using the data. However, these issues do not impede the trend by industry and research institutions to make data

publicly available making it imperative to create a method for effectively controlling the MCP in data sharing

settings.

6.1 An Illustrative Example

Consider a publicly shared dataset such as MIMIC III [29] published by MIT. The dataset contains de-identified

health data associated with ≈ 40, 000 critical care patients. The existing solution for controlling the MCP on

such a dataset is to make use of a hold-out. In this case, MIT can release 30K patient records as an exploration

dataset (EDS) and hold back 10K as a validation dataset (VDS). The EDS can then be used in arbitrary ways to

find interesting insights from the data. However, before a result can be used in a publication, the hypothesis is

tested for statistical significance over the VDS.

Unfortunately, there are several issues with such a solution. In order to use the VDS more than once, every

hypothesis over the VDS has to be tracked and the MCP controlled. Hence, it becomes necessary for the data

owner (e.g., MIT) to provide a “certification” service to validate results obtained over the EDS which is both

a burden for the data owner as well as a potential source of bias. Researchers need to trust the data owner to

correctly apply MCP control procedures and objectively evaluate their hypotheses.

6.2 Automated Result Certification

Ideally, a data owner publishes a dataset and goes offline (i.e., not have to interact with researchers any further)

in order to both minimize the overhead imposed on the data owner as well as eliminate potential bias during the

validation phase. An automated solution can be constructed using several cryptographic primitives and is based

on the following observation: if all the p-values computed for a dataset are accounted for during the analysis

phase, in addition to the order in which they were computed, it is possible to apply an incremental control

procedure [46, 23] to control for uncertainty. The solution hinges on the use of Fully Homomorphic Encryption

(FHE) which was first proposed by Gentry in 2009 [25]. FHE enables computation over encrypted data without

revealing any information on the underlying data. Using FHE, any arithmetic operation (and thus any function)

can be evaluated on ciphertexts using only the public key such that the result of the evaluation remains encrypted

and unknown to the evaluator. If the data is encrypted by the data owner using FHE and the encrypted data made

public, researchers are still able to use the encrypted data for analysis (e.g., compute statistical tests) and obtain

encrypted results without interacting with the data owner. A researcher may then request the entity in possession

of the decryption key (e.g., the data owner) to reveal the result computed locally over the encrypted data.

Consider, once more, the case of the MIMIC III dataset. The data owner (e.g., MIT) makes the encrypted

version of the dataset publicly available. Researchers use the encrypted data to compute statistical tests and

obtain encrypted p-values. The encrypted p-values are then sent to MIT which proceeds to decrypt and reveal

each p-value on a publicly readable database. A p-value obtained in such a fashion can be audited by examining

the sequence of test records stored in the database and applying an incremental control procedure. While still

requiring participation of the data owner, such a solution is one step closer to the desired goal since it no longer

requires the owner to verify hypotheses or otherwise interact with researchers.
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Figure 8: Overview of statistical test certification process: (1a) The data owner encrypts and publishes a dataset

along with the public key. (1b) The data owner distributes the secret key to a set of parties that can collectively de-

crypt using threshold-FHE. (2) A researcher downloads the encrypted data along with the public key and computes

a statistical test using FHE. (3a) To obtain the p-value in the clear, the researcher submits the encrypted result to the

set of parties who then decrypt the p-value using a consensus protocol. (3b) The parties reveal the result by posting

it on a public blockchain along with a timestamp. (4) A publication claiming a significant result can provide proof

of valid testing procedures using the records stored on the blockchain.

The responsibilities of the data owner can be distributed to a set of parties (i.e., institutions, research groups,

etc.) using threshold-FHE [4] which requires a majority of parties to “agree” on decrypting a result. In combina-

tion with a distributed ledger (e.g., a blockchain [34]), which guarantees immutability of recorded transactions,

the sequence of tests can be tracked by recording each p-value at the time of decryption. Since the ledger is

public and tamper-proof, it can be used as a mathematical proof of result validity. Figure 8 provides a high-level

overview of the protocol.

7 Conclusion & Future Work

In this paper, we present several cases for the uncertainty in data analysis and exploration. First, we provide

an overview of our work on quantifying the uncertainty as a form of unknown missing data items, undetected

data errors in the data set. Next, we point out that any data-driven discoveries should be taken with care,

because data analysis and exploration generally requires testing numerous hypotheses, increasing the chance of

false discovery. Data analysis in a data sharing environment further complicates this issue of MCP. Finally, we

discuss a couple model quality problems that can serve as a source of uncertainty in data analysis.

Our overarching goal is to quantify all types of uncertainty in data analysis and exploration, and in turn, pro-

vide measures to correct and validate the analysis results and discoveries. To this end, we plan on implementing

the proposed solutions for ML model quality (Section 5) and data-sharing environments (Section 6). We have in-

tegrated some of the proposed solutions into an interactive human-in-the-loop data exploration and model build-

ing suite [6]. We are also interested in investigating other types of uncertainty (e.g., learning the right feature set

for the task and the feature quality assurance) and how they interact with each other. It is interesting to under-

stand the relationship among the different types of uncertainty as the uncertainty compounds over the pipeline.
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