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Letter from the Editor-in-Chief

News

I want to draw your attention to a new section of the Bulletin, the “News” section. There was enough happening
to warrant a section of its own. I wanted to direct the reader’s attention to this more than was possible by simply
including additional letters.

TCDE AWARD WINNERS: Every year at the International Conference on Data Engineering, the Technical
Committee on Data Engineering presents awards to individuals who have distinguished themselves in a particu-
larly noteworthy way, through impact, service, education, or as an accomplished young researcher. This issue of
the Bulletin provides the award winners with an opportunity to share their views on having received the award
and describe the work that led to their receiving this distinction. Each awardee statement has a different “flavor”,
but all tell great stories. I enjoyed reading them and can recommend them to you.

TCDE CHAIR ELECTION: The chair of the Technical Commitee on Data Engineering serves a two year
term. Thus, every other year, the TC holds an election for chair. It is the chair’s responsibility to appoint the
executive committee, whose members you see listed on the inside front cover. Xaiofang Zhou, the current chair,
is precluded by a two term limit from seeking re-election to a third consecutive term. We have two distinguished
and experienced candidates, Thomas Risse and Erich Neuhold, who have agreed to run for and serve as chair if
elected. I would urge you all to express your preference by voting in this election.

The Current Issue

Data is everywhere. And it is increasingly valuable as we find improved ways of dealing with it. Indeed, data has
been referred to as “the new oil”. There is a worthwhile analogy here. Oil gushed from the ground spontaneously
long before our modern era, and was largely wasted. Whether gigabytes through exabytes or more... it is not
enough to simply have data. One needs to derive value from data.

As a technical community, we need to distill meaning from data. But perhaps more importantly, we need to
provide technology that others (application experts) can use to distill meaning. Going a step further, we need
to construct tools that can place the meaning in context, evaluate the strength of the analysis, and determine
whether we should believe it. And the list goes on! This is challenging. And that is the focus of the current issue
that Alexandra Meliou has put together for us. Alexandra did a great job in identifying people and their work
that makes this Bulletin issue invaluable to not just members of our technical community but to anyone trying
to understand how data is used and what it means. Thank you Alexandra.

David Lomet
Microsoft Corporation



Letter from the Special Issue Editor

The field of data analytics has flourished and continues to grow with unabated momentum. Insights derived
from rich and diverse data sets drive business decisions and modern software. The race to derive more insights,
faster, and more effectively has intensified, and research has followed suit. At the same time, data and analytics
tools have grown complex, and analysis results are often poorly understood. In this issue, we bring together an
exciting collection of recent and ongoing work, investigating methods for accelerating the derivation of insights
in data analysis and technologies for understanding the insights derived from data.

We start with “The Case for a Visual Discovery Assistant: A Holistic Solution for Accelerating Visual Data
Exploration”, by Doris Jung-Lin Lee and Aditya Parameswaran. The paper considers the use of visualizations
in exploratory data analysis, and presents a vision for automating the navigation across large collections of
visualizations. It provides a review of existing and ongoing work, and outlines open research questions and
challenges as we are moving towards the direction of expecting less input from the human users and the system
bears more of the onus in visual discovery.

In the second paper, “Towards Quantifying Uncertainty in Data Analysis & Exploration”, Yeounoh Chung,
Sacha Servan-Schreiber, Emanuel Zgraggen, and Tim Kraska consider the many facets of uncertainty and its
impact on insights derived from analytics and exploration pipelines. The paper presents a toolset for quantifying
uncertainty with the objective of making data analysis reliable and safe, guarding against incorrect analyses and
false discoveries.

The third paper focuses on methods for understanding the validity of data insights. In “Query Perturbation
Analysis: An Adventure of Database Researchers in Fact-Checking”, Jun Yang, Pankaj K. Agarwal, Sudeepa
Roy, Brett Walenz, You Wu, Cong Yu, and Chengkai Li point out that even though data can be used to back
a claim, that claim may still be misleading and essentially incorrect. Discovering the query that produced the
claim and perturbing it appropriately can shed light on the claim’s validity. The paper highlights results in query
perturbation and computational fact checking that largely predate the rise of the so-called “fake news”, as well
as practical deployments of the relevant systems, including during the 2016 US federal elections.

The next paper, “Explanation Tables”, by Kareem El Gebaly, Guoyao Feng, Lukasz Golab, Flip Korn,
and Divesh Srivastava, considers deriving data summaries; such summaries can aid human understanding of a
dataset’s properties. The paper focuses on the problem setting of a relation with categorical dimension attributes
and one binary outcome attribute, where the objective is to derive an interpretable explanation of the factors
affecting the binary attribute.

In “Ontology-Based Natural Language Query Interfaces for Data Exploration”, Chuan Lei, Fatma Ozcan,
Abdul Quamar, Ashish Mittal, Jaydeep Sen, Diptikalyan Saha, and Karthik Sankaranarayanan argue for the use
of natural language as the query interface to data exploration. Exploratory tasks are varied and often require
different querying capabilities of the underlying data stores. Natural language can become a unifying interface,
bypassing the need for users to learn and use other complex languages, thus increasing the accessibility of ana-
lytics. The paper describes an end-to-end NLQ system, overviews ongoing work and challenges, and highlights
practical use cases.

We conclude with a paper that reexamines a fundamental component of data processing pipelines: data
structures. “The Periodic Table of Data Structures”, by Idreos et al., points out that data structure decisions
impact the types of analysis that one can perform, the efficiency of that analysis, and, ultimately, the insights
that can be achieved. The paper describes a vision that calls for breaking data structures into first principles,
reexamining the design space, speculatively estimating a data structure’s impact on a workload, and automating
data structure design to cater to specific analysis tasks.

Thank you to all the authors for their insightful contributions, and thank you to Dave Lomet for valuable
guidance on putting together the issue. I hope you enjoy this collection.

Alexandra Meliou
University of Massachusetts Amherst



The Case for a Visual Discovery Assistant:
A Holistic Solution for Accelerating Visual Data Exploration

Doris Jung-Lin Lee, Aditya Parameswaran
{jlee782,adityagp} @illinois.edu
University of Illinois, Urbana-Champaign

Abstract

Visualization is one of the most effective and widely-used techniques for understanding data. Yet, the
growing use of visualizations for exploratory data analysis poses new demands beyond simply the graph-
ical presentation and visualization authoring capabilities offered in existing tools. In particular, many
data analysis tasks involve navigating large collections of visualizations to make sense of trends in data;
at present, this navigation is done manually or programmatically. We outline a vision for an intelligent,
interactive, understandable, and usable tool that can help automate this largely manual navigation: we
call our tool VIDA'—short for VIsual Discovery Assistant. We argue that typical navigation tasks can
be organized across two dimensions—overall goal and precision of specification. We organize prior
work—both our own work, as well as other ongoing work in this area—across these two dimensions,
and highlight new research challenges. Together, addressing these challenges underlying VIDA can
help pave the way for a comprehensive solution for removing the pain points in visual data exploration.

1 Introduction

With the ever-increasing complexity and size of datasets, there is a growing demand for information visualization
tools that can help data scientists make sense of large volumes of data. Visualizations help discover trends and
patterns, spot outliers and anomalies, and generate or verify hypotheses. Moreover, visualizations are accessible
and intuitive: they tell us stories about our data; they educate, delight, inform, enthrall, amaze, and clarify.
This has led to the overwhelming popularity of point-and-click visualization tools like Tableau [33], as well
as programmatic toolkits like ggplot, D3, Vega, and matplotlib. We term these tools as visualization-at-a-time
approaches, since data scientists need to individually generate each visualization (via code or interactions), and
examine them, one at a time.

As datasets grow in size and complexity, these visualization-at-a-time approaches start to break down, due
to the limited time availability on the part of the data scientists—there are often too many visualizations to
examine for a given task, such as identifying outliers, or inferring patterns. Even on a single table, visualizations
can be generated by varying the subsets of data operated on, or the attributes (or combinations thereof) that
can be visualized. If we add in various visualization modalities, encodings, aesthetics, binning methods, and

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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transformations, this space becomes even larger. (For this work, we focus primarily on the impact of varying the
data subsets and attributes visualized—some of these latter concerns are the focus of recent work [39].)
Discovery Thus, there is a pressing need for an intelligent, interactive,

Goal understandable, usable, and enjoyable tool that can help data sci-
entists navigate collections of visualizations, across a range of
Explain possible analysis goals and modalities that data scientists may
Summarize require. We term our hypothesized comprehensive tool VIDA,
Compare short for ViIsual Discovery Assistant. Data scientists can spec-
dentity Outi ify any discovery goal at a high level, in one of many intu-

entr utliers o, . oy . . .
& Clusters itive input modalities supported in VIDA, with VIDA automati-
Find Patterns Degree cally traversing visualizations to provide solution or guidance for

of Specificity : : Sl : s
< P -6\“‘2‘\ 8 the specified discovery goal, thereby eliminating the tedium and
Q' \“\0“ \“\0‘\ S \"\O‘\ 1 f 1 . 1 . Cateat: h
& e e wasted labor of comparable visualization-at-a-time approaches.

VIDA Dimensions. In order to be a holistic solution for navigat-
Figure 1: The two dimensions of discovery set- ing collections of visualizations, VIDA must be able to support
tings. The Y axis depicts the different discov- various discovery settings. We organize these settings along two
ery goals ordered in roughly increasing com- 4imengjons, displayed along the Y axis and X axis (respectively)

PleX'ty’ while theanls,Ch?raCtenzes decreas- of Figure 1—first, the overall discovery goal, and second, the
ing levels of query specificity and correspond- 4 ¢ ficity of the i

ingly increasing levels of autonomous assis- cgree ot spect Clt¥ oft e. 1npuj[ query. .

tance. Along the Y axis, we identify five common discovery goals

in visual data exploration: finding patterns, identifying anoma-
lies/clusters, summarizing, performing comparisons, providing explanations. These five goals borrow from
functionalities in existing systems, as well as related visualization task taxonomies [2, 11]. They are organized
along the Y axis in a sequence of roughly increasing complexity; however, we must emphasize that these goals
are distinct from one other. We omit low-level goals such as filtering or sorting, since these functionalities are
common in existing visualization-at-a-time tools and toolkits. We also omit goals that go beyond visual data
exploration, such as extrapolation, supervised learning, and cleaning, among others.

We identify three degrees of specificity for the
query input, organized along the X axis: precise, ?
fuzzy, minimal. The degree of specificity character- (k
izes the division of work between how much user has
to specify versus how much the system has to auto-
matically infer and aid in accomplishing the discov-

ery goal. For the precise setting, the onus is placed on

the user to provide an exact and complete specifica- ( Modalities

tion of what the solution to their discovery goal must Interacti onsj [ Natural j [Temp!ate

look like; for the fuzzy setting, the user can provide & Language Quertes

a vague specification of what the solution must look ( VIDA-QL

like; and finally, for the minimal setting, the user pro- g/_ pattern || Cluster & _ _
vides a minimal specification, or leaves the character- S=="""|| search ||Anomalies| COPae ||Summarize | Explain

istics of the solution underspecified, leaving it up to
the system to “fill in” the rest. As we proceed along
the X axis, it gets harder for the system to automatically interpret what the user might have in mind as a solution
to their goal.

VIDA Input Modalities. To support the spectrum of demands imposed by the discovery settings described
above, VIDA must support a range of interactive input modalities, as displayed in Figure 2, catering to a range
of user expertise and preferences. These input modalities include:

e restricted template queries, involving selection of operators and operands from a drop-down menu; and

Figure 2: VIDA Architecture



VQs Discovery Goals Covered Specificity | Interactions Supported

Zenvisage [18, 31] Find Patterns, Cluster/Outliers, Compare | Precise Interactions (Clicking, Sketch, Drag-and-drop), Query Language
TimeSearcher [12] Find Patterns, Cluster/Outliers Precise Interactions (Clicking, Sketch)

Query-by-Sketch [36] | Find Patterns Precise Interactions (Clicking, Sketch)

Scorpion [41] Explain Fuzzy Interactions (Clicking)

ShapeSearch [32] Find Patterns Fuzzy Interactions (Sketch), Natural Language, Query Language
Profiler [15] Compare Fuzzy Interactions (Clicking, Brushing-and-Linking)

SeeDB [34] Compare Minimal Interactions (Clicking)

Storyboard [17] Cluster/Outliers, Compare, Summarize Minimal Interactions (Clicking)

iDiff [27, 28] Compare, Explain Minimal Query Language

Table 1: A Sample of Visual Query Systems

e interactions, either with an existing visualization, such as brushing-and-linking or hovering, or those that
construct a new one, such as drag-and-drop or sketching; and

e natural language, via a keyword search box, dialog, or conversational interface.

Each of these inputs are compiled down into a query in a query language, called VIDA-QL. Alternatively,
expert users may directly invoke VIDA-QL queries. VIDA-QL queries will natively support the five discovery
goals and combinations thereof, e.g., summarization followed by pattern search. Another important element
is how much does a user actively requests for visualizations (“pull”) versus how much VIDA recommends
visualizations (“push”). Given that we expect VIDA to support a range of specificities, VIDA must support
both push and pull, with pull decreasing in importance and push gaining importance, as we go from the precise
to minimal setting.

Present Day Visual Query Systems. We have described VIDA so far as if no comparable capabilities exist
today. This is not the case; in Table 1, we list some examples of systems that partially provide the functionality
of VIDA, for certain settings and input modalities. We will describe some of these systems later on in the paper.
Since all of these systems allow users to query data visually, we call these systems Visual Querying Systems,
or VQSs for short. VQSs typically (i) employ objectives that are perceptually-aware, taking into account for
the fact that the results are typically consumed by a human analyst, rather than an algorithm; (ii) provide some
interactive interface or declarative capabilities to express the discovery goal as a “what” rather than a “how”;
and (iii) possess optimization capabilities to facilitate the efficient discovery of visual insights.

Outline. The rest of our paper is organized along the degree of specificity of discovery goal, and we will allude
to the specific discovery goals as well as input modalities as we go along. The degree of input specificity is the
factor that most significantly affects the architecture of VIDA, with the complexity increasing as the specificity
decreases—in that the system has to do more “guesswork” to support underspecified goals.

We begin by discussing the the precise setting (Section 2). We describe ZENVISAGE [31] as a partial solution
for this setting, and thereby a starting point for VIDA, partially eliminating the problem of having to manually
examine large numbers of visualizations for a given discovery goal, which can be error-prone and inefficient.

However, a design study using ZENVISAGE demonstrates that the precise setting is insufficient for addressing
all of the demands of real-world use-cases [18]. In particular, users do not have a clear understanding of their
querying intent without looking at example visualizations or summaries of the data, and even when they do,
their intent involves vague or high-level notions that can not be expressed clearly.

To bridge the gap between the user’s high-level intent and the system demands, we outline a set of research
challenges that goes beyond simple precise visual querying, by (a) supporting a wider class of vague or “fuzzy”
high-level queries, thereby increasing the expressiveness of VIDA (Section 3); and (b) making it easier to know
what to query by recommending visualizations that provide a high-level understanding of the data (Section 4).
Interfaces and Interactions, not Optimization. In this paper, we focus our attention on the interfaces, query
languages, and capabilities, and how to use them to capture discovery goals with varying degrees of specification,
as opposed to optimization. Indeed, once the query is issued in some form (say, translated into a VIDA-QL
query), optimization is crucial to try to traverse the space of visualizations and return results in an interactive
manner. A range of techniques may be adopted for this purpose, including parallelism, multi-query optimization,



sampling, pruning, and pre-computation [31, 34]. We expect a similar combination of techniques to be applicable
to each of the settings that we consider. To limit the scope of this paper, we have decided to avoid describing
optimization aspects and focus on the interfaces and interactions instead.

2 The Precise Setting: Existing Visual Query Systems

While visual data exploration often reveals important anomalies or trends in the data [11, 22], it is challenging
to use visualization-at-a-time systems to repeatedly choose the right subsets of data and attributes to visualize in
order to identify desired insights. We first motivate the precise setting through a use-case from astronomy.

2.1 Motivating Example: Discovering Patterns in Astronomical Data

Astronomers from the Dark Energy Survey (DES) are interested in finding anomalous time series in order to
discover transients, i.e., objects whose brightness changes dramatically as a function of time, such as supernova
explosions or quasars [7]. When trying to find celestial objects corresponding to supernovae, with a specific
pattern of brightness over time, astronomers individually inspect the corresponding visualizations until they find
ones that match the pattern. With more than 400 million objects in their catalog, each having their own set of
time series brightness measurements, manually exploring so many visualizations is not only error-prone, but
also overwhelming. Many astronomers instead rely on guess-work or prior evidence to explore the visualiza-
tions, rather than directly “searching” for the patterns that they care about. While most astronomers do use
programming tools, such as Python and R, it is cumbersome to express each new information need via carefully
hand-optimized code. The astronomy use case highlights a common challenge in visual data exploration, where
there are often a large number of visualizations for each discovery goal, and manual exploration is impossible.
There is no systematic way to create, compare, filter, and operate on large collections of visualizations.

2.2 Ongoing Work and Research Challenges within the Precise Setting

Discovering Patterns and Anomalies/Clusters, and Performing Comparisons with ZENVISAGE. ZENVIS-
AGE is an example of a VQS that operates on large collections of visualizations. ZENVISAGE is built on top
of a visual query language called ZQL, which operates on collections of visualizations, and returns collections
of visualizations, using primitives such as visualization composition, sorting, and filtering [31]. In addition,
via user-defined functions (also provided as built-ins), ZQL can compute the distance for a visualization from
another—and this distance can be used as a building block for more complex operations, such as the first three
discovery goals listed in Table 1, i.e., finding a visualization matching a pattern, detecting an outlier or cluster
centers, or comparing visualizations with each other. Thus, ZQL operates at a level higher than languages for
specifying visual encodings of individual visualizations [33, 37]. ZQL can be used to construct a rich variety of
queries, including the following on a real-estate dataset:
e Find Patterns. Find visualizations of cities whose housing price over time is similar to Manhattan.

o Identify Anomalies. Find visualizations of cities with both an increasing housing price trend and an in-
creasing foreclosure rate trend.

e Perform Comparisons. Find visualizations for which New York and Champaign differ the most.

e Find Patterns, followed by Clusters. For cities that are similar to New York on sales price trends, find
typical trends for foreclosure rates.
While ZQL is a useful starting point, writing ZQL queries can be daunting for users who are not comfortable
with programming. Therefore, we extracted a typical workflow of visual querying for finding patterns, identify-
ing outliers and clusters, and making comparisons, and made it expressible via simple interactions. As shown
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Figure 3: ZENVISAGE offers a variety of querying modalities, including: a) uploading a sample pattern from an
external dataset as a query, b) sketching a query pattern, c¢) dragging-and-dropping an existing pattern from the
dataset, and d) inputting an equation as a query, from [18].

in Figure 3, the user can input their search pattern via (a) inputting a set of points, (b) a sketch, (c) dragging-
and-dropping an existing visualization, or (d) inputting an equation, and specify a space of visualizations over
which to search. The system returns a ranked list of matching visualizations, shown in the “Results” pane below
the canvas in (b), for the corresponding ZQL query. The system also provides typical trends (called “Represen-
tative Patterns”, highlighted under (c)) and outliers for additional context. The user can also switch to a tabular
interface wherein they can input ZQL queries. Users can also make comparisons between different subsets of
the data by examining visualizations of dynamically created classes in ZENVISAGE [18]. Thus, this workflow
captures one variation of the three discovery goals—finding patterns, identifying outliers/clusters, and making
comparisons.

Other Related Precise Visual Querying Systems. There has been a range of work primarily focused on
locating visualizations matching certain patterns, including the influential work on TimeSearcher [12], where
the query is specified as a box constraint, and Query-by-Sketch [36], where the query is sketched as a pattern.
This was applied to search queries within Google Correlate [21]. Recent work has also extended this to querying
using regular expressions [42], while others have analyzed the semantics of sketches [5, 19].

Limitations within the Precise Setting. The most important challenge within the precise setting is the fol-
lowing: How do we expose the entire capabilities of VIDA-QL via intuitive interactions and discoverable
modules? So far, most tools that we listed above support a restricted set of interactions, primarily focused on
finding patterns via sketches or box constraints. ZENVISAGE extends and builds on this by supporting outlier
and representative trend discovery from the front-end interface. Unfortunately, performing comparisons, deriv-
ing explanations, or summaries, is hard to do interactively. In fact, deriving explanations or summaries is hard to
do even with the full power of ZQL, since it does not support the synthesis of new information that goes beyond
simple processing of collections of visualizations. It remains to be seen if and how ZQL can be extended to
meet these capabilities. Moreover, even for sketching, it would be interesting to see if we can support analogous
pattern search mechanisms for other visualization types, such as scatterplots or heatmaps.

2.3 Limitations with the Precise Setting

Even if we could address the issues within the precise setting in the previous section, there are some fundamental
limitations with the precise setting itself that need to be addressed within a full-fledged VIDA. We discuss these
limitations in the context of a participatory design process for the development of ZENVISAGE, in collaboration
with scientists from astronomy, genetics, and material science [18].

The Problem of Interpreting Ambiguous, High-level Queries. When users interact with ZENVISAGE, they
often translate their ambiguous, high-level questions into an plan that consists of multiple interactions to incre-



mentally address their desired query. The expressiveness of such a system comes from the multiplicative effect
of stringing together combinations of interaction sequences into a customized workflow. Designing features that
diversify potential variations expands the space of possible workflows that could be constructed during the anal-
ysis. However, even with many supported interactions, there were still vague and complex queries that could
not be decomposed into a multi-step interaction workflow. For example, ZENVISAGE was unable to support
high-level queries that involved the use of vague descriptors for matching to specific data characteristics, such as
finding patterns that are ‘flat and without noise’, or ‘exhibits irregularities’. These scenarios showcase examples
of lexical ambiguity, where the system can not map the vague term ‘irregular’ or ‘noisy’ into the appropriate
series of analysis steps required to find these patterns. In Section 3, we survey the challenges in supporting
vague and complex queries and point to some ongoing research.

The Problem of Not Knowing What to Query. Another key finding is that users often do not start their
analysis with a specific pattern in mind or a specific comparison to perform. For example, within ZENVISAGE,
many users first made use of the recommended representative trends and outlier visualizations as contextual
information to better understand their data, or to query based on these recommended visualizations. Thus, the
recommended visualizations are often used to form queries in a bottom-up manner, rather than users coming up
with a query in a top-down, prescriptive manner. Thus, there is a need for visualization recommendations [35]
that can help users jump-start their exploration. Recommendations help facilitate a smoother flow of analysis
by closing the gap between the two modalities of querying and exploration, reminiscent of the browsing and
searching behaviors on the Web [24], thus ensuring that user is never stuck or out of ideas at any point during
the analysis. Typically, visualization recommendations help accelerate the process of discovering interesting
aspects of the data by broadening exploration. In Section 4, we argue that recommendations should not just
focus on increasing breadth-wise exploration so that other views of the data are discoverable, but they should
also contribute towards helping users become more aware of the distributions and trends in the data, as well as
the broader context of their analysis.

3 The Fuzzy Setting: Towards Intelligent Visual Search

As we argued in the previous section, there are ambiguous, high-level goals (e.g., “explain this bump in this vi-
sualization”, or “find a product for which the visualization of sales over time is bumpy”) that cannot be captured
within the precise setting. We will discuss this fuzzy setting in the following section.

3.1 The Challenge of Usability-Expressiveness Tradeoff

The challenge for supporting ambiguous, high-level goals stems from the inevitable design trade-off between
query expressiveness and interface usability in interactive data exploration systems [14, 22]. This tradeoff is
observed not only in visual data exploration systems, but also true for general ad-hoc data querying. While
querying language such as SQL are highly expressive, formulating SQL queries that maps user’s high-level in-
tentions to specific query statements is challenging [14, 16]. As a result, query construction interfaces have been
developed to address this issue by enabling direct manipulation of queries through graphical representations [1],
gestural interaction [23], and tabular inputs [8, 43]. For example, form-based query builders often consist of
highly-usable interfaces that ask users for a specific set of information mapped onto a pre-defined query. How-
ever, form-based query builders are often based on query templates with limited expressiveness in their semantic
and conceptual coverage, which makes it difficult for expert users to express complex queries. The extensibility
of these systems also comes with high engineering costs, as well as potentially overwhelming users with too
many potential options to chose from. Thus, there is a need for tools that enable users to formulate rich and
complex queries, yet amenable to the fuzzy, imprecise query inputs that users might naturally formulate.



3.2 Ongoing Work and Research Challenges within the Fuzzy Setting

Given the tradeoff between expressiveness and usability, we discuss a growing class of VQSs that targets how
to answer imprecise, fuzzy, and complex queries. In the fuzzy setting, the most important challenge is how
do we interpret fuzzy, complex queries, and allow users to understand the results and refine the analysis. This
boils down to several challenges that we will discuss in this section, including: How can we develop better
ways to resolve ambiguity by inferring the information needs and intent of users? What is the appropriate level
of feedback and interactions for query refinement? How can we develop interpretable visual metaphors that
explain how the query was interpreted and why specific query results are returned?

We organize our discussion along the types of ambiguity that may arise in interpreting fuzzy, complex

queries. Since systems targeting the fuzzy setting operate in the intermediate layer between users and VIDA -
QL as shown in Figure 2, we use the linguistic classification scheme to provide an analogy for where the
ambiguous aspects of queries may arise, noting that the use of this analogy by no means limits our analysis to
only natural language interfaces.
Lexical Ambiguity: Lexical ambiguity involves the use of vague descriptors in the input queries. Resolving
these lexical ambiguities has been a subject of research in natural language interfaces for visualization specifi-
cation?, such as DataTone [10] and Eviza [30]. These interfaces detect ambiguous quantifiers in the input query
(e.g. “Large earthquakes near California”), and then displays ambiguity widgets in the form of a widget to allow
users to specify the definition of ‘large’ in terms of magnitude and the number of miles radius for defining ‘near’.
These ambiguity widgets not only serve as a way to provide feedback to the system for lexically vague queries,
but is also a way for explaining how the system has interpreted the input queries. It remains to be seen if similar
ambiguity-resolution techniques can be applied for exploration of collections of visualizations as opposed to one
visualization at a time.

In addition to ambiguity in the filter descriptions, as we have seen in the ZENVISAGE study, there is often
also ambiguity in the terminologies used for describing query patterns. SHAPESEARCH [32] operates on top
of an internal shape query algebra to flexibly match visualization segments, such as a trendline that “first rises
and then go down”. After the translation to the internal query representation, SHAPESEARCH then performs
efficient perceptually-aware matching of visualizations. SHAPESEARCH is restricted to trendline pattern search,
without supporting the other four discovery goals. Similarly, within VIDA, we envision lexical ambiguity to
be resolved by determining the appropriate parameters to the internal VIDA-QL query for achieving the user’s
desired querying effects.

Syntactic Ambiguity: Syntactic ambiguity is related to the vagueness in specifying how the query should be
structured or ordered. For example, DataPlay introduced the idea of syntax non-locality in SQL, in which
switching from an existential (at least one) to a universal (for all) quantifier requires major structural changes to
the underlying SQL query [1]. DataPlay consists of a visual interface that allowed users to directly manipulate
the structure of the query tree into its desired specification. Within VIDA, syntactic ambiguities resolution h
involves mapping portions of the vague queries into to a series of multi-step workflows to be executed in VIDA -
QL and exposing feedback frameworks to allow users to directly tweak the internal query representation.

Semantic Ambiguity: Semantic ambiguity includes addressing ‘why’ questions that are logically difficult to
answer, such as ‘why do these datapoints look different from others?’. For example, Scorpion [41] visually
traces the provenance of a set of input data tuples to find predicates that explain the outlier behavior; it remains
to be seen if this work, along with others on causality, e.g., [20, 26], can be exposed via front-end interactions
or natural language queries. Semantic ambiguity can also arises when the user does not specify their intent
completely or explicitly, which is often the case in early stages of visual data exploration. Evizeon [13], another
natural language interface for visualization specification, makes use of anaphoric references to fill in incomplete
follow-on queries. For example, when a user says ‘Show me average price by neighborhood’, then ‘by home

These are not VQSs, since they do not operate on collections of visualizations, rather, they expect one visualization to be the result
for a query. Thus, they act as a natural language interface for visualization-at-a-time systems.



type’, the system interprets the anaphoric reference as continuing the context of the original utterance related to
average price on the y-axis. Semantic ambiguity can often be composed of one or more lexical and syntactical
ambiguities. For example, in Iris [9], a dialog system for data science, users can specify a vague, high-level
query such as ‘Create a classifier’, then Iris makes use of nested conversations to inquire about what type of
classifiers and features to use for the model, to fill in the details of the structure and parameters required.

4 The Minimal Setting: Towards Recommendations for Data Understanding

While our focus in the previous sections have been on intent-driven queries, where users have some knowledge
of the types of visual queries they may be interested in, one of the key goals of visual data exploration is to
promote a better understanding of the dataset to enable users to make actionable decisions. Within the minimal
setting, we target systems that help users become more aware of their dataset and visualize where they are in
their analysis workflow with minimal required user input. This can often be useful when there is an absence of
explicit signals from the user, such as when a user is at the beginning of their analysis (commonly known as
the ‘cold-start’ problem) or when the user does not know what to query for. We will first describe SEEDB and
STORYBOARD as examples of visual query systems that suggest informative data views for jumpstarting further
analysis. Then, we will discuss the importance of contextual awareness during dynamic visual data exploration
to highlight the challenges and opportunities ahead in this space.

SEEDB: Exploring Multi-variate Data Dimensions Through Interesting Visualization Recommendations.
Identifying interesting trends in high-dimensional datasets is often challenging due to the large combination of
possible X,Y axes for the generated visualizations. To perform this task, users need to manually create, examine,
and compare relationships between these multi-variate visualizations to discover interesting insights.

Within SEEDB [34], a user can specify a subset of data that they would be interested in exploring. Then,
SEEDB searches for visualizations (i.e., specific combinations of X and Y axes) that show how this subset
differs from the rest of the data, and are therefore inferesting, and provides these recommendations within a
side panel in the visual exploration interface. The evaluation user study showed that SEEDB-recommended
visualizations are three times more likely to be interesting compared to manually constructed visualizations and
provide an effective starting point for further analysis. Profiler [15] provides similar recommendations targeting
the identification of anomalies in data.

STORYBOARD: Promoting Distribution Awareness of Data Subsets with Summary of Visualizations.
Whereas SEEDB looks at the space of possible X and Y axes for a given data subset, our recent system STO-
RYBOARD explores the space of possible subsets (or subpopulations) of data, for fixed X and Y axes. Common
analytics tasks, such as causal inference, feature selection, and outlier detection, require understanding the dis-
tributions and patterns present in the visualizations at differing levels of data granularity [3, 11, 41]. However, it
is often hard to know what subset of data contains an insightful distribution to examine. In order to explore dif-
ferent data subsets, a user would first have to construct visualizations corresponding to all possible data subsets,
and then navigate through this large space of visualizations to draw meaningful insights.

STORYBOARD is an interactive visualization summarization system that automatically selects a set of visu-
alizations to characterize and summarize the diversity of distributions within the dataset [17]. Figure 4 illustrates
an example dashboard generated by STORYBOARD from the Police Stop Dataset [25], which contains records
of police stops that resulted in a warning, ticket, or an arrest. STORYBOARD was asked to generate a dashboard
of 9 visualizations with x-axis as the stop outcome and y-axis as the percentage of police stops that led to this
outcome. First, at the top of our dashboard, STORYBOARD highlights three key data subsets that result in a high
arrest rate, which looks very different than the overall distribution at the root node (where the majority of stops
results in tickets). Following along the leftmost branch, we learn that even though in general when a search is
conducted, the arrest rate is almost as high as ticketing rate, when we look at the Asian population, whether a
search is conducted had less influence on the arrest rate and the trend more resembles the overall distribution.
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STORYBOARD makes use of a context-dependent objective to search for visualizations within the data subset
lattice for which even the informative parents—i.e., the parent visualization within the data subset lattice that is
closest to the present visualization—fail to accurately predict or explain the visualization.

The effectiveness of STORY- p—
BOARD largely comes from how
the summary visualizations help
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visualizations by generalizing their understanding based on the limited number of visualizations presented in the
dashboard. Our evaluation study shows that facilitating distribution awareness through STORYBOARD guides
users to make better predictions regarding unseen visualizations, ranking attribute importance, and retrieval of
interesting visualizations compared to dashboards generated from the baselines.

4.1 Research Challenges within the Minimal Setting: Distributional to Contextual Awareness

The main research challenge that we aim to address in the minimal setting is the following: How can contextual
information be used to help facilitate better understanding, and guide users towards more informative next steps
in their analysis? The notion of distribution awareness is useful when considering the scenario at one static point
in time of the analysis, such as during cold-start. In this section, we introduce a complementary notion of data
understanding called contextual awareness, which is essential when considering a dynamic analytic workflow
for visual data exploration.

Contextual awareness is the aspect of data understanding related to the sifuation (what is the information that
I’'m currently looking at and how did it come about?) and history (what have I explored in the past and where
should I look next?) of exploration. Situational understanding involves recognizing what data is in the current
scope of analysis, including making sense of the data attributes and schema and keeping track of what filters or
transformations have been applied to the displayed data. Historical understanding is associated with the user’s
past analysis actions on the data. As an example, a user may be interested in how the sales price of a product
changes as a function of other dimensions variables, such as geographic location, year sold, and product type.
Situational information informs them that they are looking at a bar chart with X=TYPE, Y=AVG(PRICE),
whereas historical information points to the fact that they should explore the geographic dimension, since they
have already explored the temporal attribute YEAR.

While the problem of data provenance has been well studied in database literature [4, 6, 40], the effects of
showing provenance information to users during data analysis is an important but underexplored area. Moreover,
within a dataset, history is essential in helping users navigate through the space of possible analysis actions
and provide users with sense of coverage and completion. The notion of adding navigational cues to guide
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exploration in visual information spaces was first proposed in Willet et al.’s work on scented widgets [38]. In
Pirolli and Card’s theory of information foraging, scents are cues that signifies the perceived benefit that one
would receive during a search. Scented widgets adds to existing search interfaces by embedding visualizations
that provide informational scents, such as histogram distributions of how popular a particular value is among
users or using color to encode the size of a dataset in a drop-down menu. Recently, Sarvghad et al. have extended
the idea of scented widgets to incorporate dimension coverage information during data exploration, including
which dimensions have been explored so far, in what frequency, and in which combinations [29]. Their study
shows that visualizing dimension coverage leads to increased number of questions formulated, findings, and
broader exploration. Interpretable and non-disruptive cues that enables users to visualize provenance and history
help sustain contextual awareness and guide users towards more informative next steps in their analysis.

Mechanisms that facilitate distribution awareness for users can effectively couple with contextual awareness
in dynamic exploration situations to help update the user’s mental model on the current data context. For
example, the representative and outlier patterns in ZENVISAGE provides summaries of data in context. When a
dataset is filtered, the representative trends are updated accordingly. By being aware of both the context and the
distributions, the users becomes distributionally aware of how the typical patterns and trends of the distributions
changes in a particular context.

We envision that by incorporating contextual information along with improving the recommendation (‘pull’)
aspects of the VIDA-QL discovery modules, VIDA will be well-equipped with the necessary information for
making ‘active’ recommendations. Contrary to ‘static’ recommendations in STORYBOARD and SEEDB, where
users need to submit some minimal required information to explicitly request for recommendations and the
system performs only one type of recommendation, these next-generation systems actively seek for opportunities
to provide appropriate recommendations that would be useful to the user at the specific stage of analysis by
intelligently adapting the modes of recommendation to the context of user’s analysis. This shift from static
to active recommendation is analogical to the shift from precise to fuzzy querying in Section 3, where the
onus is more on the system to ‘guess’ at the users intent. In active recommendations, instead of providing
minimal information to request recommendation, the system will automatically infer implicit signals through
other modalities of interaction. VIDA can make use of this information to make better recommendations that
can guide users towards meaningful stories and insights for further investigation.

S Concluding Remarks

Data is inherently agnostic to the diverse information needs that any particular user may have. Visual data ex-
ploration systems can help bridge the gap between what users want to get from the data through querying and
what insights the data has to offer through recommendations. To facilitate a more productive collaboration,
in this paper, we outline our vision for VIDA, motivated by related work from precise visual querying of in-
formative visualizations to accelerate the process of data discovery; to interpreting ambiguous and high-level
queries through query refinement feedback; to recommendations that promote better distributional and contex-
tual awareness for users. We hope that the agenda sketched out in this paper sheds light on the many more
exciting research questions and opportunities to come in this nascent field.
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Abstract

In the age big data, uncertainty in data constantly grows with its volume, variety, and velocity. Data
is noisy, biased and error-prone; blindly applying even the most advanced data analysis techniques
can easily mislead users to incorrect analytical conclusions. Also, compounding the problem of un-
certain data is the uncertainty in data analysis and exploration. A typical end-to-end data analysis
pipeline involves cleaning and processing the data, summarizing different characteristics and running
more complex machine learning algorithms to extract interesting insights. The problem is that each step
in the pipeline is error-prone and imperfect. From the input to the output, the uncertainty propagates
and compounds. This paper discusses the challenges in dealing with various forms of uncertainty in
data analysis and provides an overview of our work on Quantifying the Uncertainty in Data Exploration
(QUDE), a toolset for safe and reliable data analysis.

1 Introduction

Tableau, scikit-learn, RapidMiner, Trifacta, Tamr, or Vizdom/IDEA are just a small collection of tools [2, 1, 18],
which aim to make Data Science more accessible for everyone. However, democratizing Data Science also
comes with a risk. For example, many of the “new” users these tools try to reach are not trained in statistics and
thus, do not understand the nuances of the algorithms they use. Visual tools, like Tableau, make it possible to
quickly test hundreds of hypotheses, and thus, it significantly increases the risk of finding false insights. Data
integration tools, like Trifacta and Tamr, make it easier to integrate data, but might also hide data errors. Putting
all these together in an end-to-end data analysis and exploration pipeline compounds and further increases the
risks of uncertainty.

In this paper, we discuss several potential uncertainty in data analytics, and provide an overview of our
work on Quantifying the Uncertainty in Data Exploration (QUDE): a new tool set to automatically quantify
the different types of uncertainty/errors within data exploration pipelines. In one hand, there are the obvious
types of uncertainty, such as outliers, which can be easily detected via simple visualizations (e.g., error bars,
scatter plots). On the other hand, there are various types of uncertainty that are critical for reliable analysis
results, but often overlooked. The goal of the QUDE project is to provide techniques for automatically detecting
and quantifying such missed types of the uncertainty. This can help users without deep statistical or machine
learning backgrounds to derive more safe and reliable data analytical conclusions.
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advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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Figure 1: Data analysis & exploration workflow (top) and an example pipeline (bottom).

1.1 Types of Uncertainty in Data Analysis

A typical end-to-end data analysis pipeline involves collecting and cleaning data, summarizing different char-
acteristics and running complex machine learning algorithms. At a high level, a data analysis and exploration
workflow involves multiple stages illustrated in Figure 1. Namely, we need to extract high quality data from
multiple data sources (or samples), clean the data to remove the inconsistency and merge the same entity in het-
erogeneous formats (i.e., de-duplication), apply data analysis techniques (e.g., simple aggregate queries or more
complex machine learning algorithms) to extract useful information and extract interesting insights. Finally, we
need to present the results in the right context for the interpretation.

While similar data analysis best practices can produce actionable insights and discoveries, one should not
take anything at face value. The size and complexity, noise and incompleteness with big data not only impede
the progress of the pipeline, but also make each step in the pipeline more error-prone. The uncertainty around
the quality of the intermediate results propagates and compounds, making it even more difficult to validate the
output results. Worse yet, the nature of data analysis and exploration tasks requires testing multiple hypothe-
ses, applying different testing procedures with different combinations of data analysis techniques over the input
data. The problem is that this “repeated attempts to find interesting facts, increases the chance to observe seem-
ingly significant correlations by chance” [46], which is more formally known as Multiple Comparisons Problem
(MCP) [28]. Obviously, many quality-related concerns exist in the entire pipeline from entity resolution prob-
lems up to Simpson-Paradox problems for aggregated results. In the following, we therefore highlight five types
of uncertainty, which have been less explored in the literature and/or no automatic techniques exist to control
the uncertainty type.

A. Missing Unknown Data Items [39, 15, 16]: Incompleteness of the data is one of the most common sources
of uncertainty in practice. For instance, if unknown data items are missing (i.e., we can’t tell if the
database is complete or not) from the unknown target population, even a simple aggregate query result,
like SUM, can be questionable. It is challenging to make sure that we have collected all the important data
items to derive correct data analysis. On the contrary, the traditional survey and sampling methodologies
work under a closed-world assumption, where there exist no unknown items.

B. Undetected Data Errors [14]: Complicating the challenges of incomplete data is also the quality of the
collected data items. Real-world data is noisy and almost always comes with a variety of errors. Such
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Table 1: More commonly-studied data analysis errors/uncertainty [12, 36, 26, 31, 35, 19, 20]. QUDE focuses on
other types of uncertainty that are crucial for safe and reliable data analysis, but often overlooked in practice.

Data Extraction Data Integration Data processing Exploratory Queries & ML Interpretation
Sample selection bias Entity resolution Combination of error types Model selection Human involvement
Data source validity ~ Un-/semi-structured data  Data cleaning & coverage Hyper-parameter tuning Visualization selection
Disparate data sources Data enrichment Human involvement Model bias & variance Deceptive visualizations
Missing information Data under-/over-fitting

Feature engineering
Concept/distribution shift

“dirty” data must be removed or corrected because errors can and will bias the results. There are many
techniques to identify and repair the errors, but no single technique can guarantee a perfect error coverage.
The challenge is that, one should use a number of orthogonal cleaning techniques or hire a lot of crowd-
workers without knowing when to stop. Thus, we want to estimate how many errors are still remaining
in the data set, without knowing the ground truth (a complete/perfect set of constraint rules or the true
number of errors in the data set).

C. False Discovery [46]: Extracting insights from data requires repeated analysis and adjustment of hypothe-
ses. With every new hypothesis and insight, the probability of encountering an interesting discovery by
chance increases (also known as the MCP). Unfortunately, the problem is often overlooked in data analy-
sis. In fact, many reported results, including published scientific findings, are false discoveries [27]. Thus,
it is very important to control the MCP to ensure reliable data analysis and exploration.

D. Model Quality [13]: ML is one of the most popular tools for learning and making predictions on data. For its
use, ensuring good ML model quality leads to more accurate and reliable data analysis results. The most
common practice for model quality control is to consider various test performance metrics on separate
validation data sets (e.g., cross-validation); however, the problem is that the overall performance metrics
can fail to reflect the performance on smaller subsets of the data. At the same time, evaluating the model
on all possible subsets of the data is prohibitively expensive, which is one of the key challenges in solving
this uncertainty problem. Furthermore, missing unknown data items or sampling bias, in general, can
also degrade the quality of the model. The challenge is that most ML/inference models perform badly on
unseen instances, if similar examples are not learned during training.

E. Data Sharing Environments: When data is shared, a host of new problems increase uncertainty in data
analysis. Namely, controlling false discoveries becomes much harder across several institutions or re-
search groups given that the many hypotheses are posed against the shared data. A naive solution would
be to regulate the data sharing all together via a third-party service (or don’t share at all). But this hinders
scientific progress and is too costly to implement.

1.2 Our Goal and Contributions

As part of QUDE, we set out to quantify the uncertainty around the data analysis pipeline, which, in turn, should
provide various measures to correct and validate the output results and discoveries. In this work, we provide an
overview of our ongoing research, elaborating the uncertainty and its impact on the data analysis and exploration
results, as well as the challenges associated with each case of uncertainty. Our initial prototype of QUDE focuses
on the above five uncertainty types for two reasons: One, they are important for safe and reliable data analysis;
Two, they are overlooked by the common data analysis and data wrangling systems [2, 1, 38, 3, 18]. Table 1
lists other types of errors or uncertainty that are more commonly considered in practice.
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In the remainder of this paper, we discuss the above uncertainty cases in more detail and propose techniques
to quantify and control the uncertainty (Sections 2, 3, 4, 5, 6); we conclude in Section 7 with some ideas on
promising research directions as future work.

2  Uncertainty as Missing Unknown Data Items

First, we look at how uncertainty in a form of missing unknown data items (a.k.a., unknown unknowns [15,
16]) affects aggregate query results (e.g., AVG, COUNT, MIN/MAX), which are common in exploratory data
analysis. It is challenging to make sure that we have collected all the important data items to derive correct data
analysis, especially when we deal with real-world big data; there is always a chance that some items of unknown
impacts are missing from the collected data set. To this end, we propose sound techniques to derive aggregate
queries with the open-world assumption (the data set may or may not be complete).

2.1 An Illustrative Example

To demonstrate the impact of unknown unknowns, we pose a simple aggregate query to calculate the number of
all employees in the U.S. tech industry, SELECT SUM (employees) FROM us_tech_companies,overa
crowdsourced data set. We used techniques from [24] to design the crowdsourcing tasks on Amazon Mechanical
Turk (AMT) to collect employee numbers from U.S. tech companies.! The data was manually cleaned before
processing (e.g., entity resolution, removal of partial answers). Figure 2 shows the result.

The red line represents the ground truth (i.e., the total num-

ber of employees in the U.S. tech sector) for the query, whereas M

]
the grey line shows the result of the observed SUM query over ggm
time with the increasing number of received crowd-answers. As & oM L i
the ground-truth, we used the US tech sector employment re- E1M B Observed SUM ]
port from the Pew Research Center [37]. The gap between the R  Ground Truth -
observed and the grognd truth is due to the .im.pz.lct.of the un- ® 2 %% % % % %% % %
known unknowns, which gets smaller at a diminishing rate as # crowd answers
more crowd-answers arrive. Figure 2: Employees in the U.S. tech sector

While the experiment was conducted in the context of crowd-
sourcing, the same behavior can be observed with other types of data sources, such as web pages.

2.2 Estimating The Impact of Unknown Unknowns

Estimating the impact of unknown unknowns for SUM queries is equivalent to solving two sub-problems: (1)
estimating how many unique data items are missing (i.e., the unknown unknowns count estimate), and (2) es-
timating the attribute values of the missing data items (i.e., the unknown unknowns value estimate). The naive
estimator uses the C'hao92 [9] species estimation technique to estimate the number of the missing data items,
and mean substitution [36] to estimate the values of them.

Let ¢ = >, attr(r) be the current sum over the integrated database, then we can more formally define
our naive estimator for the impact of unknown unknowns as:

oK

C
~—

Value estimate

(N —c) (1)

Count estimate

Anaive =

"More precisely, we only asked for companies with a presence in Silicon Valley, as we found it provides more accurate results.
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N is the estimate of the number of unique data items in the ground truth D, and c is the number of unique entities
in our integrated database K (thus, N — ¢ is our estimate of the number of the unknown data items). ¢ /c is
the average attribute value of all unique entities in our database K.

Figure 3 shows the results of the U.S. tech sector employ-
ment estimation. The Naive approach heavily overestimates,

dbser’ved ' I : ! ! ! I : : . . .
10M | N'?rigcel since most observed companies are large (i.e., larger compa-
Bucket —— nies are more popular and likely to be sampled) and the value
8M - Ground Truth —-—- estimation is much higher than the true average number of em-
o ployees. To account for this publicity-value correlation, we

have proposed several estimators [16], and the Bucket estima-
tor yielded the best results across different real-world data sets.
The idea of the Bucket estimator is to divide the attribute
value range into smaller sub-ranges called buckets, and treat
each bucket as a separate data set. We can then estimate the
impact of unknown unknowns per bucket (e.g., large, medium,
or small companies) and aggregate them to the overall effect:

# employees

1 1 1 1 Il 1 1 1 1 Il 1 1

40 80 120 160 200 240 280 320 360 400 440 480
# crowd answers

Figure 3: Employees in the U.S. tech sector es-
timation. While, Naive approach heavily over-
estimates, Bucket estimator achieves the best re-
sults.

Abuclﬁet‘ = Z A(bz) ()

Here A(b;) refers to the estimate per bucket and both the fre-
quency or naive estimator could be used. The challenge with
the bucket estimator is to determine the right size for each bucket. If the bucket size is too small, the bucket
contains too few data items for any meaningful estimation. If the bucket size is too big, then the publicity-value
correlation can still bias the estimate. Our Bucket estimator automatically splits the attribute value range to
define buckets, which gives the most safe, conservative overall estimates.

The same techniques for SUM-aggregates can be applied to other aggregates for estimating the impact of
unknown unknowns. For more details, as well as other proposed estimation techniques, we refer interested
readers to our previous work [16].

3 Uncertainty as Undetected Data Errors

It is almost guaranteed that any real-world data sets contain some types of error (e.g., missing values, inconsistent
records, duplicate entities). This is an important source of uncertainty in data analysis because those errors
would almost surely corrupt the analysis results. Unfortunately, there has not been much work to measure the
data quality or estimate the number of undetected/remaining data errors in a data set; the best practices in data
cleaning basically employ a number of orthogonal data cleaning algorithms or crowd-source the task in a hope
that the increased cleaning efforts would result in a perfect data set. As part of QUDE, we developed a new Data
Quality Metric [14], which can guide the cleaning efforts.

3.1 An Illustrative Example

While this is a seemingly simple task, it is actually extremely challenging to define data quality without knowing
the ground truth; previous works define data quality through counting the losses to gold standard data or viola-
tions of the constraint rules set forth by domain-specific heuristics and experts [44, 8, 11, 17, 32]. In practice,
however, such ground truth data or rules are not readily available and are incomplete (i.e., there exists a “long
tail” of errors). For instance, take a simple data cleaning task where we want to identify (and manually fix)
malformed US home addresses in the database, shown in Figure 4. As in Guided Data Repair (GDR) [44], we
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Figure 5: Total error estimates using the simulated datasets. The vanilla species estimation (Chao92) heavily over-
estimates in the presence of false positive errors; SWITCH is the most robust estimator against all error types.

might have a set of repair rules for missing values (r1, 2) and functional dependency violations (r1, 3, 76).
However, the repair rules may not cover US state/city name misspellings (3, 74) or wrong home addresses (75,
r6). Once errors are identified, a human can verify the proposed errors and automatic repairs. Similarly, as in
CrowdER [42], we can run inexpensive heuristics to identify errors and ask crowd-workers to confirm. In both
of these cases, the fallibility of the system in the form of false negative (e.g., “long tail” or missed errors) and
false positive (e.g., even humans can make mistakes) errors is a big concern.

3.2 Data Quality Metric (DQM)

We want to design a statistical estimator to address

both of the issues. That is, we need to estimate address city |state| zip
the number Of remaining errors Without knowing the r1:{15440 Southwest Mallard Drive Appartment # 101 |Portland [:]97007
. K r2:15440 SW Mallard Drive Apt # 102 Portland |OR |
ground truth in the presence of false negative and false  3.[12855 southwest Dipper Lane Apartment #101  [patland__J|OR 97007
positive errors. A simple approach is to extrapolate =~ r4i28Angell steet, unitlH___ Providence RA 012
. . r5:[Boston House, 239 S Indian River Dr | Fort Pierce |FL 34950
the number of errors from a small “perfectly clean r6:12345 ABCD street # EFGH ] New York |NY [97007)

sample [43]: (1) we take a small sample, (2) perfectly

clean it manually or with the crowd, and (3) extrapo- Figure 4: Erroneous US home addresses: 71 and r2 con-
late our findings to the entire data set. For example, if tain missing values; 73 and 74 contain invalid city names
we found 10 new errors in a sample of 1000 records and zip cpdes; T.l’ r3, and 76 \iiolate a functional depen-
out of 1M records, we would assume that the total del,lcy (zip = city, State?; rois r.nota home address, and

. " r6 is a fake home address in a valid format.

data set contains 10000 additional errors. However,

this naive approach presents a chicken-and-egg para-

dox. If we clean a very small sample of data, it may not be representative and thus will give an inaccurate
extrapolation or estimates based off it. For larger samples, how can the analyst know that the sample itself
is perfectly clean without a quality metric? In our work [14], we propose a more robust and efficient way to
estimate the number of all (eventually) detectable errors.

Interestingly, this problem is related to estimating the completeness of query results using species estimation
techniques as first proposed in [40]. For the ease of exposition, let us assume that, as with most practical
data cleaning tools, we rely on humans to verify the errors via crowd-sourcing (e.g., CrowdER [42]). Also, to
overcome the human errors, we hire multiple workers to review each item. In this setting, we can think of our
data quality problem as estimating the size of the set containing all distinct errors that we would discover upon
adding more workers. The idea is to estimate the number of distinct records that will be marked erroneous if an
infinite number of workers/resources are added, using species estimation techniques. Unfortunately, it turns out
that false positives have a profound impact on the estimation quality of how many errors the data set contains.

Figure 5 shows the estimation results using different proposed techniques proposed. Note that the vanilla
species estimation (Chao92) heavily overestimates in the presence of false positive errors. This is because
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species estimators rely on the number of observed “rare” items as a proxy for the number of remaining species,
and this number can be highly sensitive to a small number of false positive errors. To cope with the problem, we
propose a more robust estimator (SWITCH) that estimates how the majority consensus on the items would flip.

Ideally, we want to estimate how many errors are still remaining in a data set. Instead, SWITCH estimates the
total number of expected switches before the majority consensus converges to the ground truth (i.e., assuming
workers are better than a random-guesser, the majority will eventually converge to the ground truth with enough
votes). Switches act as a proxy to actual errors and, in many cases, might actually be more informative. However,
since a record can switch from clean to dirty and then again from dirty to clean, it is not the same as the amount
of dirty records or remaining errors in the data set. We estimate the total number of switches as with infinite
workers, using the same C'hao92 estimation technique; using this estimated quantity, we can adjust the current
majority consensus to reach the ground truth:

magjority(Z) + &7 — & (3)

where positive switch £ is defined as switches from the “clean” label to the “dirty” label and negative switch
& as switches from “dirty” to “clean.” It is important to note that this estimator is more robust against false
positives, as it becomes less likely that, as the number of votes per item increases, a false positive will flip the
consensus.

4 Uncertainty as False Discovery

Extracting insights from data requires repeated analysis and adjustment of hypotheses. With every new hypoth-
esis and insight, the probability of encountering a chance correlation increases. This phenomenon is formally
known as the multiple comparisons problem (MCP) and, when done intentionally, is often referred to as “p-
hacking” [27] or “data dredging”.

4.1 An Illustrative Example

Suppose we are looking for indicators in a census dataset that affects salary distribution. To examine factors
such as “age” or “education”, we set up the corresponding null hypothesis that states the proposed attribute has
no correlation with the salary distribution. We then use a statistical test to infer the likelihood of observing a
likewise spurious correlation under the null hypothesis. If this likelihood, commonly referred to as the p-value,
is lower than the chosen significance level such as 0.05, then the null hypothesis is rejected, and the alternative
hypothesis that the proposed attribute is correlated with salary is deemed statistically significant.

However, if we keep searching through different indicators in the dataset, we are almost guaranteed to find
a statistically significant correlation. For example, choosing a significance level for each test of 0.05 means that
statistically we have a 5% chance of falsely rejecting a given null hypothesis; even if the dataset contains com-
pletely random data, we would, on average, falsely discover a spurious correlation that passes our significance
level after only 20 hypothesis tests.

4.2 Safe Visual Data Exploration

Visual data exploration tools such as Vizdom [18] or Tableau amplify this problem by allowing users to examine
lots of visual “hypotheses” (e.g., comparing visualizations) in a short amount of time. In one of our experiments
[45], where we used synthetic data sets with known ground truth labels, we found that by not accounting for all
comparisons made during exploration, users are left with a high rate of false discoveries even if user-generated
insights are followed up with statistical tests. Perhaps even more concerning is the increasing trend towards
creating recommendation engines that propose interesting visualizations [41, 22] or automatically test for corre-
lations [10]. Those systems are potentially checking thousands of hypotheses in just a few seconds. As a result,
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it is almost guaranteed that such a system will find something “interesting” regardless of whether the observed

phenomenon is statistically relevant or not [7].

Online  Cinema DVD

A B C

count
count
count

Online Cinema DVD Online  Cinema DVD

MovIeS movies novies

- = =
: II : II : II
o &) o
Yes No Yes No Yes No
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Figure 6: Example of a visualization network where users
might be led to false discoveries without automatic hy-
pothesis formulation. (A) two separate visualizations
showing preferences for watching movies and how many
people believe in alien existence; (B) the two visualizations

While there exists a variety of statistical tech-
niques to control for the MCP [21, 5] they are not
easily applicable in visual data exploration tools as
they require knowledge about all the hypotheses be-
ing evaluated upfront, whereas in this context, the
hypotheses are generated incrementally. To address
this, we developed an MCP procedure [46] that al-
lows specifying hypotheses incrementally. Further-
more, we show preliminary results on how such a pro-
cedure can be fully integrated into a data exploration
system where visual comparisons are automatically
tracked and controlled for [47]. Figure 6 shows an ex-
ample of this. When we analyzed data from a survey
on personal habits and opinions [7], we observed that
the preference on watching films on DVD produced
visually different proportions of belief in aliens, as
shown in Figure 6 (A and B). Just by visually ex-

combined where the bottom one shows proportions of be-
lief in alien existence for only people who like to watch
movies on DVD, displaying a noticeable difference com-
pared to the overall population. (C) same visualizations
as before but now with automatic hypothesis formulation
turned on, highlighting that the observed effect is not sta-
tistically significant.

amining these charts, users often falsely assumed that
people who prefer to watch movies on DVD are more
prone to believe in aliens even though this effect is not
statistically significant. When automatic testing and
tracking is turned on, the system will try to formulate
hypotheses for such cases (e.g., when users are com-
paring subsets against the global population), include
them to the MCP control procedure and inform the user about the outcome of the test (Figure 6 C).

5 Uncertainty as Model Quality

ML is one of the most popular tools for uncovering hidden insights and patterns in data analysis. In fact, ensuring
model quality leads to more accurate and reliable data analysis results. In this section, we discuss ML model
quality as a form of uncertainty in data analysis. Namely, we look at a couple ML model quality issues that are
often overlooked in practice. Model validation and quality assurance is an important component for QUDE.

5.1 An Illustrative Example

To ensure that a given model is performing well at a given task, people consider various test performance metrics
(e.g., log loss, accuracy, recall, etc.). The problem, which is often overlooked is that the overall performance
metrics can fail to reflect the performance on smaller subsets of the data. For example, we want to avoid a model
that works well on average with the entire customer data, but fails with a female, teenage demographic in the
U.S., especially, if it is one of the key market segments for the application. Here, we present an automated data
slicing tool for model validation. The key challenge there is identifying a proper subset or data slice that is large,
problematic and interpretable to the user; the search space is exponentially large with the number of features
(and their value ranges).
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Figure 7: Ideally, we want the generalization gap between the training score and the testing score to be minimal
(left); however, the model performs much worse if trained on a biased sample or fails to generalize to the actual
testing data (middle). Accounting for unknown unknowns can improve the model generalizability (right).

5.2 Automated Data Slicing

While a well-known problem [33], current techniques to determine under-performing slices largely rely on
domain experts to define important sub-populations (or at least specify a feature dimension to slice by) [30].
Unfortunately, ML practitioners do not necessarily have the domain expertise to know all important under-
performing slices in advance, even after spending a significant amount of time exploring the data. In [13], we
present an automated data slicing tool for model validation, called Slice Finder. The goal of Slice Finder is
to identify a handful (e.g., top-K) of the largest problematic slices, that are also interepretable. Larger slices
are preferable because they carry more examples, and thus, more impactful to model quality. On the contrary,
debugging the model on a tiny slice would not mean much to the overall model quality. Plus, we want to bring
the user’s attention to the slices that are interpretable. For instance, country = US is more interpretable than
country = US A age = 20-40 A zip = 12345, with a fewer number of common features. We find that the
interepretability is a key for understanding the model quality problem. The resulting slices are presented via an
interactive visualization front-end, which helps users to quickly browse through the slices.

5.3 Unknown Unknowns for ML

Another important aspect of ML model quality is generalizability, which measures how accurately an ML model
can predict on new unseen examples. This is also important because ML-model-based analysis is often done to
forecast or predict the future instances. Unseen examples during the training present a challenge to any inference
model.

Figure 7 illustrates the problem. In the toy example, the target population is hidden (only used for testing),
but the training data, which is a biased sample from the population, is missing some of the examples with smaller
A values (e.g., smaller companies less likely to be sampled). The fitted regression model can still perform well
on the training set, but will fail in testing. The wide gap between the training and the testing scores (middle)
indicates this failure of model generalization. Now, by accounting for the unknown unknowns (e.g., injecting the
generated unseen examples), we can improve the model generalizability. Of course, estimating the number, as
well as the values of the unseen examples is not straight-forward.
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6 Uncertainty in Data Sharing Environments

QUDE is much more challenging when data is shared or made public. Controlling false discoveries, discussed
in Section 4, becomes more problematic when data is shared across institutions or research groups given the
difficulty of establishing effective MCP control procedures in sharing environments. Even if just one member
deviates from the exact testing protocol, uncertainty is immediately introduced into the results. Moreover, when
data is made public, avoiding uncertainty as a result of the MCP (whether introduced intentionally or otherwise)
becomes almost impossible given the inordinate amount of coordination and oversight required by all parties
using the data. However, these issues do not impede the trend by industry and research institutions to make data
publicly available making it imperative to create a method for effectively controlling the MCP in data sharing
settings.

6.1 An Illustrative Example

Consider a publicly shared dataset such as MIMIC III [29] published by MIT. The dataset contains de-identified
health data associated with ~ 40, 000 critical care patients. The existing solution for controlling the MCP on
such a dataset is to make use of a hold-out. In this case, MIT can release 30K patient records as an exploration
dataset (EDS) and hold back 10K as a validation dataset (VDS). The EDS can then be used in arbitrary ways to
find interesting insights from the data. However, before a result can be used in a publication, the hypothesis is
tested for statistical significance over the VDS.

Unfortunately, there are several issues with such a solution. In order to use the VDS more than once, every
hypothesis over the VDS has to be tracked and the MCP controlled. Hence, it becomes necessary for the data
owner (e.g., MIT) to provide a “certification” service to validate results obtained over the EDS which is both
a burden for the data owner as well as a potential source of bias. Researchers need to trust the data owner to
correctly apply MCP control procedures and objectively evaluate their hypotheses.

6.2 Automated Result Certification

Ideally, a data owner publishes a dataset and goes offline (i.e., not have to interact with researchers any further)
in order to both minimize the overhead imposed on the data owner as well as eliminate potential bias during the
validation phase. An automated solution can be constructed using several cryptographic primitives and is based
on the following observation: if all the p-values computed for a dataset are accounted for during the analysis
phase, in addition to the order in which they were computed, it is possible to apply an incremental control
procedure [46, 23] to control for uncertainty. The solution hinges on the use of Fully Homomorphic Encryption
(FHE) which was first proposed by Gentry in 2009 [25]. FHE enables computation over encrypted data without
revealing any information on the underlying data. Using FHE, any arithmetic operation (and thus any function)
can be evaluated on ciphertexts using only the public key such that the result of the evaluation remains encrypted
and unknown to the evaluator. If the data is encrypted by the data owner using FHE and the encrypted data made
public, researchers are still able to use the encrypted data for analysis (e.g., compute statistical tests) and obtain
encrypted results without interacting with the data owner. A researcher may then request the entity in possession
of the decryption key (e.g., the data owner) to reveal the result computed locally over the encrypted data.

Consider, once more, the case of the MIMIC III dataset. The data owner (e.g., MIT) makes the encrypted
version of the dataset publicly available. Researchers use the encrypted data to compute statistical tests and
obtain encrypted p-values. The encrypted p-values are then sent to MIT which proceeds to decrypt and reveal
each p-value on a publicly readable database. A p-value obtained in such a fashion can be audited by examining
the sequence of test records stored in the database and applying an incremental control procedure. While still
requiring participation of the data owner, such a solution is one step closer to the desired goal since it no longer
requires the owner to verify hypotheses or otherwise interact with researchers.
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Figure 8: Overview of statistical test certification process: (1a) The data owner encrypts and publishes a dataset
along with the public key. (1b) The data owner distributes the secret key to a set of parties that can collectively de-
crypt using threshold-FHE. (2) A researcher downloads the encrypted data along with the public key and computes
a statistical test using FHE. (3a) To obtain the p-value in the clear, the researcher submits the encrypted result to the
set of parties who then decrypt the p-value using a consensus protocol. (3b) The parties reveal the result by posting
it on a public blockchain along with a timestamp. (4) A publication claiming a significant result can provide proof
of valid testing procedures using the records stored on the blockchain.

The responsibilities of the data owner can be distributed to a set of parties (i.e., institutions, research groups,
etc.) using threshold-FHE [4] which requires a majority of parties to “agree” on decrypting a result. In combina-
tion with a distributed ledger (e.g., a blockchain [34]), which guarantees immutability of recorded transactions,
the sequence of tests can be tracked by recording each p-value at the time of decryption. Since the ledger is
public and tamper-proof, it can be used as a mathematical proof of result validity. Figure 8 provides a high-level
overview of the protocol.

7 Conclusion & Future Work

In this paper, we present several cases for the uncertainty in data analysis and exploration. First, we provide
an overview of our work on quantifying the uncertainty as a form of unknown missing data items, undetected
data errors in the data set. Next, we point out that any data-driven discoveries should be taken with care,
because data analysis and exploration generally requires testing numerous hypotheses, increasing the chance of
false discovery. Data analysis in a data sharing environment further complicates this issue of MCP. Finally, we
discuss a couple model quality problems that can serve as a source of uncertainty in data analysis.

Our overarching goal is to quantify all types of uncertainty in data analysis and exploration, and in turn, pro-
vide measures to correct and validate the analysis results and discoveries. To this end, we plan on implementing
the proposed solutions for ML model quality (Section 5) and data-sharing environments (Section 6). We have in-
tegrated some of the proposed solutions into an interactive human-in-the-loop data exploration and model build-
ing suite [6]. We are also interested in investigating other types of uncertainty (e.g., learning the right feature set
for the task and the feature quality assurance) and how they interact with each other. It is interesting to under-
stand the relationship among the different types of uncertainty as the uncertainty compounds over the pipeline.
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1 Introduction

Consider a database query with a number of parameters whose values can be specified by users. Query pertur-
bation analysis examines how the result of this query varies in response to changes in its parameter values (while
the database stays the same). Query perturbation analysis allows us to evaluate the sensitivity of a query’s result
to its parameters. For example, if we use queries over data to inform decisions or debates, we naturally would
like to know whether the conclusions are “brittle” with respect to particular parameter choices. Moreover, by
constructing a broader context formed by the results of a query over a large parameter space, query perturbation
analysis allows us to further explore this context, such as searching for parameter settings that lead to robust
decisions or convincing arguments.

An especially compelling application of query perturbation analysis is in computational journalism [10, 9]—
specifically, how to fact-check claims derived from structured data automatically. Indeed, this application was
what initially drew the authors of this paper to the problem of query perturbation analysis (and to coin this
term in [40, 41]), as part of a long-term collaboration among a diverse group of researchers and practitioners
from computer science, journalism, and public policy, across Duke University, University of Texas at Arlington,
Stanford University, and Google. This paper provides an overview of our research on query perturbation analysis
and its applications to journalism, and describes our collective experience and lessons learned—Ilargely from the
angle of database researchers.

The connection between fact-checking and perturbation analysis may not be immediately obvious. To start,
we observe that in this age of data ubiquity, our media are saturated with claims of “facts” made from data,
by politicians, pundits, corporations, and special interest groups alike. Based on data and often quantitative
in nature, these claims have seemingly stronger credence in the eyes of the public. Indeed, we can verify their
correctness by posing corresponding queries over the underlying data and ensuring that “the numbers check out.”
However, fact-checking goes beyond verifying correctness. Many claims can be correct yet still mislead. As an
old saying goes, “if you torture the data long enough, it will confess to anything” [20]. Think of a claim—e.g.,
“adoptions went up 65 to 70 percent” when Giuliani “was the New York City mayor”'— as a query over data.

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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The data (here, historical adoption numbers) may be pristine and the form of the query (comparing adoption
numbers from two time periods) is completely innocuous. However, the choice of query parameters (comparing
1996-2001 and 1990-1995, which was not made explicit by the original claim) still controls what aspect or
subset of the data to present in the claim, and can heavily influence the query result and hence the conclusion of
the claim. Query perturbation analysis helps detect and counter such “cherry-picking” practices, because it puts
the original claim into a larger context of perturbations for scrutiny; e.g., what if we compare the numbers from
the mayor’s first and second terms? In Section 2, we show how to apply perturbation analysis to this and other
fact-checking tasks, as well as the complementary problem of finding leads from data while avoiding pitfalls.

Query perturbation analysis is perfectly suited to automation. Naively, we can evaluate the query with
each possible parameter setting independently, so computation is embarrassingly parallel. In practice, however,
brute-force solutions may not be acceptable because the number of possible query parameter settings can be
daunting even if the database itself is small in size. In Section 3, we give an overview of techniques for efficient
and scalable perturbation analysis. While there has been little prior work from the database community that
directly addresses perturbation analysis, we note that some well-studied problems can be framed as perturbation
analysis for specific forms of queries. On the other hand, even if we already understand very well how to
process a query itself, its perturbation analysis often involves new technical challenges. There is a trade-off
between the generality and efficiency of techniques for specific query forms: while we can usually do better
with algorithms highly specialized for the occasion, there is a strong motivation to develop techniques and
systems that can benefit any database queries. How to close the efficiency gap between general and specialized
techniques remains an open challenge.

Interestingly, over the course of our research, we have discovered opportunities to transfer techniques for
perturbation analysis to traditional database query processing (and back). Conceptually, we can write perturba-
tion analysis of a query template g as a complex database query, starting with a subquery that enumerates all
possible parameter settings for ¢, then “joining” it with a subquery that computes ¢ for a given parameter setting
(with parameters serving as join attributes), and finally applying some aggregation to analyze all results over the
entire parameter space. Specifically, Section 3.3 describes some results we obtained exploring this connection,
which include new optimizations for OLAP queries inspired by perturbation analysis. This pleasant surprise is
a reminder of how pursuit of novel applications could lead to new advances for classic problems.

Last but not least, we reflect on our experience working on perturbation analysis and its applications to
journalism in Section 4. We give a brief history of our collaboration with journalists, highlight a few interesting
applications we built, and discuss the broader challenges we faced when dealing with the complexity of reality.
We then conclude with an outlook for the future research on query perturbation analysis.

2 Modeling Fact-Checking and Lead-Finding

We use a couple of real-life examples to illustrate how to apply query perturbation analysis to a variety of fact-
checking and lead-finding tasks. We shall focus on modeling these tasks conceptually for now, and leave the
discussion of how to solve them efficiently to Section 3. Our first example is from the domain of US politics.

Example 1 (high correlation claims about voting records): Evan Bayh, a Democrat from Indiana, ran for
the US Senate in 2016. An ad aired during the 2016 elections attacked his records while serving in the Senate
earlier, for voting with President Obama 96% of the time.> Here, the apparently high agreement percentage was
used to invoke the impression that Bayh was hyperpartisan and a blind supporter of Obama.

Ignoring a number of details for now, let us assume that we already have in our database the history of how
each senator voted with Obama over time. Then, we can model the above claim as a SQL aggregation query
about Bayh’s history in particular. The query is parameterized by the time interval of comparison, although the

*www.youtube . com/watch?v=vXEM6419yfM
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Figure 1: Visualization of how US senators voted with President Obama in 2009, generated by congress.
uclaimicheck.org. Blue bars represent Democrats; red bars represent Republicans; two brass bars represent
independents. The bar representing Evan Bayh is additionally outlined in orange. Data on votes in the Congress
were from GovTrack.us, and data on the President’s positions on these votes were from the Congressional Quarterly.

claim does not specify it. Such ambiguity is prevalent in political claims, and is often the very first challenge that
fact-checkers must address, oftentimes with little to no help from those who made the claims. With perturbation
analysis, however, we can “reverse-engineer” the query by searching for parameter settings that result in the
claim’s conclusion. In this example, we would look for plausible time intervals over which the aggregation query
happens to return 96% (or something close).

As it turns out, the missing time interval in this query is the year 2010, the last year when Evan served
in the Senate. The number 96% “checks out.” However, as motivated in Section 1, a correct claim can still
mislead. First, if we perturb the time interval slightly, to the year before, Bayh would have agreed with Obama
only 77% of the time. Considering 2009-2010 would have resulted in 85%, still nowhere as impressive as 96%.
In other words, perturbation analysis can reveal when a claim is not robust, i.e., even small parameter changes
can weaken its conclusion significantly.

We can additionally or alternatively parameterize the same query by the senator we are comparing with
Obama. Perturbation in this dimension allows us to see where Bayh stands in a larger context of all senators.
Figure 1 (a screenshot from a website we built for the 2016 US elections) visualizes the result of this analysis.
We see that in 2009, Bayh was in fact the Democrat who agreed least with Obama, and even less than three
Republicans. For a Democrat, 77% agreement with Obama was really low, and 96% was not that unusual. In
other words, perturbation analysis can reveal when a claim is not unique, i.e., it is easy to make similar claims
for many other entities besides the one being highlighted. |

Claims like the one above have been used repeatedly in political campaigns over the years, by both sides of the
political aisle, for both support and attack. For instance, in [40], we used an example from the 2010 elections
where an ad supporting Jim Marshall, a Democratic incumbent from Georgia, claimed that he “voted the same as
Republican leaders 65 percent of the time.” This ad was actually in response to an earlier ad attacking Marshall
for voting with Nancy Pelosi (a notable Democrat who was the Speaker of the House at that time) “almost 90
percent of the time.”

We should note that, by our observation, human fact-checkers do intuitively perform perturbation analysis,
albeit manually (and perhaps instinctively rather than explicitly)—they often put a given claim in a larger context
to probe its weaknesses and look for counterarguments. In this sense, perturbation analysis is a natural formal-
ization of human intuition into a computational framework. This formalization brings a number of important
new benefits, however. First, we can now elucidate and quantify various intuitive measures of claim quality, such
as robustness and uniqueness motivated in Example 1. Second, we can formulate a variety of fact-checking tasks
as computational problems. We have already mentioned in Example 1 the task of reverse-engineering claims to
remove ambiguity. Another example is the task of finding counterarguments to claims. Intuitively, for a claim
that is not robust, effective counterarguments would be small parameter changes that significantly weaken the
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original claim’s conclusion; for a claim that is not unique, an effective counterargument would be a collection of
perturbations with similar or stronger conclusions in order to show that the original claim is not special. These
tasks can be formulated as search or summarization problems in the space of perturbations. For more details
about our framework, see [40, 41].

It is also natural to turn the problem of fact-checking around, and ask how we can find high-quality “leads”
from data—claims that are not only interesting, but also robust and unique so they are not easily countered. To
illustrate, we use an example about a lighter subject, sports journalism.>

Example 2 (one-of-the-few claims in sports): Sports reporting and commentaries are often inundated with
claims involving statistics that supposedly show how impressive a player or performance is. (For a good laugh,
listen to the late Frank Deford’s opinion on the NPR’s Morning Edition.*) Consider, for example, the claim that
“only 10 players in the NBA history had more points, more rebounds, and more assists per game than Sam Lacey
in their career” [43]. Sam Lacey was indeed a great basketball player, but most fans probably would not rank
him among the most legendary players as the impressive-sounding “only 10” part of the claim would suggest.

Using perturbation analysis, we can model this claim as a counting query, parameterized by the player,
which tallies the number of players who dominate the given players on all three attributes: points, rebounds,
and assists per game. By perturbing the player of interest and checking whether the resulting count is 10 or less,
we get to see for how many other players we can make the same or even stronger claims. For this example, it
turns out that we do so for more than a hundred players, so the original claim about Sam Lacey is not unique.

Thus, to find unique claims, we would consider all possible parameter settings (players) as candidates.
Given a candidate player o, suppose the count of players dominating o is k. To decide whether o is unique, we
would count T, the number of parameter settings that result in the same or stronger claims, i.e., the number of
players dominated by k or fewer other players. If T is small, then o is unique. In other words, instead of testing
k, which is an unreliable indicator of a claim’s interestingness, we test T, which measures uniqueness under the
perturbation analysis framework.

Interestingly, the uniqueness measure naturally penalizes claims of this form for comparing too many at-
tributes. As dimensionality grows, dominance in all attributes becomes increasingly rare among players, so it
becomes easier to make claims with impressively low dominance count k. But at the same time, T would grow,
so checking T naturally protects us from making misleading claims that are not unique. |

We have done a more in-depth study of how to mine these so-called “one-of-the-few” claims from data in [39].
This earlier work was not presented in the perturbation analysis framework, but the connection, especially to the
uniqueness measure of claim quality, should be obvious. This work also allowed claims to compare different
subsets of attributes. Although SQL queries traditionally would not consider the attributes they reference as
“parameters,” we can view changes to the referenced attributes as a general form of query perturbation, and our
framework can be extended to accommodate perturbations in not only parameter values but also query forms.

So far, our description of query perturbation analysis has been mostly informal. Before proceeding to the
discussion on computational techniques in the next section, we first lay out some formal definitions.

Definition 1 (Query Perturbation Analysis [37]): Consider a (fixed) database instance D, and a parameter-
ized query template q over D with parameter settings drawn from a parameter space P. Let q(p) denote the
result of evaluating q with parameter setting p € P (over D; omitted for brevity). Let R = {(p,q(p)) | p € P}
denote the collection of results (perturbations) obtained by evaluating q for all possible parameter settings. A

3For an even lighter subject (though less related to journalism), we demonstrated at SIGMOD 2014 a system called iCheck that made
interesting claims about the publication records of database researchers [43] (it also covered other less frivolous domains, of course).
For example, iCheck found that one author of this paper had a great year of publications in SIGMOD, VLDB, and ICDE—only 8 other
researchers had ever managed to publish as much as (or more than) him in one year in every one of these three venues. Then, iCheck
turned around and noted that the same claim could be made for 89 other researchers (i.e., each of them also had a great year with
publication records matched or dominated by no more than 8 others)!

*www.npr.org/templates/story/story.php?storyld=98016313
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query perturbation analysis problem is specified by a 4-tuple (D, P, q, x), where x is a post-processing function
that computes from R the final answer set for the analysis. |

As an example, we formalize the fact-checking task of evaluating claim robustness as follows. Let py denote
the parameter setting used by the claim we would like to check. To spell out x, we need two helper functions:

e The parameter sensibility function SP(p, pg), where p € P, measures how “sensible” a perturbed param-
eter setting is with respect to the original. Not all perturbations are equally useful to investigation: we
would only assign non-zero sensibility to perturbations that are relevant to the context of the claim, and
we assign higher sensibilities to those that are more “natural” (e.g., using “2 years” in a statement is more
natural than “22 months”).

o The result strength function SR(q(p), q(po)) measures how much the result of the perturbation deviates
from the original. A negative SR(¢(p), ¢(po)) means the perturbation weakens the original claim.

Then, we can assess the robustness of the claim using X (R) = 3=, ;(»)ex SP(P; po)-(min{0, SR(q(p), q(po))})>.
One way of interpreting this definition is to picture yourself as a “random fact-checker,” who randomly perturbs
the parameter setting according to sensibility—higher SP(p, pp) means p is more likely to be chosen. Here,
X(R) computes the mean squared deviation from the original claim (considering only perturbations that weaken
it) as observed by the random fact-checker—a high y(R) means the claim is not robust.

As another example, consider a lead-finding task: mining one-of-the-few claims with high uniqueness (re-
call Example 2). We can generally define the uniqueness of a claim with parameter setting py by computing
|—113| > pep L(SR(q(p), q(po)) < 0), i.e., the fraction of parameter settings for which the claim would be weaker
than that for py. In this case, P is the set of objects of interest, ¢(p) computes the number of objects dominating
p € P on the given set of attributes for comparison, and SR(q(p), ¢(po)) = q(po) — q(p). Hence, to find claims
with uniqueness at least 1 — 5, we use X(R) =P, a@) | 7> 3 qnex La®) < a(p))}-

We refer interested readers to [41] for more details as well as examples of formulating other fact-checking
and lead-finding tasks in this framework. Besides the problems above, one notable practical issue, when finding
counterarguments and mining leads, is that there may be too many candidate perturbations to return. One could
simply return those that score the highest by some quality measure, but they may be too similar to each other, and
some may be outliers and not representative of their neighboring perturbations. Therefore, in [42], we studied
the problem of how to choose a small, diverse set of high-quality representatives from the space of perturbations.
In general, much research is still needed on effectively analyzing and summarizing the context provided by the
space of perturbations, which can require more complex post-processing functions than database queries.

3 Computational Techniques for Perturbation Analysis

A naive way of performing perturbation analysis is to first generate R by computing ¢(p) for each possible
parameter setting p € P, and then evaluate x(R). As mentioned in Section 1, this method is not feasible if P is
large, especially when it involves multiple dimensions. In this section, we overview some techniques for more
efficient perturbation analysis.

3.1 Query-Specific Methods

Interestingly, a number of well-studied problems in databases can be cast as specific query perturbation analysis
tasks, so for these tasks, we can apply known techniques. For example, consider frequent itemset mining [6].
Let query template g, parameterized by an itemset 7', count the number of transactions that contain all items in
T. Then, finding all frequent itemsets is equivalent to the perturbation analysis task of selecting all parameter
settings 7" for which ¢(7T") is above a threshold. For another example, recall Example 2 but consider instead
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the simpler lead-finding task of identifying all players who are dominated by no more than & players. If we
represent each player as a point in a space whose dimensions are the attributes being compared, then this task
essentially amounts to computing the k-skyband [27] (a concept that generalizes skyline [7]) for a set of points
in a high-dimensional space.

Much of perturbation analysis is not covered by existing work, however. For example, to find truly robust
and unique claims, we often introduce criteria in the post-processing function Y that require different algorithms
or adaptations of techniques from existing work. For instance, as motivated in Example 2, claims about players
with low dominance counts are not necessarily interesting; rather, we should look for unique claims—ones that
cannot be made for too many players. Hence, the problem shifts from that of computing the k-skyband for a
given k, to that of computing the k-skyband for the maximum k such that the k-skyband still contains no more
than 7 points. Techniques for this new problem setting had to be developed [39].

We observe that practical applications of perturbation analysis often add some element of optimization in
the post-processing function . Even if efficient evaluation of query template ¢ has been thoroughly studied, the
combination of ¢ and an “optimizing” x leads to interesting new problems, as the following example illustrates.

Example 3 (vote correlation claims and convex hulls; adapted from [41]): Recall Example 1. Suppose we
want to refute the claim about Bayh agreeing too much with Obama with a counterargument showing that the
claim is not robust. We can search for this counterargument with an “optimizing” x. Specifically, consider
perturbing the time interval being compared by the claim. We would like to find the interval that minimizes the
percentage agreement, subject to some constraints such as length and scope (we omit the details here).

Putting aside x for the moment, the query template

q in this case is simply range aggregation. The stan- \ *
dard technique of prefix sums allows us to answer q for 5 L 2

any query interval in constant time: by precomputing 3 " o ®o000

and remembering the running count of agreements over % . (ot *

time, we can find the number of agreements over any in- % e//‘lo candidate points must be

terval by taking the difference between the values of the & aob % ’0’}’: Z;’f Zitlsor‘:: a;‘”zvex ull
running count at the two interval endpoints. As Figure 2 ¥ . * i ¢

shows, if we plot the running count over time, the per- *

centage agreement over an interval is simply the slope vote sequence #
of the line connecting the two endpoints. Figure 2: Minimizing percentage agreement by consid-

However, solving the constrained optimization prob- ering the convex hull of points formed by the running
lem efficiently requires some new insights. Instead of ¢ountof agreements over time.
considering all intervals, our technique in [41] aims at
quickly finding the optimal interval among those with the same starting point (without explicitly examining all
such intervals), and then choosing the best among all possible starting points. Given a starting point, we can
determine the relevant range of ending points (as dictated by any given constraints). The key to speeding up the
search for the optimal ending point in this range is a geometric intuition illustrated in Figure 2: any candidate
must be part of the lower convex hull of the points in the range; there is no need to search the other points. Thus,

the problem reduces to indexing for range convex hull queries (see [41] for details). [

There are many other examples where considering perturbation analysis for well-studied query types breathes
new life into old problems. While it is both interesting and useful to develop highly specialized solutions for
specific query templates, they require a lot of human expertise and effort. We may not have such a luxury when
so many queries and application domains could benefit from perturbation analysis. Thus, it is also important to
devise more generic methods—which we discuss next.
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3.2 Generic Methods

Generic methods aimed at speeding up the computation of R include parallelization (i.e., evaluating all pertur-
bations in parallel); grouping (i.e., evaluating some perturbations together efficiently as a group); and memo-
ization (i.e., caching the result of a piece of computation and reusing it later). The classic database problem of
MQO (multiple-query optimization [29]) is closely related, although it traditionally targets very different query
workloads. Perturbation analysis typically involves far more queries than MQO, but all of them have the same
form and differ only in their parameter settings; MQO makes no such assumption and hence focuses more on
finding common subqueries to share processing. Another key difference is that perturbation analysis has a post-
processing function y, which opens up the possibility of “pushing down” selection criteria from y down into the
computation of R. These additional selection criteria in turn enable more pruning (i.e., using cached results for
one set of inputs to help discard unpromising parameter settings without full evaluation). We illustrate the use
of memoization and pruning with a simple example below.

Example 4 (memoization and pruning for finding one-of-the-few claims; adapted from [37]): Recall Exam-
ple 2. Suppose our task now is to find all claims of the form “player A’s performance in stats X and 'Y during
season S'is dominated no more than 10 times.” A baseline approach would be to process one player-season pair
at a time, looking up the performance record (say (x,vy)), counting the number of records dominating (x,y),
and then checking whether this count is no more than 10. With memoization, we remember the outcome of this
check together with the input—importantly, (x,y), instead of the player-season pair. Later, if we encounter an-
other player-season pair that happens to yield the same (z,vy), we can reuse the result of the check. How often
does this simple memoization method help? The answer depends on how many distinct (x,y) pairs there are
versus player-season pairs. If the number of players is large while stats have relatively smaller active domains,
memoization can produce great savings—more than 90% reduction in the number of counting queries for some
practical scenarios tested in [37].

We can further improve the above approach with pruning. Once we find that a performance record (x,y)
has a dominance count of ¢, we remember (x,y,c). Upon encountering a previously unseen record (z',y/),
instead of immediately computing its dominance count, we first check the entries we remembered to see if we
find some entry (z*,y*, c¢*) where (z*,y*) dominates (x',y') and ¢* > k. If yes, then we know, by transitivity
of dominance, that (x',y") must have a dominance count greater than k and therefore can be discarded without
further processing. |

Note that even after applying memoization and pruning, as in the example above, the resulting procedure still
may not be as efficient as a specialized method, e.g., a handcrafted k-skyband algorithm. However, the advan-
tages of generic methods are their broader applicability and the possibility for automatic optimization, which
significantly reduces development costs. How to close the efficiency gap between the general and specialized
solutions is an ongoing challenge, which requires continuing to develop not only new generic methods but also
better automatic optimization—a topic that we will come back to in Section 3.4.

One issue that we glossed over in Example 4 is how to come up with the pruning logic in the first place. If
we must specify this logic by hand for every perturbation analysis task, some appeal of the generality of pruning
would be lost. Fortunately, as we shall see in Section 3.3, sometimes we can derive the pruning logic automat-
ically from a specification of the perturbation analysis task (e.g., for Example 4). However, for more complex
pruning opportunities (see [37] for examples), identifying them automatically remains an open challenge.

Another suite of generic methods for perturbation analysis aim at exploiting properties of the post-processing
function x that commonly arise in applications. First, for many fact-checking and lead-finding tasks, x uses a
parameter sensibility function SP (introduced at the end of Section 2), which intuitively weighs some perturba-
tions more than others. Instead of considering perturbations in some arbitrary order, a good heuristic would be
to consider them in the decreasing order of sensibility, and stop when we are sure that remaining perturbations
will no longer contribute to the answer because of low sensibility. Second, consider the case where y involves

34



searching for the “best” parameter settings within a region of the parameter space defined by constraints. While
optimization over the entire region may seem complex, sometimes we can divide the region into “zones” within
which we know how to solve the optimization problem more efficiently (e.g., as in Example 3). In [40, 41], we
developed various “meta” algorithms implementing these high-level generic methods, with pluggable low-level
building blocks that can be customized for the occasion.

An exciting direction that we have been pursuing recently is the use of approximation methods for perturba-
tion analysis. Approximation is effective for taming computational complexity when aggregating or optimizing
over a huge, high-dimensional parameter space, and in most practical scenarios, we can tolerate some errors.
The most straightforward method would be uniform random sampling, but alternative methods often work bet-
ter in our context: e.g., importance sampling [32] based on the parameter sensibility function SP, and coreset
sampling [4] for certain types of post-processing functions. We also borrow a number of ideas from machine
learning. Acquiring each sample involves a potentially expensive query, but we can learn a model predicting
the contribution of a parameter setting to the result of the analysis. This learned model can be used to inform
sampling design, and techniques from active learning [30] and quantification learning [15] are also applicable.
We hope to make our results on this front available soon.

3.3 Connections to Traditional Query Processing

As mentioned in Section 1, we can think of the perturbation analysis of a query template ¢ as a complex query,
with one part enumerating all possible parameter settings and the rest computing ¢ for each parameter setting.
If the post-processing function x is not too complicated, it may be expressed as additional aggregation and/or
selection. For instance, the two examples at the beginning of Section 3.1, mining frequent itemsets and finding
k-skyband, can be written in SQL as follows (for simplicity, consider only 2-itemsets and 2-d skyband):

—— Basket(bid, item) stores one item per row —— Object(id, x,y) stores one object per row

SELECT il.item, i2.item SELECT L.id, COUNT(*)

FROM Basket il, Basket i2 FROM Object L, Object R

WHERE il.bid = i2.bid WHERE L.x<=R.x AND L.y<=R.y AND (L.x<R.x OR L.y<R.y)
GROUP BY il.item, i2.item GROUP BY L.id

HAVING COUNT(*) >= s; HAVING COUNT(*) <= k;

These queries are both joins followed by grouping and further selection based on group sizes, which are exam-
ples of so-called iceberg queries [13] in OLAP. There has been plenty of work on computing frequent itemsets,
skybands, and iceberg queries. Interestingly, their techniques have been developed largely disjointly: the tech-
niques for the first two problems are quite specific, while work on iceberg queries does not typically address the
joins that happen before grouping and aggregation. Perturbation analysis offers us an opportunity to reexamine
these traditional query processing problems in a single framework.

A natural idea to try is applying the generic methods for perturbation analysis to iceberg query processing,
which we did in [36]. To apply memoization and pruning, we devise a physical join operator called NLJP, or
nested-loop join with pruning. NLJP operates as a nested loop, evaluating its inner(-loop) query with the join
attribute values of each tuple produced by its outer(-loop) query. NLJP caches the results of the inner query
by its input join attribute values, and for each new tuple from the outer query, evaluates a pruning predicate to
determine whether it can safely skip the inner query evaluation. The cache also enables memoization.

Another style of pruning, which generalizes the A-priori technique for frequent itemset mining, works by
first applying the HAVING constraint to an input table before it is joined. For example, for the query computing
frequent 2-itemset above, we can replace each instance of Basket by

(SELECT * FROM Basket WHERE item IN
(SELECT item FROM Basket GROUP BY item HAVING COUNT(*) >= s))
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and drastically reduce work in subsequent processing. This optimization can be achieved by query rewriting.

The key technical challenge we tackled in [36] is how to identify and apply memoization and pruning
techniques automatically, without relying on any manual hints. To this end, we have developed formal conditions
for the applicability of these techniques. Interestingly, both NLJP- and A-priori-style pruning are underlined by
query monotonicity properties, where we can infer useful relationships between query results when input tables
have containment relationships. We analyze SQL queries with the knowledge of the database constraints to
detect optimization opportunities. To apply them, we rewrite the query and/or insert NLJP operators into the
query plan. Notably, we can deduce pruning predicates used by NLJP automatically, for query conditions
involving linear equalities and inequalities, using quantifier and variable elimination methods [21].

Our implementation in PostgreSQL [1] shows substantial performance improvements over existing database
systems for complex iceberg queries [36]—a nice example of how insights from perturbation analysis help
with classic query processing. Beyond [36], we are actively applying the approximation methods discussed in
Section 3.2 to query processing, to reduce the cost of evaluating expensive subqueries or user-defined predicates.

What makes the connection between perturbation analysis and traditional query processing doubly exciting
is that it has also led to new breakthroughs for perturbation analysis. With the techniques developed in [36], we
can automatically identify and apply memoization and pruning techniques for a fairly broad class of perturbation
analysis tasks expressible as SQL iceberg queries. Another interesting follow-up problem is how to apply A-
priori-style pruning techniques to perturbation analysis, especially when we generalize perturbations to not
only parameter values but also query forms—this pruning style is particularly powerful across changes to the
“dimensions” involved in the query.

3.4 System Support

We have built a system called Perada [37] to support perturbation analysis of SQL queries. We want this system
to be general (supporting any query template expressed in SQL), scalable (capable of processing a large number
of perturbations for time-sensitive fact-checking and lead-finding tasks), and easy to use (allowing developers to
code new analyses quickly, without burdening them with low-level implementation and tuning). As mentioned
earlier, a key challenge we face is the trade-off between generality and efficiency. The approach we have taken
with Perada is to support a suite of generic methods including parallelization, grouping, memoization, and
pruning, as discussed in Section 3.2, but rely on developers to specify how to apply these methods to the task
at hand through a flexible, high-level API. Perada takes care of parallelization and hides the complexity of
concurrency and failures from developers.

Another important feature of Perada is automatic tuning. While Perada relies on developers to specify
parallelization, memoization, and pruning opportunities, it automatically makes various tuning decisions critical
to performance: e.g., whether the benefit of memoization and pruning outweighs their overhead, or how to strike
the balance between parallelism and serialism (the latter enables memoization and pruning). These decisions
are difficult for developers to make, as the various methods interact with each other in subtle ways, and their
effectiveness generally depends on factors such as data characteristics. We use an example to illustrate this point.

Example 5 (factors influencing pruning effectiveness; adapted from [37]): Consider the pruning method in
Example 4 for finding one-of-the-few claims. We apply it to a dataset about the Major League Baseball that
records player performances in each season in terms of more than twenty stats. First, suppose we are interested
in three stats: hits, home runs, and stolen bases, and the dominance count threshold for reporting a claim is
k < 50. Figure 3 (ignore the dashed line plot for now) shows the pruning rate over the course of examining all
player-season pairs sequentially in random order. We see that the pruning rate picks up rapidly at the beginning
of execution, and converges to a very high percentage. Intuitively, as we see more perturbations, we build up a
better picture of the “decision boundary” separating perturbations inside and outside the answer set, eventually
allowing us to prune most perturbations lying on one side of the decision boundary.
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Now consider the same analysis on the same dataset with the same pruning method, but with k = 5000 and
another three stats of interest: hits allowed, strike-
outs, and earned run average. The pruning rate over
time for this case is plotted (with dashes) in Figure 3
for comparison. We see the pruning rate here picks
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anti-correlated. Together, these factors lead to a more Completion percentage
complex decision boundary that requires more sam- Figure 3: (Adapted from [37].) Pruning rate over the
ples to acquire, as well as a much lower percentage course of serially executing the analysis in Example 5, for
of perturbations that can be pruned. different thresholds of & and different stats of interest.
This difference in the pruning rates suggests that the parallel implementations of the two cases above need
to be tuned differently to achieve their best performance. When we parallelize the analysis using multiple
workers each responsible for a subset of the parameter space, workers can exchange locally cached information
to help improve each other’s pruning rate. However, some exchanges incur overhead, and their benefits to
pruning generally diminish over time, and at different speeds for different workloads. Therefore, workers should
exchange information more often early during the execution, and less as time progresses. Furthermore, workers
in the first case above can stop exchanging information earlier than in the second case. |

Thus, when applying parallelization, memoization, and pruning, Perada automatically tunes their perfor-
mance through run-time observation, learning, and adaptation. To be more specific, Perada divides the param-
eter space of the perturbation analysis into units, and processes them in parallel on a cluster of workers (using
Spark [14]). Perada provides both a global key/value cache (using Redis [22]) for memoization, and a SQL
cache at each worker (using SQLite [2]) for pruning, which typically involves more complex queries against the
cache. Information exchange through the global key/value cache is immediate, but the contents of all local SQL
caches are synchronized only at the end of each execution “epoch,” to keep the overhead low. Behind the scene,
Perada dynamically and adaptively controls the timing of epochs as well as what combination of optimizations
to apply in each epoch. For additional details about Perada, see [37].

From our experience and experiments with real-life applications of perturbation analysis, Perada signif-
icantly simplifies development efforts for ad hoc analysis, and delivers vastly better performance than other
general solutions based on existing systems. One quibble is that Perada is still not fully declarative; for example,
developers have to spell out the pruning logic. As discussed in Section 3.3, we are able to derive pruning logic
automatically for some forms of perturbation analysis tasks, but in general, much research is still needed in
automatic optimization of declarative analysis.

4 Reflection and Outlook

This paper presents our recent research on query perturbation analysis. We have focused on its applications in
fact-checking and lead-finding, and offered an overview of its computational techniques and its connection to
traditional query processing. Looking back at our journey, we realize how incredibly lucky we were—we had
the chance to collaborate with visionary colleagues in journalism and public policy to work on the important and
timely problem of fact-checking, yet, at the same time, the insights and techniques we developed for the problem
contribute back to core computer science. Finding new solutions to well-studied, classic database problems, as
discussed in Section 3.3, came as a pleasant surprise. Perhaps even more amazing is the experience that we
are able to explain the results in our SIGMOD, VLDB, and KDD papers to non-technical friends at parties or
strangers on commute, and have them genuinely interested in this research.
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In the following, we give a brief chronology of our journey, discuss the broader challenges we faced when
building real-world applications, and offer our outlook on the future research in query perturbation analysis.

Project History and Practical Deployments One author of this paper, Yang, was introduced to computational
journalism more than ten years ago by James T. Hamilton, a public policy colleague at Duke at the time (now
director of the journalism program at Stanford). However, concrete ideas for connecting computational journal-
ism to database research took time to develop, partly because of the overwhelming number of possibilities—
computational journalism is so broad that virtually every field of computing can help in various ways. In 2009,
Hamilton co-organized a summer workshop on computational journalism at the Center for Advanced Study in
the Behavioral Sciences at Stanford, and invited Yang and Sarah Cohen, a seasoned investigative reporter who
joined Duke faculty from the Washington Post. This workshop deserves much credit in developing the field; it
also helped Yang and Cohen find a focus on data-driven investigative reporting. In parallel, two other authors of
this paper, Li and Yu, had begun working on mining interesting facts from data in domains such as sports and
weather. A discussion between Yang and Li in the summer of 2010, when both were visiting HP Labs, brought
the group together, and identified the connection between fact-checking and lead-finding, as well as the pitfalls
of correct but uninteresting or even misleading claims. The group co-authored a vision paper [10] in CIDR 2011,
in which one could see initial ideas about perturbation analysis starting to take shape.

The project then took off with a diverse research team. Agarwal, an algorithms researcher specializing
in computational geometry, added the geometric insights and algorithmic rigor to perturbation analysis. The
first PhD student to work on perturbation analysis, You, was co-advised by Yang and Agarwal and focused
primarily on the modeling and algorithmic aspects; after graduation, You continued to work on projects related
to fact-checking in Cong’s group at Google Research. Walenz will be the second PhD student to graduate with
a dissertation on perturbation analysis, focusing on system support, practical applications, and most recently,
exploring its connection with traditional database query processing together with Roy, a database researcher
specializing in theory. Bill Adair, a journalist and fact-checker who founded PolitiFact, joined the Duke faculty
in 2013, and has kept the project solidly grounded in its practical fact-checking applications. In retrospect, we
recognize that the luck we had was only possible with patience and persistence, as well as a team of collaborators
with diverse and complementary backgrounds but the same commitment to practical impact.

Over the years, we have developed a number of applications of perturbation analysis, and worked with real
data, real users, as well as journalists and professional fact-checkers. As mentioned earlier, the iCheck system,
demonstrated at SIGMOD 2014 [43], found and checked claims about player performances in professional base-
ball, publication records of database researchers, and voting records of the US Congress. FactWatcher, demon-
strated at VLDB 2014 [17], found and monitored claims about professional basketball and weather. For the 2016
US elections, we built a website congress.uclaimicheck.org. It analyzed the congressional voting records from
January 2009 to September 2016, and let visitors compare how legislators voted with party majorities and the
President, and more importantly, explore how the comparison stacked up under different contexts using pertur-
bation analysis—over time, among groups of peers, and for “key votes” identified by lobbying organizations. It
was demonstrated at the 2016 Computational+Journalism Symposium [35] and released to the public in Septem-
ber 2016. Finally, we have been working with Duke Athletics on a system for finding interesting “factlets” about
each Duke men’s basketball game. It runs after each game, and uses perturbation analysis to produce a variety
of factlets about player performances in that game within minutes. As of May 2017, these factlets have become
a part of the official Duke men’s basketball stats website, available for fans to explore and share on social media.

Challenges in Computational Fact-Checking It has been a humbling experience for us to see the wide gamut
of knowledge, skills, and efforts required of journalists in the practical applications that we have worked on.
Computational fact-checking poses a broad spectrum of challenges; query perturbation analysis is but one piece
of the puzzle. We noticed that when discussing our work with other computer scientists, the first reaction we got
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of the form “are you working on X referred to a wide range of X’s. Natural language processing is one of the
most often mentioned. Indeed, we need it to map a natural language claim to a query template g. Nonetheless, as
seen in Section 2, perturbation analysis can help disambiguate claims; it would be interesting to further explore
the idea of using data contents to help understand natural language claims based on them.

Source discovery, data extraction, data integration, and data cleaning remain very labor-intensive tasks. As
an example from our experience, even in the case of high-quality congressional voting records, it was a pain
collecting and linking other related data, such as key votes published by lobbying organizations. References
are often incomplete or ambiguous—especially when many roll calls are associated with the same bill—and
worse, occasionally contain typos. Some of them could only be resolved by human experts. While automated
data extraction and cleaning techniques have come a long way, attaining the level of accuracy required for fact-
checking specific domains without a lot of data—TIet alone expert-labeled data—remains a challenge in practice.
One specific problem that we have been working on recently is how to focus cleaning efforts on subsets of
data that matter the most to given fact-checking tasks [31]. Given the complexity of real-life data, we are also
interested in developing methods for annotating data that can alert us to potential misuses or misinterpretation.

All of the above challenges—and fact-checking in general—require deep domain knowledge. Consider
again Example 1. Without domain knowledge, it is not even clear what “voting with President Obama” means—
because US Presidents do not vote—and where we can find Presidential positions on congressional votes. *“Vot-
ing with democratic majority” is even trickier: the “non-voting” members of the House (e.g., those from Wash-
ington D.C. or Guam) do cast votes, but rules about when they get to vote and when their votes get counted kept
changing over time depending on which party controlled the House. The few such votes probably never swayed
the democratic majority, but just knowing we might be able to ignore this issue also requires domain knowledge.
How to capture and utilize such knowledge computationally remains an open challenge.

We have also come to learn how the presentation of claims and fact-checks is critically important to the
audience. To illustrate, we do not need to go to examples where perception is influenced by ideologies and
personal worldviews; just consider two neutral factlets mined from Duke men’s basketball games: 1) “He was
one of the only ten players who had at least x points and at least y rebounds in a game in Duke history.” 2) “He
was one of the only ten players who had at least y rebounds in a game in Duke history.” Logically, (2) is stronger.
From (2) we can simply tack on the number of rebounds he made in that game, no matter how low it is, and
obtain a valid factlet in the form of (1). Furthermore, it is much easier to make a factlet like (1) than (2), because
it is less likely for points in higher dimensions to form dominance relations; in other words, (2) would have
higher uniqueness than (1). Yet, despite this rational analysis, we found that, anecdotally, the majority of users
thought (1) sounded more impressive. This simple example illustrates how no amount of modeling can replace
real-world testing, and hints at the challenges of using fact-checking to correct human misperceptions.

Computational fact-checking raises many more challenges. For example, there are also the problems of
how to find claims to check in the first place, which we worked on extensively [16, 18], how to deliver fact-
checks to the public in a timely manner, which we are starting to research on [3], as well as how to effectively
support the collaboration of fact-checkers, journalists, and citizens alike. Last but not least, there is “fake
news.” Our collaboration with fact-checkers began long before “fake news” rose to prominence in research
circles following the 2016 US elections. While we had been busy fighting misleading (but still factually correct)
claims, sadly, downright blatant lies were starting to have a field day. Combating such lies requires a different
suite of techniques, ranging from source credibility, media forensics, and social network analysis. While it is
impossible to give a comprehensive survey on computational fact-checking here, we hope that this discussion,
however cursory, will be useful to those considering to work on computational fact-checking and combating
misinformation and disinformation in general.

Open Problems in Perturbation Analysis Query perturbation analysis is still a young research direction
in databases. We have mentioned a number of open problems throughout this paper. First, there is a wealth
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of query templates worthy of consideration. Just pick your favorite lie that levitates numbers—and there are
plenty of them out there in media (and research papers!)—and you have a candidate for applying perturbation
analysis. Such investigations can be useful and interesting in their own right, and more importantly, they help
us discover new ways of assessing claims and countering them, as well as new computational methods, which
in turn help us generalize the query perturbation framework and optimization techniques. Second, much work
is still needed in supporting fully declarative perturbation analysis and in closing the gap between general and
specific solutions. Ideally, we would like to integrate into a database system a comprehensive suite of processing
and automatic optimization techniques that provide a level of support for perturbation analysis comparable to
that for traditional SQL queries. Directions we are pursuing currently include generic approximation methods,
as well as query analysis and rewrite techniques for exploiting more sophisticated pruning opportunities.

This paper has discussed the connection between perturbation analysis and traditional query processing, but
there are also connections to many other active areas of database research. For example, a large body of work
on uncertain data management [11, 5] considers the effect of data perturbations on query results. Our study
of query parameter perturbations can be seen as a conceptual counterpoint—while uncertain databases consider
one query over many database instances (possible worlds), we are also interested in many queries (perturbed
versions of each other) over one database instance. There has also been much work on lineage and provenance
(surveyed in [8]), and more recently, causality [23, 24, 25, 26]. This line of work also studies how data contribute
to query results; depending on how contribution is defined, some problems may be analogous or related to the
analysis of query parameter perturbations. Recent work on query by output [34] and view synthesis [28] can
be seen as types of perturbation analysis, where we search for queries with desired properties. Also similar in
spirit are [33, 19, 38], though their search spaces and goals are different. Finally, differential privacy [12] has
an element of understanding sensitivity as well—how an individual data perturbation can affect query results in
the worst case. It would be very interesting to further explore potentially deep connections among various types
of perturbations of data, parameters, and query forms.

Conclusion The biggest takeaway point about query perturbation analysis can be perhaps summarized by a
phrase from the title of You’s dissertation—it is a change of perspective “from answering questions to question-
ing answers and raising good questions,” and this change not only introduces new database research challenges
but also brings new insights into well-studied problems. Perturbation analysis was initially motivated by fact-
checking, and we continue to collaborate closely with fact-checkers and journalists to push the boundaries of
computational fact-checking. Speaking from our experience, working as an interdisciplinary team to tackle
problems of societal importance can be both practically fulfilling and intellectually stimulating.
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Abstract

We present a robust solution to the following problem: given a table with multiple categorical dimension
attributes and one binary outcome attribute, construct a summary that offers an interpretable explana-
tion of the factors affecting the outcome attribute in terms of the dimension attribute value combinations.
We refer to such a summary as an explanation table, which is a disjunction of overlapping patterns
over the dimension attributes, where each pattern specifies a conjunction of attribute=value conditions.
The Flashlight algorithm that we describe is based on sampling and includes optimizations related to
computing the information content of a summary from a sample of the data. Using real data sets, we
demonstrate the advantages of explanation tables compared to related approaches that can be adapted
to solve our problem, and we show significant performance benefits of our approach.

1 Introduction

Before making complex data-driven decisions, users often wish to obtain a summary of the available data sets to
understand their properties; this is particularly important for auditing prior knowledge and/or policy, for example
to ensure fairness. Motivated by this need, we present a robust solution to the following problem: given a table
T with multiple categorical dimension attributes and one binary outcome attribute b, how can we construct a
summary that offers an interpretable explanation of the factors affecting the binary outcome attribute in terms of
the dimension attribute value combinations?

Consider the following example, drawn from [6]. An athlete may be interested in deciding when to exercise
and what to eat before exercising to meet her target goals. To make these decisions in a data-driven fashion, she
monitors her activities and maintains an exercise log. Table 1 shows her exercise log, with each row containing
an ID, the time and day of the week of the exercise, the meal eaten before the exercise, and a binary attribute
indicating the outcome of the exercise, i.e., whether a target goal was met. The three dimension attributes in this
example are day, t ime and meal.

Table 2 illustrates a corresponding summary. It contains a list of patterns that specify subsets of tuples,
where a pattern is a tuple from the data cube over the dimension attributes of T". Patterns consist of attribute
values or the wildcard symbol “*” denoting all possible values. Each pattern is associated with the number of

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Table 1: An Exercise relation

’ id H day \ time meal H goal met?
1 Fri Dawn Banana 1
2 Fri Night Green salad 1
3 Sun Dusk Oatmeal 1
4 Sun | Morning Banana 1
5 || Mon | Afternoon Oatmeal 1
6 || Mon | Midday Banana 1
7 Tue | Morning | Green salad 0
8 || Wed Night Burgers 0
9 Thu Dawn Oatmeal 1
10 Sat | Afternoon Nuts 0
11 Sat Dawn Banana 0
12 Sat Dawn Oatmeal 0
13 Sat Dusk Rice 0
14 || Sat Midday Toast 0

Table 2: An explanation table over the Exercise relation

[ day | time | meal || goal met? | count |
* * * ) 14
Sat * * 0 5
* * Banana .75 4
* * Oatmeal .75 4

tuples it matches (count) and a fraction indicating how many of these tuples have the binary outcome attribute
equal to one.

The first pattern in Table 2 matches all the tuples in Table 1 and indicates that, on average, half the workouts
were successful. The second pattern reveals that all Saturday workouts were unsuccessful, which provides the
most information about the outcome attribute beyond what we know so far from the first pattern. Intuitively, this
is because the average value of the goal met attribute on Saturdays is significantly different than the average value
of this attribute in the entire dataset, and there are sufficiently many Saturday tuples in the dataset. The last two
patterns state that eating bananas or oatmeal led to successful workouts 75 percent of the time. Note that patterns
may overlap. For example, the patterns (*,Morning,*) and (*,*,Banana) overlap, suggesting that working out
in the morning after eating a banana could influence the distribution of the outcome attribute differently from
working out in the morning or working out after eating a banana.

A natural language for expressing summaries over multi-dimensional data is in terms of a disjunction of pat-
terns over the dimension attributes, where each pattern specifies a conjunction of “attribute=value” conditions.
This form of expression has appeared extensively in the data mining and OLAP literature, from datacubes to as-
sociation rules, and has been employed more specifically in settings where an “explanation” of some property or
outcome attribute in a data set in terms of the dimensions is needed; see [3, 4, 8, 12, 14] for examples. However,
since these existing explanatory summaries are not always grounded in information theory, we argue that they
are not fully optimized for interpretability in the following sense. We define the accuracy of an explanation E in
terms of its information loss, quantified by the relative entropy with respect to some table 7' that it summarizes,
where less information loss implies more accuracy. Since there is an inherent trade-off between accuracy and
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explanation size, interpretability is a relative notion. Therefore, given two explanations, F and E’, where F is at
least as accurate as E’ and F has fewer patterns than E’ (i.e., |E| < |E’|), by Occam’s Razor we should prefer
FE since it is the more concise one.!

We take a summary with fewer (disjunctive) patterns as being more concise, rather than the total number
of “attribute=value” conditions, because it provides explanations that are data-driven rather than schema-driven.
For example, when many tuples in 7" that are concentrated in a very narrow subspace have uniform labels,
it is desirable to include a pattern containing them in a summary, but counting the number “attribute=value”
conditions would penalize heavily for this pattern. Since negations are not used in patterns, intuitively the
way that we are able to achieve conciseness is by allowing the patterns to overlap on the data set records
that they match. In contrast, many existing methods such as decision trees use disjoint patterns, which can
result in significantly more complex explanations (e.g., due to negations). Among the existing approaches that
allow overlap, the semantics of the overlap are not rich enough to provide conciseness, as we demonstrate
experimentally in this paper.

2 Explanation Tables

Our proposed summary is called Explanation Tables, an example of which was provided in Table 2 for the
data set in Table 1. Next, we explain our algorithm for computing explanation tables; see [6, 5, 7] for further
details and extensions to numeric outcome attributes, distributed computation and in-browser computation using
Javascript.

2.1 Computing Explanation Tables

The main idea is to maintain maximum-entropy estimates b for the values of the outcome attribute b and refine
them as new patterns are added to the explanation table. Let ¢[b] and ¢[b] be the actual and estimated values
of b, respectively, for a tuple ¢ € T. We use Kullback-Leibler Divergence (KL-Divergence) to quantify the

difference between the actual and estimated distributions, which is defined as follows for binary attributes:

KL(b||b) = 2teT|tp)=1108 (ﬁ) + 2 tertp)=0108 (%t[b]) In each iteration of the algorithm, we greedily
add a pattern to the explanation table that provides the most information gain, i.e., leads to the greatest reduction
in KL-Divergence. We stop after k iterations, where k is a user-supplied parameter, yielding an explanation
table with £ patterns.

Recall Table 2. Based on the first pattern (the all-stars pattern), the maximum-entropy estimate of the
outcome attribute is to set each value (of each of the 14 rows in Table 1) to 0.5. Of course, the actual values of
the goal met attribute are binary, but we allow the estimates to be real numbers between zero and one. This
maximum-entropy estimate only uses the information implied by the first pattern of the explanation table, which
is that AVG (goal met)=0.5, without making any other assumptions.

As it turns out, the pattern (Sat,*,*) is then added to the explanation table because it provides the greatest
information gain. As a result, we update the estimates t[l;] as follows. Since the second pattern implies that
all Saturday tuples have goal met=0, we set the estimates for rows 10 through 14 in Table 1 to zero. Next,
for consistency with the first pattern, which requires the average value of the outcome attribute over the whole
dataset to be 0.5, we must set the estimates for all non-Saturday rows to % each. This gives us a maximum-
entropy estimate that only considers the information contained in the first two patterns of the explanation table.

Since the patterns of an explanation table may overlap, it is not obvious how to compute a maximum-entropy
estimate in the general case. We use an approximation technique called iterative scaling [1, 2] to compute

updated estimates whenever a new pattern is added to the explanation table.

! Usually the goal is not to (losslessly) capture every detail in the data set but represent it at some granularity that achieves a balance
between filtering the noise while preserving the signal.
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Algorithm 1 Greedy algorithm template for constructing explanation tables

Require: 7T, k
1. B+ (*,...,*)

2: foreacht € T do

3 t[b] < fraction of rows in T with [b] = 1

4: end for

5: fori=1tok — 1do

6: P < set of candidate patterns

7: Dopt — arg max,c p information gain(p)

8: E+ FEU Popt

9: update ¢[b] for each t € T using iterative scaling
10: end for

Algorithm 1 shows a greedy algorithm template for constructing an explanation table ' with k patterns
from table 7. We iterate k times, once to obtain each pattern, with the all-stars pattern added first. In each
subsequent iteration, we identify a set P of candidate patterns, we then add to F the pattern from P with the

~

highest information gain, and we finally update the maximum-entropy estimates ¢[b] via iterative scaling.

2.2 Sampling to Improve Efficiency

A naive instantiation of the template of Algorithm 1 considers all possible patterns in line 6 during each iteration.
This may not be feasible for large datasets, both in the number of rows and the number of columns. To improve
efficiency, we prune the candidate space by drawing a random sample s from 7" in line 6 (a different sample in
each iteration of the loop) and setting P to be only the patterns from the data cube of the sample. The intuition is
that patterns with frequently occurring combinations of dimension attribute values are likely to be sampled and
also to have high information gain. In line 7, we compute the gain of only the patterns in P, as described below.

We illustrate our solution using Table 1. Suppose that the pattern (*,*,*) has been added to the explanation
table, meaning that t[@] = 0.5 for each tuple in 7". Suppose that we draw a sample s that consists of tuples 4, 9
and 11 from Table 1.

The first step is to compute the Lowest Common Ancestor (LCA) of each pair of tuples having one tuple
from s and one from 7". To compute the LCA, non-matching (categorical) attribute values are replaced with
stars. For example, the LCA of (Sun,Morning,Banana) and (Fri,Dawn,Banana) is (*,* Banana). Table 3 shows
all the LCAs in our example, including the same LCAs computed from different pairs of tuples. Each row of
Table 3 corresponds to one of the 14 tuples from 7" and each column corresponds to one of the three tuples from
the sample s.

In the second step, we do a group-by over the LCAs, and, for each distinct pattern, we compute the three
aggregates shown in Table 4: count, sum(¢[b]) and sum(t[B]). Ignore “Ancestors” for now; we will explain them
in the next step. To understand these three aggregates, consider (*,*,Banana). It was generated as an LCA five
times, as shown in Table 3. Thus, its count is five. To understand sum(¢[b]), note that the five occurrences of
(*,* Banana) in the LC'A set are derived from (Fri,Dawn,Banana) which has ¢[b] = 1, (Sun,Morning,Banana)
which has ¢[b] = 1, (Mon,Midday,Banana) twice which has ¢[b] = 1, and finally (Sat,Dawn,Banana) which has
t[b] = 0. The sum of these ¢[b]’s is four, including counting (Mon,Midday,Banana) twice. Similarly, the sum
of the t[l;] ’s is 2.5, including counting (Mon,Midday,Banana) twice; recall that at this point every tuple in 7" has
t[b] = 0.5.

In the third step, we generate the ancestors of each distinct LCA pattern p, defined as p itself plus all other
patterns that are the same as p except one or more of the attribute values in p have been replaced by wildcards.

These are shown in the rightmost column of Table 4. Each ancestor of p is associated with the same count,
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Table 3: Computing L.C As (first step of the algorithm)

T \s (Sun,Morning,Banana) | (Thu,Dawn,Oatmeal) | (Sat,Dawn,Banana)
(Fri,Dawn,Banana) (*,* Banana) (*,Dawn,*) (*,Dawn,Banana)
(Fri,Night,Green salad) (*,%,%) (*,*%* (*F,F*
(Sun,Dusk,Oatmeal) (Sun,*,* (*,*,Oatmeal) (F,**
(Sun,Morning,Banana ) (Sun,Morning,Banana) (*,*,* (*,*,Banana)
(Mon,Afternoon,Oatmeal) (*,%,%) (*,*,Oatmeal) (F,**
(Mon,Midday,Banana ) (*,*,Banana) (*,*,* (*,*,Banana)
(Tue,Morning,Green salad) (*,Morning,*) (k% * (k,**
(Wed,Night,Burgers) (*,*,* (*,** (k,*,*
(Thu,Dawn,Oatmeal) (*,%,%) (Thu,Dawn,Oatmeal) (*,Dawn,*)
(Sat,Afternoon,Nuts) (*,%,%) (k,** (Sat,*,*
(Sat,Dawn,Banana) (*,*,Banana) (*,Dawn,*) (Sat,Dawn,Banana)
(Sat,Dawn,Oatmeal) (*,%,%) (*,Dawn,Oatmeal) (Sat,Dawn,*)
(Sat,Dusk,Rice) (k% ,* (*,** (Sat,*,*
(Sat,Midday,Toast) (*,*,* (*,*,* (Sat,*,*

~

sum(t[b]) and sum(¢[b]) values as p. We then take all the ancestors and compute another group-by on each
unique pattern to get new count, sum(¢[b]) and sum(t[i)}) values. These are shown in the four leftmost columns
of Table 5. For example, (*,*,Banana) is an ancestor of itself (with count 5), of (*,Dawn,Banana) (with count 1),
of (Sat,Dawn,Banana) (with count 1) and of (Sun,Morning,Banana) (with count 1). Thus, its count in Table 5 is
eight, and sum(t[b]) and sum([b]) are computed similarly.

Note that at this point, after generating the ancestors of all the LCAs, the resulting set of 20 patterns is
exactly the data cube of s. This is our candidate set P referenced in line 6 of the algorithm.

In the fourth step, we “correct” the counts and sums so that they correspond to the true count of tuples
matching each pattern and the true sums of the matching ¢[b] and ¢[b] values. To do this, we consider the
number of tuples in the sample that match each pattern. For example (*,*,Banana) matches two tuples in s,
namely tuples 4 and 11, so we divide the aggregates we have computed for (*,*,Banana) by two. This gives
the corrected count = 4, sum(t[b]) = 3 and sumn(t[b]) = 2. The rightmost four columns of Table 5 show
the frequency in sample of each candidate pattern p (i.e., how many tuples in s it matches) and the corrected
aggregates.

Finally, we select the pattern with the highest information gain based on the computed aggre-
gates. We approximate the information gain of a pattern p as count x (sum(t[b])log ZZZSFI;B + (1 —
sum(t[b])) log 1:227%). In our example, the pattern (Sat,*,*) has the highest information gain of 5 x (0 +
log(:)) = 5log2, so it is added to the explanation table.

The computational complexity of our approach is O(|s| x |T'|) to compute the LCAs and their ancestors, plus
O(|datacube(s)|) to generate ancestors, plus O(|datacube(s)| x |s|) to join the patterns with the sample and
compute the corrected aggregates. Note that |datacube(s)|, the size of the data cube of the sample s, is likely to
be much smaller than |datacube(T)|. In fact, based on the results we reported in [6], our approach (called the
“Flashlight Strategy” in that work) can be orders of magnitude faster than computing the information gain of all
possible patterns in datacube(T), with only slightly worse information gain.

An important aspect of our sampling-based approach is that sampling is used only to restrict the space
of candidate patterns, not to compute their information gain. In other words, the sum(t[b]) and sum(t[b])
aggregates are computed over the underlying dataset, not just the sample. In [6], we also investigated an even

faster approach, termed “Laserlight”, in which these aggregates are computed over the sample. This is faster
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Table 4: Computing aggregates over the LC As from Table 3 (second step of the algorithm) and generating ancestors
(third step of the algorithm)

Pattern count | sum(t[b]) | sum(t[b]) Ancestors
(*,%,%) 21 9 10.5 S
(*,* Banana) 5 4 2.5 (*,*,Banana), (*,*,*)
(*,Dawn,*) 3 2 1.5 (*,Dawn,*), (*,*,*)
(Sat,*,* 3 0 1.5 (Sat,*,*), (*,*,*)

(*,*,Oatmeal) 2 2 1 (*,*,Oatmeal), (*,*,*
(*,Dawn,Banana) 1 0 .5 (*,Dawn,Banana), (*,Dawn,*), (*,* Banana), (*,*,*)
(*,Dawn,Oatmeal) 1 0 ) (*,Dawn,Oatmeal), (*,Dawn,*), (*,*,Oatmeal), (*,* *

(*,Morning,*) 1 0 85} (*,Morning,*), (*,*,*)

(Sat,Dawn,*) 1 0 ) (Sat,Dawn,*), (Sat,*,*),(*,Dawn,*),(*,*,*)
(Sat,Dawn,Banana) 1 0 D (Sat,Dawn,Banana), ..., (Sat,**), (*,Dawn,*),(*,* *

(Sun,*,* 1 1 5] (Sun,*,*), (**,*)
(Sun,Morning,Banana) 1 1 . (Sun,Morning,Banana), ..., (*,*,Banana), (*,*,*)
(Thu,Dawn,Oatmeal) 1 1 D (Thu,Dawn,Oatmeal), ..., (*,* Oatmeal),(*,*,*

because it does not require a join with the underlying table T" to compute the LCAs; instead it simply computes
a data cube over the sample s. However, we observed in [6] that the improvement in efficiency of “Laserlight”
comes at a steep cost of information gain, making the strategy we described here (“Flashlight”) a more effective
choice for constructing informative explanation tables.

3 Experimental Results

In this section, we provide a brief experimental evaluation of the information content of explanation tables
compared to related techniques. The experiments were performed on a 3.3 GHz AMD machine with 16 GB of
Ram and 6 MB of cache, running Ubuntu Linux. We use the following datasets.

e Upgrade: 5795 United Airline ticket records obtained from https://www.diditclear.com/.
Each record contains seven attributes about the tickets (origin airport, destination airport, date, booking
class, etc.) and a binary attribute indicating whether the passenger was upgraded to business class. This
data set has over 346,000 possible patterns.

e Adult: U.S. Census data containing demographic attributes such as occupation, education and gender,
and a binary outcome attribute denoting whether the given person’s income exceeded $50K. This data set
was downloaded from the UCI archive at archive.ics.uci.edu/ml/datasets/Adult/ and
contains 32561 tuples, 8 attributes and 436, 414 possible patterns.

We measured the information content of explanation tables and other summaries in terms of the average
information gain. This is the improvement in KL-Divergence compared to having only the all-wildcards pattern
and knowing only the fraction of tuples in the whole data set having outcome 1.

To compute explanation tables, we used the sampling-based approach from [6] which we described earlier,
with a sample size of 16, which we observed to offer a good trade-off between running time and information
gain on the tested datasets (we observed diminishing returns in terms of information content for larger sample
sizes). The reported information gains are averages of five runs with different samples.

We compare explanation tables with four related approaches. The first three were compared in [6], whereas
a comparison with the last one is a novel contribution of this paper.
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Table 5: Computing aggregates over the LCAs and their ancestors (fourth step of the algorithm)

Frequency

in sample || 7Y™ sum(t[b]) | sum(t[b])

Pattern count | sum(t[b]) | sum(t[b])

(*’ *,*
(*,*,Banana)
(*,*,Oatmeal)
(*,Dawn,*)
(*,Morning,*)
(Sat,*,*
(Sun,*,*
(Thu,*,*
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(Sat,*,Banana)
(Sun,*,Banana)
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1. Decision trees, as an example of a human-interpretable classifier. Each root-to-leaf path in a decision
tree can be thought of as a pattern (of values of the dimension attributes), with the leaf node providing a
prediction for the value of the outcome attribute. We computed the information gain of decision trees by
comparing the predicted values of the outcome attribute with the true values.

We used the Weka J48 implementation [10] of the C4.5 algorithm, which provides a confidence parameter
to control pruning and the number of tuples a leaf node can cover. We considered both multi-way split
decision trees in which a node can have many children and binary split decision trees in which a node has
exactly two children. Since there is no direct way to enforce decision tree size in Weka, we performed a
grid search over the parameter space to obtain trees with specific numbers of root-to-leaf paths. To do this,
in our experiments, we varied confidence in the range [0.01 — 0.59] and the minimum number of tuples
per leaf in the range [2 — 20].

2. The SURPRISE operator for data cube exploration [13], which identifies regions of a datacube whose
distribution of the outcome variable is different than the distribution in the regions already seen by the user.
As in explanation tables, these regions are represented by patterns of values of the dimension attributes.
However, while SURPRISE also uses information gain to find informative patterns, for efficiency reasons
it only considers non-overlapping patterns or patterns that are fully contained in each other (corresponding
to rolling-up or drilling-down in the datacube). We implemented this technique in C++ based on the
algorithm given in [13]. For a fair comparison with explanation tables, we start with the knowledge of the
average value of the outcome attribute in the dataset, and we request the k£ most informative patterns.

The SURPRISE operator includes two parameters: the desired number of patterns and an accuracy thresh-
old €. A lower ¢ indicates a finer algorithm resolution but slower runtime. To fairly represent SURPRISE,
we have chosen two values for e for each data set: SURPRISE_cmp, which uses € that gives comparable
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Figure 1: Average information gain of various methods using Upgrade (left) and Adult (right)

runtime to Flashlight, and SURPRISE bst, which uses e that yields the best possible information gain
without running out of memory.

3. Data summarization techniques from [8, 9] which find the fewest patterns that cover most of the tu-
ples with outcome 1. These methods require a confidence threshold that denotes the minimum frac-
tion of 1l-outcomes per pattern. We experiment with a variety of confidence thresholds, including
{0.4,0.5,...,0.9,0.95,0.99}, and report the runtime of the one with the best information gain, denoted
Cover_bst. After generating the summaries, we apply the maximum entropy principle to derive an esti-
mated distribution of the outcome attribute and we compute information gain based on this.

4. Interpretable Decision Sets (IDS) [11], as another recent example of a human-interpretable classifier. An
IDS is a set of independent if-then classification rules. We obtained the source code from the authors’
Github repository?. The IDS generation algorithm includes a support threshold €, which determines the
lowest possible support of a given classification rule. We started with e = 1 and considered lower values
until the runtime became too long. We varied e in decrements of 0.02 until the runtime exceeded one
hour for the Upgrade dataset and three hours for the larger Adult dataset. As with decision trees, we
computed the information gain of IDS by comparing the predicted values of the outcome attribute with
the true values.

Figure 1 plots the average information gain using Upgrade (left) and Adult (right) as a function of the
number of patterns (or, in the case of decision trees, the number of leaves). Decision trees are represented as
individual points on the graphs, corresponding to the numbers of leaves we were able to obtain using the grid
search explained above. Similarly, IDS results are represented as individual points that indicate the best possible
information gain we could obtain using the above grid search. On the other hand, SURPRISE and Cover allow
us to control the number of patterns, so these are represented as lines. We conclude that explanation tables
outperform all other approaches in terms of information gain, except for small numbers of patterns (below 8) on
the Adult data set, in which case SURPRISE has a slightly higher information gain. This is likely due to the
fact that explanation tables explicitly optimize for information content. On the other hand, decision trees and
SURPRISE are restricted to non-overlapping patterns; Cover optimizes for the number of patterns that cover
all the positive examples without considering information gain; and IDS is a classifier that optimizes jointly for
predictive power, conciseness and interpretability.

In terms of running time, it took 47 seconds on Upgrade and 252 seconds on Adult to generate explana-
tion tables with 50 patterns. SURPRISE_cmp took roughly the same time (by design), whereas SURPRISE _bst

*https://github.com/lvhimabindu/interpretable_decision_sets
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was 2-4 times slower and Cover_bst was 5-8 times slower. On the other hand, decision trees and IDS took much
longer (several hours) since they had to be executed multiple times with different parameter values in order to
obtain a desired number of patterns.

4 Discussion

We emphasize that our problem is different from prediction since explanation conciseness is also critical. Hence,
instead of focusing on prediction accuracy we focus on interpretability, which is a relative notion that captures
an inherent trade-off between accuracy and conciseness: given two explanations, F and E’, if E is at least as
accurate as E’ and F is more concise than E’, we say that E is more interpretable than E’. While there exist
some classifiers that could be considered human-interpretable as a secondary goal (e.g., decision trees and partial
monotonic functions), in practice they are used in ensembles which hinders their interpretability. Therefore,
explanation tables may have a potentially interesting role to play when the outcome attribute corresponds to the
predictions from an ensemble method, or from an even more opaque model such as variants of neural networks,
since they may enable auditing or debugging the model. This application would be an interesting direction
to explore for future work. Future work could also include a user study to evaluate the explanatory power of
explanation tables for various tasks (e.g., why was this example classified as such?) as well as the extension to
(unordered) categorical outcome attributes.
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1 Introduction

Enterprises are creating domain-specific knowledge bases by curating and integrating all their business data,
structured, unstructured and semi-structured, and using them in enterprise applications to derive better business
decisions. One distinct characteristic of these enterprise knowledge bases, compared to the open-domain general
purpose knowledge bases like DBpedia [16] and Freebase [6], is their deep domain specialization. This deep
domain understanding empowers many applications in various domains, such as health care and finance.

Exploring such knowledge bases, and operational data stores requires different querying capabilities. In
addition to search, these databases also require very precise structured queries, including aggregations, as well
as complex graph queries to understand the various relationships between various entities of the domain. For
example, in a financial knowledge base, users may want to find out “which startups raised the most VC funding
in the first quarter of 2017”; a very precise query that is best expressed in SQL. The users may also want to
find all possible relationships between two specific board members of these startups, a query which is naturally
expressed as an all-paths graph query. It is important to note that general purpose knowledge bases could also
benefit from different query capabilities, but in this paper we focus on domain-specific knowledge graphs and
their query needs.

Instead of learning and using many complex query languages, one natural way to query the data in these
cases is using natural language interfaces to explore the data. In fact, human interaction with technology through
conversational services is making big strides in many application domains in recent years [13]. Such interfaces
are very desirable because they do not require the users to learn a complex query language, such as SQL, and
the users do not need to know the exact schema of the data, or how it is stored.

There are several challenges in building a natural language interface to query data sets. The most difficult
task is understanding the semantics of the query, hence the user intent. Early systems [3, 30] allowed only a set
of keywords, which had very limited expressive power. There have been works to interpret the semantics of a
full-blown English language query. These works in general try to disambiguate among the potentially multiple
meanings of the words and their relationships. Some of these are machine-learning based [5, 24, 29] that require
good training sets, which are hard to obtain. Others require user feedback [14, 17, 18]. However, excessive user
interaction to resolve ambiguities can be detrimental to user experience.

In this paper, we describe a unique end-to-end ontology-based system for natural language querying over
complex data sets. The system uses domain ontologies, which describe the semantic entities and their relation-
ships, to reason about and capture user intent. To support multiple query types, the system provides a poly store
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architecture, which includes a relational database, an inverted index document store, a JSON store, and a graph
database. As a result, we support very precise SQL queries, document search queries, JSON queries, as well as
graph queries.

Once the data is stored in the appropriate backends, we also need to provide the appropriate abstractions to
query the data without knowing how data is stored and indexed in multiple data stores. We propose a unique
two-stage approach: In the first stage, a natural language query (NLQ) is translated into an intermediate query
language, called Ontology Query Language (OQL), over the domain ontology. In the second stage, each OQL
query is translated into a backend query (e.g., SQL) by using the mapping between the ontology and the corre-
sponding data schema of the backend.

In this two-stage approach, we propose an interpretation algorithm that leverages the rich semantic informa-
tion available in the ontology, and produces a ranked list of interpretations for the input NLQ. This is inspired
by the search paradigm, and minimizes the users’ interaction for disambiguation. Using an ontology in the in-
terpretation provides a stronger semantic basis for disambiguation compared to operating on a database schema.

OQL provides a powerful abstraction layer by encapsulating the details of the underlying physical data
storage from the NLQ interpretation, and relieving the users from understanding what type of backend stores are
utilized, and how the data is stored in them. The users only need to know the domain ontology, which defines
the entities and their relationships. Our system understands the mappings of the various ontology concepts to
the backend data stores as well as their corresponding schemas, and provides query translators from OQL to the
target query language of the underlying system, providing physical independence.

The NLQ interpretation engine uses database data and synonyms to map the tokens of the textual query
to various ontology elements like concepts, properties, and relations between concepts. Each token can map
to multiple ontology elements. We produce an interpretation by selecting one such mapping for each token
in the NLQ, resulting in multiple interpretations for a given NLQ. Each interpretation is then translated into
an OQL query. The second step in the process translates OQL to the underlying target data store, using the
ontology-to-schema mappings.

Conversational interfaces are the natural next step, which extends one-shot NLQ to a dialog between the
system and the user, bringing the context into consideration, and allowing informed and better disambiguation.
In this paper, after we describe our end-to-end NLQ system, we also discuss how to extend and adapt our
ontology-based NLQ system for conversational services, and discuss the challenges involved.

In the following, we first describe how we use ontologies, and the ontology query language (Sections 2 and
3), followed by the overall system description (Section 4). The translation index is used to capture the domain
vocabulary and the domain taxonomies (Section 5). Section 6 discusses the details of the NLQ engine and
Section 7 discusses the challenges in NLQ and conversational interfaces. We highlight some use cases where
use our end-to-end system in Section 8, review related work in Section 9, and finally conclude in Section 10.

2  Ontology

2.1 Ontology Basics

The domain ontology is a core piece of technology, which is central to our system. It describes the domain and
provides a structured entity-centric view of the data corresponding to the domain. Specifically, the ontology
describes the entities relevant to the domain, the properties associated with the entities, and the relationships
among different entities. We use OWL to describe our ontologies. It provides a very rich and expressive data
model that can capture a variety of relationships between entities such as functional, inheritance, unions, etc.
We use the domain ontology to just describe the schema of the domain capturing its meta-data. As such, in our
proposed system, ontologies do not contain any instance data.

Figure 1(a) shows a small portion of an ontology that we use in a finance application [26, 8]. It includes
concepts such as Company, Person, Transaction, Loan agreement etc. Each of these concepts are associated
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Figure 1: Sample Ontology and Ontology Generation

with a set of data properties: For example, the concept Company is associated with name, stock symbols, etc.
Object properties represent the associations between the concepts. For example, Securities are issued by a Public
Company where issued by is an object property. In this paper, we will use the extended version of this financial
ontology to illustrate system functionality.

2.2 Generating Ontologies from Data

There are many cases where the ontology is provided, especially if the data is curated, but there are also cases
where we only have the data without a corresponding ontology. To provide NLQ over such data sets, we provide
techniques to infer the ontology, i.e., the concepts and their relationships relevant to the domain, from the
underlying data and its schema.
Ontology generation from JSON data. This process involves the discovery of the domain ontology from all the
JSON documents stored in a document store. This is a multi-step process. The first step involves the extraction
of the schema tree from the nested JSON structure of each individual document. These individual schema trees
are merged into a single schema, similar to the data guide generation process of Goldman et al. [11]. In the
second step, we use the following rules to convert the schema into an ontology.

Path A.b = Concept A, Property b of A

Path A.B.c = Concept A, Concept B, Relation A to B, Property c of B

The ontology to physical schema mappings are an essential part of query translation, and are generated as
part of ontology discovery. Figure 1(b) shows the schema that is generated by our techniques and the ontology
generated from the schema, respectively.
Ontology generation from relational databases. Various ontology elements can be inferred from an RDBMS.
Table Inference. Ontology supports two different types of relations - functional and ISA. The table inference is
nontrivial as they depend on the Unique (Primary) Key and Foreign Key interactions, and quite often these keys
are not specified in the database, especially when the database is created from raw data files. The steps are as
follows:

e Identifying Unique Key and Foreign keys: For each table, we identify unique keys by comparing the count
of the distinct values of the column and the total row count in the table. If they are identical, we assert a
unique key constraint. Similarly, for foreign key, we check if the rows in the join of the two tables based on
the selected columns are equal to the total rows of the referring table.

o Inferring ISA relation: Once all the unique keys and FKs have been derived, we find all the tables having a
single column, which is both a unique key and the FK for the table. In such a case, we assert an ISA relation
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between this table and the referred table. There might be spurious ISA relation if there are auto-incremented
columns in two otherwise unrelated tables. To eliminate such cases, we check if the values in the column of
the referencing table are consecutive integers. The rest of the tables are deemed functional.

o Inferring cardinality of functional relations: For inferring m:n relations, we find tables with exactly two
columns, and both acting as foreign keys to different tables in the data base. If such a case occurs, the two
tables that are being referred to are mapped in an m:n relation and the join table does not take part in any
relation. We identify the relations with unique values in the FK and mark it as 1:1, and the rest as 1:n.

Concepts and Properties. Each table is mapped to a concept except the ones that form the join tables for the m:n

relations, and all columns except the foreign keys in that table map to the data properties of that concept. The

data type of the properties are also extracted from the data type of the table columns. The resulting ontology is
stored in OWL2 [1] format.

3 Ontology Query Language

We propose OQL, a query language expressed against the domain ontology as an abstraction to query the data
without knowing how data is stored and indexed in multiple data stores. OQL represents queries that operate on
a set of concepts and relationships in an ontology. OQL is inspired by SQL and its object-oriented extensions,
and it provides very similar constructs, including SELECT, FROM, WHERE, HAVING, GROUP BY and OR-
DER BY clauses. As such, OQL can express sophisticated queries that include aggregations, unions, nested sub
queries, document, fielded search over document stores, as well as JSON paths, etc.

OQL allows several types of predicates in the WHERE clause including: (1) predicates used to compare

concept properties with constant values (or sets of values), (2) predicates used to express joins between concepts,
(3) predicates that use binary operations such as MATCH for full text search or fielded search over documents,
and (4) predicates that use path expressions to specify the application of a predicate along a particular path
over the domain ontology. In general OQL is composable and allows arbitrary level of nesting in the SELECT,
FROM, WHERE and HAVING clauses.
Example 1: Show me all loans taken by Caterpillar by lender. This query joins the following concepts in
the ontology: lender, borrower, commitment and loanAgreement. In this query, Caterpillar is the borrower.
The condition br = la—borrowedBy indicates that the borrower instance should be reachable by following the
borrowedBy relationship from the LoanAgreement concept.

SELECT Sum (la.amount)

FROM Lender 1d, Borrower br, Commitment c, LoanAgreement la

WHERE br.name IN (‘Caterpillar’, ‘Caterpillar Inc.’) AND 1ld = c—lentBy
AND la = c—+rhas AND br = la—borrowedBy

GROUP BY 1ld.name

Example 2: The following query applies a fielded search using the MATCH binary operation for a person whose
name contains the word Adam and has held the position/title of President in a company.

SELECT oPerson.name, oEmployment.position, oEmployment.title, oCompany.name
FROM Person oPerson, Employment oEmployment, Company oCompany
WHERE oPerson.name MATCH (‘Adam’) AND oEmployment.title=‘PRESIDENT’

AND oEmployment—for=oPerson AND oEmployment—from = oCompany

4 System Architecture

Figure 2 shows the overall system architecture. It serves a wide variety of applications including NLQ Service,
Conversational Services that enable chat bots, and other applications that use programmatic APIs. These ap-
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plications use OQL queries to explore and analyze the underlying data, stored in one of the supported backend
stores.
The OQL query compiler and the OQL query
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sentation of the query defers the choice of the actual Figure 2: System Architecture
physical execution plan to the underlying data store
that would be responsible for the execution of the query. The query compiler identifies which backend store
contains the data needed by the query, and routes the query to that target. It may also generate a multi-store
execution plan, which is optimized to minimize data movement between data stores.
OQL Query Translation. The query fragments expressed over the ontology are translated into appropriate
back-end queries to be executed against the physical schema of the stored data. We have developed several
query translators (one per type of back-end store) for this purpose. Query translation requires appropriate schema
mappings that map concepts and relations represented in the domain ontology to appropriate schema objects in
the target physical schema.

Query translation also needs to handle union and inheritance relationships, and translate path traversals to
a series of join conditions. Depending on the physical data layout these are translated to appropriate operations
supported by the back-end stores. For document oriented stores the translator needs to make distinctions between
fielded and document oriented search. For querying JSON data it needs to understand where to apply predicates
along specific paths in the nested schema.

Document

Store Store Store Store Schema

Relational ’

‘ JSON H Graph ’ Physical

5 Translation Index

Translation Index (TI) is a standalone component that captures the domain vocabulary, providing data and meta-
data indexing for data values, and for concepts, properties, and relations, respectively. TI helps the NLQ engine
to identify the entities in the query, and their corresponding ontology properties.

TI captures both internal as well as external vocabularies. For the internal ones, TI is populated from the
underlying data stores during an offline initialization phase. For example, if the input query contains the token
“Alibaba”, TI captures that “Alibaba” is a data value for the name column in the Company table in the relational
back-end store. Note that “Alibaba” can be mapped to multiple ontology elements (e.g., InvestorCompany or
Lender), and TI captures all of them. TI provides powerful and flexible matching by using semantic variant
generation schemes. Essentially, for the data values indexed in TI, we not only index the actual values (e.g.,
distinct values appearing in Company.name), but also variants of those distinct values. TI leverages semantic
variant generators (SVGs) for several common types, including person and company names, among others. For
example, given an input string “Alibaba Inc”, the company name SVG produces the following list of variants:
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{“Alibaba”, “Alibaba Inc”, “Alibaba Inc.”, “Alibaba Incorporated”}. This allows the NLQ engine to formulate
the queries by using any of the indexed variants of a data value (e.g., “Alibaba” vs. “Alibaba Inc”), or use these
indexed variants in an IN (list) predicate.

Internal vocabulary is not always sufficient. Suppose “renal impairment” is a data value in the back-end
store. If the query term is “kidney disease”, TI would not be able to return “renal impairment” even though
“renal impairment” is a more specific term for “kidney disease”. To address this issue, TT also leverages external
knowledge sources, such as standard taxonomies, domain lexicons, dictionaries, etc. To continue our example of
searching for “kidney disease”, TI uses SNOMED [2], a systematically organized taxonomy of medical terms,
to connect “kidney disease” with “renal impairment” via the ISA relationship in SNOMED. Hence with more
domain knowledge, the semantically related matches can be found by TI, improving recall for the query.

6 Natural Language Querying

In this section, we describe how the NLQ Engine takes a natural language query (NLQ) and interprets it over
the domain ontology to produce an OQL query. The transformation of NLQ to OQL query happens in mul-
tiple phases. We describe each of the phases with a running example from the finance domain as captured in
Figure 1(a) for natural language query: “Show me total loan amount given by Citibank to Caterpillar in 2016 .
Evidence Generation. In the very first step, NLQ Engine tries to identify all the different mentions of ontology
elements in the NLQ. So the algorithm first iterates over all the word tokens in the NLQ and collects evidences
of one or more ontology elements (concept, relation, and property) which have been referenced in the input
NLQ.

In general, a token can match multiple elements in the ontology. For example, the token “Citibank” is
mapped to Lendername and Borrower.name (considering Citibank may have acted as a borrower as well as
a lender) and the phrase “loan amount” is mapped to LoanCommitment.amount. The phrase “given by” gets
mapped to the lent by relation in the ontology. “Caterpillar” is also mapped to Lender.name and Borrower.name.
The temporal expression “in 2016 gets mapped to LoanCommitment.year.

An evidence can be of three types: 1) a metadata evidence is generated by matching the synonyms associated
with the ontology elements (e.g., “loan amount”), 2) a data-value evidence is generated by looking up a token
in the Translation Index (e.g., “Citibank”,’Caterpillar”), and 3) a typed evidence is generated by recognizers
such as temporal expressions that recognize date/time related expressions and maps them to date/timestamp
typed properties in the ontology. For example, “in 2016 is detected and mapped to LoanCommitment.year. The
evidence for a token can either be metadata or data-value, but not both. Note that if a token matches a data-value
corresponding to an inherited property of a child concept then it should also match with the same property of the
parent. For example, if “Citibank” data-value matches Lender. Name then it should also match Company.Name.

The metadata matching uses synonyms associated with the ontology elements. The NLQ engine relies on

the given set of synonyms associated with ontology elements. It also uses publicly available synonym databases
such as PPDB [10] to create additional synonyms for the given set of terms.
Interpretation Generation. Note that, only one element from the evidence set of each token corresponds to
the correct query. In this phase, the NLQ engine tries all such combination of elements from each evidence
set. Each such combination, called selection set, is used to generate an interpretation, which is represented as a
subgraph in the semantic graph connecting one evidence for each token respecting ontology-related constraints.
This semantically grounds the words in the natural language to specific meanings by referring to elements in
the semantic graph. Connecting these referred elements produces a unique interpretation for the given natural
language query based on the ontology semantics.

For each selection set, a subtree, called Interpretation Tree, is computed (if possible) which uniquely identi-
fies the relationship paths among the evidences in the selected set. It is computed by connecting all the elements
in the selected set in the semantic graph and satisfying two constraints. One such constraint is the relationship
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constraint which asserts that between evidence mapping “loan amount”, “given by”, and “Citibank” there should
be a path in the interpretation tree connecting them in order. When “Citibank” is mapped to Borrower then this
constraint will not be satisfied. The other constraint is called inheritance constraint. Inheritance constraint in-
validates those interpretation trees which have a parent (or union) concept as a chosen element and it connects
to a property or a relation which belongs to one of its child (or member) concepts in the ontology.

Note that many interpretations can arise since there can be many possible subtrees connecting elements of
a selected set in addition to many possible selected sets. We use a Steiner-tree-based algorithm to generate a
single interpretation of minimal size from a selected set. The rationale of computing Steiner trees to derive the
minimal sized connected tree follows from the intuition that among the different possible subtrees, the most
compact one has the most direct and straight forward meaning in the ontology and thus is the most likely in-
tent of the user query. Following the same intuition, it also employs a ranking criteria to choose one or more
interpretations across all selected sets depending on the number of edges present in the minimal Steiner tree
computed from a specific selected set. Fewer edges in the Steiner tree results into higher rank of the interpreta-
tion. For example, the top ranked interpretation as found from selected set is ITree = {(LoanCommitment—lent
by— Lender), (LoanCommitment—shas— LoanAgreement), (LoanAgreement— borrowed by— Borrower)}. Note
that, the ranking can result in multiple interpretations with the top rank score, if there are multiple minimal
Steiner trees with the same number of edges. In that case NLQ will provide multiple answers to the user as
obtained from multiple interpretations for the question.
OQL Query Generation. As described in the previous section, our interpretation algorithm produces a ranked
list of interpretations for a given NLQ. The goal of the Ontology Query Builder is to represent each interpretation
in that list as an OQL query. In the final step, the constituent clauses of an OQL query corresponding to a given
interpretation tree (ITree) and a selected set (SS) are generated as follows.

e FROM Clause. The FROM clause is formed by the evidence concepts in the interpretation graph. The path
between the root node to other evidence nodes in the tree denote the join path between the concepts. Thus,
the FROM clause for the example ITree will be FROM Lender LenderObject, Borrower BorrowerObject,
LoanCommitment LoanCommitmentObject.

o WHERE clause. The WHERE clauses are generated based on the filter conditions specified. For example,
to generate equality condition in the WHERE clause, data value evidences are used to determine the equality
between the ontology property and the original value in the data value evidence. We uses a large vocabulary
(e.g., more than, less than, etc.) for creating expressions. We also employ a grammar to recognize time-related
expressions. For example, the WHERE clause corresponding to the example [Tree will be WHERE Lender-
Object.name = ‘Citibank’ AND BorrowerObject.name = ‘Caterpillar’ and LoanCommitmentObject.year =
2016.

o SELECT clause. The SELECT clause contains a list of ontology properties which are categorized as aggrega-
tion properties and display properties depending on whether an aggregation function is applied to them. The
OQL query generation algorithm identifies explicit references to aggregation functions (e.g., SUM/total) in
the NLQ by employing a lexicon of terms corresponding to the common aggregation functions. In this ex-
ample, the expression, SUM(LoanCommitmentObject.amount)), will be created. The display/non-aggregation
properties of the SELECT clause are generated by finding ontology properties which appear after the head
phrases such as “Show me”, “Tell me” and not associated with another keyword such as “per” which can
signifty GROUPBY clause.

e GROUPBY clause. It specifies an ordered list of ontology properties that the user wishes to group the results
by. A group by operation is recognized by presence of specific keywords like ”by” , ”for each” etc. followed
by an ontology property.
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o ORDERBY clause. The ORDERBY clause specifies an ordered list of ontology properties (or aggregations
over properties) that the user wishes to order the results by. Like group by, order by operation is also recog-

9% 9

nized by presence of specific keywords like “order by”, “’sort by” followed by a property in the ontology.

7 Challenges and Vision

In this section we will discuss some of the common challenges encountered by the NLQ Engine. These are still
open problems where active research is being done. Then, we also present our vision on how NLQ Engine can
be extended to create a Conversational System that can resolve ambiguity via user interaction, which is also one
of the core challenges in NLQ Engine.

7.1 Ongoing Work

Spurious Mapping in Evidence Generation. Consider an example query in “Show me companies Caterpillar
has borrowed money from”. In this example, the token “money” happens to match a person name in the un-
derlying data store and therefore associates the candidate Person.Name property to that token. Such mapping is
an instance of spurious mapping. Detecting and handling spurious mapping remains a challenge in developing
robust interpretation generation algorithms. A possible way to do this is to use the contextual knowledge from
the input query to identify the query is asking about “Loans” and “Loans” does not involve “Person” as per the
ontology model. This knowledge can be utilized to prune out such spurious mappings from being included in
the interpretation process.

Nested Query Handling. Although OQL grammar supports multiple levels of nesting, detecting an NLQ which
is to be translated to a nested OQL query and subsequently producing correct OQLs for it remains an open chal-
lenge. A part of the difficulty lies in taking clues from the natural language for detecting different cases of
possible nesting. A harder challenge is to identify the sub-queries and the correct join condition to stitch the
results of the sub-queries. Although this still remains an open problem, here we try to provide a high-level
overview of our ongoing effort to address this problem. We employ a nested query detector, which builds on
different lexicon rules to detect different cases of nesting. For each of the different cases, a reasoning engine can
work towards building different sub-queries. Consider an example question as “show me all IBM transactions
with value more than average selling price”, this can be detected as a nested query by the presence of comparator
phrases like “more than” in the input query and a comparison against another aggregation value like “average
selling price”. A possible way to handle this query is to decompose the input NLQ text into two sentences
across the comparator phrase i.e., LHS sentence as “show me all transactions with value” which corresponds
to the outer OQL query, and RHS sentence “average selling price” which corresponds to the inner OQL query.
The inner query, in this example, represents a predicate on a property referenced in the outer query i.e., Trans-
action.amount. At the next step, the Ontology-driven Interpretations Generator can be invoked on the LHS and
RHS sentences, and then the Ontology Query Builder can generate two OQL queries corresponding to the two
sentences. The reasoning engine can figure out the correct join between the inner and outer query result. For
example, if they are aggregation comparisons on both sides, then the inner query can be incorporated in the
HAVING clause of the outer query, or else if it is a property value comparison, like in this example question,
then a simple property value comparison in the WHERE clause is performed between outer query and inner
query result; e.g., Transaction.amount > Average(Price).

7.2 Extending NLQ for Conversation

Typical natural language interfaces are stateless and so they are oblivious to the history of the questions being
asked in the past. Users, while asking questions to the NLQ interfaces, are latently aware of the context and
ask questions keeping that in mind. Consider the following interaction in the finance domain - (i) What is the
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loan amount given by Citibank to Caterpillar in each year? (ii) Who are its lenders? Here, the second question
is dependent on the context of the first question. These are natural interactions for users. The conversational
interface enables users to automatically exploit the latent semantic context of the conversation, thereby making
it simpler to express complex intents in a natural, piece-wise manner.

There are several challenges in supporting such conversational interfaces. These challenges arise in in-
terpreting the contextual questions in the presence of the context. In the subsequent subsections, we list the
challenges and how they are supported via extending the Natural Language Querying described in section 6.
Co-reference Resolution. In a natural language dialog, users often use co-references to refer to the entities in
the previously asked question. These co-references are typically pronouns, anaphora, cataphora, and sometimes
split antecedents. There are many state of the art solution for co-reference resolution, but all of them are trained
on general purpose news data [15, 19, 21, 23]. They fail to identify the subtleties of any specific domain because
of the lack of training data.

For example a follow up query - “Who are its lenders?” to the base query - “What is the loan amount

given by Citibank to Caterpillar?”, contains a pronoun its that needs to be resolved. There are two candidate
to its viz. (i) Citibank (the lender) and (ii) Caterpillar (the borrower). Any state of the art system will fail the
subtle difference between the companies, which are taking different roles in the domain. To circumvent this
weakness, we use signals from the Ontology to resolve co-references. In this particular case, from the ontology
described in Figure 1, a borrower can only have lenders (determined through path between the concepts), and
hence correct resolution will associate the co-referent its to Caterpillar. Thus, using domain specific ontology
augments existing techniques and yields improved accuracy.
Ellipsis Resolution. Another challenge in conversational interface is to support ellipsis (Non Sentential Ut-
terances) [9]. Ellipsis are partial questions that modify the previously asked question. A sample interaction
involving ellipsis is as follows - (i) “What is the loan amount given by Citibank to Caterpillar?”, (ii) “in 201527
Here, the second question cannot be interpreted on its own and modifies the previously asked question. In this
particular case, a WHERE clause on the loan period should be added to the previous query.

To resolve the ellipsis, we use the Ontology to find the annotations (select, where) in the follow up query
and then use these annotations to apply transformations to the previous query. For the example described above,
the annotations in the base query are - loan amount is part of SELECT clause, Citibank and Caterpillar are part
of WHERE clause. This process is described in detail in section 6. For the follow up query, we identify the
temporal condition as a WHERE clause predicate, and since there is no existing temporal clause in the previous
query, we add it to the previous query.

Disambiguation. Often times in natural language queries, users employ terms that are ambiguous, e.g., South-
west as (i) Southwest Airlines or (ii) Southwest Securities. A conversational interface can help resolving these
ambiguities via interaction in natural language. Sometimes these ambiguities can be automatically resolved if
the users have mentioned the unambiguous choices in the previous questions. If no such clarity is available from
the context, the interaction proceeds by asking the user to clarify.

Context Management. Since a conversational interface needs to maintain the context of the previously asked
questions and answers, the interface can no longer be stateless. Context manager is responsible for updating
the context as conversation proceeds. The conversation is initialized with an empty context. When user asks
a question, all the information related to that question(including annotations, answers, etc.) are packaged as a
context object and pushed to the context, which is represented as a stack. If additional user input is required
for disambiguation, a new context state is created specifically for the disambiguation. Once an answer to dis-
ambiguation question is detected, the entire disambiguation object is removed from the context, and the last
question that caused the ambiguity is interpreted with the received answer.
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8 Use Cases

The NLQ system has been applied in various domains. Here we describe the some of the important use-cases.
Finance. We instantiated the NLQ system for the finance domain by taking data from 5 years of SEC and FDIC
filings which amounts to 1.5 TB of raw data. We created an ontology combining information from two standard
finance-domain ontology called FIBO (Financial Industry Business Ontology) and FRO (Financial Regulation
Ontology) with the help of domain experts. We processed the data such that it adheres to our ontology and
instantiated our NLQ system on top of it. The main challenge of this use case was to overcome ambiguities
across various entities e.g., there are 202 different entity matches just for the token /BM, spreading across 6
different roles such as Company, Subsidiary, Lender, Startup, Investor, and Investee. Our interpretation engine
showed great precision and recall [26] in handling such cases.

Healthcare. We also worked on a healthcare use case by building a natural language conversation service to en-
able the pharmacists, physicians, and nurses to easily access various drug information. In particular, information
pertaining to drug classes, drug synonyms, side effects, adverse effects, symptoms, general doses is accessed
from a relational database through a conversation interface. The database is described using an ontology, and the
conversation service intents and entities are identified with the guidance from the ontology. The interactive na-
ture of the conversation service allows the system to resolve ambiguities and narrow down on specific answers,
e.g., if a user asks “what is the side effect of Aspirin” then the system can ask “for an adult or for a child” to
give specific information.

SAP-ERP. In this use-case, we extended the NLQ technology to interact with the SAP-ERP system. Because
of the large size of SAP-ERP domain (100K tables and 5M relations), this use-case posed multiple challenges
regarding automatically creating the ontology, capturing the domain vocabulary and populating the translation
index, as well as the query translator, which required adaptations to the SAP SQL dialect. SAP-ERP has around
63 domains and 2K sub-domains, and we have created a goal-directed algorithm to create and instantiate NLQ
for each specific domain/sub-domain, leveraging meta-data information from SAP’s data dictionary tables. We
have instantiated our system for different domains like Sales and Distribution, FICO (FInancial accounting) and
Security Administration. The details of our solution are described in [27].

Weather. We have instantiated the NLQ system on weather data such that users can ask various weather-related
questions in natural language. Two important features of this use-case were 1) handling time-related expressions,
and 2) domain rules related to weather and time. Consider the question - “Will it be hot tomorrow afternoon?”
In this case, we have to map “hot” to a temperature using a domain rule (hot : temperate > 40-degree celsius)
and afternoon implies 12 pm to 6 pm. We also have to enable interactive disambiguation for location entities
(e.g., Columbus could mean Columbus, OH or Columbus, GA).

9 Related Work

In the context of data management, natural language interfaces for relational databases (NLIDB) have been
studied for several decades [4, 28]. As noted in [4, 17], early NLIDBs were based on grammars designed
particularly for a specific database, thus making it difficult to incorporate other databases. The most recent work
in the area is the NaLIR system [4], which operates directly on the database schema as opposed to our two-stage
approach that provides physical independence, and exploits the powerful semantics of the ontology. Moreover,
NaLIR mainly relies on user interaction to find the correct interpretation for ambiguous NLQs. Our system, on
the other hand, provides an interpretation ranking mechanism that almost eliminates user interaction. Similar
to NaLIR, Nauda [14] is an early interactive NLIDB. However, its main focus is to provide additional useful
information to user, more than what is explicitly asked in the question. The PRECISE system [25] defines a
subset of NLQs as semantically tractable, and generates SQL queries only for these NLQs. Similar to NaLIR,
PRECISE operates directly on the database schema and thus cannot exploit the rich semantics of the ontology.
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Moreover, PRECISE is not able to rank the NLQ interpretations but returns all of them to the user. We believe
that interpretation ranking provides a better user experience.

Ontology-driven data access systems [7, 26, 12, 20] capture the domain semantics and provide a standard
description of the domain for applications to use. Some of these works [7, 26] either focus on specific application
domains or offer ontology-based data access through description logic or semantic mappings that associate
queries with the underlying data stores to the elements in the ontology. However, they either fail to support
multiple query types in a poly store architecture or lack a natural language interface to explore the data stored in
multiple backends.

10 Conclusion

In this paper, we described our ontology-based end-to-end NLQ system to explore databases and knowledge
bases. We argued the importance of using domain ontologies and entity-based reasoning in interpreting natural
language queries. We illustrated our experience of instantiating the system on top of various domains. As future
work, we plan to extend NLQ to support more complicated nested queries. We are also investigating how to
bootstrap a conversation service using an ontology, and leverage our NLQ stack for domain specific chat bots.
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Abstract

We describe the vision of being able to reason about the design space of data structures. We break this
down into two questions: 1) Can we know all data structures that is possible to design? 2) Can we
compute the performance of arbitrary designs on a given hardware and workload without having to im-
plement the design or even access the target hardware? If those challenges are possible, then an array
of exciting opportunities would become feasible such as interactive what-if design to improve the pro-
ductivity of data systems researchers and engineers, and informed decision making in industrial settings
with regards to critical hardware/workload/data structure design issues. Then, even fully automated dis-
covery of new data structure designs becomes possible. Furthermore, the structure of the design space
itself provides numerous insights and opportunities such as the existence of design continuums that can
lead to data systems with deep adaptivity, and a new understanding of the possible performance trade-
offs. Given the universal presence of data structures at the very core of any data-driven field across
all sciences and industries, reasoning about their design can have significant benefits, making it more
feasible (easier, faster and cheaper) to adopt tailored state-of-the-art storage solutions. And this effect is
going to become increasingly more critical as data keeps growing, hardware keeps changing and more
applications/fields realize the transformative power and potential of data analytics. This paper presents
this vision and surveys first steps that demonstrate its feasibility.

1 Automating Data Structure Design

Data structures is how we store and access data. A data structure design consists of 1) the data organization,
2) an optional index, and 3) the algorithms that support basic operations (e.g., put, get, update). All algorithms
deal with data and most often their design starts by defining a data structure that will minimize computation and
data movement. Effectively, the possible ways to design an algorithm (and whole data systems) are restricted
by the data structure choices [31, 76, 77, 47, 24, 8, 1, 46]. For example, we can only utilize an optimized sorted
search algorithm if the data is sorted and if we can maintain the data efficiently in such a state. In turn, a data
analytics pipeline is effectively a complex collection of such algorithms that deal with increasingly growing
amounts of data. Overall, data structures are one of the most fundamental components of computer science and
broadly data science; they are at the core of all subfields, including data analytics and the tools and infrastructure
needed to perform analytics, ranging from data systems (relational, NoSQL, graph), compilers, and networks,
to storage for machine learning models, and practically any ad-hoc program that deals with data.

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
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There is no perfect data structure design; each design is a
Read Optimized compromise among the fundamental performance trade-offs [8]:
read, update and memory amplification. This is depicted visually
in Figure 1. In this way, to get good performance, the design of
a data structure has to be tailored to the specific data, and query
workload of the target application in addition to the underlying
hardware where the data structure is expected to live.
A continuous challenge. Since the early days of computer
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paradigm where data analysis becomes critical, and hardware
changing faster with characteristics that require a complete re-
design of data structures and algorithms. Overall, with work-
loads and hardware changing frequently and rapidly, designing
new data structures becomes a continuous challenge. Furthermore, for the several past decades, the trend in
terms of hardware evolution is that computation becomes relatively faster than data movement; this makes data
structure design even more critical as the way we store data dictates how much data an algorithm has to move.

The vast design space slows progress. There are so many different ways to design a data structure and so
many moving targets that it has become a notoriously hard problem; it takes several months even for experts to
design and optimize a new structure. Most often, the initial data structure decisions for a data system remain
intact; it is too complex to redesign a data structure, predict what its impact would be as workload and hardware
keep changing, implement it, and integrate it. For example, it is extremely hard to decide whether to acquire new
hardware and how to adjust the core data structure design to it. Similarly, given the quick pace of adding new
features in modern applications, the workload also changes rapidly; it is extremely hard to predict the potential
performance impact and what possible design changes are best to allow for graceful adaptation by investing
and timing engineering efforts accordingly. In the same lines, it is very hard to know when and why a data
system would “break”, i.e., when performance would drop below an acceptable threshold, so that we can invest
in protecting against those scenarios and avoid prolonged degradation in performance or even down-time.

For fields without computer science/engineering expertise that move towards a data-driven paradigm, these
low-level choices are impossible to make, and the only viable solution is using suboptimal off-the-shelf designs
or spending more money in hiring experts. Modern data analytics scenarios and data science pipelines have many
of those characteristics, i.e., domain experts with limited expertise on data structure design are confronted with
dynamic, ever changing scenarios to explore and understand data. The likelihood that a single off-the-self data
structure fits such arbitrary and sometimes unpredictable data access patterns is close to zero, yet data movement
is the primary bottleneck as data grows and we do need more data to extract value out of data analytics.

The source of the problem is that, there is no good way to predict the performance impact of new
workload, new hardware and new data structure design choices before fully implementing and testing them, and
there is no good way to be aware of all the possible designs. We make three critical observations.

Figure 1: Each design compromises between
read, update and memory amplification.

1. Each data structure design can be described as a set of design concepts. These are all low-level decisions
that go into a given design such as using partitioning, pointers or direct addressing.

2. Each new data structure design can be classified in one of three ways; it is a set that includes: a) a new
combination of existing design concepts, b) a new tuning of existing concepts or ¢) a new design concept.

3. By now we have invented so many fundamental design concepts such that most new designs fall within
the first two categories, i.e., they are combinations or tunings of existing design ideas.
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The design space structure is key. With most designs be-

ing combinations of existing design ideas, we argue that it is a
SORTED

/ \ great time to study in depth the design space itself to discover
its structure and properties. Let us make an analogy to make it
oS v more clear why this is an important goal long term. Consider

elements into a universal structure, a design space formed based

on their properties and their components, i.e., the atomic number
unks | and electron configuration. The crucial observation is that this

design space not only classifies and explains connections among

existing elements, but its structure (i.e., the gaps) provide hints

about possible elements that had not been discovered yet, and it
VA D even helped argue about their expected properties. Even a hun-
dred years after the original periodic table was conceived, scien-
tists kept doing research driven by the gaps in the table, and kept
discovering elements whose existence and properties had been
predicted purely by the structure of the design space. Another
example comes from computer science research on cache consis-
tency algorithms in client-server environments. Mike Franklin’s
Ph.D. work led to a design space that mapped existing algorithms
based on the common fundamental design decisions under which we could describe all these algorithms [21].
Similarly to the periodic table, once the structure was in place, we could classify existing algorithms, but also we
could see additional algorithms that had not been invented yet; these new algorithms are formed as combinations
of the design principles and the design space allows us to even argue about their properties.

Art vs. science. Just because a specific design is a combination of existing design concepts, it does not
mean that it is easy to be conceived manually. In other words, when the number of options and possible design
combinations is so big, it is hard even for experts to “see” the optimal solutions even when these solutions
consist of existing concepts only. This is why many argue that research on algorithms and data structures is a
form of art, i.e., driven by inspiration. Our goal is to accelerate this process and bring more structure to it so that
inspiration is complemented by intuitive and interactive tools.

We set out to discover the first principles of data structure design and map the design space that they
form. Our goal is to be able to reason about their combinations, tunings, and performance properties they
bring. The high-level concept is depicted in Figure 2 using a small sample of principles for brevity. Effectively,
the principles and their structure form a “grammar” with which we can describe any data structure in a systematic
way, including designs that have not been discovered yet but they can be “calculated” from the design space
given constraints such as the expected workload, and hardware environment. Figure 2 is inspired by a similar
figure in the Ph.D. thesis of Gottfried Leibniz who in the 1600s envisioned an engine that calculates physical
laws from a small set of primitives [48]. In the rest of this paper, we describe the process of discovering the
first principles of design, we provide examples, and discuss the process of synthesizing arbitrary data structure
designs. Similarly to the periodic table of elements in chemistry, the final overall structure, which we call the
periodic table of data structures, provides insights and explanations on existing designs but it also points to
exciting research opportunities. We then discuss how to automatically synthesize the optimal algorithms of
the basic operations of a data structure based on the target workload and hardware using an expert system
and learned cost models. Learned cost models represent fundamental access patterns (sorted search, random
access, etc.) that can be combined into arbitrary algorithms. In addition, they allow computing the performance
(response time) of a data structure design on a target workload and hardware without implementing and testing
it. Finally, we discuss new opportunities that arise from the design space, i.e., discovering design continuums
and making steps toward the ultimate goal of automatic data structure design.

\ the periodic table of elements in chemistry. It organized existing
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Figure 2: Reasoning about the design space of
data structures by understanding its first prin-
ciples and how they combine.
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2 The Quest for the First Principles of Data Structure Design

We define as a first principle a design concept that is not possible to break into more fine-grained concepts.
For example, consider the design choice of linking two nodes of a data structure with a pointer. While there are
potential tuning options (e.g., the size of the pointer), it is not possible to break this decision further; we either
introduce a pointer or not.

Layout vs. access. We separate design principles that have to do with the layout of a data structure from
those that have to do with how we access the data; layout drives the design of algorithms. Our intuition is that we
can describe data structures solely by their layout, while the access algorithms can be automatically derived
for a given set of layout decisions.

Thus, we focus on discovering, structuring and understanding the first principles of layout design. This is
a trial and error process, i.e., there is no explicit algorithm. There is a high-level recipe, though. The recipe is
about iterating between two processes: 1) decomposing existing data structures into first principles, and 2) stress
testing the design space by attacking open problems through its structure. The second step is critical as many
principles that were thought to be essential for specific subspaces of the design space can be optimized out,
while new principles are being discovered for design decisions that remained fixed until now. The end goal is
to develop a universal model that describes all structures as compositions of design principles. As more data
structure instances are being considered, the set of first principles and the universal model change. This happens
at a decreasing pace as by definition there are much fewer principles than data structure instances.

Arrays, B-Trees, and LSM-trees have been our primary playground for applying the above recipe as they
cover a massive part of the overall design space. Arrays are practically part of all data structures (e.g., the nodes
of a B-tree, the buckets of a hash-table). Arrays are also the fundamental storage model in modern analytical
systems and large-scale cloud infrastructures where columnar storage is the leading paradigm. B-trees represent
the evolution of tree-based structures, and they are the primary form of indexing on data systems for the past
several decades to support read-intensive workloads. Finally, LSM-trees form the backbone of NoSQL data
systems being a highly write-intensive design and a rather unexplored design space. Decomposing these three
major classes of data structures and their variations into their first principles has led us to several surprising
results that arise purely by the design space and the study of its structure.

For example, a study of access path selection in relational databases (i.e., dynamically choosing between a
scan over an array and accessing a B-tree secondary index) shows that following the fixed selectivity threshold
paradigm as was invented in the 1970s is suboptimal. After considering all design principles such as multi-core
and SIMD parallelism, read and write patterns and costs, and shared reads, we showed that there should not
be a fixed selectivity threshold for access path selection but rather a dynamic one that depends on the number
of concurrent requests [39]. Similarly, the work on Smooth Scan shows that it is possible to combine these
two fundamental access paths into a new hybrid one that combines their properties and requires no access path
selection [12]. Finally, the work on Column Sketches showed that by considering the design principle of lossy
compression, we can enable new performance properties for scans over an array that were not possible before,
i.e., robust performance regardless of selectivity, data, and query properties [32].

Decomposing LSM-trees has revealed that all modern designs in industry are suboptimal due to fixing fun-
damental design principles to suboptimal decisions. For example, the work on Monkey shows that for a given
memory budget the number of bits assigned to the bloom filter of each level (or run) should be exponentially
smaller for bigger levels [18]. This allows for smaller false positive ratios for smaller levels and since each
level contributes in the same way to the overall LSM-tree worst case false positive ratio, this tuning provides a
drastic improvement that leads to orders of magnitude better performance. Similarly, the work on Dostoevsky
shows that the merge policy should not be fixed across levels and that we can tune it in a different way for each
level. This helps lower the bounds for writes without hurting reads and it also allows to tune the merge policy
according to the desired low bounds for point reads, range reads and writes [19]. We have performed a similar
process in other areas including bit vector structures [9] and structures for statistics computation [73].
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Figure 3: Synthesizing a vast number of data structure designs from first principles.
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Examples of first principles include fundamental design concepts such as whether a given node of a struc-
ture contains keys or values. For example, an internal node of a B+tree does not contain any keys or values while
a leaf node does. Furthermore, there are decisions that have to do with the physical layout. As an example, say
that a node does contain keys and values; are these physically stored as key-value pairs (e.g., a row-based format)
or as separate arrays (e.g., a columnar format)? A critical design principle is partitioning; does a node help break
the domain into smaller pieces and, if yes, how exactly and what is the fanout? For example, we may use range
partitioning, radix partitioning, temporal partitioning or any other function. If partitioning is enabled, then this
means that each node generates sub-blocks; how do we access these sub-blocks? Through direct addressing or
pointers? In addition, are the sub-blocks connected to each other with immediate links like a linked list or skip
links like in a skip list? Further design principles have to do with filters. Do we have filters that help us access
the sub-blocks of a node, e.g., bloom filters? And if we do, how many bits and how many hash functions should
be used? Other types of filters are also possible such as zone maps. Furthermore, how are filters stored? Are
they scattered across the sub-blocks or stored in a contiguous area? Then, there are design principles that have
to do with how the design evolves outside the current node. For example, if the sub-blocks do not live inside the
current node, then they form its children. Are these children stored scattered in memory, e.g., as the children of
a B+tree node or they are stored in a contiguous block as the children of a cache-conscious B+tree node?

The overall model is based on iteratively describing one node of a data structure at a time. Figure 3 depicts
a high-level view of this process (from left to right). Through the principles, we define data nodes as sets of
design decisions. Their combinations craft the space of possible node descriptions. Then a data structure is
described by connecting one or more node types and describing how they connect and potentially recurse. In
practice, it is slightly more complex. With each set of principles, we describe a “logical block™ of data that may
be directly mapped onto an actual data structure node type, but it may also be a function we apply to the data.
Most data structures in the literature consist of two logical blocks. For example, a B+Tree consists of two logical
blocks, describing the internal and the leaf nodes respectively, while a hash table also consists of two logical
blocks, describing the hash function and the hash buckets respectively. The initial set of layout principles covers
the key-value model for read-only operations and appeared in the Data Calculator work [36]. The model allows
the description of numerous well-known structures and their hybrids, including arrays, linked-lists, skip-lists,
queues, hash-tables, binary trees and (cache-conscious) B-trees, tries, MassTree, and FAST.

What comes after crafting the design space is understanding and utilizing its structure. Given the sheer size
of the design space, though, before we can do that effectively we need to be able to argue about any point in
the space so we can quickly and automatically compare designs. Section 3 discusses cost synthesis which helps
with this problem and then Section 4 describes existing results and opportunities in utilizing the design space.

68



3 Algorithm and Cost Synthesis from Learned Cost Models

To fully utilize the knowledge of the vast design space we need to be able to compare different designs in
terms of the expected performance. Complexity analysis explains how the properties of a design scale with
data but does not give a precise performance computation given a workload and hardware. On the other hand,
full implementation and testing on the target workload and hardware provide the exact performance while the
combination of both complexity analysis and implementation gives the complete picture. The problem is that
with so many designs possible in the design space, it is not feasible to analyze, implement and test the numerous
valid candidates. This is exactly the complex and time consuming process we are trying to avoid in the first
place. A less explored option is building generalized hardware-conscious cost models [55, 76]. Similar to a full
implementation, such models provide results very close to ground truth, and similar to complexity analysis they
provide hints on how performance scales. However, building generalized models is nearly equally hard to a full
implementation given the level of detail and hardware-conscious properties needed [39]. In addition, any change
on hardware properties requires retuning the model. Overall, arguing formally about the performance of diverse
data structures designs, especially as workload and hardware properties change, is a notoriously hard problem
[55, 78,72, 13,76, 79, 39] and in our case we want to perform this task for numerous designs concurrently and
at interactive response times.

In fact, before being able to argue about performance, we need to “complete” the design. The design space
we crafted in the previous section is about the layout only, while a full design includes the access algorithms as
well. We show in the Data Calculator [36] that algorithms can be built automatically by synthesizing operations
from fundamental access primitives on blocks of data through a rule-based expert system. Rules are statements
that map layouts to access patterns, e.g., if a data block is sorted we should use some kind of sorted search.
However, the performance that we would get out of sorted search depends on 1) the exact algorithm (e.g.,
binary search, interpolation search), 2) the exact hardware, and 3) the exact engineering (e.g., using a new set
of SIMD instructions). The rule base system gives us only a high-level sketch of the desired algorithm. Then,
we synthesize the detailed algorithm and compute the cost via a hybrid of analytical models, implementation,
and machine learning as combinations of a small set of fundamental access principles. We call these learned
cost models. For each generic class of access pattern on a block of data (e.g., sorted search) there exist many
instances of algorithms/implementations. These are short implementations that capture the exact access pattern.
For example, for a binary search the implementation consists of an array of sorted integers where we perform a
series of searches. During a training phase this code runs on the desired hardware and we learn a model as data
scales (across the memory hierarchy). Each model captures the subtle performance details of diverse hardware
settings and the exact engineering used to build the code for each access pattern. To make training easier, our
models start out as analytical models since we know how these access patterns will likely behave.

Overall, after taking as input the layout of a design, a workload and a hardware, the Data Calculator goes
step by step through the operations in the workload and for each operation it computes the expected state of
the data structure at this point in the workload. This includes the number of nodes that exist and the number of
elements in each node. For each operation it then computes the path that it should follow over the data structure
by using the specification of its layout. This results in a set of nodes that should be visited. For each node,
the expert system then provides the high level access pattern that should be used, e.g., probe a bloom filter,
scan, sorted search. Once the high-level access pattern is known, the system then scans all possible models for
particular implementations that exist in its library and chooses the one that is expected to behave the best on the
target hardware and data size. Putting everything together, by repeating this process for all nodes in the path of
an operation we can compute the total cost of this operation and by repeating this for all operations in a workload
we get the overall cost. The exact process includes further low-level details to handle random access, caching
and skew effects which are all handled by a combination of additional models and rules in the expert system
for cost synthesis. As a first step, the Data Calculator work [36] shows how the above process takes place for
bulk-loading, point, and range queries.
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Figure 4: The periodic table of data structures: a vast unexplored design space.
4 The Periodic Table of Data Structures

In the same way that the arithmetic calculator can be used in any application where numbers are necessary (e.g.,
from complex scientific problems to restaurant bills), we expect that the Data Calculator will be useful in any
application where data is essential. Here we describe a sample of exciting results, applications, and opportunities
that have to do both with the structure of the design space, and with the ability to understand and navigate it.

4.1 Structure, design guides, gaps, and facts

Figure 4 depicts our first effort to unify known classes of data structures under a unified model. The table
groups data structures and design primitives into classes. Every cell indicates whether any such principle has
been applied to a category of data structures (i.e., a relevant paper has been published). The observation is that
most of the cells are in fact empty. While this does not necessarily mean that these combinations have not been
studied before, and it does not even suggest that they will all be useful for modern applications and hardware, it
is still surprising. Also since this is a “zoomed out” table it loses some detail for purposes of visualization and
thus even if a cell is marked as done, this does not mean that further work is not possible. By counting the exact
possible designs from the detailed design space presented in the Data Calculator work [36], we find that there
are at least 103? two-node structures (and 10%® three-node ones). This is more possible designs than stars on the
sky (10%%). We have barely published a couple of thousand of designs in the last sixty years, and at a rate of a
hundred designs a year (as indicated by data from DBLP) we are moving very slowly.

Furthermore, the structure of the design space helps to predict how specific choices may affect the properties
of a design with respect to read, update, and memory amplification. This is shown on the right-hand side of the
table on Figure 4. Such hints can be used as a design guide by engineers and researchers (and even auto design
algorithms) to accelerate design space exploration during the design process.

4.2 Interactive Design to Accelerate Engineering and Research

When combining the design space knowledge with the ability to do algorithm and cost synthesis we are pre-
sented with a unique and new opportunity for interactive design. That is, enabling researchers and engineers
to quickly iterate over different designs without having to implement, test and even access the target hardware.
For example, one can give as input a high-level specification of a data structure design, a sample workload,
and the target hardware. The Data Calculator can then compute the performance we would get if we were to
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implement this design and test it on this workload and hardware [36]. This computation takes a few seconds to
complete, allowing researchers and engineers to quickly iterate over: 1) multiple designs to decide which one
to spend time implementing or how specific changes may affect performance in an existing design; 2) multiple
workloads to inspect how envisioned changes in the workload (e.g., due to new application features) may affect
the performance; 3) multiple hardware environments to decide which is the best hardware for placement in a
large cluster or to drive equipment purchase decisions by knowing the expected outcome on performance given
the current design and workload. In our most recent results, such computations take in the order of 20 seconds
for 1 Million data entries and 100 queries for a diverse class of structures including B-trees, Tries, and Hash-
tables [36]. At the same time, training for typical modern hardware takes in the order of 50-100 seconds, and it
is a one time process; once it is done, one can try out any workload and design on this hardware.

When it comes to interactive design a crucial question is that of extensibility. What if one wants to test a new
access pattern that is not included in the Data Calculator? For example, say a researcher comes up with a new
way to perform sorted search and wants to know the expected performance impact on their B-tree design. The
new idea may be an algorithmic one or even a new hardware-conscious way of implementing an existing high-
level algorithm, e.g., using a new set of SIMD instructions. All the researcher has to do is add a new benchmark
under the sorted search family of access patterns and train it for the desired hardware. Then this becomes
permanently part of the library of access patterns which has two positive side-effects: 1) the researcher can now
test and refine their design with and without the new access pattern in a variety of workloads and hardware
settings before initiating a complex implementation phase, and 2) the Data Calculator can now consider the
new access pattern for any data structure design that includes sorted data (e.g., the buckets of a hash-table); in
this way, future queries on the Data Calculator by this or other researchers in the same team can benefit by an
expanded design space. On the other hand, extending the design space of layout principles requires expansion
of the universal model and the associated rules for algorithm and cost synthesis. This is not a task that can be
done interactively by users; it is the ongoing research effort to develop the theory behind such tools.

4.3 Design Continuums and Self-designing Systems

We define as design continuum a part of the design space of data structures that can be seen as a unified
space because it is defined by the same set of first principles. Thus, there is a path between any two designs
in this space by tuning the same set of principles. While tuning has always been possible and critical for data
structures (e.g., tuning the fanout of a B-tree), the new opportunity here is that by structuring and understanding
the design space, we can see such continuums across classes of data structures that are traditionally considered
fundamentally different. For example, in our recent key-value store work we showed that there is a design
continuum between logs, sorted arrays and LSM-trees [18, 19]. At the one end of the continuum exists a log,
i.e., a write optimized structure where we can simply append new pages without having to maintain any order.
Reads of course are slow as they require a full scan. On the other end of the spectrum exists a sorted array where
we can quickly search with a binary search but writes require moving on average half the data. In between these
two extremes exist LSM-trees and variations which give a balance between read and write costs. We showed
that we can tune the shape of the structure anywhere between a log and a sorted array by tuning the merge
policy of an LSM-tree. Specifically, an infinite size ratio and a tiering policy turn an LSM-tree into a log, while
when using leveling and again infinite size ratio we get a sorted array. As we give different values to the size
ratio and vary the merge policy for different levels, we get data structure designs which occupy points within
the design continuum, can be seen as LSM-tree hybrids, and allow for custom read/write ratios and resource
management [18, 19].

The discovery of design continuums opens the door for a new form of “deep adaptivity” by being able to
“transition” between different designs. We term such systems self-designing systems, i.e., systems that can
drastically morph their shape at run-time. Contrary to existing work on topics such as adaptive indexing which
allows on-the-fly data adaptation, self-designing systems can transition across designs that are perceived as

71



fundamentally different (e.g., from log to LSM-tree to sorted array [18, 19]) and thus enabling a system to
assume a much larger set of performance properties.

4.4 Automated Design: Computing Instead of Inventing

The ultimate dream has always been fully automated design [71, 76, 13]. We redefine this challenge here to
include hardware; given a hardware and a workload, can we compute the best data structure design? The design
space gives us a clear set of possible designs. In turn, algorithm and cost synthesis give us the ability to rank
designs for a given workload and hardware. Together these two features allow the design of algorithms that
traverse the design space, turning data structure design into a search problem. Early results have demonstrated
that dynamic programming algorithms, searching part of the design space only, can automatically design custom
data structures that fit the workload exactly [36]. What is even more intriguing is that these designs are new, i.e.,
they have not been published in the research literature, yet they stem from the design space as combinations of
existing design principles and they match workloads better than existing state-of-the-art human-made designs.
In another example, we showed that the search space can also be traversed via genetic algorithms, automatically
designing column-store/row-store hybrids [35]. Further usages of the search capability include completing
partial designs, and inspecting existing designs in terms of how far away they are from the optimal [36]. In
addition, it is not necessary that the ultimate design should always be the target. For example, returning the
top ten designs allows engineering teams to make decisions based on performance as well as implementation
complexity, maintainability and other desirable properties.

The grant challenge is building algorithms that can traverse the whole design space. Given the exponential
nature of the problem, we have started experimenting with reinforcement learning and Bayesian optimization
with early results indicating that they can search a larger part of the design space within the same time budget.

S Inspiration and Related Work

Our work is inspired by several lines of work across many fields of computer science. John Ousterhout’s project
Magic in the area of computer architecture allows for quick verification of transistor designs so that engineers
can easily test multiple designs [58]. Leland Wilkinson’s “grammar of graphics” provides structure and formu-
lation on the massive universe of possible graphics one can design [74]. Mike Franklin’s Ph.D. thesis explores
the possible client-server architecture designs using caching based replication as the main design primitive and
proposes a taxonomy that produced both published and unpublished (at the time) cache consistency algorithms
[21]. Joe Hellerstein’s work on Generalized Search Indexes [31, 6, 43, 42, 44, 45] makes it easy to design and
test new data structures by providing templates that significantly minimize implementation time. S. Bing Yao’s
work on generalized cost models [76] for database organizations, and Stefan Manegold’s work on generalized
cost models tailored for the memory hierarchy [54] showed that it is possible to synthesize the costs of database
operations from basic access patterns and based on hardware performance properties. Work on data representa-
tion synthesis in programming languages [63, 64, 17, 68, 66, 28, 29, 52, 69, 53] enables selection and synthesis
of representations out of small sets of (3-5) existing data structures.

Work on tuning [37, 15] and adaptive systems is also relevant as conceptually any adaptive technique tunes
along part of the design space. For example, work on hybrid data layouts and adaptive indexing automates
selection of the right layout [7, 3, 27, 33, 20, 65, 4, 51, 18, 62, 25, 60, 80, 34, 38, 67]. Similarly works on tuning
via experiments [10], learning [5], and tuning via machine learning [2, 30] can adapt parts of a design using
feedback from tests. Further, the Data Calculator shares concepts with the stream of work on modular systems:
in databases for easily adding data types [22, 23, 56, 57, 70] with minimal implementation effort, or plug and
play features and whole system components with clean interfaces [50, 49, 16, 11, 14, 40, 61, 75], as well as in
software engineering [59], computer architecture [58], and networks [41].
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Research on new data structures keeps pushing the possible design space further. For example, an exciting
idea is that of Learned Indexes which drastically expands the possible design space by proposing mixing machine
learning models and traditional data structures; among other benefits, it enables new opportunities for succinct,
yet performant, data structures [46]. Our work is complementary to such efforts as it is not toward expanding the
design space, but rather toward mapping, understanding and navigating it. The Data Calculator can be seen as a
step toward the Automatic Programmer challenge set by Jim Gray in his Turing award lecture [26], and as a step
toward the “calculus of data structures” challenge set by Turing award winner Robert Tarjan [71]: “What makes
one data structure better than another for a certain application? The known results cry out for an underlying
theory to explain them.”

6 Summary and Future Steps

We show that it is possible to argue about the design space of data structures. By discovering the first principles
of the design of data structures and putting them in a universal model, we study their combinations and their
impact on performance. We show that it is possible to accelerate research and decision making concerning
data structure design, hardware, and workload by being able to quickly compute the performance impact of a
vast number of designs; several orders of magnitude more designs than what has been published during the last
six decades. Critical future steps include 1) expanding the supported design space (e.g., updates, concurrency,
graphs, spatial), 2) supporting scalable and fast cost synthesis to allow for self-designing systems that change
their shape at run-time, and 3) navigating the data structure design space by modeling it as a search, optimization
and learning problem.
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Impact Award Winner

I would like to thank TCDE and the committee for this great honor, and for an amazing event that we all
experienced in Paris!

Very few things in life are entirely the work of just one person and this is no exception, so I must also pay
tribute to the enormous contributions made by my students and colleagues without which, none of this would
have been possible and I certainly wouldn’t have gotten this award.

Awards like these tell us a lot about our pastime and the drive that has made this possible. And this drive has
been possible because I was always surrounded by enthusiastic and inspiring people: my professors, my students
and my colleagues. In fact, I have had great teachers and mentors throughout my whole career - undergrad, grad,
postdoc, faculty - which is my inspiration for trying to be a good teacher and mentor myself. There are 3 pioneers
that greatly influenced my career, Christos Papadimitriou in 1981 was the person to suggest that I should do a
PhD in Databases, Phil Bersntein who was the first to mentor me at Harvard, and Mike Stonebraker for guiding
me through a PhD and getting a real view of real DBMS group.

Back in the early 90s and after 9 years in the US, I felt that I had to go and give back to my home country,
Greece, and have an impact on forming a data management community there. I am very happy to reflect now on
the 20 years I devoted to this, giving me great pleasure, not only to see so many other colleagues came back to
Greece as well, but also that we have collectively managed to set up and maintain a high caliber community.

In the last 6 years I live in Melbourne; well not so different as Melbourne is the third largest Greek city in
the world after Athens and Thessaloniki! Leading a Data Science institute there presents a great challenge. I am
trying to run an interdisciplinary unit working on research opportunities with astrophysicists to social scientists
and hospitals to textile manufacturers. To be honest, what I enjoy most, apart from seeing how we can help all
these communities, is how much I learn from processes and methodologies they use and thinking how these can
influence data engineering. And I feel more and more that we nowadays play a much more important role than
in the past.

Data is becoming the glue between disciplines and we have a responsibility in making interdisciplinary
efforts work; as data management community we were always open to talk to other disciplines, as everybody
presents us with interesting challenges. In that sense, if we gain their trust we can also help throw bridges among
them. A personal experience: talking to astrophysicists and cancer researchers I could see the commonalities
on image analysis research including data analysis and GPU based algorithms. Bringing them together to the
table created a great interdisciplinary team and we look forward to a very successful collaboration. Data-driven
solutions are in the core of problem solving nowadays and all sectors from anthropology to autonomous systems
are looking towards data intelligence as the new paradigm for scientific discovery and innovation. There is a
bright future for our field and we should be happy and feel the great responsibility to make this a successful
future!

Timos Sellis

Swinburne University of Technology
Melbourne, Australia
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Service Award Winner

I would like to express my sincere gratitude to the IEEE Technical Committee of Data Engineering for the
2018 TCDE Service award. It cites my long time involvement in the ICDE Conferences, clearly confirming
Woody Allen observation that eighty percent of success is just showing up. Since receiving this award makes
me officially an old-timer, I will reminisce briefly about the early years of the Data Engineering conference.

The conference was started by C.V. Ramamoorthy (who coined the term Data Engineering) and Gio Wieder-
hold. After the first five years in Los Angeles, the conference became well established and was ready to make
the next step. The people who by then were running the conference (Mike Liu, Bruce Berra, and Benjamin Wah)
made several decisions that significantly expanded its international reach and scope. The first, was to make the
conference truly international by organizing it outside of US, in Europe, Asia, and Texas. The second, was to
create of a companion event single topic, fully reviewed Workshops on Research Issues in Data Engineering
(RIDE). The first RIDE in Kobe was organized by Yahiko Kambayashi and Ahmed Elmagarmid and started
a successful series that lasted 15 years. By the turn of the century, the governance of ICDE was codified in
the By-laws developed under the leadership of Erich Neuhold, which created an organizational structure that
functions without major changes until today.

In the 35 years since its inception ICDE visited 4 continents, significantly expanded its thematic scope, and
branched into the new areas that did not exist 30 years ago. It was always open to new ideas, not afraid to bring
in new people and new exciting topics, never dull, and never much interested in what Mike Stonebraker called
polishing a round ball.

There are many people who made great contributions to ICDE and to the field of Data Engineering. I would
like to congratulate the leaders of TCDE for their excellent idea to recognize them through annual awards. I
would also like to congratulate my fellow co-awardees. And still the best advice that I can give to our younger
colleagues is: keep showing up.

Marek Rusinkiewicz
New Jersey Institute of Technology
Newark, New Jersey
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Education Award Winner

It was extremely gratifying to be honored with the 2018 TCDE Education Award. While I've received various
research awards over time, this is the first time I've been recognized for my educational endeavors. The truth is
that most of my career I’ve been only an adequate teacher, certainly not among those who are truly gifted at the
craft. I steadfastly taught my undergraduate and graduate classes to acceptable student ratings, and I dutifully
updated the material periodically without being especially creative.

That all changed in the fall of 2011, when I jumped on the bandwagon with my faculty colleagues Sebastian
Thrun (AI) and Andrew Ng (Machine Learning) to create one of Stanford’s three inaugural free-to-the-world
online courses, now known as MOOCs (Massive Open Online Courses). Even though I was chair of the Com-
puter Science department at the time, and running a research group, I threw myself into the creation and delivery
of the Databases MOOC with a passion for teaching I hadn’t known that I possessed. The excitement and im-
mense gratitude of tens of thousands of students was invigorating and inspirational. The Databases MOOC is
still online in a self-serve modular fashion, and I continue to get a steady stream of thank-you’s from students
worldwide. Creating that course may turn out to be one of the broadest impact endeavors of my career.

Fast-forward to the fall of 2016 when it was time for a sabbatical. I wasn’t especially interested a typical
sabbatical that expands my own research horizons; I wanted to have direct impact on people. I combined my
long-standing love of exotic travel with my MOOC experience to hatch a concept I jokingly call the MOIC,
or Massive Open *In-Person* Course. With logistical help from ACM and many international students and
colleagues, and with financial backing from ACM, VLDB, Google, and Stanford, I traveled to about 25 loca-
tions in 15 developing countries offering free short-courses on Big Data, workshops on “Design Thinking” (a
wildly popular problem-solving methodology from Stanford’s d.school), and roundtable discussions for women
in technology. Once again I found myself deeply engaged in a teaching endeavor that reaped many rewards.
Although my sabbatical was cut short when I was named Dean of Engineering, I endeavor to carve out at least
two one-week periods per year for travel-teaching, and I've stuck with it so far. To date I've visited 18 countries
and reached several thousand students in person across the globe.

I used the material I developed for my travel-teaching to launch a new Stanford class: Big Data Tools
& Techniques for non-Computer Science majors. I’'m not sure if it’s the MOOC or MOIC experiences, the
timeliness of the topic, the fact that (as Dean) I’m teaching for fun and not because I’'m required to, but I'm
enjoying my Stanford teaching more than I ever have before, and getting excellent student ratings to boot. Who
would have guessed? Thanks again to TCDE for the recognition and honor.

Jennifer Widom
Stanford University
Palo Alto, CA
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Rising Star Award co-Winner

I am humbled and honored to be selected as a co-recipient of the IEEE TCDE Rising Star award this year, and I
am grateful to the TCDE community for this recognition.

Designing a database system for warehouse-scale computers

My research is motivated by the increasing use of warehouse-scale computers to analyze massive datasets
quickly. Current examples include a scientist who post-processes simulation results on a high-performance
computer or an enterprise that periodically rents 100,000 CPU cores in the cloud for $500 per hour to sift
through IoT data.

These scenarios pose two challenges for database systems. The first challenge is the lack of interoperability
with other analytical tools. Massive datasets often consist of images (arrays) that are stored in file formats like
JPEG, PNG, FITS and HDF5. To analyze these datasets, users write code that directly manipulates data in files
and leverages domain-specific libraries or deep learning frameworks such as TensorFlow. The second challenge
is scalability, as foundational data processing operations do not scale to the unprecedented concurrency of
warehouse-scale computers at the compute, networking and storage levels. Examples include data shuffling
that triggers an inherently unscalable all-to-all communication pattern; hash-based joins that partition the inputs
and do not allow communication and computation to fully overlap; parallel aggregations that are oblivious to
congested links in non-uniform network topologies.

To address the interoperability concern, we are developing ArrayBridge [code.osu.edu/arraybridge], an
open-source I/O library that brings advanced data management capabilities under an array-centric file format
interface. ArrayBridge currently allows scientists to use SciDB, TensorFlow and HDF5-based code in the same
analysis pipeline without converting between file formats. Under the hood, ArrayBridge controls I/O concur-
rency, data materialization and data placement to fully utilize warehouse-scale parallel file systems. ArrayBridge
does not modify the array file format API, so it remains backwards compatibility with legacy applications. In
other words, with ArrayBridge, scientists can simultaneously benefit from the I/O optimizations of a database
system and directly manipulate data through the existing API when they need to.

To address the scalability concern, we are developing algorithms that use high-performance networks more
efficiently. One example is an RDMA-aware data shuffling algorithm that directly converses with the network
adapter in InfiniBand verbs and shuffles data up to 4 x faster than the RDMA-aware MVAPICH implementation
of MPI. This impressive performance gain is achieved by carefully designing its data structures for concurrent
operations in a multi-threaded setting and by using a connectionless, datagram-based transport layer that scales
better but requires flow control and error detection in software. Another example is a parallel aggregation
algorithm that predicts bottlenecks caused by link congestion and then leverages partition similarity to transfer
less data over the congested link. We have prototyped both algorithms in Pythia [code.osu.edu/pythia], an open-
source distributed query execution engine.

Looking ahead, the modern datacenter is becoming more heterogeneous with the introduction of FPGA
nodes, many-core nodes, large memory nodes, GPU nodes and nodes with local NVMe-based storage. How to
harness heterogeneous hardware for data analysis is an open research problem.

Spyros Blanas
Ohio State
Columbus, OH
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Rising Star Award co-Winner

I am very honored to win this prestigious award. I would like to take this opportunity to thank TCDE com-
mittee members, award committees, and especially my nominators, for recognizing my research contributions
to human-in-the-loop data analytics. I also want to thank my research collaborators and my graduate students.
Without them, I would not be able to achieve what I achieved today. In particular, I want to thank five people,
who have made a tremendous impact on my research career in the past ten years.

I did my Ph.D. in the Database Group at Tsinghua University from 2008 to 2013. Profs. Jianhua Feng and
Guoliang Li were my Ph.D. supervisors. I want to say thanks to them from the bottom of my heart. They helped
me grow from a fresh graduate, who knew little about SIGMOD, VLDB, or ICDE, to an independent researcher,
who was able to independently publish a high-quality research paper in these top conferences. My Ph.D. thesis
is entitled “CrowdER: Crowdsourcing Entity Resolution”. It discussed how to build a hybrid human-machine
Entity Resolution system, and validated that such a hybrid system can achieve both good efficiency and high
accuracy compared to machine-only or human-only alternatives. Due to these contributions, the thesis won the
China Computer Federation (CCF) Distinguished Dissertation Award (the most prestigious award for CS Ph.D.
students in China).

I visited AMPLab at UC Berkeley for six months from 2011 to 2012, and then did a Postdoc for two years
and a half from 2013 to 2015. I was so fortunate to have Prof. Michael Franklin as my supervisor and Prof.
Tim Kraska as my mentor. They helped me grow from a fresh Ph.D. graduate, who had little experience to lead
a large project, to a mature postdoc, who had known how to think big and do influential work. We started the
SampleClean project with the vision of scaling up data cleaning and crowdsourcing to big data. I led a team of
two Ph.D. students and two undergraduates to develop the SampleClean system. The system was incorporated
into the BADS (Berkeley Data Analytics Stack). It helps users to extract value from dirty data, at significantly
reduced time and cost.

I joined the School of Computing Science at Simon Fraser University (SFU) as an assistant professor in
2016. Prof. Jian Pei was my mentor. I feel deeply grateful to Jian. He helped me grow from a postdoc, who had
no experience in setting up a research lab, to a junior faculty member, who has known how to launch a research
lab and manage a group of students. My lab’s mission is to speed up data science. We develop innovative
technologies and open-source tools for data scientists such that they can turn raw data into actionable insights in
a more efficient manner. We have already made a lot of progress on this mission.

e Data Exploration. We have built AQP++, an interactive analytics system that enables data scientists to query
a large database interactively when they only have limited hardware.

e Data Enrichment. We have built Deeper, a data enrichment system that can help data scientists to reduce
their time spent on data enrichment with Deep Web from hours to minutes.

e Data Labeling. We have built TARS, a label cleaning advisor that can provide valuable advice for data
scientists when they need to train or/and test a model using noisy labels.

I demonstrated these systems in my Big Data Science course (http://tiny.cc/sfu-ds). Many students
found them quite useful and tried to use them in their final projects.

In the past ten years, I feel lucky since I got so much support from so many people in the database community.
A new journey has begun. In the next ten years, I hope that I can be the one who helps students grow to what
they want to be and leads them to conduct database research that can make a big impact.

Jinnan Wang
Simon Fraser University
Vancouver, Canada
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Call for Participation for TCDE Chair Election

Dear IEEE TCDE members,

The Chair of IEEE Computer Society Technical Committee on Data Engineering (TCDE) is elected for a two
year period. The mandate of the current Chair, Xiaofang Zhou, expires at the end of this year and the election
of a Chair for the period 2019-2020 has begun. A Nominating Committee consisting of Kyu-Young Whang
(Chair) and Amr El Abbadi was formed on May 9th, 2018. After a thorough search, we have identified two
highly qualified candidates, Thomas Risse and Erich Neuhold, who have confirmed their willingness to serve.
Candidates bio-sketches and position statements appear in this issue of the Bulletin. The Nominating Commit-
tee encourages all members of TCDE who are IEEE CS members to vote to elect a new Chair. Voting will
be open from Sept. 15th until Oct. 15th, 2018. Those who wish to become a TCDE member, please visit
http://computer.org/jointcde
Kyu-Young Whang, Amr El Abbadi
IEEE TCDE Chair Nominating Committee
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Thomas Risse Biography and Statement

Biography

Thomas Risse is head of Electronic Services at the University Library J. C. Senckenberg of the Goethe Uni-
versity Frankfurt. Before joining the University Library he was deputy managing director of the L3S Research
Center and research group leader at L3S in Hannover, Germany. He received his diploma in Computer Science
(1997) and his PhD in Computer Science (2006) from the Darmstadt University of Technology (TU Darmstadt),
Germany. In 1998 he joined the Fraunhofer Institute for Integrated Publication System (FhG-IPSI) in Darm-
stadt where he worked in several European and industrial projects. From 2001-2006 he was the manager of the
division for Intelligent Information Environments.

He was the coordinator or technical director of several European projects in the area of digital libraries and
Web archives. He was also involved in the European research infrastructure project SoBigData on ethic-sensitive
social mining. Thomas Risse serves regularly as program committee member or project reviewer. He published
several papers at the relevant international conferences. In addition he is member of the Steering Committeeof
theICDE conference (IEEE International Conference on Data Engineering), member of the Executive Committee
of the IEEE Technical Committee on Data Engineering (TCDE), and member of the steering committee of the
conference on Theory and Practice of Digital Libraries (TPDL). Thomas Risse was general co-chair of the 20th
International Conference on Theory and Practice of Digital Libraries (TPDL 2016) and served as the local and
financial chair of the 27th International Conference on Data Engineering (ICDE) in 2011 in Hannover.

Position statement

TCDE is a flagship international society for data management and database systems researchers and practi-
tioners. If I get elected and have to honor to serve as the next TCDE Chair, I will continue the already well
established collaboration between TCDE, ICDE Steering committee, VLDB Endowment and ACM SIGMOD
to ensure that ICDE maintains its status as a top-tier international data management conference. In addition,
the collaboration with other IEEE database related conference like BigData, ASONAM and MDM will be ex-
tended for the benefit of the community. I will work together with the TCDE executive committee to increase
the visibility and to provide more benefits for TCDE members by increasing the number of local TCDE chapters
and activities. In this context, I will work with the successful Data Engineering Bulletin editorial board on its
evolution to keep it as a high value information source for all TCDE members. In order to give our members
more recognition the TCDE awards will further promoted and developed. Since a healthy budget is important to
ensure high quality conference and community activities, a stable income should be generated by increasing the
number international high quality conferences.

Thomas Risse
Goethe University
Frankfurt, Germany
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Erich Neuhold Biography and Statement

Biography

Erich Neuhold is Honorary Professor for Computer Science at the University of Vienna and Emeritus of the
Technical University of Darmstadt. Until April 2005 he was Director of the Research Institute Fraunhofer IPSI
and Professor at the Technical University of Darmstadt, Germany. His expertise includes semantic modeling
of relational, unstructured and interoperable Databases, Digital Libraries, Archives and Web Information Stores
like the Semantic Web and Linked Data and their applications. He has also been involved in security and privacy
issues as they concern these fields. He has been Chair of TCDE 2002-2006 and is or has been on the Steering
Committees of many conferences, among them ICDE and JCDL and has been involved in many congress,
conference and workshop activities and in governmental and corporate bodies. He is a Fellow of IEEE and of
the GI, Germany. He is a member of the T&C Board of IEEE-CS and Chair of the IEEE-CS CAC committee
that is concerned about the quality of IEEE co-sponsored conferences. He has published four books and about
200 papers in Journals and Conferences.

Position statement

TCDE is a flagship international society for researchers and practitioners in data management systems and Web
based information stores. I have been chairing it during the period 2002 to 2006 and it is a great honor that
I have been asked to be a candidate to serve again. Should I have the honor to be elected as the next TCDE
Chair, I will continue to work closely with the ICDE steering committee as well as the VLDB Endowment
and ACM SIGMOD to ensure that ICDE maintains its status as a top-tier international database conference. I
will work with the Data Engineering Bulletin editorial board to keep the bulletin the highly valued information
source for all TCDE members and others in the field. I will try to follow the very successful former and current
TCDE Chairs and work with the TCDE executive committee to continue to promote TCDE membership. 1
will also work with them to extend the number of high quality international conferences sponsored by TCDE
and manage them carefully to ensure their quality and to build a healthy budget for TCDE to invest in the
future of TCDE community. I also would like to strengthen our visibility by cooperating with more regional
top quality conferences, workshops and seminars in different countries in order to provide more benefits and a
region-focused collaboration platform for our members. We will continue to promote TCDE awards to give our
members more recognition inside and outside of IEEE.

Erich Neuhold
University of Vienna
Vienna, Austria
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Call for Papers

35t |[EEE International Conference
on Data Engineering

8-12 April 2019, Macau SAR, China ]

The annual IEEE International Conference on Data Engineering (ICDE) addresses research issues in designing,
building, managing and evaluating advanced data-intensive systems and applications. It is a leading forum
for researchers, practitioners, developers, and users to explore cutting-edge ideas and to exchange
techniques, tools, and experiences. The 35! ICDE will take place at Macau, China, a beautiful seaside city
where the old eastern and western cultures as well as the modern civilization are well integrated.

Topics of Interest

We encourage submissions of high quality original

research contributions in the following areas. We

also welcome any original contributions that may

cross the boundaries among areas or point in other

novel directions of interest to the database research

community:

. Benchmarking, Performance Modelling, and
Tuning

* Data Integration, Metadata Management, and
Interoperability

*  Data Mining and Knowledge Discovery

* Data Models, Semantics, Query languages

. Data Provenance, cleaning, curation

* Data Science

*  Data Stream Systems and Sensor Networks

»  Data Visualization and Interactive Data
Exploration

*  Database Privacy, Security, and Trust

* Distributed, Parallel and P2P Data Management

*  Graphs, RDF, Web Data and Social Networks

*  Database technology for machine learning

*  Modern Hardware and In-Memory Database
Systems

* Query Processing, Indexing, and Optimization

*  Search and Information extraction

*  Strings, Texts, and Keyword Search

*  Temporal, Spatial, Mobile and Multimedia

*  Uncertain, Probabilistic Databases

*  Workflows, Scientific Data Management

Important Dates

For the first time in ICDE, ICDE2019 will have two
rounds’ submissions. All deadlines in the
following are 11:59PM US PDT.

First Round:

Abstract submission due: May 25, 2018
Submission due: June 1, 2018

Notification to authors
(Accept/Revise/Reject): August 10, 2018
Revisions due: September 7, 2018
Notification to authors

(Accept/Reject): September 28, 2018
Camera-ready copy due: October 19, 2018
Second Round:

Abstract submission due: September 28, 2018
Submission due: October 5, 2018
Notification to authors
(Accept/Revise/Reject): December 14th, 2018
Revisions due: January 11th, 2019
Notification to authors

(Accept/Reject): February 1,2019
Camera-ready copy due: February 22, 2019

General Co-Chairs

Christian S. Jensen, Aalborg University
Lionel M. Ni, University of Macau

Tamer Ozsu, University of Waterloo

PC Co-Chairs

Wenfei Fan, University of Edinburgh
Xuemin Lin, University of New South Wales
Divesh Srivastava, AT&T Labs Research

For more details: http://conferences.cis.umac.mo/icde2019/
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(b}) Data It’s FREE to join!

A

V&N Engineering

TCDE

tab.computer.org/tcde/

The Technical Committee on Data Engineering (TCDE) of the IEEE Computer Society is concerned with the role of
data in the design, development, management and utilization of information systems.

e Data Management Systems and Modern Hardware/Software Platforms
o Data Models, Data Integration, Semantics and Data Quality
e  Spatial, Temporal, Graph, Scientific, Statistical and Multimedia Databases
e Data Mining, Data Warehousing, and OLAP
e Big Data, Streams and Clouds
o Information Management, Distribution, Mobility, and the WWW
e Data Security, Privacy and Trust
e Performance, Experiments, and Analysis of Data Systems
The TCDE sponsors the International Conference on Data Engineering (ICDE). It publishes a quarterly newsletter, the

Data Engineering Bulletin. If you are a member of the IEEE Computer Society, you may join the TCDE and receive
copies of the Data Engineering Bulletin without cost. There are approximately 1000 members of the TCDE.

Join TCDE via Online or Fax

ONLINE: Follow the instructions Name
on this page: IEEE Member #

Mailing Address
www.computer.org/portal/web/tandc/joinatc 8

FAX: Complete your details and Country
fax this form to +61-7-3365 3248 Email

Phone
TCDE Mailing List Membership Questions? TCDE Chair
TCDE will occasionally email Xiaoyong Du Xiaofang Zhou
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