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Abstract

Diagnosing problems in data centers has always been a challenging problem due to their complexity and
heterogeneity. Among recent proposals for addressing this challenge, one promising approach leverages
provenance, which provides the fundamental functionality that is needed for performing fault diagnosis
and debugging—a way to track direct and indirect causal relationships between system states and their
changes. This information is valuable, since it permits system operators to tie observed symptoms of
a faults to their potential root causes. However, capturing provenance in a data center is challenging
because, at high data rates, it would impose a substantial cost. In this paper, we introduce techniques
that can help with this: We show how to reduce the cost of maintaining provenance by leveraging
structural similarities for compression, and by offloading expensive but highly parallel operations to
hardware. We also discuss our progress towards transforming provenance into compact actionable
diagnostic decisions to repair problems caused by misconfigurations and program bugs.

1 Introduction

Data center diagnostics has always been a challenging problem: with changing workloads, complex protocols,
and a heterogeneous mix of devices, system faults can happen in data centers for many different reasons, in-
cluding design flaws, software bugs, and security vulnerabilities. The recent move towards software-defined
networking (SDN) has further added to this complexity: networks are now fully programmable. This provides
the operator with great flexibility and power, but, at the samew time, a buggy controller program can introduce
subtle malfunctions into the network that can be very difficult to find.

The research community has recognized this challenge [19], and has responded by developing a line of
new diagnostic tools [20,26,27]. One approach, in particular, is based on provenance — a concept that was
originally developed in the database community [4] but that has recently found new uses in the networking
domain [9,52,59,61]. Provenance provides the fundamental functionality required for performing fault diagnosis
and debugging—the capability to “explain” the existence (or change) of system state. Provenance is a form of
metadata that tracks direct and indirect causal relationships between system states and state changes. Such
information is of great value, especially in complex systems like data centers, since it permits system operators
to tie observed faults to their potential root causes, and to assess the damage that these faults may have caused.
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Provenance has been successfully applied to a wide range of areas, including distributed systems. In earlier
work [8], we have already discussed some of the challenges and sketched generalizations of the provenance
model that can help to address them. This paper focuses on our experience in adopting provenance for diagnosing
data centers, and the unique challenges we faced during this process. First of all, given the ever-increasing
amount of data processed and stored at data centers, the storage and computation overhead for provenance
maintenance is high. This is especially important when provenance is used to track data-plane events — that is,
the flow of actual network packets, as opposed to merely control messages. It is not unusual for the data plane
to process data at a rate of several terabits per second, whereas control-plane messages are much less frequent.

We consider several techniques that could reduce the overhead of maintaining provenance. Besides tradi-
tional content-level compression techniques, such as gzip, we explore compression opportunities that leverage
the structure of provenance trees [10]. We observe that the provenance of different packets share significant
similarities in their structures, presenting opportunities for provenance compression across different provenance
trees. For example, whenever a new packet traverses the network, its entire provenance tree is created and main-
tained. However, it is not hard to realize that all the packets in the same flow (i.e., packets with same source
and destination) would take the same route and therefore have almost identical provenance trees. Therefore,
we can achieve massive storage savings if we remove the observed redundancy when maintaining provenance.
Maintaining provenance with security guarantees adds another layer of overhead—cross-nodes communications
need to be cryptographically signed and acknowledged to be resilient to tampering of provenance [59]. To amor-
tize the cost of these cryptographic operations, we leverage the use of Merkle Hash Trees (MHTs) and offload
embarrassingly parallel operations to hardware such as FPGAs [7].

Another challenges is that provenance, at least in its raw state from runtime recording, often times is still
hard for human users to understand. In fact, provenance trees can be quite large for system admins to reason
about. For example, in an average-sized SDN, the provenance graph of why a specific packet p arrived at
server s can easily contain hundreds of vertices. Identifying the root cause of an observed system problem
is still a non-trivial task even for experts. To address this challenge, we consider approaches that distill from
provenance compact and actionable information or suggestions for system admins. We explore an approach
called differential provenance [9] that repairs misconfigurations through differential analysis on the provenance
for working and non-working execution instances. The result of such differential analysis pinpoints the exact
root causes that caused two execution instance to diverge. Meta provenance [50] takes a step further and reason
about not only causality among data but also dependencies on program code. We treat the code as another kind
of data, where syntactic elements of the program is captured as meta tuples and its semantics as meta rules. Such
capability of reasoning dependencies of execution results on different components in a program empowers us
to automatically repair bugs in the program. Given that there are literally an infinite number of possible way to
modify a program, it is infeasible to use meta provenance to repair all possible bugs. We focus on bugs that do
not require significant rewrite of the program.

In the remainder of the paper, we briefly introduce the concept of provenance and our system model in
Section 2. Section 3 presents our recent progress in reducing the provenance maintenance overhead when
applying provenance to data center networks. Section 4 further discusses our effort in transforming provenance
into compact actionable diagnostic decisions. Finally, we present related work in Section 5 and conclude the
paper in Section 6 with a discussion on future research directions in applying provenance to system diagnosis.

2 Background

Provenance is a general concept that has been applied to many kinds of systems written in many different
languages. For ease of exposition, we will use a declarative language—specifically, network datalog (ND-
log) [30]—to explain our approach. The main reason is that, in this language, it is relatively easy to introduce
the causality relations that provenance needs to track.
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Figure 1: Example scenario. Figure 2: Example provenance.

In NDlog, the state of a node (switch, controller, or server) is modeled as a set of fables, each of which
contains a number of fuples, such as configuration state or network events. For instance, an SDN switch might
contain a table called f1owtable, where each tuple represents a flow entry. Tuples can be manually inserted
or programmatically derived from other tuples; in the former case, we refer to them as base tuples, and in the
latter case as derived tuples.

NDlog programs consist of rules that describe how tuples should be derived from each other. For example,
therulerl: a (@X,P) : =b (@X, Q) , 0=2«P says that a tuple a (@X, P) should be derived on node X whenever
a) there is also a tuple b (@X, Q) on that node, and b) Q=2 +P. The ID after the @ symbol specifies the node on
which the tuple resides, and the : — symbol is the derivation operator. Rules may include tuples from different
nodes: for instance, r2: ¢ (@X,P) :—c (@Y, P) says that tuples in table c on node Y should be sent to node X.

In NDlog, the provenance of a tuple is easy to see, even syntactically: if a tuple (say, a (@X, 5) ) was derived
using rule r1 from above, then it must be the case that all the preconditions in r1 were true (here, b (@X, 10)),
and all the constraints in r1 were satisfied (in this case, 10=2+5). This concept can be applied recursively
to explain the existence of the preconditions until a set of base tuples (such as configuration settings or packets
from external links) is reached that cannot be explained further. The result is a provenance tree, in which vertices
represent tuples or rule derivations that generate these tuples, and edges represent direct causality.

Example Provenance. Figure 1 shows a (very simple) illustrative scenario with a network that connects two
servers (one DNS server n4 and one HTTP server n3) to the Internet. Here, switch n1 and n2 each have a
routing table — each routing entry records the next hop towards a given destination. Each node runs an NDlog
program consisting of two rules:

rl: packet (@N,S,D,Data) :— packet (@L,S,D,Data), route(Q@L,D,N).
r2: recv(@L,S,D,Data) : — packet (@L, S,D,Data), D==L.

Rule r1 forwards a packet to the next hop, based on the destination of the packet and the local routing informa-
tion. Rule r2 receives a packet if the packet’s destination is identical to the local address.

Figure 2 sketches the provenance of an HTTP packet that was sucessfully delivered at the HTTP server n3.
It reads roughly as follows: the packet arrived at switch n1 and was routed to switch n2 because it matched
a routing entry route (@nl, n3,n2) installed at n1. The packet was further forwarded to and delivered at
n3. Due to a faulty routing entry on switch n2 (highlighted in red in Figure 1), DNS requests are misrouted to
the HTTP server. To diagnose this problem, the operator can similarly query the provenance of a DNS packet,
which would reveal that DNS requests were misrouted by n3 after they arrive n2 due to the faulty routing entry
route (Q@nl,n4,n3).
Application of Provenance in Diagnosing Distributed Systems. In prior work, we have already applied prove-
nance in several common diagnostic scenarios. ExSPAN [61], our first solution, is a general-purpose system
that can maintain and query provenance for large distributed systems. SNP [59] added security features that can
prevent an adversary from tampering with the provenance to cover her tracks; this made it possible to use prove-
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nance not just for diagnostics but also for forensics. Y! [52] introduced the concept of negative provenance,
which can explain not only why a certain event did occur, but also why an event failed to occur.

3 Provenance Maintenance

The potentially large maintenance cost has been a long-standing challenge in provenance research [6] [24]. This
becomes particularly challenging for systems like data centers that deal with frequent and high-volume data
packets. When there are streams of incoming events, the provenance maintenance overhead, in terms of both
computation and storage overhead, can quickly become prohibitively expensive. We present in this section two
mechanisms for harnessing the maintenance overhead of provenance in data centers.

3.1 Provenance Compression through Program Analysis

Our first approach in reducing the maintenance overhead of provenance is based on the observation that there is
much redundancy when maintaining provenance in a network. For example, when two packets share the same
source and destination addresses, their provenances are almost identical: they share all the intermediate traversed
nodes, and only differ at the packet payload. This suggests opportunity for significant storage reduction.

Based on this observation, we introduce an equivalence-based, online provenance compression mechanism,
reducing the storage overhead of provenance effectively and efficiently [10]. This mechanism (1) groups prove-
nance trees into equivalence classes, so that the storage of provenance trees of the same equivalence class could
be compressed by sharing one representative provenance tree; and (2) enables efficient equivalence identification
at runtime through the value comparison of equivalence keys—a subset of attributes of the input event identified
by static analysis at compile time. Our experimental results demonstrate that this compression technique allows
for significant—often orders of magnitude—storage reduction.

Provenance equivalence. One of our contributions is to show that the equivalence of provenance trees can be
determined by comparing the values of a subset of attributes of the input tuple, if the program is written as a
Distributed Event-driven Linear Program’ (DELP). Intuitively, a DELP is an NDlog program that satisfy the
following constraints:

¢ Rules are event-driven. Each rule r can be specified in the form: [head] : —|event|, [conditions], where
[event] is a body relation designated by the programmer, and [conditions] are all non-event body atoms.

¢ Rules are linearly dependent. For consecutive rules r; and r; 11, the head relation hd of r; is exactly the
event relation in r;4 1.

e Events don’t have side-effects. For each head relation Ad in any rule r;, hd is not used as a non-event
relation in another rule ;.

In a typical network application, events are high-speeding streaming relations that are often not materialized;
non-event relations represent the network states. For example, in the packet forwarding program, the events are
the packet tuples that flow through the network, and the route relation is a non-event relation, and is either
updated manually or through a network routing protocol. In either case, it changes slowly compared to the fast-
rate incoming packets. The distinction between events and non-event relations is provided by the programmer
or is decided through profiling during program execution.

For DELP programs, we define the equivalence relation between two provenance trees #r and ¢r” as follows:
trand tr’ are equivalent, if and only if they only differ at two nodes: the root node that represents the output tuple
and the leaf node that represents the input tuple. This definition implies that two equivalent provenance trees are
structurally identical too. For example, in Figure 1, if we insert another packet packet(Qnl,nl,n3, “data2”), it
will generate another provenance tree that is equivalent to the tree in Figure 2 — the only difference is the payload
of the leaf packet tuple and the root recv tuple.
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Figure 3: An example execution of the packet forwarding program in Section 2. The program is first triggered
by packet(@Qnl,nl,n3,“data”), followed by packet(@nl,nl, n3, “url”).

Based on the definition, the equivalence of two provenance trees can be determined through direct compari-
son: if all vertices other than the leaf tuple and the root tuple are identical, the two trees are equivalent. However,
such comparison is inefficient, especially when provenance trees are large and the incoming tuples arrive at a
fast rate, as is often the case with today’s data centers.

We identified that, for DELP programs, equivalence classes can be determined by a subset of attributes in
the events. We call these attributes equivalence keys, and show that they can be identified through static analysis
of the program that generates the provenance trees. For example, the packet forwarding program in Section 2 is
a DELP, and the equivalence keys are L, D of the packet tuple.

Online provenance compression. Once the equivalence keys are identified, we adopt an online provenance
compression scheme that compresses equivalent (distributed) provenance trees. In our compression scheme, the
execution of a DELP, triggered by an event tuple ev, is composed of three stages. Figure 3 presents an example
execution of the provenance compression scheme, consisting of two packets traversing the network topology
(from n1 to n3) in Figure 1. packet(@n1,nl,n3, “data”) is first inserted for execution (represented by the solid
arrows), followed by packet(@Qnl,nl,n3, “url”) (represented by the dashed arrows). The three stages of online
compression are logically separated with vertical dashed lines.

e Stage 1: Equivalence keys checking. Upon receiving an input event ev, the runtime system first checks
whether the value of ev’s equivalence keys have been seen before, by checking a hash table that stores
all seen equivalence keys. If ev’s equivalence keys have a value that already exists in the hash table, a
Boolean flag existFlag will be created and set to True. This existFlag will accompany ev throughout
the execution, notifying downstream nodes to avoid maintaining the concrete provenance tree. Otherwise,
existFlag is set to False. For example, in Figure 3, when the first packet packet(@Qnl, nl,n3, “data”)
arrives, its equivalence keys (n1, n8) have never been encountered before, so its existFlag is False. But
existFlag of the second packet packet(@Qnl,nl,n3,“url”) is set to True.

e Stage 2: Online provenance maintenance. For each rule r triggered in the execution, we selectively
maintain the provenance information based on existFlag’s value. if existFlag is Fualse, the provenance
nodes are maintained locally. Otherwise, no provenance information is maintained at all. For example, in
Figure 3, when packet(@Qn2,n1,n3, “data”) triggers rule 1 at node n2, the existFlag is False. Therefore,
we maintain its provenance. In comparison, we simply execute r2 without recording any provenance
information for packet(@n2,n1,n3, “url”).

e Stage 3: Output tuple provenance maintenance. For the execution whose eristFlag is True, we need
to associate its output tuple to the shared provenance tree maintained by previous execution. To do this,
we use a hash table hmap to store the reference to the shared provenance tree, wherein the key is the hash
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Capabilities
System Goal Information offered Secure | Supports | Covers entire | Fine-grained | Fine-grained
evidence | forensics Internet entities traces
Tulip [32] Fault localization Loss, delay, reordering X X v’ v (Routers) v (Packets)
NetPolice [57] Traffic differentiation detection Loss X X v’ x (ISPs) X (Flows)
SPIE [46] IP traceback Backward routes X v’ v’ v (Routers) v (Packets)
NetSight [21] Network debugging Packet histories X v’ X v (Routers) v (Packets)
Netdiff [33] ISP performance benchmarking Delay X X v’ x (ISPs) v~ (Packets)
Paris-traceroute [3] Load-balancer detection Load-balanced routes X X v’ v (Routers) v (Packets)
HAL [17] Packet attestation Packet transmissions v’ v’ X v (Links) v (Packets)
AudlIt [2] Performance accountability Loss, delay X X v’ x (ISPs) v (Both)
SPP Single network-level primitive All of the above v’ v’ v’ v (Routers) v (Packets)

Table 12: Comparison between SPP and some existing diagnostic and forensic primitives.

value of the equivalence keys, and the value is a pointer to the shared provenance tree. We then associate
each output tuple of the same equivalence class to this shared representative provenance tree, by looking
up the equivalence keys’ values in hAmap.

Our evaluation shows that the equivalence-based, online compression techniques achieve orders of magnitude
reduction in storage and significant reduction in query latency, with only negligible network overhead added to
each monitored network application at runtime.

3.2 Hardware-enabled Secure Provenance Collection

Another aspect of the challenge is to maintain provenance over high-speed traffic with security guarantees.
Modern routers can process packets at Gigabits per second, so maintaining provenance, even without security
guarantees, can result in non-trivial overhead; when we need to additionally achieve security guarantees, heavy-
weight cryptographic operations are necessary, further amplifying the overhead. In [7], we designed Secure
Packet Provenance (SPP), which addresses these challenges when maintaining per-packet provenance for high-
speed Internet traffic. We used two key techniques to lower the overhead. First, we designed in SPP a lightweight
protocol that can collect per-packet provenance data with tamper-proof evidence. The design avoids extensive
use of heavy-weight cryptographic operations; instead, it uses Merkle Hash Trees (MHT), a data structure that
allows efficient signatures over a large batch of packets. This greatly improves performance by reducing the
processing logic mostly to hashing. Second, SPP offloaded the hashing and MHT construction to NetFPGAs to
utilize its high parallelism, further improving the efficiency to maintain provenance over high-speed traffic.

Our key design of the SPP primitive is shown in Figure 4a. It consists of several modules: a) a hash module,
which hashes each incoming packet at line speed, and stores the hash values at an epoch buffer; b) the epoch
buffer temporarily holds packet hashes in the most recent batch, and sends the hashes to the MHT constructor
for hash tree construction; c) the MHT constructor builds the MHT over the most recent epoch of packet hashes,
and produces a top-level hash as the final commitment of the current batch; and d) the loss detection buffer
(shown as M in the figure) identifies lost packets in the epoch, and feeds the information back to the sender so
that the sender and receiver can “agree” on which packets have been successfully delivered. We have further
sketched the MHT algorithm using an example of four packets in Figure 4b.

We have demonstrated that SPP is able to collect per-packet provenance data at line rate, and that it incurs low
overheads in terms of storage and bandwidth. Moreover, with SPP, we have shown that many challenging tasks
for Internet diagnostics and forensics can be approximated on top of this primitive with very few lines of code.
Table 12 shows a comparison between SPP and other identified diagnostic and forensic tasks in the literature, and
that network provenance can be a rather useful primitive that, once enabled, benefits many existing applications.
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Figure 4: The design of the SPP primitive.

4 Provenance for Diagnostics

Collecting and maintaining provenance is just the first step towards diagnosing data centers. Provenance often
times is still hard for human users to understand. In fact, provenance trees can be quite large for system admins
to reason about. For example, in an average-sized SDN, the provenance graph of why a specific packet p
arrived at server s can easily contain hundreds of vertices [9,52]. To address this challenge, we introduce two
complementary approaches to distill from provenance compact and actionable suggestions for system admins.

4.1 Root Cause Detection with Differential Provenance

Our first approach explores the potential of repairing faults caused by misconfigurations through differential
analysis across provenance trees [9]. The key observation is that misconfigurations, especially the subtle ones
that need help of diagnostic tools, usually only affect a subset of traffic/nodes or only manifest themselves
sporadically. Therefore, an operator typically has collected both working and non-working instances of simi-
lar traffic or service. Contrasting the provenance for the working and non-working instances is likely to pro-
vide more insights than studying only the non-working instance: it very much resembles the human debugging
procedure—if we can understand why the two provenance are different and how to align them, we can likely
identify the root cause of the problem. We call this approach differential provenance [9].

One challenge in differential provenance is that a small, initial difference can have a significant magnifying
effect, for example, packets may take two completely different path and arrive at different destinations due
to a small difference in the routing table of a gateway router. Therefore, a superficial “tree-diff”” approach is
likely to generate unusable results; our case studies have confirmed that the differences between working and
non-working provenance trees can be even larger than the original provenance trees. To address this challenge,
differential provenance identifies the first diverging point in the working and non-working provenance. We “roll
back” the network execution to that point, change the mismatched tuple(s) on the non-working provenance tree
to the correct version, and then “roll forward” the execution. We repeat this process until the two provenance
are completely aligned.

Differential provenance has been demonstrated to be quite effective in a number of case studies on repairing
software-defined networks and Hadoop MapReduce jobs. Our results show that it can always pinpoint exactly
the induced misconfigurations to be the root cause of observed network problems.

4.2 Automated Program Patch with Meta Provenance

Differential provenance by itself is still fundamentally unable to help when a fault is caused by a bug in the
program code: it can answer questions about the data in the network — such as “show me the configuration
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entries that have caused this packet to be dropped” — but it treats the code as given and immutable, so it cannot
answer questions such as “show me the line in the controller program that has caused this packet to be dropped”.

To address this limitation, we have generalized traditional provenance to meta provenance [49,50]. Our idea
is, essentially, to treat the code as another kind of data: we represent the syntactic elements of the program as a
special class of tuples, which we call mera tuples, and we capture the semantics of the programming language
(e.g., a language for SDN controllers, such as Pyretic [36]) with a set of special rules, which we call meta rules.
For instance, an NDlog rule could be represented as meta tuples for the head and for each precondition, and
one of the meta rules for NDlog could say that the tuple at the head of a rule is derived whenever all of the
preconditions hold at the same time.

Once we have a meta model for a given language, we use a form of negative provenance [51,52] at the meta
level to ask why some conditions did not hold. For instance, if the operator observes that a certain packet has
been dropped and failed to reach a certain server, she can generate the negative provenance of the packet’s arrival
at that server (which is essentially asking “Why did this packet not reach that particular server?”’). Negative
provenance will then generate a recursive explanation, whose leaves include not just changes to data, but also
changes to code; in this process, we use solvers such as Z3 [12] to find concrete values for the changes and thus
generate repairs. Unlike positive provenance trees, negative provenance trees are typically extremely large, or
even infinite—there are almost always many different ways to “fix” a given problem, ranging from small tweaks
to rewriting the entire program. With the expectation that it is infeasible to fix programs that require significant
or even complete rewrite, we prioritize modifications that minimize changes to the original program.

Once potential modifications are identified, we use “backtesting” to further examine each of them and eval-
uate whether it is actually a “correct” modification. That is, given the same system configurations and external
inputs, the modified program should rectify faulty execution traces, and avoid altering the progress of execution
traces that are previously correct. We leverage multi-query optimization [16,31] from the database literature to
speed up the backtesting, which enables us to validate multiple repairs in a single run.

We have applied meta provenance to subsets of three different SDN controller languages: NDlog [30],
Pyretic [36], and Trema [48]. Results from several case studies show that our system can generate high-quality
repairs for realistic bugs, typically in less than one minute.

5 Related Work

Provenance. Provenance is a concept initiated from the database community [4], but it has recently been ap-
plied in several other areas, including network systems [52, 58—61], storage systems [37], cloud computing
platforms [23,40], and natural language processing [13]. Our work is mainly related to projects that use network
provenance for diagnostics in distributed systems. In this area, ExXSPAN [61] was the first system to maintain
network provenance at scale; SNP [59] added integrity guarantees in adversarial settings, DTaP [60] a temporal
dimension, and Y! [52] support for negative events. These systems generate an explanation on why some data
exist or do not exist, but provide limited support for further diagnosis such as providing suggestions for system
repair. There have been proposals for automating system repair based on provenance. Huang et al. [22] and
Meliou et al. [34,35] focus on instance-based explanations for missing answers, that is, how to obtain the miss-
ing answers by making modifications to the value of base instances (tuples); Why-Not [5] and ConQueR [47]
provide query-based explanations for SQL queries, which reveal over-constrained conditions in the queries and
suggest modifications to them.

System debugging and repair. Network debugging can be achieved by static analysis, e.g., as in Batfish [15],
Header Space Analysis [26], NetPlumber [25], VeriFlow [27], Libra [55] rcc [14], or dynamic testing, e.g.,
as in Minimal Causal Sequence analysis [43], DEMi [42], OFRewind [53], and ATPG [54]. Some domain-
specific languages, e.g., NetKAT [1], Flowlog [38], Kinect [28], can enable verification of specific classes
of SDN programs. The software engineering community has used genetic programming [29] and symbolic
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execution [39], for system repair; they are designed to fix small programs, or to propose specific kinds of fixes.
ClearView [41] mines invariants in programs, correlates violations with failures, and generates fixes at runtime;
ConfDiagnoser [56] compares correct and undesired executions to find suspicious predicates in the program; and
Sidiroglou et al. [44] runs attack vectors on instrumented applications and then generates fixes automatically.
These systems primarily rely on heuristics, whereas provenance-based approaches can track causality and can
thus pinpoint specific root causes.

6 Future Directions

Timing causality. Faulty temporal behaviors can happen in distribute systems. For instance, suppose that
a virtual machine takes unusually long to boot, because a misconfigured machine is overloading the shared
storage backend. Existing tools, such as DTaP [60] or Dapper [45], offer little help with this scenario — in fact,
the actual root cause (the misconfigured machine) would not even appear in the explanation! Because existing
tools only capture functional causality, that is, events which directly contributed to the occurrence of the observed
symptom, and will miss root causes that contributed only in terms of timing. We are currently studying ways
to generalize provenance to track not only functional causality but also temporal causality, which is any event
that has contributed to the timing of the observed symptom, regardless of whether it is functionally-related. This
should allow provenance to explain faulty temporal behaviors.

Causality networks. Existing work on provenance only explains why a single event did or did not come about.
While this is a useful starting point for diagnosis, it does not capture a range of other types of causality between
events. For instance, operators may be interested to know why two events e; and ey always happen at the same
time, or why e; and e; never happen at the same time, or even why only one of these events happens. To
capture such complex, inter-event causality, we would need to extend the existing provenance abstraction to
allow for reasoning about multiple events at the same time. Currently, we are looking at the possibility to extend
provenance to causal networks [18], which encodes the inter-dependencies among events, and then using causal
networks to answer queries of the more complex form. This advanced form of provenance may be helpful to
process diagnostic queries that cannot be easily answered with the current provenance tree abstraction.

Probabilistic causality. Another intriguing direction is to develop models and efficient evaluation for proba-
bilistic provenance. Unlike traditional provenance models, the inputs and derivations themselves are set to true
or false based on a probabilistic distribution. This is motivated by multiple scenarios. First, the use of machine
learning and model-based prediction means that a significant portion of causality relationships are inherently
probabilistic in nature. Second, in some environments, the derived provenance themselves can be subjected to
probabilistic distributions, for example, on a lossy communication channel, the likelihood of links being up or
packets being transmitted correctly may themselves be probabilistic. Finally, in the case of applications written
in a non-declarative language, the input-output dependencies themselves may be inferred probabilistically. A
key challenge is to maintain provenance for all possible combinations of variable assignment. Inspired by prior
work on probabilistic databases, a potential solution is to develop a provenance model based on the possible-
worlds semantics [11]. An associated challenge is potential of state explosion when evaluation probabilistic
provenance. One possible approach to address this challenge is to explore tradeoffs between accuracy and per-
formance (e.g., query latency, and communication overhead).
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