
Supporting Data Provenance in Data-Intensive Scalable
Computing Systems

Matteo Interlandi, Tyson Condie
Microsoft

Abstract

Debugging data processing logic in Data-Intensive Scalable Computing (DISC) systems is a difficult and
time consuming effort. Data provenance support is a key building block in libraries that aim to provide
debugging support for data processing pipelines. In this paper we report our experience in building
Titian: a data provenance system targeting the Apache Spark framework. Our focus here is to analyze
the design choices and trade offs that we and others made. Ultimately, we believe there is still more work
to do before reaching a widespread adoption of data provenance outside the research community.

1 Introduction

Data-Intensive Scalable Computing (DISC) systems, like Apache Hadoop [1] and Apache Spark [2], are being
used to analyze massive quantities of data. These DISC systems expose a programming model for authoring
data processing logic, which is compiled into a Directed Acyclic Graph (DAG) of data-parallel operators. The
root DAG operators consume data from an input source (e.g., HDFS), while downstream operators consume the
intermediate outputs from DAG predecessors. Scaling to large datasets is handled by partitioning the data and
assigning tasks that execute the operators on each partition.

Given its distributed and large-scale nature, debugging data processing logic in DISC environments can
be daunting. DISC systems expose a batch model of execution: applications are run in the cloud, and the
results, including notification of runtime failures, are sent back to users upon completion. Therefore, debugging
is mostly done post-mortem and the primary source of debugging information is an execution log. Another
common debugging pattern is trial-and-error iterations, where developers selectively replay a portion of their
data processing logic on input samples or subsets of intermediate data leading to erroneous results. Trial-and-
error debugging is often a slow and error prone process inasmuch as each iteration is executed afresh, and
users have to be manually filter records after each iteration. Only recently, a set of tools and libraries [4–6, 8]
have started to arise for helping users in interactively identifying the subset of data leading to failures, or to
optimize trial-and-error runs in a principled and automatic way. All these tools can be unlocked by a DISC
system equipped with the following capabilities: (1) scalable fine-grained data provenance (also referred to
data lineage) capturing introducing low overhead on the runtime; (2) interactive provenance query capabilities
enabled within the same host framework; and (3) a flexible and simple to use API allowing to seamlessly move
between provenance and data records without triggering any re-computation.

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

63

Newt [10] and RAMP [7] are two frameworks supporting data provenance in DISC systems (Hadoop in
this specific case). Unfortunately, none of them satisfy all three requirements: Newt is an external library
whereby the dataflow operators of the target DISC system are wrapped with fine-grained provenance capturing
logic downpouring provenance information to a storage layer (MySQL). While this design allows some level
of portability, we found that interactiveness is somehow restricted because a different system has to be used at
provenance query time. Conversely, RAMP tags data records with provenance information which are propagated
downstream and collected into HDFS. This design requires modification to DISC internals while only a limited
number of tracing queries are supported efficiently. Furthermore, scalability is suboptimal in both system as
a consequence of the overheads due to the transfer of provenance information between different sub-systems
(Newt) and downstream as tags (RAMP).

The main focus of this paper is to summarize our experience in building Titian [9]: a fine-grained prove-
nance framework specifically designed for the popular Apache Spark system, and satisfying the above three
requirements. Differently than RAMP and Newt, Titian was implemented with usability and scalability in mind:
provenance capturing and querying is performed on the same host system whereby users can employ the same
interface (i.e., RDD transformations [11]) to interactively author DISC programs and query provenance informa-
tion. By tightly integrating Titian within Spark, both provenance information can be captured with low overhead,
and data records can be accessed without any re-computation.

While these design choices made possible the development of several debugging functionalities and tools
on top of Titian [4–6, 8], we believe several limitations and open questions remain. Specifically, we found that
targeting Titian to Spark’s low-level (RDD) API makes it difficult to port to newer versions of Spark. Moreover,
mapping data provenance to high-level operations (e.g., SQL, Machine Learning) is non-trivial, and would
require a complete overhaul of the framework. A more detailed discussion on these and other issues can be
found in Section 5.

In the remainder of the paper we will first discuss our porting of Newt and RAMP over Apache Spark,
and related usability and scalability difficulties (Section 3); then we will introduce Titian design and detailed
implementation (Section 4). The paper will end with a discussion on the lesson learned and future directions.
To properly put everything into context, we next briefly introduce Apache Spark.

2 Background: Apache Spark

Spark is a JVM-based DISC system exposing a programming model based on Resilient Distributed Datasets
(RDDs) [11]. The RDD abstraction provides transformations (e.g., map, reduce, filter, group-by, join, etc.) and
actions (e.g., count, collect) that operate on datasets partitioned over a cluster of nodes. A typical Spark program
executes a series of transformations ending with an action that returns a result value (e.g., the record count of
an RDD) to the Spark driver program. A driver program could be a user operating through the Spark terminal,
or it could be a standalone Scala program. In either case, RDDs lazily evaluate transformations by returning
a new RDD object that is specific to the transformation operation on the target input RDD(s). Actions trigger
the evaluation of an RDD, and all RDD transformations leading up to it. Internally, Spark translates a series
of RDD transformations into a DAG of stages, where each stage contains some sub-series of transformations
until a shuffle step is required (i.e., data must be re-partitioned). reduceByKey, groupBy and join are
common stage-breaking RDD transformations requiring data re-partitioning. The Spark scheduler is responsible
for executing each stage in topological order according to data dependencies. Stage execution is carried out by
tasks that perform the work (i.e., sequence of transformations) of a stage on each input partition. Records
composing each data partition are presented to a task in the form of an iterator i.e., Spark follows the record-at-
a-time dataflow model of databases. The final output stage evaluates the action that triggered the execution. The
action result values are collected from each task and returned to the driver program, which can eventually initiate
another series of transformations ending with an action. For fault-tolerance, within stages data is materialized on

64

Stage

Driver

Stage

Data Analyst

 RDD.map ...
 ...

...... Shuffle

lineage data lineage data

MySQL
Driver lineage query

lineage query

Provenance Analyst

Select *
FROM Lineage
...

RDD Program
Context

Lineage Query
Context

(a) With Newt, a MySQL cluster is co-located with
the DISC (i.e., Spark) one. The data analyst au-
thors and submits her / his program through the Spark
Driver. Spark with Newt instrumentation generates
data provenance data and stores it into local MySQL
instances. Once the job is completed, a provenance
analyst queries the generated provenance graph using
the MySQL Driver interface.

Stage

Driver

Stage

Data Analyst

 RDD.map ...
 ...

...
Shuffle

lineage data

Driver
lineage query

Provenance Analyst

RDD.filter ...
...

HDFS

RDD Program
Context

Lineage Query
Context

Tags

(b) With the RAMP instrumentation, provenance
records are propagated downstream and saved into
HDF. Data and provenance analysts use the same
RDD interface. However interactiveness is limited
since two different contexts are required.

Figure 1: The Newt and RAMP system approach for DISC provenance.

persistent memory and re-partitioned. Spark additionally allows programmer to cache RDDs in memory. When
a cached RDD is scheduled for execution, Spark’s BlockManager eagerly retrieves the saved RDD data instead
of triggering the evaluation of preceding RDDs. This mechanism is particularly useful for programs containing
iterations.

3 Data Provenance in DISC: RAMP and Newt

Our initial work in adding fine-grained provenance support to Spark leveraged RAMP and Newt designs. Dur-
ing this exercise, we encountered a number of issues, including scalability (the sheer amount of fine-grained
provenance data that could be captured and used for tracing), job overhead (the per-job slowdown incurred from
data provenance capture), and usability (both provide limited support for provenance queries). Newt operates
externally to the target DISC system, making it more general than Titian. However, the Newt design prevents a
unified programming environment, in which both the data and its provenance can be queried in the same run-
time. RAMP is more tightly integrated into the target DISC system (e.g., Hadoop MapReduce), providing better
scalability, but, like Newt, the RAMP design lacks a unified solution for data and provenance analysis.

In the following we present a qualitative analysis of our experience in porting Newt and RAMP over Spark.
For a more quantitative evaluation, we refer interested readers to [9]. Figure 1 pictorially summarizes the Newt
and RAMP instrumentation of Spark.

65

3.1 Newt

Newt is a generic framework designed for collecting and querying fine-grained data provenance information
from any framework executing data transformations as logical operators. When porting Newt to Spark, we
avoided modifications to Spark runtime so that it could be leveraged in different versions of Spark. Newt
follows the agent model whereby target data transformations are instrument to capture provenance information
on operator inputs and operator outputs. Newt provides a simple addInput and addOutput API accepting
data records as input and generating timestamped unique provenance IDs (using hashing). IDs and timestamps
are streamed to a Newt client and saved into a local log file. Once program execution is complete, Newt uses the
timestamp values to infer the temporal order of outputs IDs relative to inputs provenance IDs to reconstruct the
original input-output relationships between records. All reconstructed input-output relationship pairs are then
loaded into an indexed association table stored in a MySQL distributed cluster co-located with the Spark cluster.

Capturing. Within Spark stages, the instrumentation for collecting data provenance using the Newt API is fairly
straightforward: we created two special map RDD transformations that generate input and output provenance
associations for each Spark stage using the addInput and addOutput API provided by Newt. These prove-
nance associations are then pushed by the Newt client to MySQL once the input partition has been processed to
completion. However, transformations such as reduceByKey and join require a shuffle step, during which
all records are materialized. The simple timestsamp-based API of Newt is not effective in generating minimal
provenance data because all input records end up being associated with each output record. Newt does provide
the ability to add an optional tag to each record (for instance to tag records belonging to the same group-by key)
so that only records with same tag are linked in the input-output association table. However tags need to be
propagated through the shuffle step, which could be supported by either (1) modifying the target program so that
shuffle operations (i.e., reduceByKey) accept as input pairs in the form (key, (value, tag)); or (2) modifying
the Spark internals in order to make propagations of tags transparent to users. The latter is the approach that
RAMP (and Titian) took, and will be explained in Section 3.2.

Querying. Provenance queries are executed in Newt as a series of SQL joins executed over the association
tables stored in the MySQL cluster. Queries are issued from a MySQL Driver node: a logically separated entity
from the Spark Driver. We found this approach suboptimal from a usability perspective because: (1) users have
to setup a MySQL cluster together with the DISC system cluster; (2) analysts needs to be proficient on two
systems in order to debug their programs; (3) for the system to be able to properly compose tracing query plans,
stored association tables need to be explicitly linked to form a dependency graph, mirroring the position they
occupy in the original input program; and (4) populating indexed MySQL tables starting from log files is time
consuming (on the order of minutes to hours depending on the data volume). The latter two points make the
Newt design difficult to use in interactive sessions.

Additionally, the raw intermediate data is not available in the Newt design, making it only relevant for tracing
back to the input datasets; further limiting its use in a (stepwise) debugger like setting. We did not explore
checkpointing (saving) the intermediate data in our Newt to Spark port since we had already hit a scalability
bottleneck when capturing the provenance alone.

Lessons Learned. Summarizing, from our initial experience of adding data provenance to Spark through Newt
we concluded the following:

• To minimize the overhead of tapping record pipelines, it is better by default to capture provenance in-
formation at stage boundary only, and eventually give to users the ability to manually inject additional
capturing points if necessary.

• Without any modification to Spark internals or user code, Newt timestamp-based approach is not able
to produce minimal input-output relationship tables for transformations requiring shuffling. As a conse-
quence, capturing and querying have higher overheads wrt more optimal solutions where only minimal

66

TaskContext

MapStart RDD-1 MapEnd

Stage

RDD-N

key-1
key

{ ID1, ID2, ... }
tags

......
provenance ID-1

...

provenance ID

... ...

(key-x, (value-x, { IDy, IDz, ... }))
(key-y, (value-y, { IDa, IDb, ... }))

...

{ IDy, IDz, ... }key-x
... ...

Shuffle

...

(1) (2)

(3)

(4)

provenance ID-x

Figure 2: In RAMP Provenance IDs are propagated downstream as record TAGS. IDs are first added to the
TaskContext (1). MapEnd pulls IDs from the context (2) and populate a local (to each task) hash table (3).
Finally, collected provenance identifiers are attached to the proper key-value pair (4).

Figure 3: RAMP approach of propagating provenance through the TaskContext and the shuffle step.

provenance information are saved.

• Data provenance capturing and querying have to be executed on the same (DISC) system if we want to
allow interactivity both to end users and to higher-level debugging toolkits.

• Intermediate data records (i.e., records stored into shuffle files) linked to provenance IDs have to be made
accessible by users in order to provide better insight into intermediate RDD transformations.

3.2 RAMP

The initial RAMP implementation was specifically tailored for MapReduce workflows, but its design can easily
be ported over Spark. Unlike Newt, RAMP integrates with the target DISC system (e.g., Spark) to efficiently tag
records with chains of (nested) provenance IDs that are propagated with the data records through the dataflow to
the final record outputs. These provenance chains can be seen as materializing backward tracing joins between
(virtual) association tables at the final program output. Indeed, with such design, backward tracing provenance
queries can be answered very efficiently. Conversely, forward queries are difficult and inefficient to support.

Capturing. When a Spark program is submitted for execution (i.e., when an action is called on an RDD), the
RDD dependencies are analyzed and two new map RDDs (rampMapStart and rampMapEnd) are injected
into the program before and after (respectively) any RDDs that translate into a single stage. For input datasets
that reside in Hadoop HDFS, Spark uses a HadoopRDD that emits the data record along with an offset of the
record in the input file. We inject a rampMapStart RDD that consumes these records and uses the partition
identifier and offset as provenance ID. Since RAMP does not timestamp records, input provenance IDs need to
be propagated downstream to the stage output, where associations are made with the relevant output provenance
IDs. We implement provenance propagation by adding the provenance ID of the current input record to the Spark
TaskContext, as shown in Figure 3 (1). Since records are evaluated one-at-a-time, each provenance ID is relevant
to all output records sent to rampMapEnd at the stage output1 (2). rampMapEnd is responsible for associating
each output record key with all relevant input provenance IDs (3). All the provenance IDs accumulated into
local hash tables have to be propagated as well, but this time through the shuffle step. To achieve this the
ExternalSorter component in Spark had to be modified so that records can be written in the form (key, (value,

1Note that Newt does not make this assumption, and instead relies on timestamps to infer (indeed overestimate) input-to-output
associations.

67

provenance ID) in the shuffle file, where provenance ID contains all the IDs accumulated into the has table under
key (4), i.e., previously stored provenance IDs are nested and used as a new provenance ID. Note that only
nested IDs need to be added to each record, since the hash of the key can be recomputed on the fly.

In the following stage, the ShuffleReader and Aggregator components had to be changed to make them
aware of the new record format. Apache Spark computes aggregates (a similar argument holds for joins) by
iterating over all records while updating the aggregate value linked to each key. The final aggregate values are
then surfaced to the successive RDD transformations as iterator. Hence, after the shuffling step provenance
information are generated in two phases. In the first phase, while the aggregator iterates through records, IDs
are removed so that aggregation can be computed as in regular Spark. The provenance IDs (each composed
by the sequence of IDs coming from the previous stage rampMapStart) are then used together with the key
to populate a new local hash table, as in rampMapEnd. Once the aggregation phase is completed, we store
the generated hash table containing all provenance IDs into a buffer in the TaskContext. In the second phase,
when the aggregated records are emitted as iterator, a rampReduceStart RDD previously injected in the
workflow pulls the current provenance ID from the buffer, appends a new provenance ID to it, and stores the
updated provenance chain into the TaskContext so that the rampMapEnd transformation at the end of the stage
can use it. The process repeat if other stages follow. The rampMapEnd in the final stage materialize all nested
provenance IDs in HDFS.

Querying. Provenance queries are implemented in RAMP by traversing and unnesting HDFS residing prove-
nance IDs. For this task, external scripts can be used, but interestingly also the DISC system itself. This later
approach is closer to our target of providing provenance querying capabilities withing the DISC framework.
Note however that in both cases, only backward tracing queries are supported efficiently, while forward tracing
requires to scan and unroll all provenance IDs. Additionally, RAMP model allows to access the (map) input and
(reduce) output data records connected with provenance IDs but no intermediate records.

Lessons Learned. The RAMP porting provided us the baseline for the Titian implementation.

• The offloading of provenance information to HDFS-stored files is simple and effective, and allows to use
the same DISC system for provenance querying.

• The approach of propagating nested provenance IDs introduces not negligible overheads into the runtime,
moreover redundant information are added to shuffle files.

• Both backward and forward tracing queries should be efficiently supported. Additionally, provenance
queries should be expressible in a declarative language leaving the system to decide how to properly
execute (and optimize) them.

4 Titian

Titian integrates with the Spark runtime to provide efficient data provenance support. Submitted programs are
rewritten to include lineage capturing (map) transformations at stage boundaries that generate provenance asso-
ciation tables, which are stored directly into Spark’s in-memory store (BlockManager). Additionally, partition
identifiers are propagated with data records through shuffle steps in order to optimize tracing queries.

Provenance information is exposed as RDDs, on which all Spark native transformations, including some
additional tracing capabilities, can be applied. This approach makes program execution and debugging a con-
tinuous process carried out interactively using the same Spark context. Figure 5 describes the Titian design.

4.1 Capturing

The entry point of Titian is the LineageContext that wraps the original SparkContext to enable data
provenance capabilities. When a program is submitted for execution, Titian rewrites the program by injecting

68

Block
Manager

Stage

Driver

Stage

Data Analyst
and

Provenance Analyst

 RDD.map ...
 ...

...

LineageRDD.filter...
...

...
Shuffle

lineage data
Block

Manager

lineage data

Tags

Figure 4: With Titian, users can author DISC programs and analyze their provenance trace interactively within
the same (Spark) context.

Figure 5: Titian design for DISC provenance.

Hadoop
LineageRDD RDD-1 Pre-Shuffle

LineageRDD

Stage-1

RDD-N

(1) (2)

Block
Manager

HDFS

Post-Shuffle
LineageRDD RDD-X End

LineageRDD

Stage-2

RDD-Z

(3) (4)

Block
Manager

Block
Manager

Shuffle step

Association table (n-to-1)

iid-1
inputID

...
oid-1

outputID

...
iid-a

inputID

...
oid-a

outputID

...

Output

iid-x
inputID

...
oid-x

outputID

...

Association table (n-to-1) Association table (n-to-1)

Figure 6: A two stage program instrumented with Titian.

LineageRDD transformations at stage boundaries, as shown in Figure 6. LineageRDDs can be classified into
four types based on where they are positioned in the program.

(1) Program Input. Titian adds a HadoopLineageRDD or a ParallelizeLineageRDD, based on whether input
records are fetched from HDFS or directly from the driver. The implementation of these LineageRDDs is
similar to the rampMapStart transformation previously described in Section 3.2. For each input data record,
an unique INPUTID (such as the filename, partition id and offset in an HDFS file) is propagated to the stage
output using the TaskContext.2

A stage ends when one of the following operations occur: reduction (i.e., reduceByKey), generic aggregation
(e.g., groupBy), or co-grouping operators (e.g., join, union, etc.). The differences between the three are
both in the implementation and in the output format. Spark injects a combiner step when a reduction operation
is requested, while generic aggregation is performed without a combiner. In both cases, the successive stage
starts with an RDD iterating over a sequence of pairs where the first element is the grouping key, while the
second element is the related aggregate value. Conversely, co-grouping (similarly to generic aggregation) uses
no combiner, and outputs a sequences of pairs composed by the grouping key and an iterator over all the values.
Join results are produced by flattening the co-group output. Next, we describe how we take these output results,
generate identifiers for them, and associate them with the relevant input record identifier.

2Input records follow at 1-to-1 mapping, avoiding the need to generate association tables at this point.

69

(2) Pre-Shuffle. Before the shuffle step, Titian injects a proper LineageRDD based on the operation the pro-
gram is implementing: i.e., PreReduceLineageRDD in case of reduceByKey, PreGroupLineageRDD for
groupBy, and PreCoGroupLineageRDD for a transformation requiring co-grouping. Pairs of ids (INPUTID,
OUTPUTID) are generated and buffered in memory by each operator, where INPUTID is the tag of the record
propagated from some other LineageRDD upstream, and OUTPUTID is the hash of the key of the record. Addi-
tionally, Titian attaches to each shuffled record a partition ID so that post-shuffle records can be efficiently joined
with pre-shuffle records i.e., the partition ID indicates which pre-shuffle partitions need to be considered; without
this information, we would need to join with all pre-shuffle partitions, which is expense for tracing starting from
a small set of output records.

(3) Post-Shuffle. In the successive stage following the shuffle step, Titian rewrites the program workflow by
substituting Spark default ShuffleReader with one of the three ReduceShuffleReader, GroupShuffleReader, and
CoGroupShuffleReader. Additionally, a PostReduceLineageRDD, PostGroupLineageRDD and PostCoGroup
LineageRDD are added to the program based on its semantics. ReduceShuffleReader and GroupShuffleReader
follows the same logic of the previously introduced RampReduceStart. Instead, when co-grouping, Spark does
not aggregate values by key, but instead it directly returns an iterator over key-value pairs, in which the values
are iterators of all the records having the same key. Because of this, each of this records contain the partition
ID previously attached during the pre-shuffle phase. PostCoGroupLineageRDD implementation therefore (1)
unrolls each record-iterator and save the partition identifier of each record in an in-memory buffer; (2) generates
a new unique identifier and stores it into the TaskContext; and (3) emits the new key-value pair without partition
identifiers into the successive RDD transformations.

(4) Program Output. At the end of each program Titian injects an EndLineageRDD creating a pair (INPUTID,
OUTPUTID) for each data record. Additionally, EndLineageRDD attaches OUTPUTID to the record so that users
can, at query time, connect records to provenance IDs. Since the input-output relationship is 1-to-n (e.g., due to
a flat map transformation), an association table is explicitly materialized in the BlockManager.

Buffering and Lineage Storage. In order to reduce the overhead of capturing lineage, Titian stores provenance
information in-memory into Spark’s BlockManager. Additionally, to reduce the number of objects created
at runtime, we have extended Spark’s worker nodes runtime (Executors) with a pool of bytebuffers of differ-
ent length. When a partition is scheduled for execution, at the first call each LineageRDD initializes a local
in-memory buffer by fetching a bytebuffer from one of the pools. Each input-output pair of provenance IDs
generated by the LineageRDD is then stored into the local buffer. When a partition is completed, local buffers
are asynchronously materialized in the BlockManager after that a LineageRDD-specific compression logic is
executed over the provenance records. Specifically, we store pre- and post-shuffle provenance data in a nested
format in order to not waste memory space over redundant information. In fact, pre- and post-shuffle Linea-
geRDD operators creates a sequence of (INPUTID, OUTPUTID) pairs in which the same OUTPUTID can appear
multiple times based on how many times values with the same key exist. The trade off is that such technique
increases the overhead of accessing data at query time since records need to be unnested, but other techniques
such as targeted joins (described in Section 4.2) can be used to speed-up query processing.

4.2 Querying

Once the DISC program with provenance capturing enabled is completed, Titian surfaces provenance data as
LineageDataRDDs: a specific RDD equipped with provenance-specific operations such as TraceBackward
or TraceForward additionally to regular RDD transformations. To enable provenance queries, upon program
completion, Titian (1) labels all LineageRDDs injected into the original program as cached; and (2) generates
a dependency graph formed by all such LineageRDDs now surfaced as LineageDataRDD references. With
(1), Titian is basically instrumenting Spark to fetch the provenance data available in the BlockManager when an

70

Hadoop
LineageRDD RDD-1 Pre-Shuffle

LineageRDD

Stage-1

RDD-N

(1) (2)

Block
Manager

HDFS

Post-Shuffle
LineageRDD RDD-X End

LineageRDD

Stage-2

RDD-Z

(3) (4)

Block
Manager

Block
Manager

Shuffle step

Association table (n-to-1)

iid-1
inputID

...
oid-1

outputID

...
iid-a

inputID

...
oid-a

outputID

...

Output

iid-x
inputID

...
oid-x

outputID

...

Association table (n-to-1) Association table (n-to-1)

Output

Tracing Queries

Figure 7: Tracing queries are implemented in Titian as a sequence of (distributed) joins between association
tables.

action requires to compute a LineageDataRDD3; since provenance data is exposed as RDDs, we simply leverage
Spark to query it, without asking users to manually specify the dependencies between associations tables (as for
instance Newt and RAMP require).

Starting from a target LineageDataRDD of interest, analyst can submit tracing queries using the Trace
Backward or TraceForward transformations.4 Furthermore, regular RDD transformations such as filter
can be used to remove out all provenance records that are not of interest (for instance by specifying the OUT-
PUTIDs of the records that need to be traced). Taking the backward direction as example, when a user call
the method traceBackard() over a (filtered) LineageDataRDD reference, Titian’s QueryPlanner sched-
ules a left semi-join between the current LineageDataRDD and the preceding one in the dependency graph. If
users prefer to execute more than one step backward, traceBackward(numSteps) can be called where
numSteps specifies the numbers of joins to be executed. Finally, a full trace backward up to the initial input
IDs can be executed by calling fullTraceBackward(). Figure 7 is a replica of Figure 6 where we show
how joins are executed using the association tables generated from the two-stages program.

Query Planning and Optimizations. When a tracing query is issued for evaluation (e.g., after an action is
invoked on a LineageDataRDDs reference returned from a traceBackword call), Titian generates a query
plan that attempts to minimize data movement, and unrolling nested records only when necessary. Titian’s
QueryPlanner avoids Spark’s shuffle join implementation when tracing within a stage i.e., from the stage output
to the stage input (or vice-versa), since the respective associations already join locally. A shuffle join is needed
when tracing between shuffle steps. However, instead of using Spark’s native shuffle join, we implemented a
direct shuffle join that uses the partition identifier information to directly traces to only the relevant partitions
on the other side of the shuffle step. For example, if we are tracing back from a record with key “foo”, then it
might be the case that not all pre-shuffle steps generated such a key, in which case the partition identifiers will
inform the direct shuffle to avoid joining those partitions with the “foo” records. Additionally, indexes are create
at capture time to speed-up the joining process when tracing backward. More details on query planning and
optimizations can be found in [9].

Accessing Original Data Records. Titian enables users to inspect the data records that each provenance ID

is linked to, including intermediate data, without introducing any overhead in the capturing phase. In fact,
while input and output records are directly connected to the related provenance ID by construction, intermediate

3Note that in Spark caching is usually request at program-time before an RDD is scheduled for execution. Titian instead asks Spark
to cache LineageRDD after they are computed. Indeed LineageRDDs internally materialize provenance data into the BlockManager, i.e.,
without using Spark support. Since LineageRDD are manually saved, Spark is unaware of the checkpoints and therefore fault tolerance
mechanisms work as usual.

4The tracing transformations are simply syntactic sugar over native Spark (filtered) joins.

71

records (i.e., records produced as output of a intermediate stage and consumed by successively scheduled stages)
can be retrieved by directly accessing (saved) shuffle files. Spark, in general, maintains shuffle files in cluster
memory for fault tolerance. Such files survive after the execution of the target program and therefore can be
read by provenance queries. This is possible exclusively because one unique context is used for both data and
provenance analysis.

Accessing the data linked to a set of provenance IDs is possible in Titian by calling the showData method
over the target LineageDataRDD object. Underneath, Titian’s query planner issues a join between the Lin-
eageDataRDD and the related object reference pointing to the data. For example, a call to showData() over
an HadoopLineageDataRDD object will issue a join between the provenance records of the HadoopLineage-
DataRDD object, and the input dataset stored in HDFS. Similarly, a call to showData() over a PreShuffle-
LineageDataRDD issues a join with the shuffle file. Note that the Titian framework automatically maintains the
reference to all (intermediate) files and objects storing data records that can be eventually requested by users
during tracing.

5 Considerations and Future Directions

Newt, RAMP, and Titian provided different contributions over the state of the art. Newt showed that a portable,
external library can be developed such that (different) DISC systems can be easily instrumented to capture prove-
nance. Higher-level tooling can then target such library and seamlessly work over different DISC platforms. In
our experiments Newt however showed poor scalability. This is both the result of its portable design, and the
choice of using MySQL as lineage capturing backend. This later choice of separating the query subsystem from
the DISC system, lowers its usability and makes features such as visualization of intermediate data difficult to
achieve.

RAMP chose a more integrated design with the host DISC system at the cost of less portability. Propagating
full provenance information downstream introduces however major overhead on the running program. Lastly,
while provenance queries are supported in RAMP using the same DISC language, the original RAMP design
did not consider forward tracing queries, but only (already materialized) backward queries.

Titian implementation merges the advantages of both the Newt and RAMP approaches: Titian integrates the
provenance capturing infrastructure within the host DISC system, but instead of propagating tags, it materialized
input-output association tables in memory. Titian’s integration with Spark does not limit Spark’s scaling capa-
bilities (we experimented with dataset up to 1TB) with an average overhead of 30%. Titian choice of surfacing
provenance data as RDD, greatly improves usability by allowing users to employ the same Spark Context for
both program authoring and provenance analysis. Additionally, the optimizations implemented in Titian brings
interactive speed evaluation of tracing queries. However, we think that still many open questions remain before
truly reaching the goal of having a industry-ready data provenance library for DISC systems. We next sketch
few possible directions for future work on the three dimensions of portability, usability and scalability.

Portability. We found Titian tailored integration with Spark low-level (RDD) API both a blessing and a curse:
upgrading Titian to newer versions of Spark is in general not easy; similarly enabling fine-grained provenance
capturing over Spark’s graph, ML, or relational API is not trivial and requires re-implementing major parts of
the framework. We are starting to see more applications requiring mixed programming models. While Spark
does provide a unifying infrastructure to execute mixed applications, to our knowledge no solution exists which
is able to trace data provenance effectively end-to-end through such mixed programs. The problem is even
exacerbated when instead of a single system (Spark), multiple specialized frameworks are used to implement a
data analytics pipeline. While each framework may have the ability to provide some provenance information,
unifying it in a single interactive session and language is an open problem.

Usability. While we started the exploration of high-level tooling exploiting provenance for debugging DISC
program [4–6, 8], we think that much work still have to be done in the field. For instance, in [6] we introduced

72

a system for automatically detecting the minimum set of failures inducing inputs given a user-provided test
function. It would be interesting to see the application of similar techniques over different domains beyond
software engineer (e.g., outliers detection or data cleaning), and generating proper domain-specific explanations
or actions, beyond a minimum set of evidences of a failure.

Scalability. From our experience with Titian, we found that capturing fine-grained provenance data can generate
extremely large provenance graphs; in the same order of the original input data. Instead of focusing on integrat-
ing the capturing infrastructure as close as possible to the data source, another possible solution to achieve better
scalability is to exploit application information to summarize the provenance data [3], or, alternatively, to push
provenance queries into the capturing phase, so that only a subset of the provenance is actually captured. These
approaches may lower the generality of the type of analysis that can be carried on over the provenance graph,
but for certain applications (or scales) could be the right solution.

References
[1] Apache Hadoop. http://hadoop.apache.org

[2] Apache Spark. http://spark.apache.org

[3] R. Diestelkämper, M. Herschel and P. Jadhav. Provenance in DISC Systems: Reducing Space Overhead at Runtime.
TaPP, 2017.

[4] M. A. Gulzar, M. Interlandi, S. Yoo, S. D. Tetali, T. Condie, T. Millstein and M. Kim. BigDebug: Debugging
Primitives for Interactive Big Data Processing in Spark. ICSE, 2016.

[5] M. A. Gulzar, M. Interlandi, T. Condie, and M. Kim. Debugging Big Data Analytics in Spark with BigDebug.
SIGMOD, 2017.

[6] M. A. Gulzar, M. Interlandi, X. Han, M. Li, T. Condie, and M. Kim. Automated Debugging in Data-Intensive
Scalable Computing. SoCC, 2017.

[7] R. Ikeda, H. Park and J. Widom. Provenance for Generalized Map and Reduce Workflows. CIDR, 2011.

[8] M. Interlandi, M. A. Gulzar, M. Kim and T Condie. Optimizing Interactive Development of Data-Intensive Applica-
tions. SoCC, 510-522, 2016.

[9] M. Interlandi, A. Ekmekji, K. Shah, M. A. Gulzar, S. D. Tetali, M. Kim, T. Millstein and T Condie. Adding data
provenance support to Apache Spark VLDBJ, 2017.

[10] L. Dionysios, D. Soumyarupa and Y. Kenneth. Scalable Lineage Capture for Debugging DISC Analytics SOCC,
2013.

[11] M. Zaharia, M .Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin, S. Shenker and I. Stoica. Resilient
Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing. NSDI, 2012.

73

