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Abstract

Data provenance approaches track how the answer to a database query derive from input items; however, prior
approaches used “positive” provenance and were not directly usable for explaining “expected” but missing
answers. A similar problem arises with the failure of integrity constraints. Our perspective is to offer expla-
nations via possible (minimal) repairs using provenance. This is useful for debugging, repairing, and cleaning
databases. In this paper, we introduce a novel approach to this problem for both missing/erroneous answers and
integrity failures. The approach uses recent advances in provenance for first-order model checking.

1 Introduction

When a user submits a query to a relational database, she often expects certain answers to appear in her query
result. Sometimes, some answers may be missing or erroneous. For example, a user queries her university’s
database to list all courses offered in the Fall semester. However, she is not able to find her advisors course
in the result, even though she knows that he will be teaching a course in the fall. Our perspective, related to
causality [21], assumes that it is useful to provide the user with explanations via repairs—a set of delete and
insert commands that would modify the database instance so that the query returns the expected answers.

Another important problem is that of integrity constraints (e.g., conditional functional dependencies, conditional
inclusion constraints, etc., see [10]) failing in databases obtained via data integration/warehousing or via min-
ing/crawling large amounts of information. Here, repairs can be similarly useful for explaining why integrity
constraints fail. Applying such repairs belongs to the field of data cleaning (see below).

In this paper we present, principally via examples, a methodology for addressing explanations and repairs for
both missing/erroneous answers and failure of integrity constraints. The commonality is based on both being
expressible in (unrestricted) first-order logic (FOL). This approach has become possible after recent work by the
last author and Erich Gräedel [13] (see Section 2).

The problem of missing answers has been studied both in the context of relational databases e.g. [3, 15, 21]
(also known as why-not provenance and provenance of non-answers), and Datalog-defined computer networks
[51, 52] (known there as negative provenance). Chapman and Jagadish [7] provided a model and definitions for
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describing a data item that is not in the result set, and for asking why it does not appear in the result. Huang
et al. in [18] developed a framework and algorithm for calculating the provenance of a single non-answer to
a query. Herschel and Hernandez in [17] further expanded their work by having an algorithm that calculated
why-not provenance for a set of missing answers including those for aggregation queries. In [16], Herschel and
Hernandez continued expanding their model by providing support for queries that include selection, projection,
join, union, aggregation and grouping (SPJUA). The larger context includes work on reverse query processing
[20], the work of Meliou and Suciu on reverse data management [22, 23] and perhaps view update [9]. While
steady progress has been made for positive queries, negation has always presented a challenge. Although we do
not address aggregation, our work deals with general first-order queries (equivalent to the full relational algebra)
while exploiting a particular way of expressing them: in stratified non-recursive Datalog with negation.

Database research related to integrity constraint repairs include the work of Arenas, Chomicki and Bertossi on
consistent query answering [1, 2, 8]. Attribute-based repairs—repairs that only update some of the values of
tuples’ attributes in the database—have been studied by Bohannon et al. in [4]. A comprehensive treatment of
the problem of data cleaning has been initiated by Fan et al. in [11,12] with a focus on conditional dependencies.
Kolahi and Lakshmanan in [19] showed that the problem of computing a minimal repair on databases that violate
functional dependencies is NP-complete. Our discussion of repair costs (see Section 5) contributes to the line of
work on weighted repairs in [5, 6].

Previous work on provenance (see [14] for a survey) used a framework based on commutative semirings for both
expressing provenance (as polynomials) and applications such as cost, confidence, or access control. Follow-
ing [13] (see Section 2) we use a semiring of dual polynomials with two kinds of indeterminates (provenance
tokens), for positive and for negative facts to compute provenance of FOL sentences being checked in an FOL
model. Next we compute explanations/repairs by solving the equation that makes such dual polynomials equal
to the (semiring) 0. A solution/repair consists of a set of provenance tokens being made 0. We can then interpret
these provenance tokens in semirings such as the Viterbi or tropical ones for cost or confidence associated with
the repairs.

We regard this work as preliminary since it still relies on the a “closed world assumption” (CWA) to compute
provenance in terms of negative tokens. This means that we only consider values that occur in the instance. We
hope to expand our understanding of database repairs to a“open world assumption” (OWA) in the future via a
more flexible approach that refer to data that we might need to insert into the database using labeled nulls.

This paper is organized as following. We start by reviewing the basic facts about computing provenance for
FOL sentences and about dual polynomials (Section 2). Next, we show a couple of examples of repairs to
missing answers and we describe a general algorithm for computing such repairs (Section 3). In Section 4, we
give examples of repairs to a denial constraint and a tuple-generating constraint that goes beyond what has been
studied in the literature so far. We discuss selecting optimal cost repairs in Section 5.

2 Dual Polynomials

Consider a finite relational vocabulary, V .1 From this vocabulary and a finite non-empty set A of ground values
we construct the set FactsA of all ground relational atoms (facts) R(a), the set NegFactsA of all negated facts
¬R(a) and thus the set LitA = FactsA ∪ NegFactsA of all literals, positive and negative facts, over V and A.
By convention we will identify ¬¬R(a) ≡ R(a)) so the negation of a literal is again a literal.

Let (K,+, ·, 0, 1) be a commutative semiring. Very roughly speaking, 0 ∈ K is intended to interpret false
assertions, while an element a ̸= 0 in K provides a “nuanced” interpretation for true assertions (call them

1For simplicity we omit constants from definitions, but we may make use of them in (counter)examples.
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“a-true”).

Next,K-interpretations will map literals to elements ofK and are then extended to all formulae. Disjunction and
existential quantification are interpreted by the addition operation ofK. Conjunction and universal quantification
are interpreted by the multiplication operation of K. For quantifiers, the finiteness of the universe A of ground
values will be essential. For negation we use the well-known syntactic transformation to negation normal form
(NNF), denoted ψ 7→ nnf(ψ). Note that nnf(ψ) is a formula constructed from literals (positive and negative
facts) and equality/inequality atoms using just ∧,∨, ∃,∀.

Definition 1: AK-interpretation is a mapping π : LitA → K. This is extended to FO formula given valuations
ν : Vars→ A:

π[[R(x)]]ν = π(R(ν(x)) π[[¬R(x)]]ν = π(¬R(ν(x))

π[[x op y]]ν = if ν(x) op ν(y) then 1 else 0 π[[φ ∧ ψ]]ν = π[[φ]]ν · π[[ψ]]ν

π[[φ ∨ ψ]]ν = π[[φ]]ν + π[[ψ]]ν π[[∃xφ]]ν =
∑

a∈A π[[φ]]ν[x 7→a]

π[[∀xφ]]ν =
∏

a∈A π[[φ]]ν[x 7→a] π[[¬φ]]ν = π[[nnf(¬φ)]]ν

The symbol op stands for either = or ̸=. As you can see from the definition, the equality and inequality atoms
are interpreted in K as 0 or 1, i.e., their provenance is not tracked.

Let X, X̄ be two disjoint sets together with a one-to-one correspondence X ←→ X̄ . We denote by p ∈ X
and p̄ ∈ X̄ two elements that are in this correspondence. We refer to the elements of X ∪ X̄ as provenance
tokens as they will be used to label/annotate some of the “data”, i.e., literals over some ground values, via the
concept of K-interpretation that we defined previously. Indeed, if, as before, we fix a finite non-empty set A and
consider LitA = FactsA ∪ NegFactsA then we shall use X for FactsA and X̄ for NegFactsA. By convention, if
we annotate R(a) with the “positive” token p then the “negative” token p̄ can only be used to annotate ¬R(a),
and vice versa. We refer to p and p̄ as complementary tokens.

Further, we denote by N[X, X̄] the quotient of the semiring of polynomials N[X ∪ X̄] by the congruence
generated by the equalities p·p̄ = 0 for all p ∈ X .2 Observe that two polynomials p, q ∈ N[X∪X̄] are congruent
iff they become identical after deleting from each of them the monomials that contain complementary tokens.
Hence, the congruence classes in N[X, X̄] are in one-to-one correspondence with the polynomials in N[X ∪ X̄]
such that none of their monomials contain complementary tokens. We shall call these dual-indeterminate
polynomials although we might often omit “-indeterminate” just use “dual polynomials”. The following is the
universality property of the semiring of dual polynomials:

Proposition 2: For any commutative semiringK and for any f : X∪X̄ → K such that ∀p ∈ X, f(p)·f(p̄) = 0
there exists a unique semiring homomorphism h : N[X, X̄]→ K such that ∀x ∈ X ∪ X̄ h(x) = f(x).

We note that N[X, X̄] is “+-positive”, that is, p + q = 0 implies p = q = 0, however, it has divisors of 0.
Examples: p · p̄ = 0; (p + q̄)p̄q = 0; (pq̄ + p̄q)(pq + p̄q̄) = 0. We also note that a dual polynomial is
identically 0 iff it evaluates to 0 for every assignment X ∪ X̄ → {0, 1} that sets complementary tokens to 0/1
or 1/0.

Definition 3: A provenance-tracking interpretation is a N[X, X̄]-interpretation π : LitA → N[X, X̄] such that
π(FactsA) ⊆ X ∪ {0, 1} and π(NegFactsA) ⊆ X̄ ∪ {0, 1}.

Only provenance-tracking interpretations (annotations) are considered in the sections ahead.
2This is the same as quotienting by the ideal generated by the polynomials pp̄ for all p ∈ X .
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Email Sender Day Receiver
Bob Mon Danny
Carla Tue Bob
Danny Tue Bob
Danny Tue Carla y

Bob Mon Carla p̄
Bob Tue Carla q̄

Danny Mon Carla z̄

Class Student Course
Bob Bio r
Bob Calc II s
Carla Chem t
Carla Calc II u
Danny Bio x
Danny Chem p2
Bob Chem p̄1
Carla Bio w̄
Danny Calc II v̄

Figure 1: Database for missing answers examples

3 Missing Answers

We present a small example database containing a table of student email exchanges and another one with the
classes they are taking. Email and Class are shown below. The tuples that are present in the instance under
consideration are above the dashed lines and some of them are annotated (labeled) with positive provenance
tokens. We apply the framework described in Section 2 with A as the active domain of this database. The tuples
below the dashed lines are some of the closed-world-absent tuples from the instance and they are annotated with
negative provenance tokens. This constitutes a provenance tracking interpretation. We hope that the reader will
keep the use of the variables x, y as provenance tokens distinct from the use of the same as Datalog variables.
To keep the picture less cluttered we only annotated the tuples that we actually use in the examples.

We consider the following query: return the pairs (sender, receiver) for the non-Monday emails where the
receiver is either not taking Chem or is taking every class that the sender is taking. The query, denoted Q, is
expressed in non-recursive Datalog with negation as follows (c is a variable!):

S(x, y) ← Class(x, c),¬Class(y, c),Class(y, “Chem”)

Q(x, y) ← Email(x, d, y),¬S(x, y), d ̸= “Mon”

In first-order logic notation we have:

S = {(x, y)| ∃c Class(x, c) ∧ ¬Class(y, c) ∧ Class(y, “Chem”)}
Q = {(x, y) | ∃d Email(x, d, y) ∧ ¬S(x, y) ∧ d ̸= “Mon”}

Notice that the output of Q consists of (“Carla”, “Bob”) and (“Danny”, “Bob”). We are interested in why the
tuple (“Bob”, “Carla”) is not in the set of outputs. Our approach is to find explanations for such questions
by finding all the minimal repairs that would make Q(“Bob”, “Carla”) true. And we find these repairs by
computing the dual polynomial p corresponding to ¬Q(“Bob”, “Carla”) and then “solving” the equation p = 0,
that is, finding which tokens can be set to 0 to insure that p becomes 0. We have:

¬Q(“Bob”, “Carla”) = ∀d ¬Email(“Bob”, d, “Carla”) ∨ S(“Bob”, “Carla”) ∨ [d = “Mon”]

The computations of dual polynomials is done according to Definition 1. When it comes to quantifiers we need,
in principle, to range over all the elements of the active domain for every variable. However, it is clear that
it suffices to range over the elements that actually occur in the columns that correspond to the variables. For
example, it suffices to take d ∈ {“Mon”, “Tue”} and c ∈ {“Bio”, “Calc II”, “Chem”}. We call this the typed
active domain approach and note that it is widely applicable in practice.

Now we calculate the polynomial corresponding to ¬Q(“Bob”, “Carla”):

p = (p̄+ q+ [“Mon” = “Mon”])(q̄ + q+ [“Tue” = “Mon”]) = (p̄+ q+ 1)(q̄ + q)
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Figure 2: Repair and-or trees for missing answers Q(“Bob”, “Carla”) and Q(“Danny”, “Carla”)

where q is the polynomial corresponding to S(“Bob”, “Carla”). We have:

S(“Bob”, “Carla”) = ∃c Class(x, c) ∧ ¬Class(y, c) ∧ Class(y, “Chem”)

q = rw̄t+ sūt+ p1t̄t = rw̄t+ sūt

Notice that the polynomial q can be further simplified because our database already includes the tuple
Class(“Carla”, “Calc II”) annotated with u, hence we can already assume that ū = 0. This avoids computing
solutions that unnecessarily include ū = 0 (they would ask to insert a tuple that is already in the database). It
follows that we can take q = rw̄t.

For p = 0 one possible solution, by inspection, is {q̄ = t = 0}. Setting a negative token to 0 corresponds to
invalidating a negative fact, i.e., inserting a tuple. Similarly, setting a positive token to 0 corresponds to deleting
a tuple. Therefore this solution (that we found in an ad-hoc manner) corresponds to the repair that inserts
[+Email(“Bob”, “Tue”, “Carla”)] and that deletes [−Class(“Carla”, “Chem”)] and thus brings (“Bob”, “Carla”)
into the output of the query Q.

However, we need to systematically find all minimal repairs and to do this, anticipating dealing with more
general queries, we proceed without substituting q in p and thus taking advantage of the structure of the query as
a stratified, non-recursive Datalog¬ program. The first observation is that p is a product of factors and in general
it is possible for p to be identically 0 (hence all minimal solutions would be empty) since N[X, X̄] has divisors
of 0. But this is not the case here since, for example, p̄q̄ occurs in p. Therefore, any solution makes at least
one of the two factors 0. Note that each term in each factor of p is either a single token or q or a 1. The factor
that contain a 1 cannot be made 0. Thus we must have q̄ + q = 0, hence, q̄ = 0 and q = 0. Notice that the
stratified structure can lead to explanations for missing answers that may entail wrong answers for some of the
subqueries (non-answer intensional predicates; in this example S(“Bob”, “Carla”)). Thus, the missing answers
and the wrong answers problems are intricately related for this query language.

Since S is an intensional predicate we must continue until we find the repairs to the actual database. q = 0
has three (minimal) solutions; {t = 0} is one, the others are {r = 0} and {w̄ = 0}. This yields three
minimal solutions for p = 0: {q̄ = t = 0}, {q̄ = r = 0} and {q̄ = w̄ = 0}. The reader can check that
the repairs corresponding to each of these solutions, for example, insert [+Email(“Bob”, “Tue”, “Carla”)] and
insert [+Class(“Carla”, “Bio”)] for the third solution, also bring (“Bob”, “Carla”) into the output of Q. All the
minimal solutions are nicely captured by the and-or tree T1 in Figure 2 (on the leaves of these trees we have
partial solutions token = 0 which are represented, for simplicity, just by token .

Let us now find the repairs for another answer missing from the output of Q, namely (“Danny”, “Carla”). The
dual polynomial corresponding to ¬Q(“Danny”, “Carla”) is r = (z̄+s+1)(ȳ+s) where s = xw̄t+vūt+p2t̄t =
xw̄t+ vūt. As before, we can simplify the polynomials by setting ȳ = ū = 0 since the tuples annotated with y
and u are already in the database, obtaining r = (z̄ + s+ 1)xw̄t. Although it leads to the same result, we could
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also have set v = 0 since the tuple annotated with v̄ is not in the database (and a repair that contained v = 0
would have asked that we delete a tuple already absent. All the solutions to r = 0 are captured by the and-or
tree T2 in Figure 2.

What if we wish to repair both Q(“Bob”, “Carla”) and Q(“Danny”, “Carla”)? This would need the dual poly-
nomial corresponding to ¬[Q(“Bob”, “Carla”) ∧ Q(“Danny”, “Carla”)], i.e., p + r. The solutions to p + r = 0
are captured by the and-or tree T3 in the same figure. Observe that T1 describes 3 minimal repairs, and so does
T2. Now T3 describes 3× 3 = 9 repairs, but only 3 of them are minimal: {q̄ = r = x = 0}, {q̄ = w̄ = 0} and
{q̄ = t = 0}.

In general, our approach is not guaranteed to compute only minimal repairs, as can be seen by considering
Q′(y) ← Q(x, y) and the missing answer Q′(“Carla”). However, we can prove that all the minimal repairs are
included among those computed by the algorithm shown below. It is also clear that redundant, non-minimal
repairs, can be pruned away.

Algorithm Next we present a procedure for finding repairs (including all the minimal repairs) for missing
and/or wrong answers for queries expressed in non-recursive Datalog with negation (and recall that any first-
order query is logically equivalent with one such). The algorithm takes advantage of the stratified structure of
the language to produce a compact and-or repair tree.

The algorithm’s input is a triple (R,a, µ) where R is a predicate, a is tuple of constants from the active domain
of the instance (R and a have the same arity), and µ is a ”mode”parameter that can have two values: missing
and wrong. Let Q be the answer predicate of the query. There may be multiple Datalog rules whose head can
be instantiated to Q(a): let’s denote these instatiations by Q(a) ← Bi(a,yi) for i = 1, . . . , k. Then, in FOL,

Q(a) = [∃y1 B1(a,y1)] ∨ · · · ∨ [∃yk Bk(a,yk)]

where each Bi is a conjunction of positive or negative atoms(extensional or intensional), equalities, or inequali-
ties. Moreover,in NNF,

¬Q(a) = [∀y1 B1(a,y1)] ∧ · · · ∧ [∀yk Bk(a,yk)]

where each Bi (in NNF) is a disjunction of negative or positive atoms(extensional or intensional), inequalities,
or equalities.

On input (Q,a,missing), the algorithm returns the repair and-or tree corresponding to the missing answerQ(a).
It does so by first computing the dual polynomial p corresponding to the first-order sentence nnf(¬Q(a)). This
computation includes simplifications like those mentioned in our examples:

• If ū occurs in the polynomial and u annotates a tuple already in the instance, then replace ū with 0.

• If v occurs in the polynomial and v annotates a tuple that is not in the database then replace u with 0.

Next the algorithm finds solutions to p = 0. A solution is a set of provenance tokens, negative or positive,
all set to 0. Since intensional predicates may occur in nnf(¬Q(a)) we generate fresh provenance tokens to
annotate temporarily these intentional literals. Note that p is a product of factors, each factor being a sum
of (positive or negative, extensional or intensional) provenance tokens or 1’s. Moreover, we can prove that p
cannot be identically 0. Indeed, by the range-restriction condition, each rule must contain at least one positive
literal. This means that each factor in nnf(¬Q(a)) must contain at least one negative token and the product of
all these negative tokens occurs as a monomial in p. When constructing the and-or tree of solutions to p = 0, we
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collect trees that are either leaves or, by setting an intensional token to 0, are obtained from recursive call to the
algorithm.

On input (Q,a,wrong), the algorithm returns the repair and-or tree corresponding to the wrong answer Q(a). It
does so by computing the dual polynomial q corresponding to the first-order sentence nnf(Q(a)), simplified as
above and with fresh intensional tokens as above. Solutions are found, again, by setting q = 0. Note that p is a
sum of terms, each term being a product of tokens (i.e., a monomial).

In stating the algorithm we use the notations p̄ ∼ L1, respectively p ∼ L2, to mean that the negative token p̄
annotates the negative literal L1, respectively the positive token p annotates the positive literal L2.

All this results in Algorithm ??.

Size of repair trees We can show that the number of minimal repairs is in general exponential in the size of
the active domain. However, the and-or trees that we compute offer a compact representation of all these repairs.
Indeed, let n be an upper bound on the size of the active domain and let q be an upper bound on the size of the
query (expressed in non-recursive Datalog with negation). The algorithm calculates two kinds of polynomials:

• For missing tuples it calculates polynomials as products of factors. Each factor’s size is bounded by
the size of rules is O(q). The number of factors is bounded by the number of rules times the number
of iterations of universally quantified variables in each rule, therefore is O(q nq). Thus, the resulting
polynomial has size O(q2 nq).

• For wrong tuples it calculates polynomials as sums of monomials. Since there are at most q existentially
quantified variables in each rule, and there are at most q rules there are at most q nq monomials in this
polynomial. Each monomial’s size is bounded by q so the resulting polynomial also has size O(q2 nq).

It follows that in the repair tree each node has O(q2 nq) children. The height of the tree is bounded by the
number of rules, hence by q. Therefore the repair tree has size O(q2q nq

2
), thus of polynomial data complexity.

Essentially the same argument shows that Algorithm 1 runs in polynomial time (data complexity).

4 Repairing Integrity Constraints

Since most integrity constraints used in databases are expressible in first order logic, our approach will also work
to “repair” them. Here is an example. Consider the table Class1 in Figure ??. Notice that Danny has decided
to take another course–Calc II. Uh oh. . . adding the course wasn’t a good idea. Danny gets overloaded with
work and finds himself failing Chemistry. The university notices this and puts Danny on probation (of a ruthless
kind!), so Danny can now take only at most 2 courses at a time. Consequently, our database now breaks an
integrity constraint. How do we fix it?

The integrity constraint “NO STUDENT CAN TAKE THREE OR MORE DISTINCT COURSES” can be written

I = ∀s ¬(∃x, y, z Class1(s, x) ∧ Class1(s, y) ∧ Class1(s, z) ∧ x ̸= y ∧ x ̸= z ∧ y ̸= z)

This is an example of a denial constraint [2]. Of course, it fails in the database Class1. To find out the reasons
it fails as well as to obtain repairs to the database we compute the dual provenance polynomial of ¬I . We have

nnf(¬I) = ∃s, x, y, z Class1(s, x) ∧ Class1(s, y) ∧ Class1(s, z) ∧ x ̸= y ∧ x ̸= z ∧ y ̸= z
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Input : µ tells us whether R(a) is missing or is wrong.
Output: An and-or tree of updates
if R is an extensional predicate then

if µ = missing then
Return a single node tree labeled with token p̄ ∼ ¬R(a).

end
if µ = wrong then

Return a single node tree labeled with token p ∼ R(a).
end

end
if R is an intensional predicate then

C := ∅.
if µ = missing then

Compute, as a product of factors, the polynomial p corresponding to nnf(¬R(a)).
for each factor f in p do

T := ∅.
for each term t in the factor f do

if t ∼ positive literal S(b) then
T := T ∪ {RepTree(S,b,wrong)}.

end
if t ∼ negative literal ¬S(b) then

T := T ∪ {RepTree(S,b,missing)}.
end
if t ∼ 1 then

T := T ∪ {”never − zero”}.
end

end
if ”never − zero” ̸∈ T then

Build an and-tree T with the trees collected in T as children of the root.
C := C ∪ {T}.

end
end
Build an or-tree T with the trees collected in C as children of the root. Return with T .

end
if µ = wrong then

Compute, as a sum of terms, the polynomial q corresponding to nnf(R(a)).
for each term t in q do

T := ∅.
for each factor f in the term t do

if f ∼ positive literal S(b) then
T := T ∪ {RepTree(S,b,wrong)}.

end
if f ∼ negative literal ¬S(b) then

T := T ∪ {RepTree(S,b,missing)}.
end

end
Build an or-tree T with the trees collected in T as children of the root.
C := C ∪ {T}.

end
Build an and-tree T with the trees collected in C as children of the root. Return with T .

end
end

Algorithm 1: RepTree(R,a, µ) builds a repair tree
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Class1 Student Course
Bob Bio
Bob Calc II
Carla Chem
Carla Calc II
Danny Bio r
Danny Chem s
Danny Calc II t

Bob Chem ū
Carla Bio v̄

Admin Course Dept
Calc II Math p
Chem Sci q
Bio Sci r

Calc II Sci t̄
Chem Math ū
Bio Math v̄

Class2 Student Course
Bob Bio w
Bob Calc II x

Danny Bio w1

Danny Chem y1
Bob Chem ȳ

Danny Calc II z̄

Figure 3: Tables for the integrity constraint examples

The corresponding dual polynomial p is a sum. Using the typed active domain approach, this sum will have, in
principle, 3 × 3 × 3 × 3 = 81 terms. However, most of the inequalities yield 0, namely when x, y, z are not
assigned distinct values. We are left with 3× (3!) terms. Moreover, 2× (3!) of these are monomials containing
ū or v̄ which we can set to 0 (because Bob and Carla are not breaking the constraint :). We are left with
p = 3rst which yields a repair or-tree with three leaves. As expected, we find that the integrity constraint is
broken because all three tuples annotated r, s, or t are in the database. Also as expected, we have three possible
minimal repairs, each corresponding to deleting one of the three tuples.

The second example we will show in this section uses the tables Admin and Class2 in Figure ??. It also uses the
constraint “IF A STUDENT IS TAKING MORE THAN ONE CLASS, ALL OF THEIR CLASSES MUST BE ADMINIS-
TERED BY THE SAME DEPARTMENT”. We can express this constraint as:

J = ∀x, y [∃s Class2(s, x) ∧ Class2(s, y) ∧ x ̸= y] → [∃t Admin(x, t) ∧ Admin(y, t)]

This is an example of a tuple-generating constraint, even more general than the conditional inclusion constraints
mentioned in [2, 10]. It does fail in the database above since Bob saw fit to take both Bio and Calc II. As with
the denial constraint we considered above, we find the reasons for failure and possible repairs by computing the
dual polynomial corresponding to nnf(¬J). We have

nnf(¬J) = ∃x, y [∃s Class(s, x) ∧ Class(s, y) ∧ x ̸= y] ∧ [∀t ¬Admin(x, t) ∨ ¬Admin(y, t)]

We compute the dual provenance polynomial of ¬J . Again, we use the typed active domain approach and we
notice that the first factor will always be zero if we choose x and y to both be the same course. The result is a
sum of polynomials, which we denote q:

q = (zw1 + xw)(t̄+ r̄)(p̄+ v̄) + (y1z + yx)(q̄ + t̄)(ū+ p̄) + (y1w1 + yw)(q̄ + r̄)(ū+ v̄)

However, given which tuples are already/are not in the database we can simplify this polynomial by setting
y = z = 0 and p̄ = q̄ = r̄ = 0 and we are left with q = xwt̄v̄. To fix the constraint, we try to make
q = 0. which yields a repair or-tree with four leaves. These correspond to four different minimal repairs
(two of them are deletions and the others insertions): [−Class(“Bob”, “Calc II”)], or [−Class(“Bob”, “Bio”)],
or [+Admin(“Calc II”, “Sci”)], or [+Admin(“Bio”, “Math”)].

5 Costing Repairs

For costs we use the tropical semiring T = (R∞
+ ,min,+,∞, 0). Its elements and operations appear in min-cost

interpretations (e.g., shortest paths). Here we are going to show how to use it to select repairs that are in some
sense optimal.
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Recall the integrity constraint J from Section 4. We obtained all possible minimal repairs by computing the dual
polynomial q corresponding to nnf(¬J) and obtained four repairs: {x = 0}, {w = 0}, {t̄ = 0}, {v̄ = 0}. To
choose among them, we now compute the dual polynomial r corresponding to nnf(J):

r = [(z̄ + w̄1)(x̄+ w̄) + tr + pv] · [(ȳ1 + z̄)(ȳ + x̄) + qt+ up] · [(ȳ1 + w̄1)(ȳ + w̄) + qr + uv]

Next we apply all the simplifications allowed by the database except those involving the tokens that appear in
the repairs, namely w̄1 = ȳ1 = u = 0. We obtain: r = [z̄(x̄+ w̄) + tr + pv] · [z̄(ȳ + x̄) + qt] · [qr].

Our definition of optimality3 is to find the repair that minimizes the cost of r when interpreted in T, given costs
for the remaining tokens in r, say cost(z̄) = α, cost(r) = β, cost(p) = γ, cost(ȳ) = δ, cost(q) = ι, and
assuming, in turn, each of the four repairs have a cost also, let’s say that a deletion costs λ and an insertion
costs µ, where α, β, γ, δ, ι, λ, µ ∈ R∞

+ . Thus we have four different assignments into T: [x̄ 7→ λ, w̄ 7→ ∞, t 7→
0, v 7→ 0], [x̄ 7→ ∞, w̄ 7→ λ, t 7→ 0, v 7→ 0], [x̄ 7→ ∞, w̄ 7→ ∞, t 7→ µ, v 7→ 0], [x̄ 7→ λ, w̄ 7→ ∞, t 7→ 0, v 7→ µ]
one for each of the four repairs. We obtain:

Repair Cost

[−Class2(“Bob”, “Calc II”)] min(α+ λ, β, γ) + min(α+min(δ, λ), ι) + ι+ β
[−Class2(“Bob”, “Bio”)] same
[+Admin(“Calc II”, “Sci”)] min(µ+ β, γ) + min(α+ δ, ι+ µ) + ι+ β
[+Admin(“Bio”, “Math”)] γ + µ+ α+ δ + ι+ β

For example, taking λ = µ = α = β = γ = δ = ι = 10 will result in the first (or second) repair to be cheapest.

6 Conclusions

In this paper, we introduced a novel approach for computing all possible repairs for missing and wrong answers
to a query on a database instance. Our algorithm is based on a new framework for reasoning over the provenance
of non-answers under the CWA for queries expressible in first-order logic, including negation. This framework
treats relational queries as logical structures (unions and conjunctions of statements) and applies algebraic oper-
ations to these logical structures, allowing the use of dual polynomials as a way to represent provenance.

Our approach is not limited to repairing queries with missing and wrong answers; it can also repair a database
instance that does not satisfy certain integrity constraints. Since integrity constraints can be expressed in first-
order logic, our algorithm is able to determine where constraints are broken. In cases of missing answers, wrong
answers, and broken integrity constraints, our algorithm is able to suggest repairs for the database in the form of
a set of insertions and deletions of tuples.

Our use of dual polynomials rather than boolean expressions provides a way to weigh certain tuples over others
by assigning tokens different weights. Questions such as finding a minimal cost solution from an and-or-tree
are NP-hard (for example by reduction from vertex cover). In the future, we aim to explore approximation
techniques for these questions. Additionally, we would like to expand our approach to handle open world
assumption. Currently, our approach fixes databases by introducing tuples consisting only of values from our
active domain. However, it is unrealistic to always expect repairs to be derived from within the database. Thus,
it is important for us to move beyond CWA and develop a working framework in OWA.

3Other definitions are possible and we plan to compare them in future work.
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