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École Polytechnique Fédérale de Lausanne

Station 15, 1015 Lausanne, Switzerland

Paul Larson

Microsoft Research

Redmond, WA 98052

Chair, DEW: Self-Managing Database Sys.
Shivnath Babu

Duke University

Durham, NC 27708

Co-Chair, DEW: Cloud Data Management
Xiaofeng Meng

Renmin University of China

Beijing 100872, China

i



Letter from the Editor-in-Chief

ICDE 2018

Repeating my comment from the last issue-
The IEEE International Conference on Data Engineering will be held in April 14-19, 2018 in Paris, France.

This is the flagship conference of the Computer Society’s Technical Committee on Data Engineering. It is a
great conference, at a great location. What could possibly be better than April in Paris at ICDE! I am attending
and hope to see you there.

About the Bulletin

This March current issue marks the end of editorial tenure for the Bulletin’s current set of editors. So it is
once again time for me to pat myself on the back. This current set, Tim Kraska, Tova Milo, and Haixun Wang,
continue my outstanding success (he says modestly) in finding and choosing great editors. All three have done
truly fine jobs at producing issues that bring to our readers surveys of the latest work in very current areas. The
success of the Bulletin depends on great issue editors. I want to thank Tim, Tova, and Haixun for being exactly
that with the fine jobs that they have done. There was unexpected “scrambling” over the past two years, so I
want to thank them also for their flexibility in coping with this.

The Current Issue

Don’t you get tired of someone shouting “FAKE NEWS!”. Or perhaps even worse, being exposed to fake news
before it has been labeled as such? Our political conversations seem increasingly to include many variations of
“fake news” and discussions about which news is fake. “Sad.” So where am I going with this?

The database world has been working on a key aspect of this problem for many years. The technical area is
called “data provenance”. And it addresses the problem of where information comes from and how it impacts
the subsequent processing of data and the reported results. The June, 2010 issue was the last one on provenance.
And seven years is a long time in an active technical area, especially an area as important as this.

The current issue is focused on the applications of provenance. Without delving into the current political
scene, a reader will clearly see how extensively provenance management can be used. As we gain more insight
into its application scenarios, we also gain more insight into how to manage provenance. This symbiotic rela-
tionship is driving the field forward. Tova Milo, our Bulletin editor for the issue, has done an excellent job in
bringing the issue together, making it a great place to learn about and track progress in the field. The result is an
issue well worth reading.

David Lomet
Microsoft Corporation
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Letter from the Special Issue Editor

Over the past years there has been a growing recognition of the importance of provenance in data management.
Besides it traditional use for query results explanations, new applications of provenance range from query opti-
mization, to distributed data management, human-machine interaction, and experiments reproducibility. In this
issue, we have a slate of very interesting articles discussing the different roles of provenance in information
management in a variety of domains.

We start with “Provenance for non-experts”, Daniel Deutch, Nave Frost and Amir Gilad. The paper con-
siders the flourish of data-intensive systems that are geared towards direct use by non-experts, such as Natural
Language question answering systems and query-by-example frameworks. It highlights the importance of in-
corporating provenance in building such user interfaces.

The second paper, “Provenance and the Different Flavors of Reproducibility”, Juliana Freire and Fernando
Seabra Chirigati, considers the important problem of experiments reproducibility. It provides an overview of the
different types of provenance and how they influence reproducibility. The goal here is to help researchers find
the most appropriate provenance capture for their experiment, based on the level of reproducibility they need to
attain.

The next paper “Data Citation: A New Provenance Challenge”, Abdu Alawini, Susan Davidson, Gianmaria
Silvello, Val Tannen and Yinjun Wu, proposes a provenance-based novel framework of the citation of query
results. The proposed solution is to specify citations for a small set of frequent queries citation views and then
use these views to construct a citation for general queries.

The fourth paper, “Provenance Analysis for Missing Answers and Integrity Repairs”, Jane Xu, Waley Zhang,
Abdussalam Alawini, and Val Tannen, points that prior approaches for provenance used positive provenance
and were thus not directly usable for explaining missing answers or failure of integrity constraints. The paper
addressee this shortcoming by offering provenance-based explanations via (minimal) repairs, applicable for
debugging, repairing, and cleaning databases.

In “GProM - a Swiss Army Knife for Your Provenance Needs”, Bahareh Arab, Su Feng, Boris Glavic, Seokki
Lee, Xing Niu and Qitian Zeng, provided an overview of GProM, a novel generic provenance middleware for
relational databases. The system supports diverse provenance and annotation management tasks through query
instrumentation.

Next, “Supporting Data Provenance in DISC Systems”, Matteo Interlandi and Tyson Condie, uses data
provenance as a key building block to provide debugging support for data processing pipelines. Specifically, the
paper reports experience in building Titian: a data provenance system targeting the Apache Spark framework.

Finally, we conclude with “Data Center Diagnostics with Network Provenance”, Ang Chen, Chen Chen, Lay
Kuan Loh, Yang Wu, Andreas Haeberlen, Limin Jia, Boon Thau Loo and Wenchao Zhou. Diagnosing problems
in data centers are a challenging problem due to their complexity and heterogeneity. The promising approach
described in the paper leverages provenance, which provides the fundamental functionality that is needed for
performing fault diagnosis and debugging.

I hope that you enjoy the issue as much as I enjoyed putting it together!

Tova Milo
Tel Aviv University
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Provenance for Non-Experts

Daniel Deutch, Nave Frost, Amir Gilad
Tel Aviv University

Abstract

The flourish of data-intensive systems that are geared towards direct use by non-experts, such as Natural
Language question answering systems and query-by-example frameworks calls for the incorporation of
provenance management. Provenance is arguably even more important for such systems than for “clas-
sic” database application. This is due to the elevated level of uncertainty associated with the typical
ambiguity of user specification (e.g. phrasing questions in Natural Language or through examples). Ex-
isting provenance solutions are not geared towards the non-experts, and the typical complexity and size
of their instances render them ill-suited for this goal. We outline in this paper our ongoing research and
preliminary results, addressing these challenges towards developing provenance solutions that serve to
explain computation results to non-expert users.

1 Introduction

In the context of data-intensive systems, data provenance captures the way in which data is used, combined
and manipulated by the system. Provenance information can for instance be used to reveal whether data was
illegitimately used, to assess the trustworthiness of a computation result, or to explain the rationale underlying
the computation. As data-intensive systems constantly grow in use, in complexity and in the size of data they
manipulate, provenance tracking becomes of paramount importance. In its absence, it is next to impossible to
follow the flow of data through the system. This in turn is extremely harmful for the quality of results, for
enforcing policies, and for the public trust in the systems.

The focus of the present paper is on provenance tracking and presentation, geared towards the non-expert
user. There is a large body of research and development on database interfaces for non-experts, such as Natural
Language Interfaces [25,26,32,39,40] or exploratory systems such as query-by-example frameworks [1,12,29,
33,36,37,42,45]. Provenance is arguably even more important for such systems than it is for “classic” database
applications, since uncertainty is far greater: there may be errors in the way the user has phrased the question
and in the way the system has understood what she asked; even in the absence of errors, there are usually many
valid queries that are consistent with the user’s input. To this end, there is typically a phase of interaction, where
the system refines its set of possible queries based on user feedback; provenance could potentially be highly
useful for this phase as well as for the end result: it could allow users to understand what is the inferred query
or set of candidate queries and whether they fit their intended semantics.

One may consider the use of existing provenance solutions for this purpose. After all, many of the above
mentioned interfaces for non-experts eventually compile the user input into a formal query. Can we use a

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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provenance model designed for the underlying query language? The challenge is in that existing provenance
solutions are not suitable for presentation to non-experts but rather focus on provenance storage through an
internal representation and then its use for analysis. Specifically, the resulting provenance is typically both too
complex and too large-scale to allow for its direct presentation to non-experts. This requires the development of
dedicated solutions.

This paper outlines our recent and ongoing work on provenance tracking and presentation that are geared
towards non-expert users. We discuss three application domains, as follows. The first two are database interfaces
for non-experts of different flavours, namely Natural Language Interfaces and query-by-example frameworks.
The third application domain is very different, involving explanations for results of Machine Learning models.
We next identify several overarching principles that apply across domains and allow to reduce the complexity
and scale of provenance, towards its presentation to non-experts.

• We claim that in order to be understandable to non-expert users, there should be a tight coupling between
the way provenance information is presented, and the standard user interaction with the system.
For example, if the user asks questions in Natural Language, then it is natural to present provenance
information in a similar form; in a completely different domain, if one uses an image tagging application,
then it is natural to depict provenance information as a layer on top of the image. This principle was
proven successful in the context of (coarse-grained) workflow provenance [19, 38], where provenance is
represented and shown in a graphic manner that is very similar to the way developers design the workflow
itself; we claim that it is a key principle in the context of provenance presentation for non-experts as well.

• The sheer size of provenance calls for solutions that summarize it. Provenance summarization has been
studied in multiple contexts, where summaries may be “lossless”, i.e. involve no loss of information,
as is the case with the work on factorized representation [4, 24, 31], or “lossy” as in [2, 13, 34]. In the
context of non-experts, summarization needs not only to be concise but also to “make sense” to the non-
expert. For instance, we demonstrate below that in the context of NL provenance, some of the possible
summarizations may naturally be translated to semantically meaningful sentences, while others may not.

• Another approach for addressing provenance size is to track and present only portions of it, in a selective
manner. Depending on the intended use, full provenance information may be unnecessary: for instance,
if provenance is tracked with the goal of allowing users to distinguish between candidate formal queries
generated by the system, then showing provenance for a “representative” sample of query outputs may
suffice. Here again, the choice of samples may be based on the user interaction: for instance, we may
show provenance for the examples that the user has given (and is thus familiar with), to demonstrate the
logic captured by the inferred query; additional examples that show further diverse facets of the query
may be selected as well.

In the rest of this paper we overview our results achieved so far in this area. In Section 2 we overview our
solution from [13,14] on Natural Language Provenance. In Section 3 we highlight the potential of incorporating
provenance to query-by-example frameworks [15, 16]. In Section 4 we discuss explaining to non-experts the
results of Machine Learning models, and outline an approach for achieving that. We conclude in Section 5.

2 Natural Language Explanations

Developing Natural Language (NL) interfaces for database systems has been the focus of multiple lines of
research (see e.g. [3, 25, 26, 40]). Users who view results computed by such systems may also be interested in
the explanations for these results, i.e. why does each answer qualify to the query criteria. Such explanations
could greatly enrich the answers, as well as provide means for the user to understand what is the underlying
formal query compiled by the system and whether it matches the user intention.
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As an example, consider the Microsoft Academic Search database (http://academic.research.
microsoft.com) and consider the NL query in Figure 1a. A state-of-the-art NL query engine, NaLIR [26],
is able to transform this NL query into the SQL query also shown (as a Conjunctive Query) in Figure 1b.
When evaluated using a standard database engine, the query returns the expected list of organizations. However,
the answers (organizations) in the query result lack justification, which in this case would include the authors
affiliated with each organization and details of the papers they have published (their titles, their publication
venues and publication years). Such additional information can lead to a richer answer than simply providing the
names of organizations: it allows users to also see relevant details of the qualifying organizations. Provenance
information is also valuable for validation of answers: a user who sees an organization name as an answer is
likely to have a harder time validating that this organization qualifies as an answer, compared to a setting where
she is shown the full details of publications. Our approach is to present provenance information for answers of
NL queries, again as sentences in natural language. Continuing our running example, Figure 1c shows one of
the answers outputted by our system in response to the NL query in Figure 1a.

This solution [14] consists of the following key components.

“Return the organization of
authors who published papers
in database conferences after
2005”

(a) NL Query

query(oname) :-
org(oid, oname),
conf(cid, cname),
pub(wid, cid, ptitle, pyear),
author(aid, aname, oid),
domainConf(cid, did),
domain(did, dname),
writes(aid, wid),
dname = ’Databases’,
pyear > 2005

(b) CQ Q

“Tel Aviv University is the organization
of Tova Milo who published ’OASSIS...’
in SIGMOD in 2014”

(c) Answer For a Single Assignment

Figure 1: NL Query, CQ Q, and an example NL Answer

Provenance Tracking Based on the NL Query Structure A first key idea in our solution is to leverage the
NL query structure in constructing NL provenance. In particular, we modify NaLIR so that we store exactly
which parts of the NL query translate to which parts of the formal query. Then, we evaluate the formal query
using a provenance-aware engine (we use SelP [17]), further modified so that it stores which parts of the
query “contribute” to which parts of the provenance. By composing these two mappings (text-to-query-parts
and query-parts-to-provenance) we infer which parts of the NL query text are related to which provenance parts.
Finally, we use the latter information in an “inverse” manner, to translate the provenance to NL text. We show
the construction by example and refer the reader to [14] for further details.

Example 1: Re-consider our running example query and consider the database in Table 1. The assignments to
the query are represented in Figure 2 as a DNF expression. Each of the 6 clauses stands for a different assign-

(oname,TAU)∧(aname,Tova M.)∧(ptitle,OASSIS...)∧(cname,SIGMOD)∧(pyear,14’)∨
(oname,TAU)∧(aname,Tova M.)∧(ptitle,Querying...)∧(cname,VLDB)∧(pyear,06’)∨
(oname,TAU)∧(aname,Tova M.)∧ (ptitle,Monitoring..)∧(cname,VLDB)∧(pyear,07’)∨
(oname,TAU)∧(aname,Slava N.)∧(ptitle,OASSIS...)∧(cname, SIGMOD)∧(pyear,14’)∨
(oname,TAU)∧(aname,Tova M.)∧(ptitle,A sample...)∧(cname,SIGMOD)∧(pyear,14’)∨
(oname,UPENN)∧(aname,Susan D.)∧(ptitle,OASSIS...)∧(cname,SIGMOD)∧(pyear,14’)

Figure 2: Value-level Provenance
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oid oname
1 UPENN
2 TAU

Rel. org

aid aname oid
3 Susan D. 1
4 Tova M. 2
5 Slava N. 2

Rel. author

wid cid ptitle pyear
6 10 “OASSIS...” 2014
7 10 “A sample...” 2014
8 11 “Monitoring...” 2007
9 11 “Querying...” 2006

Rel. pub

aid wid
4 6
3 6
5 6
4 7
4 8
4 9

Rel. writes
cid cname
10 SIGMOD
11 VLDB

Rel. conf

cid did
10 18
11 18

Rel. domainConf

did name
18 Databases

Rel. domain

Table 1: DB Instance

.

.

.

(oname, TAU)

.

.

(aname, Tova M.)
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(ptitle, OASSIS...)
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published
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POS=IN, REL=prep...

.

.

.
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..
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...the

(a) Query Tree

.....organization.....

...of...

...Tova M....

...published.....

...in...

...SIGMOD.

....

...in...

...2014

.

....

...’OASSIS...’.

..

...who

.

..

...TAU (is the)

(b) Answer Tree

Figure 3: Question and Answer Trees

ment, and the atoms are pairs of the form (var, val) so that var is assigned val in the particular assignment.
We only record variables to which a query word was mapped (these are the relevant variables for formulating
the answer). For instance, the node “organization” was mapped to the variable oname which was assigned the
values “TAU” and “UPENN”. If we were to replace the value in the organization node by the value “TAU”
mapped to it, the word “organization” would not appear in the answer although it is needed to produce a co-
herent sentence such as the one depicted in Figure 1c. In the absence of this word, it is unclear how to connect
“Tova M.” and “TAU”. To this end, we rely on the information encoded in the dependency tree to convert it to an
answer tree based on the relationships and part-of-speech of the words in the sentence. Finally, the conversion
of the answer tree in Figure 3b to a sentence is done by replacing the words of the NL query with the values
mapped to them, e.g., the word “authors” in the NL query (Figure 1a) is replaced by “Tova M.” and the word
“papers” is replaced by “OASSIS...”. The word “organization” is not replaced (as it remains in the answer tree)
but rather the words “TAU is the” are added prior to it, using the part-of-speech and relationship of the word.
Completing this process, we obtain the answer shown in Figure 1c.

Factorization A second key idea is related to the provenance size. In typical scenarios, a single answer may
have multiple explanations (multiple authors, papers, venues and years in our example). A naı̈ve solution is

6



[TAU] ·

A



([Tova M.] ·

B


([VLDB] ·

([2006] · [Querying...]
+ [2007] · [Monitoring...]))

+ [SIGMOD] · [2014] ·
([OASSIS...] + [A Sample...]))

 B

+ [Slava N.] · [OASSIS...] · [SIGMOD] · [2014])


A

+ [UPENN] · [Susan D.] · [OASSIS...] ·
[SIGMOD] · [2014]

(a) f1

[TAU] ·
([SIGMOD] · [2014] ·

([OASSIS...] ·
([Tova M.] + [Slava N.]))

+ [Tova M.] · [A Sample...])
+ [VLDB] · [Tova M.] ·

([2006] · [Querying...]
+ [2007] · [Monitoring...])

+ [UPENN] · [Susan D.] · [OASSIS...] ·
[SIGMOD] · [2014]

(b) f2

Figure 4: Provenance Factorizations

to formulate and present a separate sentence corresponding to each explanation. The result will however be,
in many cases, very long and repetitive. As observed already in previous work [11, 31], different assignments
(explanations) may have significant parts in common, and this can be leveraged in a factorization that groups
together multiple occurrences. In our example, we can e.g. factorize explanations based on author, paper name,
conference name or year. Importantly, we impose a novel constraint on the factorizations that we look for (which
we call compatibility), intuitively capturing that their structure is consistent with a partial order defined by the
parse tree of the question. This constraint is helpful in translating the factorization back to an NL answer whose
structure is similar to that of the question; again, we refer the reader to [14] for details and only show an example.

Example 2: Re-consider the provenance expression in Figure 2. Two possible factorizations are shown in
Figure 4, keeping only the values and omitting the variable names for brevity (ignore the A,B brackets for now).
In both cases, the idea is to avoid repetitions in the provenance expression, by taking out a common factor
that appears in multiple summands. Different choices of which common factor to take out lead to different
factorizations.

Consider factorization f2 from Figure 4. “TAU” should be at the beginning of the sentence and followed
by the conference names “SIGMOD” and “VLDB”. The second and third layers of f2 are composed of author
names (“Tova M.”, “Slava N.”), paper titles (“OASSIS”, “A sample...”, “Monitoring...”) and publication years
(2007, 2014). Changing the original order of the words such that the conference name “SIGMOD” and the
publication year “2014” will appear before “Tova M.” breaks the sentence structure in a sense. It is unclear how
to algorithmically translate this factorization into an NL answer, since we need to patch the broken structure by
adding connecting phrases. One hypothetical option of patching f2 and transforming it into an NL answer is
depicted below. The bold parts of the sentence are not part of the factorization and it is not clear how to generate
and incorporate them into the sentence algorithmically. Even if we could do so, it appears that the resulting
sentence would be quite convoluted:

TAU is the organization of authors who published in
SIGMOD 2014

’OASSIS...’ which was published by
Tova M. and Slava N.

and Tova M. published ’A sample...’
and Tova M. published in VLDB

’Querying...’ in 2014
and ’Monitoring...’ in 2007.

UPENN is the organization of Susan D. who published
’OASSIS...’ in SIGMOD in 2014

Observe that the resulting sentence is not clear, even though it was obtained from a shorter factorization f2; the
intuitive reason is that the structure of f2 is very different from that of the NL question, and thus is not guaranteed
to admit a structure that is coherent in Natural Language. Interestingly, the sentence we would obtain in such a
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way also has an edit distance from the question [18] that is shorter than that of our answer, demonstrating that
edit distance is not an adequate measure here.

Instead, we propose using the structure of the original NL query to construct a factorization that, while
reducing the size of the original expression, maintains the hierarchy of the words in the dependency tree. f1 in
Figure 4 maintains the word hierarchy implied by the dependency tree (Figure 3a), and thus can be converted
into an answer tree and the sentence:

TAU is the organization of
Tova M. who published

in VLDB
’Querying...’ in 2006 and
’Monitoring...’ in 2007

and in SIGMOD in 2014
’OASSIS...’ and ’A sample...’

and Slava N. who published
’OASSIS...’ in SIGMOD in 2014.

UPENN is the organization of Susan D. who published
’OASSIS...’ in SIGMOD in 2014.

Summarization We summarize explanations by replacing details of different parts of the explanation by their
synopsis, e.g. presenting only the number of papers published by each author, the number of authors, or the
overall number of papers published by authors of each organization. Such summarizations incur by nature a loss
of information but are typically much more concise and easier for users to follow. Here again, while provenance
summarization has been studied before (e.g. [2, 34]), the desiderata of a summarization needed for NL sentence
generation are different, rendering previous solutions inapplicable here. We observe a tight correspondence
between factorization and summarization: every factorization gives rise to multiple possible summarizations,
each obtained by counting the number of sub-explanations that are “factorized together”.

(A) [TAU] · Size([Tova M.],[Slava N.]) · Size([VLDB],[SIGMOD]) ·
Size([Querying...],[Monitoring...],
[OASSIS...],[A Sample...]) · Range([2006],[2007],[2014])

(B) [TAU]·(
[Tova M.] ·

Size([VLDB],[SIGMOD]) ·
Size([Querying...],[Monitoring...],
[OASSIS...],[A Sample...]) · Range([2006],[2007],[2014])

[Slava N.] · [OASSIS...] · [SIGMOD] · [2014])

(a) Summarized Factorizations

(A) “TAU is the organization of 2
authors who published 4 papers in 2
conferences in 2006 - 2014”

(B) “TAU is the organization of
Tova M. who published 4 papers in
2 conferences in 2006 - 2014 and
Slava N. who published ’OASSIS...’ in
SIGMOD in 2014”

(b) Summarized Sentences

Example 3: Reconsider Example 2; if there are many authors from TAU then even the compact representation
of the result could be very long. In such cases we need to summarize the provenance in some way that will
preserve the “essence” of all assignments without actually specifying them, for instance by providing only the
number of authors/papers for each institution.

Re-consider the factorization f1 from Figure 4. We can summarize it in multiple levels: the highest level
of authors (summarization “A”), or the level of papers for each particular author (summarization “B”), or the
level of conferences, etc. Note that if we choose to summarize at some level, we must summarize all levels
below it (e.g. if we summarize for “Tova M.” at the level of conferences, we cannot specify the papers titles and
publication years).

8



Figure 5a presents the summarizations of sub-trees for the “TAU” answer, where “size” is a summarization
operator that counts the number of distinct values and “range” is an operator over numeric values, summarizing
them as their range. The summarized factorizations are further converted to NL sentences which are shown in
Figure 5b. Summarizing at a higher level results in a shorter but less detailed summarization.

Our work in [14] is restricted to Conjunctive Queries, and extensions to more expressive forms of queries are
the subject of an ongoing investigation. We next turn to briefly describe another aspect of explanations, namely
explaining non-answers.

Why-not Explanations Our work so far has focused on explaining query answers in NL; an equally important
type of insight that users may wish to gain concerns expected answers that do not appear in the query result set.
Such insight may be useful for identifying errors in the inferred query as well as omissions in the database.

Provenance for non-answers has been extensively explored (e.g. [5–7, 10, 22]), but similarly to the positive
case, a direct use of such models is unsuitable for non-experts. For instance, the work of [10] defines why-not
provenance in terms of the query operators; the non-expert may be unfamiliar with formal query languages. Sim-
ilarly, the work of [5] defines a notion of provenance polynomials, which may be too complex for presentation
to non-experts, etc.

Again, a plausible approach (that we follow in our work-in-progress) is to leverage the structure of the NL
query for presentation of why-not provenance. For example, if we leverage the work of [10] to identify “picky”
operators in the query (i.e. parts of the query that were responsible for the tuple omission), then in some cases
we may further track the words in the NL query that have led to the generation of each operator. Then, we can
present why-not provenance by highlighting these words. Another approach is to suggest various alternative
questions which are in the same spirit of the user’s question, with a strike-through line over the word mapped to
the picky operator.

Example 4: Reconsider our running example and assume that all “Hogwarts” authors who published in database
conferences have done so before 2005, so all tuples that contain “Hogwarts” do not qualify due to the selection
operator pyear > 2005. Instead of showing the selection operator itself, we can highlight the words that were
mapped to this operator: “after 2005”. This will give the user an idea of what has to change in the query in
order to get “Hogwarts” in the result set. Another scenario may be that no author associated to “Hogwarts”
has published in a database conference. In that case, we could highlight the words “database conferences” in
the original NL query. Alternatively, we could suggest the question “Return the organization of authors who
published papers in database conferences after 2005”.

These approaches work fairly well for operators that have words in the NL query directly mapped to them.
This is not always the case. For instance, for the query of Figure 1b, the triple join operator used to connect
table author with the table pub through the connecting table writes is not specifically mentioned in the NL
query, and was inferred automatically by the NL interface. Handling such cases requires further solutions whose
investigation is left for future work.

3 Explanations for Query-By-Example Frameworks

Query-by-example interfaces have been extensively studied [8, 30, 44] to allow non-expert users to query a
database without requiring extensive technical knowledge. These interfaces allow users to specify output ex-
amples of the desired query and then try to automatically infer it. The challenge is naturally that the size of
the search space, i.e. the number of queries that are consistent with the given examples, is typically very large.
Existing solutions aim at addressing this via an interactive process; for instance, users are shown at each step
positive and negative examples based on generated candidate queries, and their feedback is used to focus on
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a subset of these queries [8]. We claim that provenance may be very helpful in narrowing the search space in
query-by-example frameworks, and may be used for this purpose in two different manners, as follows.

Query-by-provenance In [15, 16] we have proposed a framework for the inference of queries from output
examples and their explanations. The idea is that explanations that are attached to examples may be viewed
as their provenance with respect to the (unknown) ground truth query (we show in [16] an interface that allows
non-experts to provide explanations).

Example 5: Consider a database of academic authors and their papers, and also consider an intended query that
should return all pairs of authors who wrote a common paper. Examples of the output, i.e. pairs of authors, may
share characteristics such as country of residence. This in turn may lead to the inference of a query that is very
different from the intended one. In contrast, if the user also provides a co-authored paper as an explanation, this
may potentially greatly restrict the search space.

This leads to three concrete questions: (1) how do we formalize the consistency of a query with examples
and explanations? (2) How many different queries are consistent with a set of examples and their explanations/
(3) What is the complexity of finding a consistent query and/or enumerating all of them? In [15] we provide
initial answers to these questions. We formally define a generic notion of query-by-provenance that applies to
any provenance semiring [21]. We show that the answers to the questions (2) and (3) above greatly depend
on the choice of semiring. For instance, the number of queries for a given provenance polynomial (NX) may
be exponential in the sum of the arities of the relations participating in a monomial. On the other hand, if
the provenance is given in the Why(X) semiring (corresponding to the why-provenance of [9]), there may be
infinitely many consistent queries. Yet, we show in [15] a “small-world” property, namely that there exists a
consistent query whose size is polynomial in the number of attributes in the output example, the number of
distinct relation names in the provenance, and the largest cardinality of a set in the provenance.

Using Provenance to Choose Between Candidate Queries As mentioned above, even in the presence of
explanations, there may be a large number of consistent candidate queries, and further user feedback is required
to choose a “correct” one, i.e. one that matches their intention. Provenance may be highly useful in this respect
as well; it is common practice to procure feedback for possible answers that would allow differentiating between
candidate queries (i.e. ask about the correctness of answers of one query that are non-answers of another one).
But it is not always trivial for users to state whether or not a proposed result should appear in the output; having
the system explain the rationale for computing this answer (i.e. present its provenance with respect to the
candidate query being considered), can be highly useful.

Example 6: Consider an ontology of authors and papers, and a query asking for all authors with Erdős number
2. Examples for the query output, i.e. example authors, will likely be un-indicative of the actual intended query,
since the authors may share many other characteristics. The provenance of an example author with respect to the
intended query will be one of her co-authorship paths to Erdős of length 2, which reveals much more information
on the inferred query and allows for its validation by the user.

Following our general principle, both the presentation of provenance and the procurement of explanations
take a form that follows the standard interaction of the user with the system. For instance, users attach expla-
nations to examples that they would give regardless of provenance, and so they can use the rationale they have
already employed in choosing the examples, to form the explanation. Provenance for a sample answer produced
by a candidate query can be shown by e.g. the relevant path in an RDF setting (in our ongoing work), and the
candidate answers themselves should be carefully chosen to “resemble” the user-provided examples. Employing
these principles allows for bridging the gap between formal provenance models and non-expert users.
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4 Machine Learning Results Explanation

The two example domains shown above are ones where the underlying models are based on some query language
for which provenance may be tracked. Can we leverage the developed ideas for additional settings? In this
section we briefly describe our work-in-progress, exploring the possibility of generating explanations for non-
experts that shed light on the result of Machine Learning (ML) models.

Despite its wide adoption, one drawback of ML is the complexity level of its models which makes it difficult
to understand the reasons for a given result. Such understanding is crucial to assess (and potentially improve)
the quality of a model and identify errors in its output. Recognizing this need, there is a large body of work
on understandable Machine Learning. One approach in this respect is to explain the model as a whole, e.g. by
approximating its specification through a simpler model, such as rules (see e.g. [23]). A second approach is not
to explain the model as a whole but rather to present the reasoning underlying individual predictions [35]. This
latter approach is close in spirit to provenance, and will be the focus of our short discussion.

We start with a simple model of explanations based on minimal changes, and gradually refine it.

Example 7: Consider a simple linear regression model for loan applications, where the model takes into account
two binary parameters, income and debt. For each loan request, the model will return a score based on the
following formula y = 0.5 + income

2 − debt
2 . Assume that loans are approved only if they have model score of

1. Further consider an applicant with x = {income : 1, debt : 1}. The model returns the score of 0.5, and
the application is consequently denied. Naturally, the applicant may be interested in understanding the denial
reason, and may ask e.g. (1) what factors have influenced the decision? and (2) what changes in the application
may lead to its acceptance next time?

A possible explanation model, in the spirit of why-not provenance, is that of minimal changes to the data
that would change the model decision. In this example, to answer the second question, we may look for minimal
changes that lead to loan acceptance (in our example, this involves changing the profile to x = {income :
1, debt : 0}). This also partly answers the first question, as we understand that the debt parameter has a major
influence on the model result. We may further look for changes that would cause to model the decrease its
confidence in the application. By doing so, we would find out that changing the income value such that x =
{income : 0, debt : 1} would reduce the model score to 0. Combined, we observe that both income and debt
parameters have a significant influence on the model decision.

In the context of database queries the related problems of explanations using minimal changes has been
studied in [27, 28, 43]. However, in the domain of machine learning the subject of minimal modifications in
the input that change the model output has been studied in a different context than that of explanations, namely
adversarial examples (see e.g. [20, 41]) where the goal is to “fool” the model. For explanations, we may need a
more refined model: in our example, it does not make sense to recommend the applicant to change features she
can not control such as her age. Hence, we may be interested in the minimal changes that lead to the satisfaction
of some pre-specified constraints.

Example 8: Figure 6a presents an image of handwritten 4 that was tagged as 9 by a simple Random Forest
model which we have trained using the MNIST data set. Two examples for minimal changes to the image that
lead to a decision of “4” are shown in Figures 6b and 6c. In Figure 6b there were no constraints on the allowed
modifications, and we can see that many pixels have changed. Some of them are not even close to the digit, and
do not serve as a convincing explanation. In Figure 6c we present the result of the minimal sequence of pixel
deletions (the constraint is that only deletions are allowed) that lead to the tag “4”. We can see that most of the
deletion were of pixels in the top of the image, providing further insight.

Can we gain further insights by summarizing explanations for multiple instances that share some property?
Our initial results indicate that this is the case.
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(a) Original image

(b) No constraints (c) Only deletion

Figure 6: Change constraints

Example 9: In Figure 7a we depict the average changes over multiple instances that were tagged “9” but for
which the ground truth tag is “4”. Now we can clearly see that deleting the top pixels of the digit is a general
“fix”, and so their existence is a valid explanation for the misclassification. We can verify the correctness of this
insight by Figures 7b and 7c that present the average of 4 images that were tagged as 9 and 4 respectively by our
model. Observe that the upper part of the digits classified as 9 is closed and that of digits classified as 4 is open.
The gained insight is that the model learned how to recognize images of 4 with open top, but images of 4 with
close top are misclassified as 9.

(a) Average misclassifi-
cations changes

(b) Misclassifications
summary

(c) Accurate classifica-
tion summary

Figure 7: Summarized explanations

5 Conclusion

We have discussed the usefulness of provenance presentation to non-experts, and have demonstrated it in three
contexts: NL database interfaces, query-by-example frameworks, and Machine Learning. We have further de-
scribed preliminary solutions for transforming provenance into user-friendly explanations, highlighting some
common principles. Further scaling up the solutions, applying them to additional frameworks and applications,
and improving the clarity of explanations are all subjects of our ongoing investigation.
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Abstract

While reproducibility has been a requirement in natural sciences for centuries, computational experi-
ments have not followed the same standard. Often, there is insufficient information to reproduce com-
putational results described in publications, and in the recent past, this has led to many retractions.
Although scientists are aware of the numerous benefits of reproducibility, the perceived amount of work
to make results reproducible is a significant disincentive. Fortunately, much of the information needed to
reproduce an experiment can be obtained by systematically capturing its provenance. In this paper, we
give an overview of different types of provenance and how they can be used to support reproducibility.
We also describe a representative set of provenance tools and approaches that make it easy to create
reproducible experiments.

1 Introduction

The need to reproduce experiments to verify and extend them is not new in science. Revisiting and reusing
past results – or as Newton once said, “standing on the shoulders of giants” – is the standard paradigm of all
sciences. Unfortunately, achieving reproducibility has proved elusive for computational experiments, which, due
to the explosion in the volume of available data and widely accessible computing infrastructure, have become
an integral component of science in many different domains.

Scientific papers published in conferences and journals present a large number of tables, plots, and beautiful
pictures that summarize the obtained results, but that loosely describe the steps taken to derive them [16,38]. Not
only can the methods and the implementation be complex, but their configuration may require setting myriad
parameters. Consequently, reproducing the results from scratch is both time-consuming and error-prone at best,
and sometimes impossible.

Reproducibility of computational experiments across platforms and time brings a range of benefits to sci-
ence. First, reproducibility enables reviewers to test the outcomes presented in papers. This is specially impor-
tant given the growing concern that many spurious research findings are published in respected venues [5,12,29],
which is reflected in the increasing number of paper retractions [44, 58]. Second, it allows new methods to be
objectively compared against methods presented in reproducible publications. Third, researchers are able to
build on top of previous work directly. Last but not least, recent studies indicate that reproducibility increases
impact, visibility, and research quality [3, 7, 26, 36, 50, 59] and helps defeat self-deception [46].

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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While many scientists recognize the importance of reproducibility, they are often held back by the complex-
ities involved in putting it into practice. They must describe and encapsulate the entire experiment, i.e., the set
of steps followed to obtain a result, including data, parameters, source code, dependencies, and environment,
so that the results can be properly verified and analyzed. If the experiment is not systematically documented
and made reproducible from the start, it may be difficult and time-consuming to retrospectively track all the
necessary components, and important aspects may be mistakenly omitted. As an example, some numerical
models, if not fully described, may lead to different implementations that are mathematically equivalent, but nu-
merically disparate, thus hampering reproducibility [14]. Even when a complete description is available, others
may have difficulties to reproduce the results: there may be no instructions about how to execute the code and
explore it further; the experiment may not run on a certain operating system; there may be missing libraries;
library versions may be different; and several issues may arise while trying to install all the required chains of
dependencies.

Fortunately, much of the information needed to reproduce an experiment can be obtained by capturing its
provenance. For a given experiment, computational provenance provides information about how and where
that experiment was carried out, what input data was used, and which outputs were produced. In other words,
provenance embodies the association between computation and results [17]: it helps determine both the data
and the sequence of steps that generated the findings, which is essential to make results reproducible. Note,
however, that different types of provenance can be captured, and these enable different levels of reproducibility.
For instance, some systems, such as VisTrails [19] and Kepler [39], capture workflow provenance, i.e., the
dataflow of an experiment, including its main programs and all the data used and derived. But these systems do
not detect the library dependencies for the different programs. As a result, they only attain reproducibility given
that the computational environment is unchanged (e.g., machine and version of dependencies are the same).
Other systems, such as ReproZip [51], are able to capture provenance at the operating system level, including
library dependencies, which allows experiments to be reproduced even in different machines. Nonetheless,
different from workflow systems, ReproZip may not capture the dataflow in an human-interpretable format,
which may make it harder to extend and modify the original dataflow for other purposes.

In this paper, we provide an overview of the different types of provenance and how they influence repro-
ducibility. Our main goal is to help researchers understand how the different types of provenance affect the level
of reproducibility and their corresponding trade-offs, to guide them in selecting a suitable approach for their
experiments. In Section 2, we start by defining computational reproducibility, and use this definition to detail
the different levels of reproducibility one can achieve. Next, we present all the different types of provenance and
how they related to reproducibility in Section 3, where we also describe tools that can be used to capture these
different types. We conclude in Section 4, where we discuss challenges and open problems.

2 What is Reproducibility?

There are different definitions for the term reproducibility, which have been used inconsistently across scientific
disciplines [2]. In this paper, we focus on the computational aspects of reproducibility and introduce definitions
that capture the necessary components to implement computational reproducibility in practice.

2.1 Computational Reproducibility

To understand what is needed to reproduce an experiment, we must first define what a scientific experiment is.
We borrow the definition from Rokem and Chirigati [52]:

Definition 1 (Scientific Experiment): A scientific experiment, or simply experiment, is any procedure carried
out to validate or refute a hypothesis, which involves the use of computational assets, including computer pro-
grams and digital data that is consumed (input data) and produced (output data).
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Such procedure can be represented as a dataflow: a sequence of steps that are connected by the flow of data,
where the output data of a step is used as input data for the following step. In this case, a step is represented by
a computer program or a sequence of programs, and it transforms the data it consumes as part of the procedure.
Below, we define what it means for an experiment to be reproducible [17].

Definition 2 (Reproducible Experiment): An experiment composed by a sequence of steps S that has been
developed at time T , on environment (hardware and operating system) E, and on data D is reproducible if it
can be executed with a sequence of steps S′ (different or the same as S) at time T ′ ≥ T , on environment E′

(different or the same as E), and on data D′ (different or the same as D) with consistent results.

Consistency here implies that the results can validate the original claims of the research, i.e., the same
conclusions derived from the original results can be obtained from the new results. Clearly, this depends on the
problem being addressed and the overall goal. For instance, it is unlikely that an experiment that compares the
performance of two database systems will produce the exact running times across runs, in particular, if different
machines are used (i.e., E′ ̸= E). However, if the new numbers reflect the same trends originally observed and
validated, then we say that the results are consistent, and therefore, reproducible.

Note that our definition includes both exact reproducibility and approximate reproducibility [52]. Exact
reproducibility, also known as repeatability, entails reproducing the exact same results (meaning, the exact
same numbers) as originally published, which requires having S′ = S, E′ = E, and D′ = D. Approximate
reproducibility, on the other hand, involves producing results that are similar to (but not that same as) the original
ones, which entails having different data, a modified sequence of steps, a different environment, or a combination
of these. In this case, the reproduced results may not necessarily be the same, but they must be consistent with
the original results. For experiments that are intrinsically difficult to replicate (e.g., experiments that require a
specific hardware), guaranteeing approximate reproducibility is essential.
The PRIMAD Model. The PRIMAD model [18] extends our definition of reproducibility to include non-
computational aspects as well. It provides a flexible model to define reproducibility: different levels (or modes)
of reproducibility can be defined by modifying a set of variables while reproducing an experiment. We consider
the following variables:

• (P ) Platform: the computational environment, including operating system, hardware architecture, and
library dependencies.

• (R) Research Objectives: the main goal or purpose of the experiment, i.e., the problem that the experi-
ment is trying to address.

• (I) Implementation: how the experiment and its corresponding sequence of steps is implemented (e.g.,
source code and binaries).

• (M ) Methods: the methods and algorithms that the experiment implements and uses to achieve the re-
search goals.

• (A) Actors: the main users of the experiment.

• (D) Data: the input data files, intermediate data, and parameters for the experiment.

These variables are used to describe which aspects of the experiment can be changed while still attaining
reproducible results. The conditions under which the experiment is reproducible are defined by qualifying
the different variables: we tag a variable X with the prime symbol to indicate that X can be changed and the
experiment is still reproducible. If untagged variables are changed, reproducibility cannot be guaranteed. For
instance, if an experiment is claimed to be P ′RIMA′D′, it means that, if researchers, who are not the original
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Data ImplementationLevel Parameters Data Files Platform Binaries Source Code
Repeatable – – – – –
Re-runnable X X – – –
Portable – – X – –
Extendable – – – X X
Modifiable – – – – X

Table 2: Levels of reproducibility based on the different variables. The symbol “X” denotes a change in the
corresponding variable, while “–” denotes no change from the original setting. Adapted from [18].

authors of the experiment (A′), reproduce the experiment with different data (D′) on a different platform (P ′),
they will obtain results that are consistent with the ones originally published.

Note that P , I , and D are equivalent to E, S, and D, respectively, from Definition 2. The other vari-
ables from the PRIMAD model correspond to the non-computational aspects of reproducibility. While we do
not consider these aspects in this paper, we note that they are vastly important and useful to complement the
computational components.
Additional Dimensions of Reproducibility. Besides the PRIMAD variables, there are other dimensions that are
important for qualifying the level of reproducibility of an experiment. One of these dimensions is coverage [17],
which takes into account how much of the experiment can be reproduced, i.e., if the experiment can be partially
or fully reproduced. Many experiments cannot be fully reproduced, e.g., experiments that rely on data derived
by third-party Web services or special hardware. But such experiments can, sometimes, be partially reproduced.
For example, if an experiment uses data that is derived by special, proprietary hardware, the data derivation may
not be reproducible. However, the downstream analyses that use these data may be reproduced by others if the
data is made available.

Another important dimension is transparency, which considers how much information is made available for
an experiment. This dimension affects the variables in different ways. For instance, in terms of implementation,
one can provide the original binaries used in the experiment. While this allows the results to be reproduced, it
limits reusability: these binaries can only be executed in a compatible platform, and the implementation cannot
be modified. On the other hand, if the source code is provided, the implementation can be better inspected and
reused. In terms of data, if the data cleaning process is made available, in addition to the final, cleaned input
files, it is easier to clean other datasets and explore how the experiment behaves with these.

Finally, longevity relates to the ability to reproduce experiments (long) after they were created. Supporting
longevity is challenging because software environments evolve, i.e., libraries, operating systems, and data used
change over time.

2.2 Levels of Reproducibility

To assess the reproducibility of an experiment, we need to understand which of its different components are
made available. In what follows, we categorize the different levels of reproducibility based on Definition 2
and the PRIMAD model. Table 2 summarizes the different levels and the corresponding variables that can be
changed while attaining that level of reproducibility.
Repeatable. An experiment is repeatable if the same results can be re-generated within the same computational
environment, with no changes to code or data, i.e., if the results can be repeated. This is the lowest level
of reproducibility (exact reproducibility), and can be used to determine if the experiment is deterministically
consistent. Note that some experiments may have non-deterministic steps (e.g., a random number generator,
or third-party services that are accessed remotely). In such cases, achieving the exact same results may not be
possible, but they must be consistent with the original ones, i.e., the same conclusions must be reached.
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Re-runnable. We say an experiment is re-runnable if we can vary the input data (either the data files or the input
parameters) and still get results that are consistent. Note that this allows one to determine how the experiment
behaves and how robust the results are for different inputs. For instance, if the input data changes significantly
and the results are still consistent, the experiment may have a broader scope worth investigating. This also allows
one to evaluate whether the data originally used is representative for a given domain.
Portable. An experiment is portable if it can be re-executed on platforms that are different from the platform
where the original results were generated. In this case, the results may be reproduced on similar environments
(i.e., compatible operating system but different machines), or on different environments (i.e., different operating
systems and machines). The level of portability will be higher if the experiments can be run on completely
different environments. Note that, by changing platforms, library dependencies may also change, and this also
affects reproducibility. For instance, the version of a software library may be available on Ubuntu (the original
environment) but not on Windows (the new environment).
Extendable. An experiment is extendable if we can reuse its original dataflow and structure, i.e., its original
sequence of steps, for other experiments. Examples include integrating the original pipeline into an existing
dataflow, or even extending the original one to include new pre- or post-processing steps, e.g., performing
additional data cleaning to the input. This is possible by having access to the implementation of the experiment,
either binaries or source code. Note, however, that the experiment must be portable so that the binaries can be
run in different platforms.
Modifiable. We say an experiment is modifiable if we can change its implementation for reuse purposes, and this
is achievable by having the source code of the experiment. It is worth noting that changing the implementation
also allows others to verify the correctness of the original implementation. In addition, if the experiment is not
yet portable, others may modify the source code to make it runnable in different platforms.

3 Provenance for Reproducibility

The variables that correspond to the computational aspects of reproducibility, i.e., P , I , and D, can be system-
atically captured by keeping track of the experiment’s provenance. Provenance refers to the record trail that
accounts for the origin of a piece of data [20]. These trails enable scientists to: (i) obtain insights into the
chain of reasoning used in the production of a result; (ii) verify the sequence of steps that led to the experiment
findings (by capturing I – implementation); (iii) identify the inputs to an experiment and where they came from
(by capturing D – data); and (iv) determine where the experiment was originally executed (by capturing P –
platform).

Provenance is essential for attaining reproducibility [10, 11]. But different types of provenance can be
captured, and these impact reproducibility in various ways. Thus, to choose the most appropriate provenance
capture method for a scientific experiment, it is important to understand how each of these types influence
the different levels of reproducibility. Below, we describe different types of provenance and how they affect
reproducibility. We also present a set of tools that support automatic provenance capture.

3.1 Database Provenance

Database provenance provides a description of the derivation of a piece of data that results from executing a
database query against a source database [8]. It is fine-grained, in the sense that provenance is captured for
individual data items: it can be used to determine which parts of the source dataset were used to generate a
piece of data in the resulting dataset. Often, database provenance is captured by reasoning about the algebraic
form of the query and the underlying data model of both the source and resulting datasets. Different notions
of database provenance have been defined, notably why-, where-, and how-provenance [9]. Given a tuple t in
the result of a query, why-provenance describes all the source tuples that contributed to t or helped produce t.
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Where-provenance determines where the source tuples were copied from (e.g., which cell of the relation the
data comes from). How-provenance, as the name suggests, describes how the source tuples derived t (e.g., how
many times each source tuple contributed to t and how they were combined).

Since databases operate in a stateful mode, database provenace is important for reproducibility. Every time
a transaction commits, there is a new state that reflects the changes applied within the transaction; executing a
query over different database states is likely to lead to different results.

Database provenance is descriptive: it provides an explanation for the derivation of results. Note that
this type of provenance only captures variable D: no information about the computational environment or the
database management system is available.
Levels of Reproducibility. Because database provenance captures the different states of a database (D), it can
help make an experiment repeatable. How-provenance can make an experiment re-runnable by re-executing the
operations with different data and assessing whether the new results are consistent with the original ones.
Tools. Systems that capture database provenance include Trio [4], Orchestra [24], Perm [22], GProM [1], and
ProQL [32]. Trio is a database management system based on an extended relational algebra called ULDB,
which supports uncertainty and provenance. The source data is annotated with probabilities, and the captured
provenance is used to compute probabilities associated with the derived results. Orchestra is a collaborative
sharing system that uses how-provenance to filter data based on user-specified trust conditions (provenance is
used for data quality and reliability). In Perm, different notions of database provenance, including why-, where-,
and how-provenance, are supported. Perm is implemented as a modified PostgreSQL engine, where data and
its provenance are represented together in a single relation; provenance queries are then rewritten to standard
SQL queries, leveraging existing query optimization techniques. GProM uses the query rewriting approach
from Perm in a generic provenance middleware, in addition to supporting updates, transactions, and operation-
spanning transactions. In the ProQL system, SQL is extended to support how-provenance queries.

Transaction temporal databases keep track of the different states of the database as tuples are added, deleted,
or updated. Therefore, they also support fine-grained provenance and reproducibility: users can revisit old
states and maintain provenance of query results even when data changes [28]. Large database vendors, such as
Oracle [31] and DB2 [53], support version control for their database systems by using temporal models.

3.2 Workflow Provenance

Workflow provenance consists of the record of the derivation of a result (e.g., a dataset, an image, a plot, etc.)
by a computational process represented as a scientific workflow [15]. Scientific workflows are often represented
as dataflows, directed acyclic graphs (DAG) whose vertices are modules (functions) that perform computations,
and data flows through the edges which connect modules. They adopt a functional, deterministic model where
each module receives some input data and generates a new output: the workflow structure and inputs uniquely
identify the outputs.

There are several advantages of describing computations as workflows. Notably: they provide a simple
programming model where a sequence of tasks is composed by connecting the outputs of one task to the inputs
of another; they support useful manipulations, such as the ability to query workflows and update them in a
programmatic fashion [54]; through abstraction, they provide a high-level description of the experiment, making
the specification easier to understand and more amenable for publication; and by providing a unified environment
to run computations, they facilitate provenance capture.

Different from database provenance, workflow provenance is coarse-grained. Modules are black boxes and
provenance captures input data they consume, the function they execute and associated parameters, and data
they output; operations inside the function are not visible and no information is available about how the function
manipulates the input data.

There are different types of workflow provenance [20]. Prospective provenance corresponds to the descrip-
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tion of the experiment and captures the specification of the workflow structure, including its modules, connec-
tions, and inputs. Retrospective provenance, on the other hand, captures information about the execution of the
workflow, i.e., what actually happened when the workflow was run. Workflow evolution provenance captures
the history of the workflow, i.e., the changes that were applied to a workflow over time. If we consider the
PRIMAD variables, workflow provenance contains information about the data D (input files and parameters)
and the implementation I (binaries or source code for each computational step). While information about the
platform P is available, it is often not captured by workflow systems.
Levels of Reproducibility. Workflow provenance supports repeatable and re-runnable experiments, as parame-
ters and data files are systematically captured and can be varied. Workflows are also extendable, as scientists can
change the structure of the dataflow (i.e., the prospective provenance) or incorporate it in their own pipelines.
A workflow is modifiable if the source code for the modules is available. But if a module relies on a binary
executable or a Web service to process the data, it is not possible to change the implementation. Note that, if the
workflow system does not capture the platform P , portability cannot be supported.
Tools. Many scientific workflow systems are available. Taverna [41] was developed to stitch together Web
and third party services: a module invokes either a Web service or a local service (e.g., R scripts, or Java API
classes and methods). If a workflow is only composed of Web services, it is portable assuming these services
are available (live and accessible) and running, but not modifiable. Note that using third-party resources (i.e.,
services provided by external hosts) may impact both repeatability and longevity because they may be interrupted
or changed without notice, causing the workflow to fail.

Kepler [39] and VisTrails [19] capture both prospective and retrospective provenance. A new concept in-
troduced by VisTrails was the notion of provenance of workflow evolution [21]. VisTrails treats the workflows
as first-class data items and also captures their provenance. The utility of workflow-evolution provenance goes
beyond reproducibility. It supports reflective reasoning [45]: users can explore multiple chains of reasoning
without losing any results, and because the system stores intermediate results, users can reason about and make
inferences from this information. It also enables a series of operations which simplify the exploratory pro-
cess that is common for scientific experiments. For example, users can easily navigate through the space of
workflows created for a given task, visually compare the workflows and their results, and explore (large) pa-
rameter spaces [21]. In addition, users can query the provenance information [55] and modify workflows by
analogy [54]. VisTrails manages data manipulated by the workflows and their versions by storing input, output,
and intermediate data in a versioned repository. This ensures that different versions of the input data can be
recovered in the future. Using this approach, the workflow does not depend on hardcoded filenames [33]. With
respect to longevity, VisTrails has a mechanism that detects when upgrades are necessary by using provenance
to compare a module in a given workflow with its currently available version [34].

Galaxy [23] is a platform used to perform computational analysis on genomic data. Similar to VisTrails,
Galaxy can capture information about workflow evolution, keeping multiple versions of the analysis steps so
that scientists can re-run previous computations. Because the system provides a Web-based interface to create
and run workflows, allowing them to be accessed through the Web from any platform, portability is easily
attainable.

3.3 Script Provenance

Script provenance is obtained by analyzing the source code of experiments represented as scripts. Similar to
workflows, we can have prospective and retrospective provenance for scripts. While the former corresponds to
the script specification, the latter records the actual execution of the code (i.e., which execution branches were
taken, which values were used and processed, etc.). It is also possible to capture provenance for the evolution
of scripts, for example, using version control systems. To capture script provenance, code is instrumented
either automatically or manually through user-defined annotations. Automatic capture has the advantage of not
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requiring user intervention. On the other hand, the resulting provenance data may be voluminous if provenance
is captured at a fine level of detail. While annotations can be intrusive and time-consuming to add, they allow
users to precisely define what should be captured.

Note that script provenance often has a finer granularity than workflow provenance. While workflow mod-
ules are black boxes, for scripts it is possible to observe all operations in the source code.
Levels of Reproducibility. The variables D (parameters and data files) and I (source code) are often captured,
allowing an experiment to be repeatable, re-runnable, extendable, and modifiable. Provenance may also be
captured for the platform P , including the library dependencies explicitly used in the code. While this may not
be sufficient for portability, it useful for analyzing and comparing execution traces.
Tools. noWorkflow [43] transparently captures retrospective provenance from Python scripts. It does not require
any code instrumentation, and the captured provenance—which includes metadata, file contents, Python depen-
dencies (i.e., environment information at the Python level), and parameters—can be analyzed by inspecting a
provenance graph, comparing multiple executions, or using inference queries. Users can choose the amount
of provenance information obtained by setting the depth of the capture. noWorkflow also allows scientists to
analyze workflow evolution [49].

RDataTracker [37] also captures retrospective provenance from scripts, but for the R software package.
Similar to noWorkflow, the tool collects and persists provenance information, provides a provenance graph that
can be inspected by users, and supports querying. Users must manually annotate the code.

Tariq et al. [56] proposed an approach through which provenance instrumentation is added at compilation
time using the compiler framework LLVM [35]. This works for a range of programming languages, such as C,
C++, and Java. Hooks for the capture of retrospective provenance are inserted at each function entry and exit:
when the framework compiles the experiment, provenance at the binary level is transparently captured, with a
small overhead.

YesWorkflow [40] captures prospective, rather than retrospective provenance. Scientists can make use of
language-independent annotations to make latent dataflow information from scripts explicit. There has been
also work on linking the retrospective provenance collected by noWorkflow with the prospective provenance
obtained by YesWorkflow [48]. ProvenanceCurious [27] is another tool for capturing prospective provenance: it
builds an abstract syntax tree from Python code to generate provenance graphs.

3.4 System-Level Provenance

System-level provenance corresponds to the provenance data captured at the operating system level, which often
includes the description of the platform P , providing detailed trails of how data products are derived. This
provenance is often captured by monitoring system calls and tracking processes and data dependencies between
these processes. Because the dependencies are recorded at the process level, the provenance data is fine-grained.
Note, however, that these processes are black boxes: it is not possible to observe what happens inside them. For
this reason, in terms of the implementation I , the transparency can be low.
Levels of Reproducibility. System-level provenance is often composed of D (input parameters and data files),
P , and I (binaries, at least); therefore, it can help experiments to achieve all reproducibility levels: repeat-
able, re-runnable, portable, and extendable. It is also possible to attain modifiability if the source code for the
processes is available.
Tools. PASS (Provenance-Aware Storage System) [42] produces audit trails for data products by monitoring the
operating system kernel. These audit trails are stored in a database and can be queried. The system supports
application-generated provenance to be written into the same database via library functions, generating an inte-
grated view of application and system-level provenance. Moreover, PASS can generate scripts to reproduce an
experiment in the environment in which it was originally created and executed, thus allowing it to be repeated.

A number of tools have been developed to package and preserve the computational environment. Tools like
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CDE [25], CARE [30], ReproZip [11, 51], and PTU [47] trace the execution path of an experiment and obtain
information about all the experiment’s dependencies (e.g., files read, libraries used). This information can be
used to create a package that encompasses both the experiment and its dependencies, thus supporting portability
and longevity.

Most of these packing tools only support reproducibility in Linux environments that are compatible with
the platform where the experiment was originally captured. CARE supports enhanced kernel compatibility,
allowing within certain limits, for an experiment to be executed in a kernel older than the one used in the original
implementation. ReproZip has an option to automatically reproduce an experiment in a virtual environment or
container, thus allowing the reproduction to take place in any platform. ReproZip also enables scientists to
inspect the captured provenance and exclude certain components from the package. Scientists can also add extra
files to the package, e.g., one can add the source code if it was not originally traced. ReproZip automatically
derives a VisTrails workflow for the experiment, which facilitates extending and re-using the original dataflow.
PTU uses CDE internally to pack the experiment and enhances its functionalities by storing a provenance graph
that can be visually inspected by scientists to determine parts of the program they want to reproduce, i.e.,
scientists can choose to repeat subsets of the experiment.

4 Discussion

Provenance is essential for the reproducibility of computational experiments. In this paper, we discussed differ-
ent notions of reproducibility and gave an overview of different types of provenance and how they support the
various levels of reproducibility. Over the past few years, there have been major developments in basic infras-
tructure and tools that, through systematic provenance capture, make it easier to create reproducible experiments.
We have described some of these tools, the benefits they bring as well as their limitations.

While progress has been made, reproducibility is still not the norm for computational experiments. An
important barrier to the adoption of reproducibility is the perception that it is time-consuming to create repro-
ducible experiments. Recent studies have shown that insufficient time is one of the main reasons why scientists
do not make their data and experiments available and reproducible [57], and that substantial effort is needed to
make code work with the latest versions of required dependencies [13]. In addition, many authors argue that
the process to make an experiment reproducible requires too much work for the benefit derived [6]. While one
can interpret some of these as excuses, they do indicate that usability is an important requirement for a broader
adoption of reproducibility: tools must be easy to use and, ideally, as automatic as possible. In the words of
Vandewalle et al. [59], “an independent researcher should be able to reproduce all the results with a simple
mouse click.”

Some experiments require multiple types of provenance to be captured. For example, for a scientific work-
flow or script that queries and/or updates a database, it is important to collect both workflow or script provenance
and database provenance. To support portability, it is also important to capture system-level provenance and de-
tailed information about the platform and dependencies. The integration of these different types of provenance
opens new opportunities to query and reason about an experiment at multiple levels. In particular, this informa-
tion can enable explanations for potential issues encountered in an experiment, which can arise from the data,
code, platform, or from interactions among them. But integrating different types of provenance is challeng-
ing because they are captured at different levels and have different granularities. In addition, domain-specific
languages are needed that support queries over these data.
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Data Citation: A New Provenance Challenge

Abdussalam Alawini, Susan Davidson, Gianmaria Silvello, Val Tannen, Yinjun Wu

Abstract

In today’s era of big data-driven science, an increasing amount of information is being published as
curated online databases and retrieved by queries, raising the question of how query results should be
cited. Because it is infeasible to associate citation information with every possible query, one approach
is to specify citations for a small set of frequent queries – citation views – and then use these views to
construct a citation for general queries. In this paper, we describe this model of citation views, how
they are used to construct citations for general queries, and an efficient approach to implementing this
model. We also show the connection between data citation and data provenance.

1 Introduction

Citation is an essential part of scientific and scholarly publishing. It is crucial for gauging the trust placed
in published data and giving appropriate credit to authors. However, the nature of publication is shifting from
traditional venues – such as books, journals and conferences – for which citation is well understood, to databases
containing curated information which is retrieved by queries. This is especially true in Big Data-driven science,
where many scientific reference works and collections of experimental results are now being published as curated
on-line databases with web-page views.

Typically, database owners specify the citation to a web-page view as a journal article whose title includes
the name of the database and whose author list includes the chief personnel (e.g. the PI, DBA, lead annotator,
etc), along with the query and date of access. However, in many cases the content of the query result is con-
tributed by members of the community and curated by experts, who are not on the author list of the journal
article, and the lack of appropriate citation is becoming a stumbling block as evidenced by the recent “data
parasite” controversy [14]. Appropriate data citation is therefore essential to motivate members of the scientific
community to continue to share data and experimental results so that they can be used and built on by others in
the advancement of science.

Many of the “citable” databases that we have examined - e.g. the Reactome Pathway database [13] and the
eagle-i [17] resource discovery tool - describe in English what snippets of information are to be included in a
citation for data displayed on a web page; however, users must then construct the citation by hand. However, the
English specifications are fairly complex, and the effort required to pull the data off the web page discourages
users from generating the citations. Users are therefore unlikely to cite this data correctly unless the citations
are automatically generated and returned to users along with the data retrieved by a query.

The most advanced database from the perspective of citation that we have examined is the IUPHAR/BPS
Guide to Pharmacology (GtoPdb) [16], a relational database that contains expertly curated information about

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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drugs, the cellular targets of the drugs, and their mechanisms of action in the body. In this database, users view
information through a hierarchy of web pages. The top level divides information by “families” of drug targets
that reflect typical pharmacological thinking; lower levels divide the families hierarchically into sub-families
and so on down to individual drug targets and drugs. For data displayed in Family and Family Introduction web
pages, GtoPdb places a human readable citation calculated from information in the underlying database in the
page; the citation can then be copy-pasted and reformatted into whatever style the user wishes. The citation
varies depending on the part of the database being queried (e.g. the particular Family), and contains an identifier
for the data along with information about the contents (analogous to a title), the contributors and/or curators of
the data (analogous to authors), the date on which the contents were last modified, and the date the database
was queried. In the future, owners of GtoPdb would like to enable general queries against the underlying
database rather than restricting access to the database to queries expressed as web-pages, and automatically
return citations along with the data. The question is: how should citations to general queries be generated?

Data citation is a challenge because, unlike traditional publications which have a fixed granularity to which
citations can be attached, the granularity of reference varies; there are a large number of possible queries over a
database, each returning a different subset of data. The “snippets” of information to include in the citation may
also vary from query to query, e.g. descriptive information about the data subset being returned, analogous to the
distinct titles that different chapters have in an edited collection. Note that these snippets of information play an
important human role: While the query and date of access (or some form of digital object identifier) is sufficient
to locate the query result, they are not informative enough if used as a citation as they do not give intuition
about the content. This is analogous to the fact that, in traditional journals, a citation like “Nature, 171,737-
738” specifies how to locate the article but doesn’t tell you why you might want to do so, whereas adding the
information “Watson and Crick: Molecular Structure of Nucleic Acids” does. It is therefore necessary to be able
to specify citations to query results [5].

Since it is impossible to specify the content of a citation to every possible query over a database, one strategy
is to specify citations to a small number of frequent queries – citation views [8, 9] – and use these to construct
citations to other “general” queries. The citation views may be combined (jointly used) to construct the citation,
and there may be alternate ways in which combinations of citation views can be used. The interpretations of
joint and alternate use (e.g. union or join) are policies to be specified by the database owner.

There is an interesting connection between data citation and data provenance: Naively, citation captures
the “origins” of data by giving credit to the people responsible for it. However, the connection goes deeper by
viewing both citation and provenance as annotations on data that are carried through queries. That is, each
tuple t in a base relation is annotated with a view iff t is used to construct the materialized view. When a user
query is issued, the view annotations are regarded as provenance tokens to be propagated along with values to
the final query result. The view annotations of each tuple are then reasoned over to determine whether or not
they are valid in a citation for the tuple.

In the remainder of this paper we explore this connection. We start in Section 2 by describing the model
of citation views and how they are used to construct citations to general queries. In Section 3 we discuss
the connection to where- and why-provenance [6, 11]. We then describe in Section 4 an efficient approach to
implementing the model which draws on the ideas of the previous two sections. We conclude in Section 5.

2 Model of Citation Views

The citation framework is based on conjunctive queries [1]. Conjunctive queries are “universal” across different
types of databases (e.g. relational, semistructured, RDF, etc.), and simplify the reasoning used to generate
citations. Throughout the paper, we will use Datalog as the syntax for queries, and assume that fresh variables
are introduced everywhere in relational subgoals rather than being reused.

We start by defining the notion of citation views, which defines how to associate citations to a fixed set of

28



FID FName Type
58 n1 gpcr
59 n2 gpcr
60 n3 lgic
61 n4 vgic
62 n5 vgic

Figure 1: Effect of Parameters on Views

frequent queries, and then give a semantics for how to associate citations to general queries based on citation
views.

2.1 Citation views.

A citation view specifies: 1) the data being cited (view definition); 2) the information to be used to construct the
citation (citation queries); and 3) how the information is combined to construct the citation (citation function).
The citation function takes the snippets of information retrieved from citation queries as input, and generates an
appropriately formatted citation as output (e.g. human readable, BibTex, RIS or XML). Note that the snippets
of information required for the citation must be in the database, and that the citation can be thought of as an
annotation on every tuple in the view result.

The view definition and citation queries are optionally parameterized, where the parameters (λ-variables)
appear as variables somewhere in the body of the query. 1 A parameterized view creates a set of instantiated
views, one for each possible choice of parameters. The number of such views is therefore instance-dependent,
as illustrated in Figure 1. We will use the input parameter(s) to distinguish such views, e.g. V1(60) refers to the
instantiated view V1 for FID=60.

Example 1: Recall that in the GtoPdb database, users view information through a hierarchy of web pages. The
top level divides information by families of drug targets; lower levels divide the families into sub-families and
so on down to individual drug targets and drugs. The content of a particular family “landing” page (referred to
as the Family relation) is curated by a committee of experts; a family may also have a “detailed introduction
page” (referred to as the FamilyIntro relation) which is written by a set of contributors, who are not necessarily
the same as the committee of experts for the family.

Citation views for the Family and FamilyIntro relations can be specified as follows. Views V1, V2 and V4
are parameterized by the key FID, whereas V3 is unparameterized.

λFID.V 1(FID,FName) : −Family(FID,FName, Type)
λFID.V 2(FID, Text) : −FamilyIntro(FID, Text)

V 3(FName, Type) : −Family(FID,FName, Type)
λFID.V 4(FID,FName, Text) : −Family(FID,FName, Type), FamilyIntro(FID1, T ext), F ID = FID1

For each view V, we define one or more citation queries CV . We show below examples of citation queries
for views V1 and V3, where relation FC captures the committee members who curate the content for V1 and
relation MetaData captures general snippets of information such as the owner and url of the database.

λFID. CV 1(FID,FName, PName) : − Family(FID,FName, Type), FC(FID,PID), P erson(PID,PName)
CV 3(X1, X2) : −MetaData(T1, X1), T1 = ‘Owner′, MetaData(T2, X2), T2 = ‘URL’

1Also called binding patterns in [15].
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This information can then be used to construct citations for tuples in the query result. For example, the
JSON-formatted citation for V1(60) could be {FID: ‘60’, FName: ‘RXFP’, PName: [‘Roger’, ‘Ross’]}, and
that for V3 could be {Owner: [‘Alexander’, ‘Davenport’], URL: ‘http://www.guidetopharmacology.org’}.

Attaching citations to general queries. To give a semantics to citations for general queries, we use the
following intuition: If a view tuple can be used to create a tuple and is visible in the query result, then the result
tuple carries the view tuple’s citation annotation. To do this, mappings between the view definitions and input
query are created which maximally and non-redundantly cover the query subgoals; we call this a covering set
of mappings [3]. This is similar to the notion of query rewriting using views as used, for example, in query
optimization and data integration [12]. More formally:

Definition 1: Given a view definition V and query Q

V(Ȳ) : −A1(Ȳ1), A2(Ȳ2), . . . , Ak(Ȳk), condition(V)
Q(X̄) : −B1(X̄1), B2(X̄2), . . . , Bm(X̄m), condition(Q)

in which Ai, Bj are relational subgoals, and condition() are non-relational subgoals which include com-
parisons of variables to constants (called local predicates) and comparisons of variables with variables (called
global predicates if the variables come from different relational subgoals and local otherwise). Then a view
mapping M from V to Q is a tuple (h, ϕ) in which:

• h is a partial one-to-one function from {A1, ..., Ak} to {B1, ..., Bm} which 1) maps Ai to Bj only if they
have the same relation name; and 2) cannot be extended to include more subgoals of Q (i.e. there is no
unmapped Ai, Bj which have the same relation name).

• ϕ are the variable mappings from Ȳ ′ = ∪ki=1Ȳi to X̄ ′ = ∪mi=1X̄i induced by h

A relational subgoalBj ofQ is covered iff h(Ai) = Bj for some i. A variable xj ∈ X̄ ′ is covered iff ϕ(yi) = xj
for some variable yi ∈ Ȳ ′. Note that a view may be in zero or more view mappings for a given query.

We also use the notion of the extension of Q, called Qext, which expands the head of Q to include all
variables in the body (X̄ ′).

Definition 2: Valid View Mapping Given a database instance D, a view mapping M = (h, ϕ) of V is valid for
a tuple t ∈ Qext(D) iff:

• The projection of t on the variables that are mapped in Qext under the mapping ϕ is a tuple in Vext(D):
Πϕ(Ȳ ′)t ∈ Vext(D)

• There exists at least one variable y ∈ Ȳ such that ϕ(y) is a distinguished variable.

• All lambda variables in V are mapped to variables in X̄ ′.

Given a set of views V , a query Q and a database instance D, we can build a set of valid view mappings
M(t) for each tuple t ∈ Q(D) according to Definitions 1 and 2. We then combine different view mappings
fromM(t) to create a covering set of views for t.

Definition 3: Covering set Let C ⊆ M(t) be a set of valid view mappings. Then C is a covering set of view
mappings for t iff it is maximal and nonredundant:

• No V ∈M(t) \ C can be added to C to cover more subgoals of Q or variables in X̄; and
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• No V ∈ C can be removed from C and cover the same subgoals of Q and variables in X̄ .

Within a covering set, the citation views are jointly used (indicated by “*”) to construct a citation, and if
there are more than one covering set the citations of the covering sets are alternatively used (indicated by “+R”)
to construct a citation to each tuple. The citations for each tuple in the query result can then be aggregated
(indicated by Agg) to form a citation for the entire query result.

Example 2: In this example, there will be at most one valid view mapping from a view V to a query Q; we will
therefore use the name of the view as the name of the mapping.

Suppose we had the input query

Q1(Name) : −Family(FID,Name, Type), F ID >= 60

For this, one covering set is {V1}: there is a mapping from the body of V1 to the relational subgoal (Family)
as well as an input to the parameter FID. {V3} and {V4} are also covering sets; note that mapping V4 is partial
since FamilyIntro is not mapped to any relational subgoal in Q1. The citation for the first tuple (FID=60) would
therefore alternatively use the citations for V1(60), V3, and V4(60), i.e. it would be Cite(V 1(60) +R V 3 +R

V 4(60)). If “+R” were interpreted as “most specific”, the resulting citation would be Cite(V 1(60)). Similarly,
for tuple FID=62 the citation would be Cite(V 1(62) +R V 3 +R V 4(62)). The citations for each tuple are then
aggregated to derive a citation for the entire query result. If aggregation were interpreted as some form of
intersection, and “+R” balanced size with specificity, the citation for the query result would be Cite(V3).

On the other hand, consider the following the input query

Q2(Type, Text) : −Family(FID1, Name, Type), FamilyIntro(FID2, T ext), F ID1 = FID2 = 60

One covering set is {V2, V3}: there are mappings from the body of V3 to the relational subgoal Family
as well as from the body of V2 to the relational subgoal FamilyIntro. We would therefore jointly use the
citations for V3 and V2, written Cite(V 3 ∗ V 2(60)). Another covering set is {V1, V2}, resulting in citation
Cite(V 1(60) ∗ V 2(60)). Finally, there is a mapping from the body of V4 which covers all relational subgoals
of Q2, however {V4} is not a covering set since it only covers the distinguished variable Text, and can be
augmented with V3 to cover both Type and Text. The third covering set is therefore {V3, V4}. The final
citation for the single result tuple is therefore Cite(V 1(60) ∗ V 2(60) +R V 3 ∗ V 2(60) +R V 3 ∗ V 4(60)).

Finally, suppose we had an input query which is a subset of the cross product of Family and FamilyIntro:

Q3(Type, Text) : −Family(FID1, Name, Type), FamilyIntro(FID2, T ext), F ID1 <= 60, F ID2 <= 60

Note that some of the tuples in the result may be in the join of the two tables, and therefore be visible in V4,
while others are not. This motivates the need to evaluate the extended query Q3ext. Since this returns the value
of all variables in the body, the validity of the join predicate FID1=FID2 can be evaluated for each result tuple,
thereby determining whether the V4 is valid for that particular tuple. Thus, for tuples in the result that are not in
the join, the covering sets would be {V1, V2} and {V3, V2}, while for tuples in the join it would also include
{V3, V4} (as in Q2).

3 Connection to Provenance

To understand the connection to provenance, we start with a simple but common subclass of view definitions
called partitioning views which corresponds to where- provenance, and then move to the (more complex) general
case which corresponds to why-provenance [6, 11].
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3.1 Partitioning Views

A set of select-project views over a single relation R is partitioning if each attribute of R appears in at most
one view; a set of views is partitioning over a database schema S if it is partitioning for each R ∈ S.2 As an
example, the following set of citation views is partitioning for our running example:

λFID.V 10(FID,FName) :- Family(FID,FName, Type), T ype = ‘gpcr′

λFID.V 11(Type) :- Family(FID,FName, Type)
λFID.V 12(FID, Text) :- FamilyIntro(FID, Text)

In this case, since fresh variables are introduced for every relational subgoal in queries, each attribute of
each tuple in a query result is visible in at most one view, and must be the same view across all tuples.3

In where-provenance [4, 10], each attribute of each tuple in an instance of a relation is annotated with a
(unique) provenance token, which is then carried through queries to annotate tuples in the query result. Assume
for now that duplicates in queries are not removed, and that views are materialized. Then the citation for each
tuple in the query result would be the set (joint use) of citation views in which the where-provenance tokens
for attributes in the tuple appear. When duplicates are removed, the union of the sets of citation views for each
duplicate tuple would be used.

Table 3: Base relations with provenance tokens

(a) Family

FID FName Type
t1 58 a1 n1 a6 gpcr a11 s1
t2 59 a2 n2 a7 gpcr a12 s2
t3 60 a3 n3 a8 lgic a13 s3
t4 61 a4 n4 a9 vgic a14 s4
t5 62 a5 n5 a10 vgic a15 s5

(b) FamilyIntro

FID Text
t′1 58 b1 tx1 b5 r1
t′2 60 b2 tx2 b6 r2
t′3 61 b3 tx3 b7 r3
t′4 62 b4 tx3 b8 r4

Table 4: Materialized views V10-V12 and query result Q4(D) with provenance tokens

(a) V10

FID FName
t101 58 a1 n1 a6
t102 59 a2 n2 a7

(b) V11

Type
t111 gpcr a11, a12
t112 lgic a13
t113 vgic a14, a15

(c) V12

FID Text
t121 58 b1 tx1 b5
t122 60 b2 tx2 b6
t123 61 b3 tx3 b7
t124 62 b4 tx3 b8

(d) Q4(D)

FID FName Type covering sets
tq41 58 b1 → {V 12} n1 a6 → {V 10} gpcr a11 → {V 11} V 12 ∗ V 10 ∗ V 11
tq42 60 b2 → {V 12} n3 a8 → {} lgic a13 → {V 11} V 12 ∗ V 11
tq43 61 b3 → {V 12} n4 a9 → {} vgic a14 → {V 11} V 12 ∗ V 11
tq44 62 b4 → {V 12} n5 a10 → {} vgic a15 → {V 11} V 12 ∗ V 11

Example 3: Consider the provenance-annotated relations in Table 3, and ignore for now the annotations in the
last column. Observe that for tuple t1 in Family the provenance annotation for FID is a1 and that for FName is

2Note that more complicated cases of partitioning could also be considered, e.g. horizontal in which conditions on variables in the
views are mutually exclusive.

3Recall that an attribute appears in at most one view, but that a local predicate may cause some tuples in the underlying relation not
to be considered. For example, V10 only applies to tuples in Family whose type is ‘gpcr’.
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a6. In the materialized instance of V10 shown in Table 4a, tuple t101 is the projection of t1 and therefore carries
these annotations.

Assume we have the following query which joins the Family and FamilyIntro relations:
Q4(FID, FName, Type):- Family(FID1, FName, Type), FamilyIntro(FID, Text), FID1=FID

The annotated result of Q4(D) is shown in Figure 4d, where we show the mapping from each where-
provenance token to the materialized view in which it occurs. For example, the provenance token b1 in the
result tuple tq41 appears in tuple t121 of V 12(D). For each tuple in the query result, the combination of views
from each where-provenance token are jointly combined to cover as many distinguished variables of query as
possible. For instance, for tuple tq41 the combination of views is V 10 ∗ V 11 ∗ V 12, which is the covering set
for tuple tq41.

3.2 General views

However, when views are not partitioning (as in the case of views V1-V4), where-provenance is no longer
sufficient; we must also understand how the tuple in the result was constructed from the input tuples (why-
provenance). The final column in Table 3 represents the why-provenance for each tuple.

Example 4: The materialized instances of views V1-V4 from Example 1, together with their provenance anno-
tations, are shown in Tables 5a-5d and the result of query Q3 from Example 2 with provenance annotations is
shown in Table 5e. Note that the views V1-V4 and the query Q3 carry the provenance tokens from the underlying
relations.

Table 5: Materialized views V1-V4 and Query result Q3(D) with provenance tokens

(a) V1

FID FName
t11 58 a1 n1 a6 {s1}
t12 59 a2 n2 a7 {s2}
t13 60 a3 n3 a8 {s3}
t14 61 a4 n4 a9 {s4}
t15 62 a5 n5 a10 {s5}

(b) V2

FID Text
t21 58 b1 tx1 b5 {r1}
t22 60 b2 tx2 b6 {r2}
t23 61 b3 tx3 b7 {r3}
t24 62 b4 tx3 b8 {r4}

(c) V3

FName Type
t31 n1 a6 gpcr a11 {s1}
t32 n2 a7 gpcr a12 {s2}
t33 n3 a8 lgic a13 {s3}
t34 n4 a9 vgic a14 {s4}
t35 n5 a10 vgic a15 {s5}

(d) V4

FID FName Text
t41 58 a1 n1 a6 tx1 b5 {s1, r1}
t42 60 a3 n3 a8 tx2 b6 {s3, r2}
t43 61 a4 n4 a9 tx3 b7 {s4, r3}
t44 62 a5 n5 a10 tx3 b8 {s5, r4}

(e) Q3(D)

Type Text
tq31 gpcr a11 tx1 b5 {s1, r1}
tq32 gpcr a12 tx2 b6 {s2, r1}
tq33 lgic a13 tx1 b5 {s3, r1}
tq34 gpcr a11 tx2 b6 {s1, r2}
tq35 gpcr a12 tx1 b5 {s2, r2}
tq36 lgic a13 tx2 b6 {s3, r2}

The validity of the view mappings must be considered for each tuple in the query result; however, this cannot
be determined simply by reasoning over the where-provenance tokens. For example, for tuple tq32 ∈ Q3(D),
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Table 6: Query result Q3(D) with provenance annotations and valid views

Type Text why-provenance covering sets
tq31 gpcr a11 → {V 3} tx1 b5 → {V 2, V 4} {s1, r1} V 3 ∗ V 2 +R V 4 ∗ V 3
tq32 gpcr a12 → {V 3} tx2 b6 → {V 2} {s2, r1} V 3 ∗ V 2
tq33 lgic a13 → {V 3} tx1 b5 → {V 2} {s3, r1} V 3 ∗ V 2
tq34 gpcr a11 → {V 3} tx2 b6 → {V 2} {s1, r2} V 3 ∗ V 2
tq35 gpcr a12 → {V 3} tx1 b5 → {V 2} {s2, r2} V 3 ∗ V 2
tq36 lgic a13 → {V 3} tx2 b6 → {V 2, V 4} {s3, r2} V 3 ∗ V 2 +R V 4 ∗ V 3

there are two where-provenance tokens, i.e. a12 for attribute “Type” and b6 for attribute “Text”, which come
from tuple t2 in the Family relation and t′2 from the FamilyIntro relation. There exists a view mapping from view
V 4 to Q2, however its join condition (global predicate) under the mapping, FID1 = FID2, is not satisfied
since the attribute FID in tuples t2 and t′2 do not match. However, if we just compare the where-provenance
tokens, the token b6 exists in both tuple tq32 ∈ Q3(D) and the tuple t42 ∈ V 4(D), which leads to the incorrect
conclusion that there is a valid view mapping for view V 4 in tuple tq32.

The validity of view mappings can be checked by reasoning over the result of the extended query, Q3ext,
as illustrated in Example 2. However, there is an alternative approach which reasons over why-provenance
information. For example, the last column in Tables 5a-5e records the why-provenance annotations for each
tuple in the materialized views and query result. If we consider tuple tq31 in Q3(D) again, the corresponding
why-provenance annotation also appears in tuple t41 of V 4(D), which means that the tuples from Family and
FamilyIntro used to construct tuple tq31 can also work for the construction of tuple t41. This implies that the join
condition under the mapping for V 4 can be satisfied by tuple tq31, hence that the view mapping is valid for tq31.
However, for tuple tq32, the why-provenance annotation is {s2, r1} which does not exist in any tuple in V 4(D)
and thus the view mapping of V 4 is not valid.

After checking the validity of views for each tuple in the query result, a mapping is built between each
where-provenance token a of a tuple t and the valid materialized views for t in which the token appears. For
example, as Table 6 shows, for tuple tq31, the token a11 is mapped to view V 3 while the token b5 is mapped to
views V 2 and V 4. In order to cover the attributes “Type” and “Text”, the views from each where-provenance
token are combined. Notice that we can combine V 3 with either V 2 or V 4 for tuples tq31 and tq36, which leads
to two alternative combinations.

4 Implementing the Model

In this section, we describe an implementation of the model presented in Section 2 which generates citations for
individual tuples in the query result. The citations can then be aggregated to compute a citation to any subset
of the query result. The approach was implemented in a prototype, demonstrated in [3], and is called the Tuple
Level Approach (TLA). TLA is similar to the eager approach to computing provenance [7], which also uses an
extended query to carry an extra annotation column from the database. Note that in the TLA implementation,
citation views are not materialized and all reasoning is done using the instance returned by the extended query
discussed in Section 2.

In TLA, as much initial work is done as possible for reasoning about covering sets: each tuple is annotated
with all views in which it potentially participates. This is done by expanding the schema of each base relation
R with a single column (called the view vector column), and adding view V to the view vector for tuple t in
R whenever R appears as a relational subgoal of V and t satisfies the local predicates of V . Checking global
predicates in V is delayed until the user query is executed. Sample instances with view vectors for the Family
and FamilyIntro relations are shown in Tables 7 and 8.
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Table 7: Sample table for base relation Family

Family id Name Type View vector
58 n1 gpcr V1,V3,V4
59 n2 gpcr V1,V3,V4
60 n3 lgic V1,V3,V4
61 n4 vgic V1,V3,V4
62 n5 vgic V1,V3,V4

Table 8: Sample table for base relation FamilyIntro

Family id Text View vector
58 tx1 V2,V4
60 tx2 V2,V4
61 tx3 V2,V4
62 tx3 V2,V4

The approach is implemented in four steps:

Preprocessing step. When a queryQ : −BQ is issued, we first calculate all possible view mappings according
to Definition 1. View mappings will be filtered out in this step if they cannot cover any distinguished variables
of Q (the second condition of Definition 2). This result is a set of view mappings M(Q).

In order to derive valid view mappings for each tuple in the query result, Q is extended to include view
vectors of every base relation occurring in BQ and the boolean expressions of any global predicates under the
view mappings M(Q). The lambda variables under all view mappings in M(Q) will also be included in the
head of the extended query if they are not distinguished variables of Q.

Query execution step. The extended query, Qext1, is then executed over the database instance D yielding an
instance Qext1(D) over which the citation reasoning occurs.

Reasoning step. In first phase of citation reasoning, valid view mappings within each view vector are calcu-
lated for each tuple t ∈ Qext1(D). A view mapping M from M(Q) is valid for a view vector from relational
subgoal R iff there exists a view annotation V in this view vector so that M can be derived from V , the global
predicates under M are satisfied, and M covers at least one head variable in the query. In the second phase,
combinations of valid view mappings from each view vector are considered to find the covering sets.

Population step To avoid the expense of calculating covering sets tuple by tuple, subsets of tuples that will
share the same covering sets are found using the view vectors and boolean values of global predicates. Such
tuples are then grouped; covering sets are calculated once per group and propagated to all tuples in the group.
For example, in Table 9, the result tuples form a single group and therefore the covering set is only calculated
once. This optimization leads to significant performance gains.

Example 5: Consider the following query:

Q5(Type, Text) : −Family(FID1, Name, Type), FamilyIntro(FID2, T ext), F ID1 = FID2

After deriving valid view mappings within each view vector, the resulting instance of the extended query
Q5ext1(D) is shown in Table 9. It is worth noting that the boolean expression of the global predicate FID =
FID1 from V 4 is not evaluated since it matches the global constraint of Q5. Since each view in this example
only has one view mapping, we use V 1, V 2, . . . , V 4 to denote the corresponding view mappings.4 Note that
FID1, F ID2 are included in the head of Q5ext1 since they are lambda variables. The final query result with
covering sets is shown in Table 10. Parameterized views are instantiated by passing the parameter values (e.g.
V1(59) indicates V1 for FID=59). Multiple covering sets for each tuple are combined with +R (alternative use).
After projecting over the distinguished variables of Q5, the third tuple and the fourth tuple in Q5ext1(D) share

4In general, since a query may use the same relation more than once in a subgoal, a view may have multiple view mappings.
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Table 9: Result of executing the extended query, Q5ext1(D)

Type Text FID1 FID2 Valid view mappings from view vector 1 Valid view mappings from view vector 2
gpcr tx1 58 58 V3 V2, V4
gpcr tx2 60 60 V3 V2, V4
vgic tx3 61 61 V3 V2, V4
vgic tx3 62 62 V3 V2, V4

Table 10: The final result, Q5(D), annotated with the covering sets

Type Text Covering sets
gpcr tx1 V 3 ∗ V 2(58) +R V 4(58) ∗ V 3
lgic tx2 V 3 ∗ V 2(60) +R V 4(60) ∗ V 3
vgic tx3 (V 3 ∗ V 2(61) +R V 4(61) ∗ V 3) + (V 3 ∗ V 2(62) +R V 4(62) ∗ V 3)

the same Type and Text and thus the covering sets of the two tuples are combined with a new alternate use
operator, denoted +.

Citations are then generated for each tuple using the covering sets, the citation query and function for each
view in the covering sets, and the policies for *, +R, and +.

For example, suppose +R is interpreted as min according to a cost function which calculates the total number
of unmatched terms (distinguished variables or subgoals) between the views in a covering sets and the query.
Then for each tuple in Table 10 the resulting covering set for each tuple will be V 3 ∗ V 2(FID). Furthermore,
suppose ∗,+ and Agg are interpreted as join, union and intersection, respectively, and that the JSON-formatted
citations for view V 3 and each instantiated view V 2 are as shown in Table 11. Then the citation for the covering
set V 3 ∗ V 2(58) in the first tuple of the query result would be {ID: ‘58’, author: [‘Mark’, ‘Steve’, ‘Roger’],
Committee: [‘Poyner’, ‘Hay’, ‘Justo’]}, which is the join of the citations from V 3 and V 2(58). To construct
a citation for the entire query result, the citations from each tuple (V 3 ∗ V 2(FID)) in the query result are
aggregated, yielding {ID: [‘58’, ‘60’, ‘61’, ‘62’], author: [‘Mark’, ‘Steve’, ‘Roger’, ‘Jens’, ‘Rodrigo’, ‘John’],
Committee: [‘Hay’, ‘Poyner’, ‘Justo’, ‘Andrew’, ‘Leo’, ‘Joel’]}.

Overview of citation framework. The architecture of the citation framework is shown in Figure 2. The DBA
specifies the citation views and policies for how the views are to be used in constructing a citation to a general
query. When a user submits a query to the database, view definitions are mapped to it and their associated
citations combined according to the policies; a citation is then returned to the author along with the query
result. When a Reader later uses a citation to access the cited data, the process of citation generation is reverse
engineered (see dashed arrows in Figure 2). The citation is dereferenced, obtaining the original query and the
citation views that were used; note that versioning is an important component of the solution but is not discussed
in this paper. A specialized version of this architecture was developed for eagle-i as a proof-of-concept [2].

Table 11: Citations for sample views

View Result of citation function
V2(58) {ID: ‘58’, author: [‘Mark’], Committee: [‘Hay’, ‘Poyner’]}
V2(60) {ID: ‘60’, author: [‘Jens’], Committee: [‘Andrew’]}
V2(61) {ID: ‘61’, author: [‘Rodrigo’], Committee: [‘Leo’]}
V2(61) {ID: ‘62’, author: [‘John’], Committee: [‘Joel’]}

V3 {author: [‘Steve’, ‘Roger’], Committee: [‘Hay’, ‘Justo’]}
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5 Conclusions

In this paper, we address the problem of generating citations to the results of queries over data published in
databases – data citation – and explore the connection to data provenance, in particular where-provenance and
why-provenance. Our approach to data citation is based on citation views, as proposed in [9] and implemented
in [3]. In this approach, citations are specified to some small number of frequent queries (e.g. web-page views
of the database), and are used to construct citations for general queries.

Intuitively, a citation captures the origins of data by giving credit to its authors, i.e. the contributors and/or
curators responsible for the data. When the citation views are select-project views over single relations and are
partitioning, the view tuples which are used to create a tuple in the result can be simply calculated using where-
provenance. However, in the general case where citation views may involve multiple relations (e.g. joins) and
may overlap, where-provenance is no longer sufficient; one must also understand how a tuple in the result was
constructed from the input tuples (why-provenance).

Rather than constructing and maintaining the materialized citation views as suggested by the connection
above, our implementation of citation views reasons solely over the input query Q and the view definitions.
It starts by annotating tuples in the base relations with the views in which they potentially participate, and
determines which of the potential views are valid for result tuples by evaluating global predicates in Qext(D).
A number of clever optimizations are used to improve the efficiency of the approach, e.g. constructing citations
for groups of tuples which share the same covering sets. Initial performance results (not discussed in this paper)
show that citations can be generated for typical views and queries in a reasonable amount of time.

In future work, we would like to explore how to integrate data citation within provenance-enabled database
systems. We would also like to study how existing versioning techniques can be adapted for data citation. Note
that in this context versioning must be triggered when a user cites a data entry and only needs to record change
on the cited data, thus interesting optimizations may be possible. Finally, we would like to explore how citations
can be integrated into data science environments, in which queries are interleaved with analysis steps. This is
difficult since provenance is not well understood in the context of machine learning algorithms.
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3-U01-EB-020954-02S1. The authors would like to thank Peter Buneman for conceiving the idea that data
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Abstract

Data provenance approaches track how the answer to a database query derive from input items; however, prior
approaches used “positive” provenance and were not directly usable for explaining “expected” but missing
answers. A similar problem arises with the failure of integrity constraints. Our perspective is to offer expla-
nations via possible (minimal) repairs using provenance. This is useful for debugging, repairing, and cleaning
databases. In this paper, we introduce a novel approach to this problem for both missing/erroneous answers and
integrity failures. The approach uses recent advances in provenance for first-order model checking.

1 Introduction

When a user submits a query to a relational database, she often expects certain answers to appear in her query
result. Sometimes, some answers may be missing or erroneous. For example, a user queries her university’s
database to list all courses offered in the Fall semester. However, she is not able to find her advisors course
in the result, even though she knows that he will be teaching a course in the fall. Our perspective, related to
causality [21], assumes that it is useful to provide the user with explanations via repairs—a set of delete and
insert commands that would modify the database instance so that the query returns the expected answers.

Another important problem is that of integrity constraints (e.g., conditional functional dependencies, conditional
inclusion constraints, etc., see [10]) failing in databases obtained via data integration/warehousing or via min-
ing/crawling large amounts of information. Here, repairs can be similarly useful for explaining why integrity
constraints fail. Applying such repairs belongs to the field of data cleaning (see below).

In this paper we present, principally via examples, a methodology for addressing explanations and repairs for
both missing/erroneous answers and failure of integrity constraints. The commonality is based on both being
expressible in (unrestricted) first-order logic (FOL). This approach has become possible after recent work by the
last author and Erich Gräedel [13] (see Section 2).

The problem of missing answers has been studied both in the context of relational databases e.g. [3, 15, 21]
(also known as why-not provenance and provenance of non-answers), and Datalog-defined computer networks
[51, 52] (known there as negative provenance). Chapman and Jagadish [7] provided a model and definitions for

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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describing a data item that is not in the result set, and for asking why it does not appear in the result. Huang
et al. in [18] developed a framework and algorithm for calculating the provenance of a single non-answer to
a query. Herschel and Hernandez in [17] further expanded their work by having an algorithm that calculated
why-not provenance for a set of missing answers including those for aggregation queries. In [16], Herschel and
Hernandez continued expanding their model by providing support for queries that include selection, projection,
join, union, aggregation and grouping (SPJUA). The larger context includes work on reverse query processing
[20], the work of Meliou and Suciu on reverse data management [22, 23] and perhaps view update [9]. While
steady progress has been made for positive queries, negation has always presented a challenge. Although we do
not address aggregation, our work deals with general first-order queries (equivalent to the full relational algebra)
while exploiting a particular way of expressing them: in stratified non-recursive Datalog with negation.

Database research related to integrity constraint repairs include the work of Arenas, Chomicki and Bertossi on
consistent query answering [1, 2, 8]. Attribute-based repairs—repairs that only update some of the values of
tuples’ attributes in the database—have been studied by Bohannon et al. in [4]. A comprehensive treatment of
the problem of data cleaning has been initiated by Fan et al. in [11,12] with a focus on conditional dependencies.
Kolahi and Lakshmanan in [19] showed that the problem of computing a minimal repair on databases that violate
functional dependencies is NP-complete. Our discussion of repair costs (see Section 5) contributes to the line of
work on weighted repairs in [5, 6].

Previous work on provenance (see [14] for a survey) used a framework based on commutative semirings for both
expressing provenance (as polynomials) and applications such as cost, confidence, or access control. Follow-
ing [13] (see Section 2) we use a semiring of dual polynomials with two kinds of indeterminates (provenance
tokens), for positive and for negative facts to compute provenance of FOL sentences being checked in an FOL
model. Next we compute explanations/repairs by solving the equation that makes such dual polynomials equal
to the (semiring) 0. A solution/repair consists of a set of provenance tokens being made 0. We can then interpret
these provenance tokens in semirings such as the Viterbi or tropical ones for cost or confidence associated with
the repairs.

We regard this work as preliminary since it still relies on the a “closed world assumption” (CWA) to compute
provenance in terms of negative tokens. This means that we only consider values that occur in the instance. We
hope to expand our understanding of database repairs to a“open world assumption” (OWA) in the future via a
more flexible approach that refer to data that we might need to insert into the database using labeled nulls.

This paper is organized as following. We start by reviewing the basic facts about computing provenance for
FOL sentences and about dual polynomials (Section 2). Next, we show a couple of examples of repairs to
missing answers and we describe a general algorithm for computing such repairs (Section 3). In Section 4, we
give examples of repairs to a denial constraint and a tuple-generating constraint that goes beyond what has been
studied in the literature so far. We discuss selecting optimal cost repairs in Section 5.

2 Dual Polynomials

Consider a finite relational vocabulary, V .1 From this vocabulary and a finite non-empty set A of ground values
we construct the set FactsA of all ground relational atoms (facts) R(a), the set NegFactsA of all negated facts
¬R(a) and thus the set LitA = FactsA ∪ NegFactsA of all literals, positive and negative facts, over V and A.
By convention we will identify ¬¬R(a) ≡ R(a)) so the negation of a literal is again a literal.

Let (K,+, ·, 0, 1) be a commutative semiring. Very roughly speaking, 0 ∈ K is intended to interpret false
assertions, while an element a ̸= 0 in K provides a “nuanced” interpretation for true assertions (call them

1For simplicity we omit constants from definitions, but we may make use of them in (counter)examples.
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“a-true”).

Next,K-interpretations will map literals to elements ofK and are then extended to all formulae. Disjunction and
existential quantification are interpreted by the addition operation ofK. Conjunction and universal quantification
are interpreted by the multiplication operation of K. For quantifiers, the finiteness of the universe A of ground
values will be essential. For negation we use the well-known syntactic transformation to negation normal form
(NNF), denoted ψ 7→ nnf(ψ). Note that nnf(ψ) is a formula constructed from literals (positive and negative
facts) and equality/inequality atoms using just ∧,∨, ∃,∀.

Definition 1: AK-interpretation is a mapping π : LitA → K. This is extended to FO formula given valuations
ν : Vars→ A:

π[[R(x)]]ν = π(R(ν(x)) π[[¬R(x)]]ν = π(¬R(ν(x))

π[[x op y]]ν = if ν(x) op ν(y) then 1 else 0 π[[φ ∧ ψ]]ν = π[[φ]]ν · π[[ψ]]ν

π[[φ ∨ ψ]]ν = π[[φ]]ν + π[[ψ]]ν π[[∃xφ]]ν =
∑

a∈A π[[φ]]ν[x 7→a]

π[[∀xφ]]ν =
∏

a∈A π[[φ]]ν[x 7→a] π[[¬φ]]ν = π[[nnf(¬φ)]]ν

The symbol op stands for either = or ̸=. As you can see from the definition, the equality and inequality atoms
are interpreted in K as 0 or 1, i.e., their provenance is not tracked.

Let X, X̄ be two disjoint sets together with a one-to-one correspondence X ←→ X̄ . We denote by p ∈ X
and p̄ ∈ X̄ two elements that are in this correspondence. We refer to the elements of X ∪ X̄ as provenance
tokens as they will be used to label/annotate some of the “data”, i.e., literals over some ground values, via the
concept of K-interpretation that we defined previously. Indeed, if, as before, we fix a finite non-empty set A and
consider LitA = FactsA ∪ NegFactsA then we shall use X for FactsA and X̄ for NegFactsA. By convention, if
we annotate R(a) with the “positive” token p then the “negative” token p̄ can only be used to annotate ¬R(a),
and vice versa. We refer to p and p̄ as complementary tokens.

Further, we denote by N[X, X̄] the quotient of the semiring of polynomials N[X ∪ X̄] by the congruence
generated by the equalities p·p̄ = 0 for all p ∈ X .2 Observe that two polynomials p, q ∈ N[X∪X̄] are congruent
iff they become identical after deleting from each of them the monomials that contain complementary tokens.
Hence, the congruence classes in N[X, X̄] are in one-to-one correspondence with the polynomials in N[X ∪ X̄]
such that none of their monomials contain complementary tokens. We shall call these dual-indeterminate
polynomials although we might often omit “-indeterminate” just use “dual polynomials”. The following is the
universality property of the semiring of dual polynomials:

Proposition 2: For any commutative semiringK and for any f : X∪X̄ → K such that ∀p ∈ X, f(p)·f(p̄) = 0
there exists a unique semiring homomorphism h : N[X, X̄]→ K such that ∀x ∈ X ∪ X̄ h(x) = f(x).

We note that N[X, X̄] is “+-positive”, that is, p + q = 0 implies p = q = 0, however, it has divisors of 0.
Examples: p · p̄ = 0; (p + q̄)p̄q = 0; (pq̄ + p̄q)(pq + p̄q̄) = 0. We also note that a dual polynomial is
identically 0 iff it evaluates to 0 for every assignment X ∪ X̄ → {0, 1} that sets complementary tokens to 0/1
or 1/0.

Definition 3: A provenance-tracking interpretation is a N[X, X̄]-interpretation π : LitA → N[X, X̄] such that
π(FactsA) ⊆ X ∪ {0, 1} and π(NegFactsA) ⊆ X̄ ∪ {0, 1}.

Only provenance-tracking interpretations (annotations) are considered in the sections ahead.
2This is the same as quotienting by the ideal generated by the polynomials pp̄ for all p ∈ X .
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Email Sender Day Receiver
Bob Mon Danny
Carla Tue Bob
Danny Tue Bob
Danny Tue Carla y

Bob Mon Carla p̄
Bob Tue Carla q̄

Danny Mon Carla z̄

Class Student Course
Bob Bio r
Bob Calc II s
Carla Chem t
Carla Calc II u
Danny Bio x
Danny Chem p2
Bob Chem p̄1
Carla Bio w̄
Danny Calc II v̄

Figure 1: Database for missing answers examples

3 Missing Answers

We present a small example database containing a table of student email exchanges and another one with the
classes they are taking. Email and Class are shown below. The tuples that are present in the instance under
consideration are above the dashed lines and some of them are annotated (labeled) with positive provenance
tokens. We apply the framework described in Section 2 with A as the active domain of this database. The tuples
below the dashed lines are some of the closed-world-absent tuples from the instance and they are annotated with
negative provenance tokens. This constitutes a provenance tracking interpretation. We hope that the reader will
keep the use of the variables x, y as provenance tokens distinct from the use of the same as Datalog variables.
To keep the picture less cluttered we only annotated the tuples that we actually use in the examples.

We consider the following query: return the pairs (sender, receiver) for the non-Monday emails where the
receiver is either not taking Chem or is taking every class that the sender is taking. The query, denoted Q, is
expressed in non-recursive Datalog with negation as follows (c is a variable!):

S(x, y) ← Class(x, c),¬Class(y, c),Class(y, “Chem”)

Q(x, y) ← Email(x, d, y),¬S(x, y), d ̸= “Mon”

In first-order logic notation we have:

S = {(x, y)| ∃c Class(x, c) ∧ ¬Class(y, c) ∧ Class(y, “Chem”)}
Q = {(x, y) | ∃d Email(x, d, y) ∧ ¬S(x, y) ∧ d ̸= “Mon”}

Notice that the output of Q consists of (“Carla”, “Bob”) and (“Danny”, “Bob”). We are interested in why the
tuple (“Bob”, “Carla”) is not in the set of outputs. Our approach is to find explanations for such questions
by finding all the minimal repairs that would make Q(“Bob”, “Carla”) true. And we find these repairs by
computing the dual polynomial p corresponding to ¬Q(“Bob”, “Carla”) and then “solving” the equation p = 0,
that is, finding which tokens can be set to 0 to insure that p becomes 0. We have:

¬Q(“Bob”, “Carla”) = ∀d ¬Email(“Bob”, d, “Carla”) ∨ S(“Bob”, “Carla”) ∨ [d = “Mon”]

The computations of dual polynomials is done according to Definition 1. When it comes to quantifiers we need,
in principle, to range over all the elements of the active domain for every variable. However, it is clear that
it suffices to range over the elements that actually occur in the columns that correspond to the variables. For
example, it suffices to take d ∈ {“Mon”, “Tue”} and c ∈ {“Bio”, “Calc II”, “Chem”}. We call this the typed
active domain approach and note that it is widely applicable in practice.

Now we calculate the polynomial corresponding to ¬Q(“Bob”, “Carla”):

p = (p̄+ q+ [“Mon” = “Mon”])(q̄ + q+ [“Tue” = “Mon”]) = (p̄+ q+ 1)(q̄ + q)
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Figure 2: Repair and-or trees for missing answers Q(“Bob”, “Carla”) and Q(“Danny”, “Carla”)

where q is the polynomial corresponding to S(“Bob”, “Carla”). We have:

S(“Bob”, “Carla”) = ∃c Class(x, c) ∧ ¬Class(y, c) ∧ Class(y, “Chem”)

q = rw̄t+ sūt+ p1t̄t = rw̄t+ sūt

Notice that the polynomial q can be further simplified because our database already includes the tuple
Class(“Carla”, “Calc II”) annotated with u, hence we can already assume that ū = 0. This avoids computing
solutions that unnecessarily include ū = 0 (they would ask to insert a tuple that is already in the database). It
follows that we can take q = rw̄t.

For p = 0 one possible solution, by inspection, is {q̄ = t = 0}. Setting a negative token to 0 corresponds to
invalidating a negative fact, i.e., inserting a tuple. Similarly, setting a positive token to 0 corresponds to deleting
a tuple. Therefore this solution (that we found in an ad-hoc manner) corresponds to the repair that inserts
[+Email(“Bob”, “Tue”, “Carla”)] and that deletes [−Class(“Carla”, “Chem”)] and thus brings (“Bob”, “Carla”)
into the output of the query Q.

However, we need to systematically find all minimal repairs and to do this, anticipating dealing with more
general queries, we proceed without substituting q in p and thus taking advantage of the structure of the query as
a stratified, non-recursive Datalog¬ program. The first observation is that p is a product of factors and in general
it is possible for p to be identically 0 (hence all minimal solutions would be empty) since N[X, X̄] has divisors
of 0. But this is not the case here since, for example, p̄q̄ occurs in p. Therefore, any solution makes at least
one of the two factors 0. Note that each term in each factor of p is either a single token or q or a 1. The factor
that contain a 1 cannot be made 0. Thus we must have q̄ + q = 0, hence, q̄ = 0 and q = 0. Notice that the
stratified structure can lead to explanations for missing answers that may entail wrong answers for some of the
subqueries (non-answer intensional predicates; in this example S(“Bob”, “Carla”)). Thus, the missing answers
and the wrong answers problems are intricately related for this query language.

Since S is an intensional predicate we must continue until we find the repairs to the actual database. q = 0
has three (minimal) solutions; {t = 0} is one, the others are {r = 0} and {w̄ = 0}. This yields three
minimal solutions for p = 0: {q̄ = t = 0}, {q̄ = r = 0} and {q̄ = w̄ = 0}. The reader can check that
the repairs corresponding to each of these solutions, for example, insert [+Email(“Bob”, “Tue”, “Carla”)] and
insert [+Class(“Carla”, “Bio”)] for the third solution, also bring (“Bob”, “Carla”) into the output of Q. All the
minimal solutions are nicely captured by the and-or tree T1 in Figure 2 (on the leaves of these trees we have
partial solutions token = 0 which are represented, for simplicity, just by token .

Let us now find the repairs for another answer missing from the output of Q, namely (“Danny”, “Carla”). The
dual polynomial corresponding to ¬Q(“Danny”, “Carla”) is r = (z̄+s+1)(ȳ+s) where s = xw̄t+vūt+p2t̄t =
xw̄t+ vūt. As before, we can simplify the polynomials by setting ȳ = ū = 0 since the tuples annotated with y
and u are already in the database, obtaining r = (z̄ + s+ 1)xw̄t. Although it leads to the same result, we could
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also have set v = 0 since the tuple annotated with v̄ is not in the database (and a repair that contained v = 0
would have asked that we delete a tuple already absent. All the solutions to r = 0 are captured by the and-or
tree T2 in Figure 2.

What if we wish to repair both Q(“Bob”, “Carla”) and Q(“Danny”, “Carla”)? This would need the dual poly-
nomial corresponding to ¬[Q(“Bob”, “Carla”) ∧ Q(“Danny”, “Carla”)], i.e., p + r. The solutions to p + r = 0
are captured by the and-or tree T3 in the same figure. Observe that T1 describes 3 minimal repairs, and so does
T2. Now T3 describes 3× 3 = 9 repairs, but only 3 of them are minimal: {q̄ = r = x = 0}, {q̄ = w̄ = 0} and
{q̄ = t = 0}.

In general, our approach is not guaranteed to compute only minimal repairs, as can be seen by considering
Q′(y) ← Q(x, y) and the missing answer Q′(“Carla”). However, we can prove that all the minimal repairs are
included among those computed by the algorithm shown below. It is also clear that redundant, non-minimal
repairs, can be pruned away.

Algorithm Next we present a procedure for finding repairs (including all the minimal repairs) for missing
and/or wrong answers for queries expressed in non-recursive Datalog with negation (and recall that any first-
order query is logically equivalent with one such). The algorithm takes advantage of the stratified structure of
the language to produce a compact and-or repair tree.

The algorithm’s input is a triple (R,a, µ) where R is a predicate, a is tuple of constants from the active domain
of the instance (R and a have the same arity), and µ is a ”mode”parameter that can have two values: missing
and wrong. Let Q be the answer predicate of the query. There may be multiple Datalog rules whose head can
be instantiated to Q(a): let’s denote these instatiations by Q(a) ← Bi(a,yi) for i = 1, . . . , k. Then, in FOL,

Q(a) = [∃y1 B1(a,y1)] ∨ · · · ∨ [∃yk Bk(a,yk)]

where each Bi is a conjunction of positive or negative atoms(extensional or intensional), equalities, or inequali-
ties. Moreover,in NNF,

¬Q(a) = [∀y1 B1(a,y1)] ∧ · · · ∧ [∀yk Bk(a,yk)]

where each Bi (in NNF) is a disjunction of negative or positive atoms(extensional or intensional), inequalities,
or equalities.

On input (Q,a,missing), the algorithm returns the repair and-or tree corresponding to the missing answerQ(a).
It does so by first computing the dual polynomial p corresponding to the first-order sentence nnf(¬Q(a)). This
computation includes simplifications like those mentioned in our examples:

• If ū occurs in the polynomial and u annotates a tuple already in the instance, then replace ū with 0.

• If v occurs in the polynomial and v annotates a tuple that is not in the database then replace u with 0.

Next the algorithm finds solutions to p = 0. A solution is a set of provenance tokens, negative or positive,
all set to 0. Since intensional predicates may occur in nnf(¬Q(a)) we generate fresh provenance tokens to
annotate temporarily these intentional literals. Note that p is a product of factors, each factor being a sum
of (positive or negative, extensional or intensional) provenance tokens or 1’s. Moreover, we can prove that p
cannot be identically 0. Indeed, by the range-restriction condition, each rule must contain at least one positive
literal. This means that each factor in nnf(¬Q(a)) must contain at least one negative token and the product of
all these negative tokens occurs as a monomial in p. When constructing the and-or tree of solutions to p = 0, we
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collect trees that are either leaves or, by setting an intensional token to 0, are obtained from recursive call to the
algorithm.

On input (Q,a,wrong), the algorithm returns the repair and-or tree corresponding to the wrong answer Q(a). It
does so by computing the dual polynomial q corresponding to the first-order sentence nnf(Q(a)), simplified as
above and with fresh intensional tokens as above. Solutions are found, again, by setting q = 0. Note that p is a
sum of terms, each term being a product of tokens (i.e., a monomial).

In stating the algorithm we use the notations p̄ ∼ L1, respectively p ∼ L2, to mean that the negative token p̄
annotates the negative literal L1, respectively the positive token p annotates the positive literal L2.

All this results in Algorithm ??.

Size of repair trees We can show that the number of minimal repairs is in general exponential in the size of
the active domain. However, the and-or trees that we compute offer a compact representation of all these repairs.
Indeed, let n be an upper bound on the size of the active domain and let q be an upper bound on the size of the
query (expressed in non-recursive Datalog with negation). The algorithm calculates two kinds of polynomials:

• For missing tuples it calculates polynomials as products of factors. Each factor’s size is bounded by
the size of rules is O(q). The number of factors is bounded by the number of rules times the number
of iterations of universally quantified variables in each rule, therefore is O(q nq). Thus, the resulting
polynomial has size O(q2 nq).

• For wrong tuples it calculates polynomials as sums of monomials. Since there are at most q existentially
quantified variables in each rule, and there are at most q rules there are at most q nq monomials in this
polynomial. Each monomial’s size is bounded by q so the resulting polynomial also has size O(q2 nq).

It follows that in the repair tree each node has O(q2 nq) children. The height of the tree is bounded by the
number of rules, hence by q. Therefore the repair tree has size O(q2q nq

2
), thus of polynomial data complexity.

Essentially the same argument shows that Algorithm 1 runs in polynomial time (data complexity).

4 Repairing Integrity Constraints

Since most integrity constraints used in databases are expressible in first order logic, our approach will also work
to “repair” them. Here is an example. Consider the table Class1 in Figure ??. Notice that Danny has decided
to take another course–Calc II. Uh oh. . . adding the course wasn’t a good idea. Danny gets overloaded with
work and finds himself failing Chemistry. The university notices this and puts Danny on probation (of a ruthless
kind!), so Danny can now take only at most 2 courses at a time. Consequently, our database now breaks an
integrity constraint. How do we fix it?

The integrity constraint “NO STUDENT CAN TAKE THREE OR MORE DISTINCT COURSES” can be written

I = ∀s ¬(∃x, y, z Class1(s, x) ∧ Class1(s, y) ∧ Class1(s, z) ∧ x ̸= y ∧ x ̸= z ∧ y ̸= z)

This is an example of a denial constraint [2]. Of course, it fails in the database Class1. To find out the reasons
it fails as well as to obtain repairs to the database we compute the dual provenance polynomial of ¬I . We have

nnf(¬I) = ∃s, x, y, z Class1(s, x) ∧ Class1(s, y) ∧ Class1(s, z) ∧ x ̸= y ∧ x ̸= z ∧ y ̸= z
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Input : µ tells us whether R(a) is missing or is wrong.
Output: An and-or tree of updates
if R is an extensional predicate then

if µ = missing then
Return a single node tree labeled with token p̄ ∼ ¬R(a).

end
if µ = wrong then

Return a single node tree labeled with token p ∼ R(a).
end

end
if R is an intensional predicate then

C := ∅.
if µ = missing then

Compute, as a product of factors, the polynomial p corresponding to nnf(¬R(a)).
for each factor f in p do

T := ∅.
for each term t in the factor f do

if t ∼ positive literal S(b) then
T := T ∪ {RepTree(S,b,wrong)}.

end
if t ∼ negative literal ¬S(b) then

T := T ∪ {RepTree(S,b,missing)}.
end
if t ∼ 1 then

T := T ∪ {”never − zero”}.
end

end
if ”never − zero” ̸∈ T then

Build an and-tree T with the trees collected in T as children of the root.
C := C ∪ {T}.

end
end
Build an or-tree T with the trees collected in C as children of the root. Return with T .

end
if µ = wrong then

Compute, as a sum of terms, the polynomial q corresponding to nnf(R(a)).
for each term t in q do

T := ∅.
for each factor f in the term t do

if f ∼ positive literal S(b) then
T := T ∪ {RepTree(S,b,wrong)}.

end
if f ∼ negative literal ¬S(b) then

T := T ∪ {RepTree(S,b,missing)}.
end

end
Build an or-tree T with the trees collected in T as children of the root.
C := C ∪ {T}.

end
Build an and-tree T with the trees collected in C as children of the root. Return with T .

end
end

Algorithm 1: RepTree(R,a, µ) builds a repair tree
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Class1 Student Course
Bob Bio
Bob Calc II
Carla Chem
Carla Calc II
Danny Bio r
Danny Chem s
Danny Calc II t

Bob Chem ū
Carla Bio v̄

Admin Course Dept
Calc II Math p
Chem Sci q
Bio Sci r

Calc II Sci t̄
Chem Math ū
Bio Math v̄

Class2 Student Course
Bob Bio w
Bob Calc II x

Danny Bio w1

Danny Chem y1
Bob Chem ȳ

Danny Calc II z̄

Figure 3: Tables for the integrity constraint examples

The corresponding dual polynomial p is a sum. Using the typed active domain approach, this sum will have, in
principle, 3 × 3 × 3 × 3 = 81 terms. However, most of the inequalities yield 0, namely when x, y, z are not
assigned distinct values. We are left with 3× (3!) terms. Moreover, 2× (3!) of these are monomials containing
ū or v̄ which we can set to 0 (because Bob and Carla are not breaking the constraint :). We are left with
p = 3rst which yields a repair or-tree with three leaves. As expected, we find that the integrity constraint is
broken because all three tuples annotated r, s, or t are in the database. Also as expected, we have three possible
minimal repairs, each corresponding to deleting one of the three tuples.

The second example we will show in this section uses the tables Admin and Class2 in Figure ??. It also uses the
constraint “IF A STUDENT IS TAKING MORE THAN ONE CLASS, ALL OF THEIR CLASSES MUST BE ADMINIS-
TERED BY THE SAME DEPARTMENT”. We can express this constraint as:

J = ∀x, y [∃s Class2(s, x) ∧ Class2(s, y) ∧ x ̸= y] → [∃t Admin(x, t) ∧ Admin(y, t)]

This is an example of a tuple-generating constraint, even more general than the conditional inclusion constraints
mentioned in [2, 10]. It does fail in the database above since Bob saw fit to take both Bio and Calc II. As with
the denial constraint we considered above, we find the reasons for failure and possible repairs by computing the
dual polynomial corresponding to nnf(¬J). We have

nnf(¬J) = ∃x, y [∃s Class(s, x) ∧ Class(s, y) ∧ x ̸= y] ∧ [∀t ¬Admin(x, t) ∨ ¬Admin(y, t)]

We compute the dual provenance polynomial of ¬J . Again, we use the typed active domain approach and we
notice that the first factor will always be zero if we choose x and y to both be the same course. The result is a
sum of polynomials, which we denote q:

q = (zw1 + xw)(t̄+ r̄)(p̄+ v̄) + (y1z + yx)(q̄ + t̄)(ū+ p̄) + (y1w1 + yw)(q̄ + r̄)(ū+ v̄)

However, given which tuples are already/are not in the database we can simplify this polynomial by setting
y = z = 0 and p̄ = q̄ = r̄ = 0 and we are left with q = xwt̄v̄. To fix the constraint, we try to make
q = 0. which yields a repair or-tree with four leaves. These correspond to four different minimal repairs
(two of them are deletions and the others insertions): [−Class(“Bob”, “Calc II”)], or [−Class(“Bob”, “Bio”)],
or [+Admin(“Calc II”, “Sci”)], or [+Admin(“Bio”, “Math”)].

5 Costing Repairs

For costs we use the tropical semiring T = (R∞
+ ,min,+,∞, 0). Its elements and operations appear in min-cost

interpretations (e.g., shortest paths). Here we are going to show how to use it to select repairs that are in some
sense optimal.
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Recall the integrity constraint J from Section 4. We obtained all possible minimal repairs by computing the dual
polynomial q corresponding to nnf(¬J) and obtained four repairs: {x = 0}, {w = 0}, {t̄ = 0}, {v̄ = 0}. To
choose among them, we now compute the dual polynomial r corresponding to nnf(J):

r = [(z̄ + w̄1)(x̄+ w̄) + tr + pv] · [(ȳ1 + z̄)(ȳ + x̄) + qt+ up] · [(ȳ1 + w̄1)(ȳ + w̄) + qr + uv]

Next we apply all the simplifications allowed by the database except those involving the tokens that appear in
the repairs, namely w̄1 = ȳ1 = u = 0. We obtain: r = [z̄(x̄+ w̄) + tr + pv] · [z̄(ȳ + x̄) + qt] · [qr].

Our definition of optimality3 is to find the repair that minimizes the cost of r when interpreted in T, given costs
for the remaining tokens in r, say cost(z̄) = α, cost(r) = β, cost(p) = γ, cost(ȳ) = δ, cost(q) = ι, and
assuming, in turn, each of the four repairs have a cost also, let’s say that a deletion costs λ and an insertion
costs µ, where α, β, γ, δ, ι, λ, µ ∈ R∞

+ . Thus we have four different assignments into T: [x̄ 7→ λ, w̄ 7→ ∞, t 7→
0, v 7→ 0], [x̄ 7→ ∞, w̄ 7→ λ, t 7→ 0, v 7→ 0], [x̄ 7→ ∞, w̄ 7→ ∞, t 7→ µ, v 7→ 0], [x̄ 7→ λ, w̄ 7→ ∞, t 7→ 0, v 7→ µ]
one for each of the four repairs. We obtain:

Repair Cost

[−Class2(“Bob”, “Calc II”)] min(α+ λ, β, γ) + min(α+min(δ, λ), ι) + ι+ β
[−Class2(“Bob”, “Bio”)] same
[+Admin(“Calc II”, “Sci”)] min(µ+ β, γ) + min(α+ δ, ι+ µ) + ι+ β
[+Admin(“Bio”, “Math”)] γ + µ+ α+ δ + ι+ β

For example, taking λ = µ = α = β = γ = δ = ι = 10 will result in the first (or second) repair to be cheapest.

6 Conclusions

In this paper, we introduced a novel approach for computing all possible repairs for missing and wrong answers
to a query on a database instance. Our algorithm is based on a new framework for reasoning over the provenance
of non-answers under the CWA for queries expressible in first-order logic, including negation. This framework
treats relational queries as logical structures (unions and conjunctions of statements) and applies algebraic oper-
ations to these logical structures, allowing the use of dual polynomials as a way to represent provenance.

Our approach is not limited to repairing queries with missing and wrong answers; it can also repair a database
instance that does not satisfy certain integrity constraints. Since integrity constraints can be expressed in first-
order logic, our algorithm is able to determine where constraints are broken. In cases of missing answers, wrong
answers, and broken integrity constraints, our algorithm is able to suggest repairs for the database in the form of
a set of insertions and deletions of tuples.

Our use of dual polynomials rather than boolean expressions provides a way to weigh certain tuples over others
by assigning tokens different weights. Questions such as finding a minimal cost solution from an and-or-tree
are NP-hard (for example by reduction from vertex cover). In the future, we aim to explore approximation
techniques for these questions. Additionally, we would like to expand our approach to handle open world
assumption. Currently, our approach fixes databases by introducing tuples consisting only of values from our
active domain. However, it is unrealistic to always expect repairs to be derived from within the database. Thus,
it is important for us to move beyond CWA and develop a working framework in OWA.

3Other definitions are possible and we plan to compare them in future work.
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GProM - A Swiss Army Knife for Your Provenance Needs

Bahareh S. Arab, Su Feng, Boris Glavic, Seokki Lee, Xing Niu, Qitian Zeng
Illinois Institue of Technology

Abstract

We present an overview of GProM, a generic provenance middleware for relational databases. The sys-
tem supports diverse provenance and annotation management tasks through query instrumentation, i.e.,
compiling a declarative frontend language with provenance-specific features into the query language of
a backend database system. In addition to introducing GProM, we also discuss research contributions
related to GProM including the first provenance model and capture mechanism for transaction prove-
nance, a unified framework for answering why- and why-not provenance questions, and provenance-
aware query optimization. Furthermore, by means of the example of post-mortem debugging of transac-
tions, we demonstrate how novel applications of provenance are made possible by GProM.

1 Introduction

Provenance, information about the origin of data and the queries and/or updates that produced it, is critical for
debugging queries and transactions, auditing, establishing trust in data, and many other use cases. For example,
consider a relation storing employee salaries. The relation is subjected to complex transactional updates such
as calculating tax, applying tax deductions, multipling rates with working hours, and so on. How can we know
whether the information in the current version of the relation is correct? If one employee’s salary is incorrect,
how do we know which update(s) or data caused that error? Data provenance, by providing a full record of the
derivation history of data, makes it possible to identify the causes of such errors.

A persistent challenge in database provenance research has been to build efficient provenance-aware databases.
That is, to design and implement systems that automatically capture provenance information for database op-
erations and allow this information to be queried. In this work, we give an introduction to GProM (Generic
Provenance Middleware), a system that enriches database backends with support for provenance. The system is
available as open source software at https://github.com/IITDBGroup/gprom. At its core, GProM
is a compiler that translates a frontend language (e.g., SQL with new language constructs for requesting and
managing provenance) into queries expressed in the language of a database backend that generate a relational
encoding of data annotated with provenance. Below we briefly discuss some of GProM’s unique features.

• Exploiting backend databases for provenance capture and storage: GProM represents provenance in
the data model of the backend database. To capture provenance for an operation, the system constructs a
query expressed in the language of the database backend which returns this type of provenance encoding.
This technique, which we refer to as instrumentation, enables us to exploit the advanced storage and query
execution capabilities of modern database systems.

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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name state major N[X]

Alice IL CS v
Bob NY CS x
Peter IL CS y
Fran IL Math z

→ SELECT state
FROM student
WHERE major = ’CS’

→ state N[X]

IL v + y
NY x

↓Encode ↓Instrumentation ↓Encode

name state major
Alice IL CS
Bob NY CS
Peter IL CS
Fran IL Math

→
SELECT state,

name AS P(name),
state AS P(state),
major AS P(major)

FROM student
WHERE major = ’CS’

→
state P(name) P(state) P(major)

IL Alice IL CS
IL Peter IL CS
NY Bob NY CS

Figure 1: Provenance instrumentation example: compute provenance polynomials for a query

• On demand provenance capture for a large class of operations: GProM supports provenance capture
for queries, updates, and transactions. To the best of our knowledge it is the only system that can capture
provenance for transactions. In contrast to many other systems which capture provenance eagerly for all
operations no matter whether this provenance is needed or not, GProM only captures provenance if it is
explicitly requested by a user or application.

• Treating provenance requests as queries: The user interacts with GProM through a declarative fron-
tend language enriched with language constructs for requesting and managing provenance. Provenance
requests are treated as queries which allows them to be combined with other language constructs. Thus,
the full expressive power of the frontend language is available for querying provenance.

• Low-overhead and non-invasive: GProM was designed to minimize the performance impact for opera-
tions when no provenance is requested. Obviously, it would be impossible to reconstruct provenance for
past operations unless some information is maintained. GProM relies on the temporal and auditing logging
capabilities supported by many DBMS to capture sufficient information to be able to reconstruct prove-
nance for past queries, transactions, and updates on demand. This approach has the advantage of being
non-invasive, i.e., no changes to an application’s SQL code are required to enable provenance capture.

• Extensibility: GProM was designed from the ground up with extensibility in mind - support for new
provenance models, database backends, frontend languages, and optimizations can be added with ease.
This has enabled us to support a large number of diverse provenance and annotation management tasks.

The remainder of this paper is organized as follows. We explain the instrumentation approach underlying
GProM in Section 2. In Section 3, we give a more technical introduction to GProM. Section 4 covers major
contributions to provenance research related to GProM. We discuss post-mortem transaction debugging, one
of the novel applications of provenance made possible by GProM, in Section 5. We conclude in Section 6.
The research on GProM is enabled by the many fundmental contributions to provenance research made by the
database community. For reasons of space it is beyond the scope of this paper to acknowledge these important
contributions. We refer the interested reader to one of the many excellent surveys on provenance [4–6, 8, 12].

2 Instrumentation - Exploiting a DBMS for Provenance Storage and Capture

The de facto standard for database provenance [9] is to model provenance as annotations on data and to define
a query semantics that determines how annotations propagate. Under such a semantics, each output tuple t of a
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query Q is annotated with its provenance, i.e., a combination of input tuple annotations that explains how these
inputs were used by Q to derive t. For instance, using provenance polynomials, each tuple is annotated with
a, typically unique, variable representing this tuple. Under this model, annotations are propagated such that
every query result tuple is annotated with a polynomial over the variables representing the input tuples in the
output’s provenance. The addition and multiplication operations in such polynomials encode how these inputs
have been combined to derive the output. Addition represents alternative use of inputs (e.g., union or projection)
and multiplication represents conjunctive use (e.g., join). Relations annotated with provenance polynomials are
a specific type of K-relations, relations where tuples are annotated with elements from a commutative semiring
such as the semiring of provenance polynomials (denoted as N[X]). Relational algebra over K-relations is
defined based on the addition and multiplication operations of the semiring.

For example, consider a query listing all states that have CS students. The query and example N[X]-relations
encoding the input and output are shown at the top of Figure 1. The query result (IL) is annotated with v + y
which indicates that this tuple is part of the result as long as either v or x exist in the input (students Alice or Pe-
ter). As we will discuss in Section 4.1, the semiring provenance model which originally was defined for queries
can be extended to also support transactional updates. GProM targets any type of provenance or other informa-
tion that can be modelled as annotations. Current database systems do not natively support the propagation of
annotations through operations. There are two approaches for making a database system provenance-aware. Ei-
ther we extend the system’s query execution engine to support these features natively or we encode provenance
annotations using the data model supported by the database and instrument operations to propagate provenance
annotations. GProM and many other database provenance systems such as Perm [7], LogicBlox, Orchestra,
and ExSPAN apply the second approach. Using a relational encoding of provenance annotations, these systems
compile queries with annotated semantics into relational queries that produce this encoding of provenance an-
notations. We refer to this reduction from annotated to standard relational semantics as instrumentation. The
instrumentation approach can either be implemented as a compilation process in a middleware application or as
a query rewrite layer within a DBMS that instruments queries before they are passed to the system’s optimizer
(e.g., the Perm system [7] is an extension of PostgreSQL with support for capturing and querying provenance).
In GProM we have opted for a middleware implementation to be able to support multiple database backends.

An example of instrumentation is shown at the bottom of Figure 1. The input query with annotated semantics
is instrumented to produce a relational encoding of provenance polynomial annotations. In this example, we use
an encoding pioneered in Perm [7] which represents a tuple t annotated with polynomial k as follows. The
polynomial is refactored into a sum of products where variables in each monomial (individual product in the
sum) are ordered based on the occurrence of the relations in the query. A polynomial normalized in this fashion is
then encoded as a set of tuples where each tuple in such a set represents one monomial. A variable is represented
by the values of the tuple annotated with this variable in the input. Here P denotes a renaming function which
is used to create names for attributes that store provenance. For instance, an attribute student.name would
be renamed as prov student name. Note that this is only one of the representations supported in GProM,
e.g., the user can alternatively request the system to use tuple identifiers to encode variables. Furthermore,
annotations are generated on the fly in this example. This, however, is not a requirement. The instrumentation
approach works perfectly well for inputs which have provenance associated with them.

3 System Overview

We now give a more detailed and technical overview of GProM. Figure 2 shows the high-level architecture of
GProM. A user interacts with the system by sending a query written in a frontend language using one of the
system’s client interfaces (e.g., using a CLI). Frontend languages are declarative query languages that have been
enriched with new language constructs for requesting and querying provenance. A frontend-specific parser trans-
lates an incoming query into a more suitable internal representation, e.g., relational algebra. The result is then
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GProM SQL

PROVENANCE OF 
(SELECT * FROM ...

Provenance
Rewriter

Oracle

Oracle Postgres

Datalog Frontend

Instrumentation
+ Optimization

Target Code Generation

CLI JDBC libgprom Java Bindings

Postgres LogicBlox

MonetDB

SQLite

Backend ConnectorOracle Postgres SQLite

Transaction 
Reenactor Optimizer

C client library JDBC

SQLite MonetDB

Q(X) :- R(X,Y).
WHY(Q(Peter))

Figure 2: GProM Architecture

[ L1: Provenance is captured using an annotated version of
relational algebra which is first translated into relational
algebra over a relational encoding of annotated relations

and then into SQL code. ]
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Instrumentation
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Request

Annotated
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[ L2: In addition to the steps of (a), this pipeline uses
reenactment [2] to compile annotated updates into

annotated queries. ]
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[ L3: Computing provenance graphs for Datalog
queries [10] based on a rewriting called firing rules. The

instrumented Datalog program is first compiled into
relational algebra and then into SQL.]

Q(X) :- R(X,Y).
WHY(Q(1)).

Q(X) :- Fire(X,Y,Z).
Fire(X,Y,Z) :- …Parser Provenance 

Instrumentation

Provenance 
Request

Datalog
with Provenance Requests Datalog

Datalog to 
Algebra 

Translation

Relational
Algebra

DB

Figure 3: Instrumentation pipelines for provenance: (a) L1:
SQL queries, (b) L2: transactions, (c) L3: Datalog

processed by one or more instrumentation components which translate parts of a query containing provenance
features by rewriting such parts to generate a relational encoding of provenance. Instrumentation is typically
broken down into a multi-step compilation process which has the advantage that components implementing a
compilation step can be utilized for multiple provenance tasks. GProM also features a generic optimizer that
can be applied to any such compilation step (see Section 4.3). The output of instrumentation is then processed
by a backend specific code generation module, e.g., translating relational algebra into Postgres’s SQL dialect.
The generated code is sent to the backend for execution using a backend connector. Connectors either use a
native C-library or a JDBC driver to connect to the backend system. GProM was designed from the ground
up to be as modular and extensible as possible. Most components of the system including the frontend parser,
instrumentation and optimization components, code generators, and connectors are pluggable.

3.1 Frontends

So far we have implemented two frontends in GProM: 1) an SQL dialect with provenance features and 2) a
Datalog frontend with support for requesting explanations (provenance) for existing and missing query answers.
Importantly, the SQL dialect also supports other types of annotations such as temporal data and uncertainty.
Our general philosophy in designing these language extensions was to make provenance requests proper query
constructs that can be used in almost any place where regular queries are allowed. Importantly, this enables the
full expressive power of the frontend language to be used for querying provenance information.

3.2 Instrumentation Pipelines

To implement a particular provenance task, e.g., compile a provenance request written in GProM’s SQL dialect
into Postgres’s SQL dialect, the instrumentation components of GProM are arranged into a so-called instrumen-
tation pipeline. Figure 3 shows some of the pipelines currently supported by GProM:

• L1. Provenance for SQL Queries: The pipeline from Figure ?? generates a relational encoding of
provenance annotations such as the one shown in Figure 1.
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• L2. Provenance for Transactions: Figure ?? shows a pipeline that retroactively captures provenance for
transactions. In addition to the steps from Figure ??, this pipeline uses a compilation step called reenact-
ment. Reenactment translates transactional histories with annotated semantics into equivalent temporal
queries with annotated semantics. We will discuss this pipeline in more detail in Section 4.1.

• L3. Provenance for Datalog: This pipeline (Figure ??) produces provenance graphs that explain which
successful and failed rule derivations of a Datalog program are relevant for (not) deriving a (missing) query
result. A provenance request is compiled into a program that computes the edge relation of the provenance
graph. This program is then translated into SQL. See Section 4.2 for a more detailed discussion.

Note that a frontend may support multiple pipelines. User requests written in the language of the frontend
are automatically dispatched to the pipeline that is responsible for handling this type of request. For instance,
the SQL frontend uses several pipelines including the pipelines L1 and L2 described above. If a user requests
the provenance for a query then this request will be handled by pipeline L1 whereas if the user requests the
provenance of a transaction then this request will be dispatched to pipeline L2.

3.3 Backends and Client Interfaces

GProM can be accessed through its native commandline shell (CLI), through a library (libgrom), using a Java
API, or through the system’s JDBC driver which wraps a vendor specific JDBC driver. GProM supports code
generation for the SQL dialects of Oracle, Postgres, and SQLite as well as for LogiQL, LogicBlox’s Datalog
dialect. Backend connectors have been implemented for Oracle, Postgres, SQLite, and MonetDB.

4 Research Contributions

In addition to building a platform to support diverse provenance needs, our work on GProM has laid out the
basis for future research related to data provenance. At the same time, building GProM required us to cover
new ground in provenance research. In the following, we cover three major research contributions: tracking
provenance of transactions, unifying why- and why-not provenance, and provenance-aware query optimization.

4.1 Provenance for Transactions and Reenactment

One major limitation of database provenance approaches is their lack of support for tracking provenance of trans-
actional updates. This has prevented the use of provenance for applications such as debugging of transactions
and auditing. For instance, consider the following scenario. A company uses a database to store mission-critical
data and an attacker has compromised one of the database user accounts. Provenance for transactions would
allow us to determine what data was accessed by the attacker through this account. Furthermore, it would allow
us to determine what data was affected directly or indirectly by updates run by the compromised account (e.g., a
reporting query returns an incorrect result because of the attacker has modified data). To address this shortcom-
ing, we have developed MV-semirings (multi-version semirings), the first provenance model for transactions,
and reenactment, a technique for retroactively capturing the provenance of past transactions using queries.

The MV-semiring model extends the semiring annotation framework [9] to account for tuple derivations
under transactional updates [1, 2]. For any semiring K, we can construct an MV-semiring Kν . For instance,
N[X]ν is the MV-version of the provenance polynomial semiring N[X]. An annotation from an MV-semiringKν

is a symbolic expression over elements fromK recording the derivation history of a tuple. These expressions use
version annotations to enclose part of the provenance of a tuple to encode that the tuple version corresponding
to this part of the provenance was processed by a certain update at a certain time. A version annotation Xid

T,ν(k)
denotes that an operation of type X (update U , insert I , delete D, or commit C) that was executed at time
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ν − 1 (we assume a totally ordered time domain that is used to identify versions) by transaction T affected a
previous version of a tuple with identifier id and previous provenance k. The nesting of version annotations in
the MV-semiring annotation of a tuple records the sequence of updates that lead to the creation of the current
version of the tuple. We have defined update operations and a transactional semantics for MV-semiring databases
that is backward compatible to snapshot isolation (SI) and read committed snapshot isolation (RC-SI) for bag
semantics databases. In the resulting semantics, each tuple in a version of a database produced by a history of
transactions is annotated with its complete derivation history according to a SI or RC-SI history. Our model
also supports provenance for queries, i.e., the provenance a query result cannot just be traced back to the inputs
of the query, but also reaches back into the transactional history that produced these inputs. Furthermore, our
model preserves a major advantage of the semiring framework: it generalizes set and bag semantics as well as
other types of annotations expressible in the semiring framework such as incomplete databases. That is, we can
determine the bag semantics database that is the result of a given snapshot isolation history from the annotated
database for this history. We make use of this property to build a transactional debugger (see Section 5).

Example 4.1: Consider a tuple version t from an N[X]ν-relation R (the MV-version of provenance polynomi-
als) that was created by a SI history. Assume that in the current version of relation R, tuple t is annotated with
C2
T1,6

(I2T1,4
(x2)). This annotation records that the tuple was produced by an insert (I) executed by transaction

T1 at time 3 and was assigned a tuple identifier 2. Transaction T1 committed at time 5 after which this version
of tuple t became visible to other transactions. This is encoded by the outer version annotation: C2

T1,6
. Note that

we assign a time stamp ν + 1 to tuples created by an update or commit executed at time ν. We assign a fresh
variable (x2 in the example) to tuples created by an insert using a VALUES clause. Inserted tuples are assigned
new tuple ids (id 2, shown as a superscript in the version annotation).

We have demonstrated [1, 2] that MV-semiring databases inherit many of the beneficial properties of K-
relations (the semiring annotation framework) and are a strict generalization of K-relations in the following
sense: given a semiring K, the corresponding MV-semiring Kν is also a semiring. That means that we can apply
the standard query semantics for K-relations to query a Kν-relation. Furthermore, the K-relation corresponding
to an Kν-relation R can be extracted from R by applying a semiring homomorphism UNV which evaluates
the symbolic expression that is a Kν annotation by interpreting version annotation as functions from K to K.
Importantly, any semiring homomorphism h : K1 → K2 can be lifted to a homomorphism K1

ν → K2
ν which

in addition to queries also commutes with transactional histories. Such a lifted homomorphism replaces K1

elements in an annotation withK2 elements according to h. For example, consider how to derive a bag semantics
annotation from the N[X]ν annotation from the example above (C2

T1,6
(I2T1,4

(x2))). In the K-relational model,
bag semantics is modelled by annotating tuples with their multiplicity (the semiring N of natural numbers). We
first apply UNV to get the provenance polynomial for tuple t. Both commit and insert annotations are interpreted
as the identity function for N[X]. Thus, UNV(C2

T1,6
(I2T1,4

(x2))) = x2. Now further assume that tuple t appears
with multiplicity 2 in the input, i.e., we apply a homomorphism N[X] → N based on the valuation x2 = 2 and
get 2. That is, in the current version of relation R, the tuple t from the example appears with multiplicity 2.
The interested reader is referred to [1, 2] for the definition of update operations and transactional semantics for
MV-databases as well as a more formal discussion of the properties of MV-semiring structures.

We have proven that if we extend our query model with a new operator that creates version annotations, then
any update, transaction, or (partial) history in our model can be equivalently expressed as a query, e.g., from an
update u we can derive a query R(u) which returns the same database state as the original update u (if executed
over the same input). We call such queries reenactment queries. The equivalence of an operation and its reenact-
ment query under annotated semantics has an important implication: instead of computing provenance eagerly
during transaction execution we can compute it retroactively by running reenactment queries. Since our model
generalizes bag-semantics snapshot isolation, we can use reenactment to recreate a database state valid at a par-
ticular time by simply running a query - including database states that were only visible within one transaction.
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We have implemented support for transaction provenance in GProM based on reenactment. The instrumentation
pipeline implementing transaction provenance is shown in Figure ??. In addition to supporting provenance cap-
ture for past transactions using the auditing logging and time travel capabilities of modern DBMS, this pipeline
also allows a hypothetical sequence of updates to be evaluated using reenactment.

Example 4.2: Assume a user is interested in evaluating the effect of a hypothetical update over the current
version of a bag semantics relation Emp(name,salary) which increases the salary of all employees by $500
if their current salary is less than $1000. For simplicity, assume that the user is not interested in provenance (we
use semiring N instead of N[X]ν). This request is expressed using GProM’s REENACT statement:
REENACT(UPDATE Emp SET salary = salary + 500 WHERE salary < 1000;);

To reenact this update over the current version of relation Emp, GProM would construct a reenactment
query which returns the new state of Emp produced by the hypothetical update. This state is computed as a
union between the set of tuples that would not be updated (do not fulfill the update’s condition) and the updated
versions of tuples that fulfill the update’s condition (we have to increase their salary by 500):
SELECT * FROM Emp WHERE NOT(salary < 1000)
UNION ALL
SELECT name, salary + 500 AS salary, b FROM Emp WHERE salary < 1000;

4.2 Unifying Why and Why-not Provenance

The problems of explaining why a tuple is in the result of a query or why it is missing from the result, i.e., why
and why-not provenance, have been studied extensively. However, these two problems (computing provenance
and explaining missing answers) have been treated mostly in isolation. An important observation is that for
queries with negation, the two problems coincide: to explain why a tuple t is not in the result of a query
Q, we can equivalent ask why t is in the result of ¬Q. Thus, a provenance model for queries with negation
should naturally be able to support why-not questions. While there are extensions of the semiring model for set
difference, which encodes a form of negation, the problem is that in general ¬Q may not be safe. Thus, to unify
the two worlds of why and why-not provenance we need a provenance model that permits unsafe queries. We
have introduced in [10] a graph-based provenance model for first-order (FO) queries expressed as non-recursive
Datalog queries with negation. We apply the closed world assumption to deal with unsafe queries.

Our approach for computing provenance according to this model is based on the observation that typically
only a part of provenance, which we call an explanation, is actually relevant for answering a user’s provenance
question about the existence or absence of a result. An explanation for a why (why-not) question should justify
the existence (absence) of a result as the success (failure) to derive the result through the rules of the query.
Furthermore, it should explain how the existence (absence) of tuples in the database caused the derivation to
succeed (fail). The main driver of our approach is a rewriting of Datalog rules that captures successful and failed
rule derivations. This rewriting replaces the rules of a program with so-called firing rules. To efficiently compute
an explanation, we generate a Datalog program consisting of a set of firing rules that computes the relevant part
of the provenance bottom-up. Evaluating this program over a given instance returns the egde relation of the
explanation (provenance graph).

We have implemented this approach in GProM as Pipeline L3 (shown in Figure ??). The user provides a why
or why-not question and the corresponding Datalog query as an input. For this pipeline, we use GProM’s Datalog
frontend, which provides language constructs for expressing provenance requests. For instance, WHY(Q(a))
would instruct GProM to explain why Q(a) is a query result. The system instruments the input program (query)
to capture provenance relevant to the user question based on the firing rule rewriting mentioned above. This
program is translated into relational algebra and the resulting algebra expression is then translated into SQL
and sent to the backend databases to compute the edge relation of the explanation for the provenance question.
Based on this edge relation, we render a provenance graph e.g., the graphs shown in Figure 5 and 6.
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r1 : Q(X,Y) :- Train(X,Z),
Train(Z,Y),
not Train(X,Y).
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Figure 4: Example train connection database and query
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Figure 6: Provenance graph for WHYNOT(Q(s,n))

Example 4.3: Consider the train connections relation shown in Figure 4 and Datalog query r1 that computes
which cities can be reached with exactly one transfer, but not directly. A user might wonder why it is possible to
reach Seattle from New York with one intermediate stop but not directly (WHY(Q(n,s))) or why it is not pos-
sible to reach Seattle from New York in the same fashion (WHYNOT(Q(s,n)). The provenance graph in Figure 5
explains, for the question WHY(Q(n,s)), how Seattle can be reached from New York via one intermediate hop,
but not directly. Here, we use the following abbreviations: T = Train, n = New York, s = Seattle, w = Washington
DC, and c = Chicago. In the example instance, there are two ways to reach Seattle from New York in this fash-
ion: stopping either in Washington DC or in Chicago. These options correspond to two successful derivations
of rule r1 with X=n, Y=s, and Z=w (or Z=c, respectively). The provenance graphs produced by GProM contain
three types of nodes: tuple nodes (ovals), rule nodes (rectangles), and goal nodes (rounded rectangles). The
color of a node denotes its success (green) or failure (red), e.g., Q(n, s) is labelled successful, because this tuple
exists in the query result. In Figure 5 there are two rule nodes denoting the two successful derivations of Q(n, s)
by rule r1. The provenance graph for question WHYNOT(Q(s,n)) (Figure 6) explains why it is not true that New
York can be reached from Seattle with exactly one transfer, but not directly. The tuple Q(s, n) is missing from
the query result, because all potential ways to derive this tuple through r1 have failed. In this example, there
are four failed derivations - each choosing one of the four cities present in the database as an intermediate stop.
For instance, we cannot reach New York from Seattle via Washington DC (the first failed rule derivation from
the left in Figure 6), because there exists no connection from Seattle to Washington DC (a tuple node T(s, w) in
red), and WashingtonDC to New York (a tuple node T(w, n) in red). Note that the goal ¬T(s, n) is successful
and, thus, is not part of the explanation (successful goals do not contribute to failed derivations).

4.3 Provenance-aware Query Optimization

The instrumentation approach implemented in GProM has the distinct advantage that it does not require any
changes to the backend database system. However, because of the intrinsic complexity and unusual structure
of instrumented queries, even sophisticated database optimizers are often producing suboptimal plans for such
queries. DBMS optimizers have to trade optimization time for query performance. Thus, optimizations that
do not benefit common workloads are typically not considered. To address this problem, we have developed
a heuristic and cost-based optimization framework for instrumentation pipelines [16]. A unique feature of
our optimizer is that it is plan-space and query language agnostic and, thus, can be applied to optimize any
instrumentation pipeline in GProM. Our experimental results demonstrate that this approach is quite effective,
improving performance by several orders of magnitude for diverse provenance tasks.

Recall that an instrumentation pipeline is a multistep compilation process. To optimize this process we can
either target an intermediate language that is the result of a compilation step or the compilation step itself.
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Figure 7: Optimizer workflow

As an example for the first type of optimization, consider a compilation step that outputs relational algebra,
e.g., Pipelines L1 and L3 from Figure 3. We can optimize the generated algebra expression using algebraic
equivalences before passing it on to the next stage of the pipeline. In [16], we focus on relational algebra since it
is an intermediate language used by almost all pipelines supported by GProM. We investigate algebraic equiva-
lences that are beneficial for instrumentation, but which are usually not applied by database optimizers. We call
this type of optimizations provenance-specific algebraic transformations (PATs). For instance, pull up projec-
tions that create provenance annotations and remove unnecessary duplicate elimination and window operators.
To be able to support rules whose conditions depend on non-local information and to simplify definition of rules,
we infer properties such as candidate keys for the algebra operators of a query. For example, a duplicate elimi-
nation operator δ is redundant if its input relation is duplicate free, i.e., if it has at least one super key. Whether
this is the case depends not only the operator itself, but also on its context: the subtree below the operator in this
case. One of the properties we infer is a set keys of super keys for an operator’s output. Given this property, a
PAT rule that removes duplicate eliminations is trivially expressed as: rewrite δ(R) as R if keys(R) ̸= ∅.

For the second type of optimization mentioned above consider the compilation step from Pipeline L1 that
translates relational algebra with annotated semantics into relational algebra. If we know two equivalent ways of
translating an operator with annotated semantics into relational algebra, then we can choose the translation that
maximizes performance. We refer to this type of optimizations as instrumentation choices (ICs). For instance,
we introduce two ways for instrumenting an aggregation for provenance capture: 1) using a join [7] to pair
the aggregation output with provenance from the aggregation’s input; 2) using window functions (SQL’s OVER
clause) to directly compute the aggregation functions over inputs annotated with provenance.

Since some PATs are not always beneficial and for some ICs there is no clearly superior choice, there is a need
for cost-based optimization (CBO). We have developed a CBO for instrumentation pipelines that can be applied
to any pipeline no matter what compilation steps and intermediate languages are used. This is made possible
by decoupling the plan space exploration from actual plan generation. Figure 7 shows how our cost-based
optimizer is integrated with GProM. Our CBO treats an instrumentation pipeline as a blackbox function which
it calls repeatedly to produce backend dialect queries (plans). Plans are sent to the backend for planning and
cost estimation. We refer to one execution of the pipeline as an iteration. It is the responsibility of the pipeline’s
components to signal to the optimizer the existence of optimization choices (called choice points) through the
optimizers callback API. The optimizer responds to a call from one of these components by instructing it which
of the available options to choose. We keep track of which choices had to be made, which options exist for
each choice point, and which options were chosen. This information is sufficient to enumerate the plan space
by making different choices during each iteration. Our approach provides great flexibility in terms of supported
optimization decisions, e.g., we can choose whether to apply a PAT or select which ICs to use. Adding an
optimization choice only requires adding a few LOC to inform the optimizer about the availability of options.
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4.4 Further Contributions and Research that Utilizes GProM

In addition to the three major contributions outlined above, GProM has been the basis of many additional
research thrusts. In [15], we have demonstrated how to improve interoperability between GProM and other
provenance-aware systems. Specifically, we have extended Pipeline L1 from Section 3.2 to translate provenance
generated by GProM into the W3C PROV standard format (https://www.w3.org/TR/prov-overview/)
and how to propagate provenance imported as PROV through queries. Reenactment enables changes to data to be
virtualized - instead of running an update we can instead just record the update statement and evaluate its effect
in a non-destructive manner using reenactment. Based on this idea we have presented our vision of provenance-
aware versioned dataworkspaces (PVDs) [13] which are virtual copies of a database with non-linear version
histories (like the ones supported by version control systems) which can be used for exploratory purposes. We
have identified historical what-if queries [3] as another use case for reenactment. Using reenactment, we can
efficiently determine the effect of hypothetical changes to past update operations on the current database state.
For instance, we can answer queries such as “How would the revenue of our company be affected if we would
have charged 10% interest for account overdraws instead of 7%”. In [11] we have introduced an approximate
summarization technique for why and why-not provenance extending our previous work on Datalog provenance
in GProM. Using a sampling-based method, we overcome the main roadblock for explaining missing answers -
the prohibitively large size of why-not provenance for databases of realistic size.

5 Post-mortem Debugging of Transactions

Aside from providing a solid platform for research on provenance and related fields, GProM and the research
fueling the system have also enabled novel applications of provenance that would not have been possible before.
In this section, we introduce postmortem debugging of transactions as an important example for this type of
application. Debugging transactions and understanding their execution is of immense importance for developing
OLAP applications, to trace causes of errors in production systems, and to audit the operations of a database.
Debugging transactions, just like debugging of parallel programs, is hard because errors may only materialize
under certain interleavings of operations. This problem is aggravated by the wide-spread use of lower isolation
levels. Nonetheless, even for serializable histories an error may only arise for some execution orders. To debug
an error, we have to reproduce the interleaving of operations which lead to the error. This problem can be
addressed by supporting post-mortem debugging for transactions, i.e., enabling a user to retroactively inspect
transaction executions to understand how the statements of a transaction affected the database state. While
there are debuggers for procedural extensions of SQL, e.g., Microsoft’s T-SQL Debugger (http://msdn.
microsoft.com/en-us/library/cc645997.aspx), these debuggers treat SQL statements as black
boxes, i.e., they do not expose the dataflow within an SQL statement. Even more important, they do not support
post-mortem debugging of transaction executions within their original environment.

Supporting post-mortem debugging for transactions is quite challenging, because past database states are
transient and the dataflow within and across SQL statements is opaque. While temporal databases provide ac-
cess to past database versions, this is limited to committed versions. In [14], we present a non-destructive,
post-mortem debugger for transactions that relies on GProM’s reenactment techniques to reproduce the inter-
mediate states of relations seen by the operations of a transaction. The approach uses provenance to expose
data-dependencies between tuple versions and to explain which statements of a transaction affected a tuple ver-
sion. Advanced debuggers for programming languages allow code to be changed during a debugging session to
test a potential fix for a bug. We exploit the fact that GProM supports reenactment of hypothetical transactions to
support such what-if scenarios, i.e., changes to a transaction’s SQL statements. Being based on GProM’s reen-
actment functionality, our approach uses the temporal database and audit logging capabilities available in many
DBMS and does not require any modifications to the underlying database system nor transactional workload.
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Figure 8: Screenshot of the Debugger GUI
UPDATE account
SET bal = bal + CASE WHEN typ = ’Premium’

THEN 500 ELSE 300 END

UPDATE account SET typ = ’Premium’
WHERE bal > 1000 AND city = ’Chicago’;

(a) Transaction T

account
cust typ bal city
Alice Premium 800 Chicago
Gary Standard 1200 Chicago

(b) Before T

account
cust typ bal city
Alice Premium 1300 Chicago
Gary Premium 1500 Chicago

(c) After T
Figure 9: Example transaction

Example 5.1: Transaction T shown in Figure 9 adds a bonus to bank accounts ($500 for premium customers
and $300 for standard customers) and gives premium status to all accounts whose balance is larger than $1000.
Figure 9 also shows the state of the account relation before and after the update. For instance, after the execution
of Transaction T , Gray’s account enjoys premium status. However, Gary has only received a $300 bonus, the
bonus for standard accounts. Our debugger can be used to inspect the internal states of the transaction that lead
to this behaviour. Figure 8 shows a screenshot of the debugger’s GUI for Transaction T . We show one column
for each of T ’s operations plus a column for the initial states of the relations accessed by T . Each such column
shows the SQL code of the statement ( ..1 ) and the relation ( ..2 ) modified by the statement (the version created
by the statement). For each tuple version, we show which transaction created that version. In Figure 8, the user
has selected Gary’s account. Thus, the debugger shows a provenance graph ( ..3 ) for this tuple and highlights the
updates that affected it. From the intermediate states of the relations and the provenance graph it is immediately
clear that the bonus payment was applied when Gary’s status was still standard. Our debugger supports two
types of what-if scenarios by clicking the “What-if” button ( ..5 ): 1) the user can edit the data in a table and 2)
the user can modify, delete, or add an update statement.

6 Conclusions and Future Work

We give a comprehensive overview of GProM (Generic Provenance Middleware). GProM is a fully imple-
mented system that we hope will serve as a platform for future research on provenance and annotation manage-
ment as well as a framework for building provenance-aware applications. The diverse types of research threads
and applications for which we have employed GProM, demonstrate the potential of our system and the feasi-
bility of its modular, extensible design. We also give an overview of research contributions related to GProM,
most notably, a provenance model for transactions and reenactment, capturing why and why-not provenance for
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Datalog queries, and provenance-aware query optimization. The query instrumentation technique that is at the
heart of GProM is applicable for a wide range of use cases that are not necessarily all related to provenance.
For instance, we have extended GProM to evaluate temporal queries and to compute uncertainty annotations.
GProM provides solid support for classical applications of provenance and has enabled novel applications. We
discuss post-mortem debugging of transactions as one exciting use case of the system. Finally, we highlight
interesting future work and discuss ongoing research efforts that benefit from GProM.
Acknowledgements. This work was supported by NSF Award #1640864. Opinions, findings and conclusions
expressed in this material are those of the authors and do not necessarily reflect the views of the National Science
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Supporting Data Provenance in Data-Intensive Scalable
Computing Systems

Matteo Interlandi, Tyson Condie
Microsoft

Abstract

Debugging data processing logic in Data-Intensive Scalable Computing (DISC) systems is a difficult and
time consuming effort. Data provenance support is a key building block in libraries that aim to provide
debugging support for data processing pipelines. In this paper we report our experience in building
Titian: a data provenance system targeting the Apache Spark framework. Our focus here is to analyze
the design choices and trade offs that we and others made. Ultimately, we believe there is still more work
to do before reaching a widespread adoption of data provenance outside the research community.

1 Introduction

Data-Intensive Scalable Computing (DISC) systems, like Apache Hadoop [1] and Apache Spark [2], are being
used to analyze massive quantities of data. These DISC systems expose a programming model for authoring
data processing logic, which is compiled into a Directed Acyclic Graph (DAG) of data-parallel operators. The
root DAG operators consume data from an input source (e.g., HDFS), while downstream operators consume the
intermediate outputs from DAG predecessors. Scaling to large datasets is handled by partitioning the data and
assigning tasks that execute the operators on each partition.

Given its distributed and large-scale nature, debugging data processing logic in DISC environments can
be daunting. DISC systems expose a batch model of execution: applications are run in the cloud, and the
results, including notification of runtime failures, are sent back to users upon completion. Therefore, debugging
is mostly done post-mortem and the primary source of debugging information is an execution log. Another
common debugging pattern is trial-and-error iterations, where developers selectively replay a portion of their
data processing logic on input samples or subsets of intermediate data leading to erroneous results. Trial-and-
error debugging is often a slow and error prone process inasmuch as each iteration is executed afresh, and
users have to be manually filter records after each iteration. Only recently, a set of tools and libraries [4–6, 8]
have started to arise for helping users in interactively identifying the subset of data leading to failures, or to
optimize trial-and-error runs in a principled and automatic way. All these tools can be unlocked by a DISC
system equipped with the following capabilities: (1) scalable fine-grained data provenance (also referred to
data lineage) capturing introducing low overhead on the runtime; (2) interactive provenance query capabilities
enabled within the same host framework; and (3) a flexible and simple to use API allowing to seamlessly move
between provenance and data records without triggering any re-computation.

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering
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Newt [10] and RAMP [7] are two frameworks supporting data provenance in DISC systems (Hadoop in
this specific case). Unfortunately, none of them satisfy all three requirements: Newt is an external library
whereby the dataflow operators of the target DISC system are wrapped with fine-grained provenance capturing
logic downpouring provenance information to a storage layer (MySQL). While this design allows some level
of portability, we found that interactiveness is somehow restricted because a different system has to be used at
provenance query time. Conversely, RAMP tags data records with provenance information which are propagated
downstream and collected into HDFS. This design requires modification to DISC internals while only a limited
number of tracing queries are supported efficiently. Furthermore, scalability is suboptimal in both system as
a consequence of the overheads due to the transfer of provenance information between different sub-systems
(Newt) and downstream as tags (RAMP).

The main focus of this paper is to summarize our experience in building Titian [9]: a fine-grained prove-
nance framework specifically designed for the popular Apache Spark system, and satisfying the above three
requirements. Differently than RAMP and Newt, Titian was implemented with usability and scalability in mind:
provenance capturing and querying is performed on the same host system whereby users can employ the same
interface (i.e., RDD transformations [11]) to interactively author DISC programs and query provenance informa-
tion. By tightly integrating Titian within Spark, both provenance information can be captured with low overhead,
and data records can be accessed without any re-computation.

While these design choices made possible the development of several debugging functionalities and tools
on top of Titian [4–6, 8], we believe several limitations and open questions remain. Specifically, we found that
targeting Titian to Spark’s low-level (RDD) API makes it difficult to port to newer versions of Spark. Moreover,
mapping data provenance to high-level operations (e.g., SQL, Machine Learning) is non-trivial, and would
require a complete overhaul of the framework. A more detailed discussion on these and other issues can be
found in Section 5.

In the remainder of the paper we will first discuss our porting of Newt and RAMP over Apache Spark,
and related usability and scalability difficulties (Section 3); then we will introduce Titian design and detailed
implementation (Section 4). The paper will end with a discussion on the lesson learned and future directions.
To properly put everything into context, we next briefly introduce Apache Spark.

2 Background: Apache Spark

Spark is a JVM-based DISC system exposing a programming model based on Resilient Distributed Datasets
(RDDs) [11]. The RDD abstraction provides transformations (e.g., map, reduce, filter, group-by, join, etc.) and
actions (e.g., count, collect) that operate on datasets partitioned over a cluster of nodes. A typical Spark program
executes a series of transformations ending with an action that returns a result value (e.g., the record count of
an RDD) to the Spark driver program. A driver program could be a user operating through the Spark terminal,
or it could be a standalone Scala program. In either case, RDDs lazily evaluate transformations by returning
a new RDD object that is specific to the transformation operation on the target input RDD(s). Actions trigger
the evaluation of an RDD, and all RDD transformations leading up to it. Internally, Spark translates a series
of RDD transformations into a DAG of stages, where each stage contains some sub-series of transformations
until a shuffle step is required (i.e., data must be re-partitioned). reduceByKey, groupBy and join are
common stage-breaking RDD transformations requiring data re-partitioning. The Spark scheduler is responsible
for executing each stage in topological order according to data dependencies. Stage execution is carried out by
tasks that perform the work (i.e., sequence of transformations) of a stage on each input partition. Records
composing each data partition are presented to a task in the form of an iterator i.e., Spark follows the record-at-
a-time dataflow model of databases. The final output stage evaluates the action that triggered the execution. The
action result values are collected from each task and returned to the driver program, which can eventually initiate
another series of transformations ending with an action. For fault-tolerance, within stages data is materialized on
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(a) With Newt, a MySQL cluster is co-located with
the DISC (i.e., Spark) one. The data analyst au-
thors and submits her / his program through the Spark
Driver. Spark with Newt instrumentation generates
data provenance data and stores it into local MySQL
instances. Once the job is completed, a provenance
analyst queries the generated provenance graph using
the MySQL Driver interface.
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(b) With the RAMP instrumentation, provenance
records are propagated downstream and saved into
HDF. Data and provenance analysts use the same
RDD interface. However interactiveness is limited
since two different contexts are required.

Figure 1: The Newt and RAMP system approach for DISC provenance.

persistent memory and re-partitioned. Spark additionally allows programmer to cache RDDs in memory. When
a cached RDD is scheduled for execution, Spark’s BlockManager eagerly retrieves the saved RDD data instead
of triggering the evaluation of preceding RDDs. This mechanism is particularly useful for programs containing
iterations.

3 Data Provenance in DISC: RAMP and Newt

Our initial work in adding fine-grained provenance support to Spark leveraged RAMP and Newt designs. Dur-
ing this exercise, we encountered a number of issues, including scalability (the sheer amount of fine-grained
provenance data that could be captured and used for tracing), job overhead (the per-job slowdown incurred from
data provenance capture), and usability (both provide limited support for provenance queries). Newt operates
externally to the target DISC system, making it more general than Titian. However, the Newt design prevents a
unified programming environment, in which both the data and its provenance can be queried in the same run-
time. RAMP is more tightly integrated into the target DISC system (e.g., Hadoop MapReduce), providing better
scalability, but, like Newt, the RAMP design lacks a unified solution for data and provenance analysis.

In the following we present a qualitative analysis of our experience in porting Newt and RAMP over Spark.
For a more quantitative evaluation, we refer interested readers to [9]. Figure 1 pictorially summarizes the Newt
and RAMP instrumentation of Spark.
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3.1 Newt

Newt is a generic framework designed for collecting and querying fine-grained data provenance information
from any framework executing data transformations as logical operators. When porting Newt to Spark, we
avoided modifications to Spark runtime so that it could be leveraged in different versions of Spark. Newt
follows the agent model whereby target data transformations are instrument to capture provenance information
on operator inputs and operator outputs. Newt provides a simple addInput and addOutput API accepting
data records as input and generating timestamped unique provenance IDs (using hashing). IDs and timestamps
are streamed to a Newt client and saved into a local log file. Once program execution is complete, Newt uses the
timestamp values to infer the temporal order of outputs IDs relative to inputs provenance IDs to reconstruct the
original input-output relationships between records. All reconstructed input-output relationship pairs are then
loaded into an indexed association table stored in a MySQL distributed cluster co-located with the Spark cluster.

Capturing. Within Spark stages, the instrumentation for collecting data provenance using the Newt API is fairly
straightforward: we created two special map RDD transformations that generate input and output provenance
associations for each Spark stage using the addInput and addOutput API provided by Newt. These prove-
nance associations are then pushed by the Newt client to MySQL once the input partition has been processed to
completion. However, transformations such as reduceByKey and join require a shuffle step, during which
all records are materialized. The simple timestsamp-based API of Newt is not effective in generating minimal
provenance data because all input records end up being associated with each output record. Newt does provide
the ability to add an optional tag to each record (for instance to tag records belonging to the same group-by key)
so that only records with same tag are linked in the input-output association table. However tags need to be
propagated through the shuffle step, which could be supported by either (1) modifying the target program so that
shuffle operations (i.e., reduceByKey) accept as input pairs in the form (key, (value, tag)); or (2) modifying
the Spark internals in order to make propagations of tags transparent to users. The latter is the approach that
RAMP (and Titian) took, and will be explained in Section 3.2.

Querying. Provenance queries are executed in Newt as a series of SQL joins executed over the association
tables stored in the MySQL cluster. Queries are issued from a MySQL Driver node: a logically separated entity
from the Spark Driver. We found this approach suboptimal from a usability perspective because: (1) users have
to setup a MySQL cluster together with the DISC system cluster; (2) analysts needs to be proficient on two
systems in order to debug their programs; (3) for the system to be able to properly compose tracing query plans,
stored association tables need to be explicitly linked to form a dependency graph, mirroring the position they
occupy in the original input program; and (4) populating indexed MySQL tables starting from log files is time
consuming (on the order of minutes to hours depending on the data volume). The latter two points make the
Newt design difficult to use in interactive sessions.

Additionally, the raw intermediate data is not available in the Newt design, making it only relevant for tracing
back to the input datasets; further limiting its use in a (stepwise) debugger like setting. We did not explore
checkpointing (saving) the intermediate data in our Newt to Spark port since we had already hit a scalability
bottleneck when capturing the provenance alone.

Lessons Learned. Summarizing, from our initial experience of adding data provenance to Spark through Newt
we concluded the following:

• To minimize the overhead of tapping record pipelines, it is better by default to capture provenance in-
formation at stage boundary only, and eventually give to users the ability to manually inject additional
capturing points if necessary.

• Without any modification to Spark internals or user code, Newt timestamp-based approach is not able
to produce minimal input-output relationship tables for transformations requiring shuffling. As a conse-
quence, capturing and querying have higher overheads wrt more optimal solutions where only minimal

66



TaskContext

MapStart RDD-1 MapEnd

Stage

RDD-N

key-1
key

{ ID1, ID2, ... } 
tags

......
provenance ID-1

...

provenance ID

... ...

(key-x, (value-x, { IDy, IDz, ... }))
(key-y, (value-y, { IDa, IDb, ... }))

...

{ IDy, IDz, ... }key-x
... ...

Shuffle

...

(1) (2)

(3)

(4)

provenance ID-x

Figure 2: In RAMP Provenance IDs are propagated downstream as record TAGS. IDs are first added to the
TaskContext (1). MapEnd pulls IDs from the context (2) and populate a local (to each task) hash table (3).
Finally, collected provenance identifiers are attached to the proper key-value pair (4).

Figure 3: RAMP approach of propagating provenance through the TaskContext and the shuffle step.

provenance information are saved.

• Data provenance capturing and querying have to be executed on the same (DISC) system if we want to
allow interactivity both to end users and to higher-level debugging toolkits.

• Intermediate data records (i.e., records stored into shuffle files) linked to provenance IDs have to be made
accessible by users in order to provide better insight into intermediate RDD transformations.

3.2 RAMP

The initial RAMP implementation was specifically tailored for MapReduce workflows, but its design can easily
be ported over Spark. Unlike Newt, RAMP integrates with the target DISC system (e.g., Spark) to efficiently tag
records with chains of (nested) provenance IDs that are propagated with the data records through the dataflow to
the final record outputs. These provenance chains can be seen as materializing backward tracing joins between
(virtual) association tables at the final program output. Indeed, with such design, backward tracing provenance
queries can be answered very efficiently. Conversely, forward queries are difficult and inefficient to support.

Capturing. When a Spark program is submitted for execution (i.e., when an action is called on an RDD), the
RDD dependencies are analyzed and two new map RDDs (rampMapStart and rampMapEnd) are injected
into the program before and after (respectively) any RDDs that translate into a single stage. For input datasets
that reside in Hadoop HDFS, Spark uses a HadoopRDD that emits the data record along with an offset of the
record in the input file. We inject a rampMapStart RDD that consumes these records and uses the partition
identifier and offset as provenance ID. Since RAMP does not timestamp records, input provenance IDs need to
be propagated downstream to the stage output, where associations are made with the relevant output provenance
IDs. We implement provenance propagation by adding the provenance ID of the current input record to the Spark
TaskContext, as shown in Figure 3 (1). Since records are evaluated one-at-a-time, each provenance ID is relevant
to all output records sent to rampMapEnd at the stage output1 (2). rampMapEnd is responsible for associating
each output record key with all relevant input provenance IDs (3). All the provenance IDs accumulated into
local hash tables have to be propagated as well, but this time through the shuffle step. To achieve this the
ExternalSorter component in Spark had to be modified so that records can be written in the form (key, (value,

1Note that Newt does not make this assumption, and instead relies on timestamps to infer (indeed overestimate) input-to-output
associations.
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provenance ID) in the shuffle file, where provenance ID contains all the IDs accumulated into the has table under
key (4), i.e., previously stored provenance IDs are nested and used as a new provenance ID. Note that only
nested IDs need to be added to each record, since the hash of the key can be recomputed on the fly.

In the following stage, the ShuffleReader and Aggregator components had to be changed to make them
aware of the new record format. Apache Spark computes aggregates (a similar argument holds for joins) by
iterating over all records while updating the aggregate value linked to each key. The final aggregate values are
then surfaced to the successive RDD transformations as iterator. Hence, after the shuffling step provenance
information are generated in two phases. In the first phase, while the aggregator iterates through records, IDs
are removed so that aggregation can be computed as in regular Spark. The provenance IDs (each composed
by the sequence of IDs coming from the previous stage rampMapStart) are then used together with the key
to populate a new local hash table, as in rampMapEnd. Once the aggregation phase is completed, we store
the generated hash table containing all provenance IDs into a buffer in the TaskContext. In the second phase,
when the aggregated records are emitted as iterator, a rampReduceStart RDD previously injected in the
workflow pulls the current provenance ID from the buffer, appends a new provenance ID to it, and stores the
updated provenance chain into the TaskContext so that the rampMapEnd transformation at the end of the stage
can use it. The process repeat if other stages follow. The rampMapEnd in the final stage materialize all nested
provenance IDs in HDFS.

Querying. Provenance queries are implemented in RAMP by traversing and unnesting HDFS residing prove-
nance IDs. For this task, external scripts can be used, but interestingly also the DISC system itself. This later
approach is closer to our target of providing provenance querying capabilities withing the DISC framework.
Note however that in both cases, only backward tracing queries are supported efficiently, while forward tracing
requires to scan and unroll all provenance IDs. Additionally, RAMP model allows to access the (map) input and
(reduce) output data records connected with provenance IDs but no intermediate records.

Lessons Learned. The RAMP porting provided us the baseline for the Titian implementation.

• The offloading of provenance information to HDFS-stored files is simple and effective, and allows to use
the same DISC system for provenance querying.

• The approach of propagating nested provenance IDs introduces not negligible overheads into the runtime,
moreover redundant information are added to shuffle files.

• Both backward and forward tracing queries should be efficiently supported. Additionally, provenance
queries should be expressible in a declarative language leaving the system to decide how to properly
execute (and optimize) them.

4 Titian

Titian integrates with the Spark runtime to provide efficient data provenance support. Submitted programs are
rewritten to include lineage capturing (map) transformations at stage boundaries that generate provenance asso-
ciation tables, which are stored directly into Spark’s in-memory store (BlockManager). Additionally, partition
identifiers are propagated with data records through shuffle steps in order to optimize tracing queries.

Provenance information is exposed as RDDs, on which all Spark native transformations, including some
additional tracing capabilities, can be applied. This approach makes program execution and debugging a con-
tinuous process carried out interactively using the same Spark context. Figure 5 describes the Titian design.

4.1 Capturing

The entry point of Titian is the LineageContext that wraps the original SparkContext to enable data
provenance capabilities. When a program is submitted for execution, Titian rewrites the program by injecting
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Figure 5: Titian design for DISC provenance.
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LineageRDD transformations at stage boundaries, as shown in Figure 6. LineageRDDs can be classified into
four types based on where they are positioned in the program.

(1) Program Input. Titian adds a HadoopLineageRDD or a ParallelizeLineageRDD, based on whether input
records are fetched from HDFS or directly from the driver. The implementation of these LineageRDDs is
similar to the rampMapStart transformation previously described in Section 3.2. For each input data record,
an unique INPUTID (such as the filename, partition id and offset in an HDFS file) is propagated to the stage
output using the TaskContext.2

A stage ends when one of the following operations occur: reduction (i.e., reduceByKey), generic aggregation
(e.g., groupBy), or co-grouping operators (e.g., join, union, etc.). The differences between the three are
both in the implementation and in the output format. Spark injects a combiner step when a reduction operation
is requested, while generic aggregation is performed without a combiner. In both cases, the successive stage
starts with an RDD iterating over a sequence of pairs where the first element is the grouping key, while the
second element is the related aggregate value. Conversely, co-grouping (similarly to generic aggregation) uses
no combiner, and outputs a sequences of pairs composed by the grouping key and an iterator over all the values.
Join results are produced by flattening the co-group output. Next, we describe how we take these output results,
generate identifiers for them, and associate them with the relevant input record identifier.

2Input records follow at 1-to-1 mapping, avoiding the need to generate association tables at this point.
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(2) Pre-Shuffle. Before the shuffle step, Titian injects a proper LineageRDD based on the operation the pro-
gram is implementing: i.e., PreReduceLineageRDD in case of reduceByKey, PreGroupLineageRDD for
groupBy, and PreCoGroupLineageRDD for a transformation requiring co-grouping. Pairs of ids (INPUTID,
OUTPUTID) are generated and buffered in memory by each operator, where INPUTID is the tag of the record
propagated from some other LineageRDD upstream, and OUTPUTID is the hash of the key of the record. Addi-
tionally, Titian attaches to each shuffled record a partition ID so that post-shuffle records can be efficiently joined
with pre-shuffle records i.e., the partition ID indicates which pre-shuffle partitions need to be considered; without
this information, we would need to join with all pre-shuffle partitions, which is expense for tracing starting from
a small set of output records.

(3) Post-Shuffle. In the successive stage following the shuffle step, Titian rewrites the program workflow by
substituting Spark default ShuffleReader with one of the three ReduceShuffleReader, GroupShuffleReader, and
CoGroupShuffleReader. Additionally, a PostReduceLineageRDD, PostGroupLineageRDD and PostCoGroup
LineageRDD are added to the program based on its semantics. ReduceShuffleReader and GroupShuffleReader
follows the same logic of the previously introduced RampReduceStart. Instead, when co-grouping, Spark does
not aggregate values by key, but instead it directly returns an iterator over key-value pairs, in which the values
are iterators of all the records having the same key. Because of this, each of this records contain the partition
ID previously attached during the pre-shuffle phase. PostCoGroupLineageRDD implementation therefore (1)
unrolls each record-iterator and save the partition identifier of each record in an in-memory buffer; (2) generates
a new unique identifier and stores it into the TaskContext; and (3) emits the new key-value pair without partition
identifiers into the successive RDD transformations.

(4) Program Output. At the end of each program Titian injects an EndLineageRDD creating a pair (INPUTID,
OUTPUTID) for each data record. Additionally, EndLineageRDD attaches OUTPUTID to the record so that users
can, at query time, connect records to provenance IDs. Since the input-output relationship is 1-to-n (e.g., due to
a flat map transformation), an association table is explicitly materialized in the BlockManager.

Buffering and Lineage Storage. In order to reduce the overhead of capturing lineage, Titian stores provenance
information in-memory into Spark’s BlockManager. Additionally, to reduce the number of objects created
at runtime, we have extended Spark’s worker nodes runtime (Executors) with a pool of bytebuffers of differ-
ent length. When a partition is scheduled for execution, at the first call each LineageRDD initializes a local
in-memory buffer by fetching a bytebuffer from one of the pools. Each input-output pair of provenance IDs
generated by the LineageRDD is then stored into the local buffer. When a partition is completed, local buffers
are asynchronously materialized in the BlockManager after that a LineageRDD-specific compression logic is
executed over the provenance records. Specifically, we store pre- and post-shuffle provenance data in a nested
format in order to not waste memory space over redundant information. In fact, pre- and post-shuffle Linea-
geRDD operators creates a sequence of (INPUTID, OUTPUTID) pairs in which the same OUTPUTID can appear
multiple times based on how many times values with the same key exist. The trade off is that such technique
increases the overhead of accessing data at query time since records need to be unnested, but other techniques
such as targeted joins (described in Section 4.2) can be used to speed-up query processing.

4.2 Querying

Once the DISC program with provenance capturing enabled is completed, Titian surfaces provenance data as
LineageDataRDDs: a specific RDD equipped with provenance-specific operations such as TraceBackward
or TraceForward additionally to regular RDD transformations. To enable provenance queries, upon program
completion, Titian (1) labels all LineageRDDs injected into the original program as cached; and (2) generates
a dependency graph formed by all such LineageRDDs now surfaced as LineageDataRDD references. With
(1), Titian is basically instrumenting Spark to fetch the provenance data available in the BlockManager when an
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tables.

action requires to compute a LineageDataRDD3; since provenance data is exposed as RDDs, we simply leverage
Spark to query it, without asking users to manually specify the dependencies between associations tables (as for
instance Newt and RAMP require).

Starting from a target LineageDataRDD of interest, analyst can submit tracing queries using the Trace
Backward or TraceForward transformations.4 Furthermore, regular RDD transformations such as filter
can be used to remove out all provenance records that are not of interest (for instance by specifying the OUT-
PUTIDs of the records that need to be traced). Taking the backward direction as example, when a user call
the method traceBackard() over a (filtered) LineageDataRDD reference, Titian’s QueryPlanner sched-
ules a left semi-join between the current LineageDataRDD and the preceding one in the dependency graph. If
users prefer to execute more than one step backward, traceBackward(numSteps) can be called where
numSteps specifies the numbers of joins to be executed. Finally, a full trace backward up to the initial input
IDs can be executed by calling fullTraceBackward(). Figure 7 is a replica of Figure 6 where we show
how joins are executed using the association tables generated from the two-stages program.

Query Planning and Optimizations. When a tracing query is issued for evaluation (e.g., after an action is
invoked on a LineageDataRDDs reference returned from a traceBackword call), Titian generates a query
plan that attempts to minimize data movement, and unrolling nested records only when necessary. Titian’s
QueryPlanner avoids Spark’s shuffle join implementation when tracing within a stage i.e., from the stage output
to the stage input (or vice-versa), since the respective associations already join locally. A shuffle join is needed
when tracing between shuffle steps. However, instead of using Spark’s native shuffle join, we implemented a
direct shuffle join that uses the partition identifier information to directly traces to only the relevant partitions
on the other side of the shuffle step. For example, if we are tracing back from a record with key “foo”, then it
might be the case that not all pre-shuffle steps generated such a key, in which case the partition identifiers will
inform the direct shuffle to avoid joining those partitions with the “foo” records. Additionally, indexes are create
at capture time to speed-up the joining process when tracing backward. More details on query planning and
optimizations can be found in [9].

Accessing Original Data Records. Titian enables users to inspect the data records that each provenance ID

is linked to, including intermediate data, without introducing any overhead in the capturing phase. In fact,
while input and output records are directly connected to the related provenance ID by construction, intermediate

3Note that in Spark caching is usually request at program-time before an RDD is scheduled for execution. Titian instead asks Spark
to cache LineageRDD after they are computed. Indeed LineageRDDs internally materialize provenance data into the BlockManager, i.e.,
without using Spark support. Since LineageRDD are manually saved, Spark is unaware of the checkpoints and therefore fault tolerance
mechanisms work as usual.

4The tracing transformations are simply syntactic sugar over native Spark (filtered) joins.
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records (i.e., records produced as output of a intermediate stage and consumed by successively scheduled stages)
can be retrieved by directly accessing (saved) shuffle files. Spark, in general, maintains shuffle files in cluster
memory for fault tolerance. Such files survive after the execution of the target program and therefore can be
read by provenance queries. This is possible exclusively because one unique context is used for both data and
provenance analysis.

Accessing the data linked to a set of provenance IDs is possible in Titian by calling the showData method
over the target LineageDataRDD object. Underneath, Titian’s query planner issues a join between the Lin-
eageDataRDD and the related object reference pointing to the data. For example, a call to showData() over
an HadoopLineageDataRDD object will issue a join between the provenance records of the HadoopLineage-
DataRDD object, and the input dataset stored in HDFS. Similarly, a call to showData() over a PreShuffle-
LineageDataRDD issues a join with the shuffle file. Note that the Titian framework automatically maintains the
reference to all (intermediate) files and objects storing data records that can be eventually requested by users
during tracing.

5 Considerations and Future Directions

Newt, RAMP, and Titian provided different contributions over the state of the art. Newt showed that a portable,
external library can be developed such that (different) DISC systems can be easily instrumented to capture prove-
nance. Higher-level tooling can then target such library and seamlessly work over different DISC platforms. In
our experiments Newt however showed poor scalability. This is both the result of its portable design, and the
choice of using MySQL as lineage capturing backend. This later choice of separating the query subsystem from
the DISC system, lowers its usability and makes features such as visualization of intermediate data difficult to
achieve.

RAMP chose a more integrated design with the host DISC system at the cost of less portability. Propagating
full provenance information downstream introduces however major overhead on the running program. Lastly,
while provenance queries are supported in RAMP using the same DISC language, the original RAMP design
did not consider forward tracing queries, but only (already materialized) backward queries.

Titian implementation merges the advantages of both the Newt and RAMP approaches: Titian integrates the
provenance capturing infrastructure within the host DISC system, but instead of propagating tags, it materialized
input-output association tables in memory. Titian’s integration with Spark does not limit Spark’s scaling capa-
bilities (we experimented with dataset up to 1TB) with an average overhead of 30%. Titian choice of surfacing
provenance data as RDD, greatly improves usability by allowing users to employ the same Spark Context for
both program authoring and provenance analysis. Additionally, the optimizations implemented in Titian brings
interactive speed evaluation of tracing queries. However, we think that still many open questions remain before
truly reaching the goal of having a industry-ready data provenance library for DISC systems. We next sketch
few possible directions for future work on the three dimensions of portability, usability and scalability.

Portability. We found Titian tailored integration with Spark low-level (RDD) API both a blessing and a curse:
upgrading Titian to newer versions of Spark is in general not easy; similarly enabling fine-grained provenance
capturing over Spark’s graph, ML, or relational API is not trivial and requires re-implementing major parts of
the framework. We are starting to see more applications requiring mixed programming models. While Spark
does provide a unifying infrastructure to execute mixed applications, to our knowledge no solution exists which
is able to trace data provenance effectively end-to-end through such mixed programs. The problem is even
exacerbated when instead of a single system (Spark), multiple specialized frameworks are used to implement a
data analytics pipeline. While each framework may have the ability to provide some provenance information,
unifying it in a single interactive session and language is an open problem.

Usability. While we started the exploration of high-level tooling exploiting provenance for debugging DISC
program [4–6, 8], we think that much work still have to be done in the field. For instance, in [6] we introduced
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a system for automatically detecting the minimum set of failures inducing inputs given a user-provided test
function. It would be interesting to see the application of similar techniques over different domains beyond
software engineer (e.g., outliers detection or data cleaning), and generating proper domain-specific explanations
or actions, beyond a minimum set of evidences of a failure.

Scalability. From our experience with Titian, we found that capturing fine-grained provenance data can generate
extremely large provenance graphs; in the same order of the original input data. Instead of focusing on integrat-
ing the capturing infrastructure as close as possible to the data source, another possible solution to achieve better
scalability is to exploit application information to summarize the provenance data [3], or, alternatively, to push
provenance queries into the capturing phase, so that only a subset of the provenance is actually captured. These
approaches may lower the generality of the type of analysis that can be carried on over the provenance graph,
but for certain applications (or scales) could be the right solution.
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Abstract

Diagnosing problems in data centers has always been a challenging problem due to their complexity and
heterogeneity. Among recent proposals for addressing this challenge, one promising approach leverages
provenance, which provides the fundamental functionality that is needed for performing fault diagnosis
and debugging—a way to track direct and indirect causal relationships between system states and their
changes. This information is valuable, since it permits system operators to tie observed symptoms of
a faults to their potential root causes. However, capturing provenance in a data center is challenging
because, at high data rates, it would impose a substantial cost. In this paper, we introduce techniques
that can help with this: We show how to reduce the cost of maintaining provenance by leveraging
structural similarities for compression, and by offloading expensive but highly parallel operations to
hardware. We also discuss our progress towards transforming provenance into compact actionable
diagnostic decisions to repair problems caused by misconfigurations and program bugs.

1 Introduction

Data center diagnostics has always been a challenging problem: with changing workloads, complex protocols,
and a heterogeneous mix of devices, system faults can happen in data centers for many different reasons, in-
cluding design flaws, software bugs, and security vulnerabilities. The recent move towards software-defined
networking (SDN) has further added to this complexity: networks are now fully programmable. This provides
the operator with great flexibility and power, but, at the samew time, a buggy controller program can introduce
subtle malfunctions into the network that can be very difficult to find.

The research community has recognized this challenge [19], and has responded by developing a line of
new diagnostic tools [20, 26, 27]. One approach, in particular, is based on provenance – a concept that was
originally developed in the database community [4] but that has recently found new uses in the networking
domain [9,52,59,61]. Provenance provides the fundamental functionality required for performing fault diagnosis
and debugging—the capability to “explain” the existence (or change) of system state. Provenance is a form of
metadata that tracks direct and indirect causal relationships between system states and state changes. Such
information is of great value, especially in complex systems like data centers, since it permits system operators
to tie observed faults to their potential root causes, and to assess the damage that these faults may have caused.

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
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Provenance has been successfully applied to a wide range of areas, including distributed systems. In earlier
work [8], we have already discussed some of the challenges and sketched generalizations of the provenance
model that can help to address them. This paper focuses on our experience in adopting provenance for diagnosing
data centers, and the unique challenges we faced during this process. First of all, given the ever-increasing
amount of data processed and stored at data centers, the storage and computation overhead for provenance
maintenance is high. This is especially important when provenance is used to track data-plane events – that is,
the flow of actual network packets, as opposed to merely control messages. It is not unusual for the data plane
to process data at a rate of several terabits per second, whereas control-plane messages are much less frequent.

We consider several techniques that could reduce the overhead of maintaining provenance. Besides tradi-
tional content-level compression techniques, such as gzip, we explore compression opportunities that leverage
the structure of provenance trees [10]. We observe that the provenance of different packets share significant
similarities in their structures, presenting opportunities for provenance compression across different provenance
trees. For example, whenever a new packet traverses the network, its entire provenance tree is created and main-
tained. However, it is not hard to realize that all the packets in the same flow (i.e., packets with same source
and destination) would take the same route and therefore have almost identical provenance trees. Therefore,
we can achieve massive storage savings if we remove the observed redundancy when maintaining provenance.
Maintaining provenance with security guarantees adds another layer of overhead—cross-nodes communications
need to be cryptographically signed and acknowledged to be resilient to tampering of provenance [59]. To amor-
tize the cost of these cryptographic operations, we leverage the use of Merkle Hash Trees (MHTs) and offload
embarrassingly parallel operations to hardware such as FPGAs [7].

Another challenges is that provenance, at least in its raw state from runtime recording, often times is still
hard for human users to understand. In fact, provenance trees can be quite large for system admins to reason
about. For example, in an average-sized SDN, the provenance graph of why a specific packet p arrived at
server s can easily contain hundreds of vertices. Identifying the root cause of an observed system problem
is still a non-trivial task even for experts. To address this challenge, we consider approaches that distill from
provenance compact and actionable information or suggestions for system admins. We explore an approach
called differential provenance [9] that repairs misconfigurations through differential analysis on the provenance
for working and non-working execution instances. The result of such differential analysis pinpoints the exact
root causes that caused two execution instance to diverge. Meta provenance [50] takes a step further and reason
about not only causality among data but also dependencies on program code. We treat the code as another kind
of data, where syntactic elements of the program is captured as meta tuples and its semantics as meta rules. Such
capability of reasoning dependencies of execution results on different components in a program empowers us
to automatically repair bugs in the program. Given that there are literally an infinite number of possible way to
modify a program, it is infeasible to use meta provenance to repair all possible bugs. We focus on bugs that do
not require significant rewrite of the program.

In the remainder of the paper, we briefly introduce the concept of provenance and our system model in
Section 2. Section 3 presents our recent progress in reducing the provenance maintenance overhead when
applying provenance to data center networks. Section 4 further discusses our effort in transforming provenance
into compact actionable diagnostic decisions. Finally, we present related work in Section 5 and conclude the
paper in Section 6 with a discussion on future research directions in applying provenance to system diagnosis.

2 Background

Provenance is a general concept that has been applied to many kinds of systems written in many different
languages. For ease of exposition, we will use a declarative language—specifically, network datalog (ND-
log) [30]—to explain our approach. The main reason is that, in this language, it is relatively easy to introduce
the causality relations that provenance needs to track.
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Figure 2: Example provenance.

In NDlog, the state of a node (switch, controller, or server) is modeled as a set of tables, each of which
contains a number of tuples, such as configuration state or network events. For instance, an SDN switch might
contain a table called flowtable, where each tuple represents a flow entry. Tuples can be manually inserted
or programmatically derived from other tuples; in the former case, we refer to them as base tuples, and in the
latter case as derived tuples.

NDlog programs consist of rules that describe how tuples should be derived from each other. For example,
the rule r1: a(@X,P):-b(@X,Q),Q=2*P says that a tuple a(@X,P) should be derived on node Xwhenever
a) there is also a tuple b(@X,Q) on that node, and b) Q=2*P. The ID after the @ symbol specifies the node on
which the tuple resides, and the :- symbol is the derivation operator. Rules may include tuples from different
nodes: for instance, r2: c(@X,P):-c(@Y,P) says that tuples in table c on node Y should be sent to node X.

In NDlog, the provenance of a tuple is easy to see, even syntactically: if a tuple (say, a(@X,5)) was derived
using rule r1 from above, then it must be the case that all the preconditions in r1 were true (here, b(@X,10)),
and all the constraints in r1 were satisfied (in this case, 10=2*5). This concept can be applied recursively
to explain the existence of the preconditions until a set of base tuples (such as configuration settings or packets
from external links) is reached that cannot be explained further. The result is a provenance tree, in which vertices
represent tuples or rule derivations that generate these tuples, and edges represent direct causality.
Example Provenance. Figure 1 shows a (very simple) illustrative scenario with a network that connects two
servers (one DNS server n4 and one HTTP server n3) to the Internet. Here, switch n1 and n2 each have a
routing table – each routing entry records the next hop towards a given destination. Each node runs an NDlog
program consisting of two rules:

r1: packet(@N,S,D,Data) : − packet(@L,S,D,Data), route(@L,D,N).
r2: recv(@L,S,D,Data) : − packet(@L,S,D,Data), D==L.

Rule r1 forwards a packet to the next hop, based on the destination of the packet and the local routing informa-
tion. Rule r2 receives a packet if the packet’s destination is identical to the local address.

Figure 2 sketches the provenance of an HTTP packet that was sucessfully delivered at the HTTP server n3.
It reads roughly as follows: the packet arrived at switch n1 and was routed to switch n2 because it matched
a routing entry route(@n1,n3,n2) installed at n1. The packet was further forwarded to and delivered at
n3. Due to a faulty routing entry on switch n2 (highlighted in red in Figure 1), DNS requests are misrouted to
the HTTP server. To diagnose this problem, the operator can similarly query the provenance of a DNS packet,
which would reveal that DNS requests were misrouted by n3 after they arrive n2 due to the faulty routing entry
route(@n1,n4,n3).
Application of Provenance in Diagnosing Distributed Systems. In prior work, we have already applied prove-
nance in several common diagnostic scenarios. ExSPAN [61], our first solution, is a general-purpose system
that can maintain and query provenance for large distributed systems. SNP [59] added security features that can
prevent an adversary from tampering with the provenance to cover her tracks; this made it possible to use prove-
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nance not just for diagnostics but also for forensics. Y! [52] introduced the concept of negative provenance,
which can explain not only why a certain event did occur, but also why an event failed to occur.

3 Provenance Maintenance

The potentially large maintenance cost has been a long-standing challenge in provenance research [6] [24]. This
becomes particularly challenging for systems like data centers that deal with frequent and high-volume data
packets. When there are streams of incoming events, the provenance maintenance overhead, in terms of both
computation and storage overhead, can quickly become prohibitively expensive. We present in this section two
mechanisms for harnessing the maintenance overhead of provenance in data centers.

3.1 Provenance Compression through Program Analysis

Our first approach in reducing the maintenance overhead of provenance is based on the observation that there is
much redundancy when maintaining provenance in a network. For example, when two packets share the same
source and destination addresses, their provenances are almost identical: they share all the intermediate traversed
nodes, and only differ at the packet payload. This suggests opportunity for significant storage reduction.

Based on this observation, we introduce an equivalence-based, online provenance compression mechanism,
reducing the storage overhead of provenance effectively and efficiently [10]. This mechanism (1) groups prove-
nance trees into equivalence classes, so that the storage of provenance trees of the same equivalence class could
be compressed by sharing one representative provenance tree; and (2) enables efficient equivalence identification
at runtime through the value comparison of equivalence keys—a subset of attributes of the input event identified
by static analysis at compile time. Our experimental results demonstrate that this compression technique allows
for significant—often orders of magnitude—storage reduction.
Provenance equivalence. One of our contributions is to show that the equivalence of provenance trees can be
determined by comparing the values of a subset of attributes of the input tuple, if the program is written as a
Distributed Event-driven Linear Program’ (DELP). Intuitively, a DELP is an NDlog program that satisfy the
following constraints:

• Rules are event-driven. Each rule r can be specified in the form: [head] : −[event], [conditions], where
[event] is a body relation designated by the programmer, and [conditions] are all non-event body atoms.

• Rules are linearly dependent. For consecutive rules ri and ri+1, the head relation hd of ri is exactly the
event relation in ri+1.

• Events don’t have side-effects. For each head relation hd in any rule ri, hd is not used as a non-event
relation in another rule rj .

In a typical network application, events are high-speeding streaming relations that are often not materialized;
non-event relations represent the network states. For example, in the packet forwarding program, the events are
the packet tuples that flow through the network, and the route relation is a non-event relation, and is either
updated manually or through a network routing protocol. In either case, it changes slowly compared to the fast-
rate incoming packets. The distinction between events and non-event relations is provided by the programmer
or is decided through profiling during program execution.

For DELP programs, we define the equivalence relation between two provenance trees tr and tr’ as follows:
tr and tr’ are equivalent, if and only if they only differ at two nodes: the root node that represents the output tuple
and the leaf node that represents the input tuple. This definition implies that two equivalent provenance trees are
structurally identical too. For example, in Figure 1, if we insert another packet packet(@n1, n1, n3, “data2”), it
will generate another provenance tree that is equivalent to the tree in Figure 2 – the only difference is the payload
of the leaf packet tuple and the root recv tuple.
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Figure 3: An example execution of the packet forwarding program in Section 2. The program is first triggered
by packet(@n1, n1, n3, “data”), followed by packet(@n1, n1, n3, “url”).

Based on the definition, the equivalence of two provenance trees can be determined through direct compari-
son: if all vertices other than the leaf tuple and the root tuple are identical, the two trees are equivalent. However,
such comparison is inefficient, especially when provenance trees are large and the incoming tuples arrive at a
fast rate, as is often the case with today’s data centers.

We identified that, for DELP programs, equivalence classes can be determined by a subset of attributes in
the events. We call these attributes equivalence keys, and show that they can be identified through static analysis
of the program that generates the provenance trees. For example, the packet forwarding program in Section 2 is
a DELP, and the equivalence keys are L, D of the packet tuple.
Online provenance compression. Once the equivalence keys are identified, we adopt an online provenance
compression scheme that compresses equivalent (distributed) provenance trees. In our compression scheme, the
execution of a DELP, triggered by an event tuple ev, is composed of three stages. Figure 3 presents an example
execution of the provenance compression scheme, consisting of two packets traversing the network topology
(from n1 to n3 ) in Figure 1. packet(@n1, n1, n3, “data”) is first inserted for execution (represented by the solid
arrows), followed by packet(@n1, n1, n3, “url”) (represented by the dashed arrows). The three stages of online
compression are logically separated with vertical dashed lines.

• Stage 1: Equivalence keys checking. Upon receiving an input event ev , the runtime system first checks
whether the value of ev ’s equivalence keys have been seen before, by checking a hash table that stores
all seen equivalence keys. If ev ’s equivalence keys have a value that already exists in the hash table, a
Boolean flag existFlag will be created and set to True. This existFlag will accompany ev throughout
the execution, notifying downstream nodes to avoid maintaining the concrete provenance tree. Otherwise,
existFlag is set to False. For example, in Figure 3, when the first packet packet(@n1, n1, n3, “data”)
arrives, its equivalence keys (n1 ,n3 ) have never been encountered before, so its existFlag is False. But
existFlag of the second packet packet(@n1, n1, n3, “url”) is set to True.

• Stage 2: Online provenance maintenance. For each rule r triggered in the execution, we selectively
maintain the provenance information based on existFlag’s value. if existFlag is False, the provenance
nodes are maintained locally. Otherwise, no provenance information is maintained at all. For example, in
Figure 3, when packet(@n2, n1, n3, “data”) triggers rule r1 at node n2 , the existFlag is False. Therefore,
we maintain its provenance. In comparison, we simply execute r2 without recording any provenance
information for packet(@n2, n1, n3, “url”).

• Stage 3: Output tuple provenance maintenance. For the execution whose existFlag is True, we need
to associate its output tuple to the shared provenance tree maintained by previous execution. To do this,
we use a hash table hmap to store the reference to the shared provenance tree, wherein the key is the hash
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System Goal Information offered
Capabilities

Secure Supports Covers entire Fine-grained Fine-grained
evidence forensics Internet entities traces

Tulip [32] Fault localization Loss, delay, reordering × × . . (Routers) . (Packets)
NetPolice [57] Traffic differentiation detection Loss × × . × (ISPs) × (Flows)

SPIE [46] IP traceback Backward routes × . . . (Routers) . (Packets)
NetSight [21] Network debugging Packet histories × . × . (Routers) . (Packets)
Netdiff [33] ISP performance benchmarking Delay × × . × (ISPs) . (Packets)

Paris-traceroute [3] Load-balancer detection Load-balanced routes × × . . (Routers) . (Packets)
HAL [17] Packet attestation Packet transmissions . . × . (Links) . (Packets)
AudIt [2] Performance accountability Loss, delay × × . × (ISPs) . (Both)

SPP Single network-level primitive All of the above . . . . (Routers) . (Packets)

Table 12: Comparison between SPP and some existing diagnostic and forensic primitives.

value of the equivalence keys, and the value is a pointer to the shared provenance tree. We then associate
each output tuple of the same equivalence class to this shared representative provenance tree, by looking
up the equivalence keys’ values in hmap.

Our evaluation shows that the equivalence-based, online compression techniques achieve orders of magnitude
reduction in storage and significant reduction in query latency, with only negligible network overhead added to
each monitored network application at runtime.

3.2 Hardware-enabled Secure Provenance Collection

Another aspect of the challenge is to maintain provenance over high-speed traffic with security guarantees.
Modern routers can process packets at Gigabits per second, so maintaining provenance, even without security
guarantees, can result in non-trivial overhead; when we need to additionally achieve security guarantees, heavy-
weight cryptographic operations are necessary, further amplifying the overhead. In [7], we designed Secure
Packet Provenance (SPP), which addresses these challenges when maintaining per-packet provenance for high-
speed Internet traffic. We used two key techniques to lower the overhead. First, we designed in SPP a lightweight
protocol that can collect per-packet provenance data with tamper-proof evidence. The design avoids extensive
use of heavy-weight cryptographic operations; instead, it uses Merkle Hash Trees (MHT), a data structure that
allows efficient signatures over a large batch of packets. This greatly improves performance by reducing the
processing logic mostly to hashing. Second, SPP offloaded the hashing and MHT construction to NetFPGAs to
utilize its high parallelism, further improving the efficiency to maintain provenance over high-speed traffic.

Our key design of the SPP primitive is shown in Figure 4a. It consists of several modules: a) a hash module,
which hashes each incoming packet at line speed, and stores the hash values at an epoch buffer; b) the epoch
buffer temporarily holds packet hashes in the most recent batch, and sends the hashes to the MHT constructor
for hash tree construction; c) the MHT constructor builds the MHT over the most recent epoch of packet hashes,
and produces a top-level hash as the final commitment of the current batch; and d) the loss detection buffer
(shown as M in the figure) identifies lost packets in the epoch, and feeds the information back to the sender so
that the sender and receiver can “agree” on which packets have been successfully delivered. We have further
sketched the MHT algorithm using an example of four packets in Figure 4b.

We have demonstrated that SPP is able to collect per-packet provenance data at line rate, and that it incurs low
overheads in terms of storage and bandwidth. Moreover, with SPP, we have shown that many challenging tasks
for Internet diagnostics and forensics can be approximated on top of this primitive with very few lines of code.
Table 12 shows a comparison between SPP and other identified diagnostic and forensic tasks in the literature, and
that network provenance can be a rather useful primitive that, once enabled, benefits many existing applications.
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Figure 4: The design of the SPP primitive.

4 Provenance for Diagnostics

Collecting and maintaining provenance is just the first step towards diagnosing data centers. Provenance often
times is still hard for human users to understand. In fact, provenance trees can be quite large for system admins
to reason about. For example, in an average-sized SDN, the provenance graph of why a specific packet p
arrived at server s can easily contain hundreds of vertices [9, 52]. To address this challenge, we introduce two
complementary approaches to distill from provenance compact and actionable suggestions for system admins.

4.1 Root Cause Detection with Differential Provenance

Our first approach explores the potential of repairing faults caused by misconfigurations through differential
analysis across provenance trees [9]. The key observation is that misconfigurations, especially the subtle ones
that need help of diagnostic tools, usually only affect a subset of traffic/nodes or only manifest themselves
sporadically. Therefore, an operator typically has collected both working and non-working instances of simi-
lar traffic or service. Contrasting the provenance for the working and non-working instances is likely to pro-
vide more insights than studying only the non-working instance: it very much resembles the human debugging
procedure—if we can understand why the two provenance are different and how to align them, we can likely
identify the root cause of the problem. We call this approach differential provenance [9].

One challenge in differential provenance is that a small, initial difference can have a significant magnifying
effect, for example, packets may take two completely different path and arrive at different destinations due
to a small difference in the routing table of a gateway router. Therefore, a superficial “tree-diff” approach is
likely to generate unusable results; our case studies have confirmed that the differences between working and
non-working provenance trees can be even larger than the original provenance trees. To address this challenge,
differential provenance identifies the first diverging point in the working and non-working provenance. We “roll
back” the network execution to that point, change the mismatched tuple(s) on the non-working provenance tree
to the correct version, and then “roll forward” the execution. We repeat this process until the two provenance
are completely aligned.

Differential provenance has been demonstrated to be quite effective in a number of case studies on repairing
software-defined networks and Hadoop MapReduce jobs. Our results show that it can always pinpoint exactly
the induced misconfigurations to be the root cause of observed network problems.

4.2 Automated Program Patch with Meta Provenance

Differential provenance by itself is still fundamentally unable to help when a fault is caused by a bug in the
program code: it can answer questions about the data in the network – such as “show me the configuration
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entries that have caused this packet to be dropped” – but it treats the code as given and immutable, so it cannot
answer questions such as “show me the line in the controller program that has caused this packet to be dropped”.

To address this limitation, we have generalized traditional provenance to meta provenance [49,50]. Our idea
is, essentially, to treat the code as another kind of data: we represent the syntactic elements of the program as a
special class of tuples, which we call meta tuples, and we capture the semantics of the programming language
(e.g., a language for SDN controllers, such as Pyretic [36]) with a set of special rules, which we call meta rules.
For instance, an NDlog rule could be represented as meta tuples for the head and for each precondition, and
one of the meta rules for NDlog could say that the tuple at the head of a rule is derived whenever all of the
preconditions hold at the same time.

Once we have a meta model for a given language, we use a form of negative provenance [51,52] at the meta
level to ask why some conditions did not hold. For instance, if the operator observes that a certain packet has
been dropped and failed to reach a certain server, she can generate the negative provenance of the packet’s arrival
at that server (which is essentially asking “Why did this packet not reach that particular server?”). Negative
provenance will then generate a recursive explanation, whose leaves include not just changes to data, but also
changes to code; in this process, we use solvers such as Z3 [12] to find concrete values for the changes and thus
generate repairs. Unlike positive provenance trees, negative provenance trees are typically extremely large, or
even infinite—there are almost always many different ways to “fix” a given problem, ranging from small tweaks
to rewriting the entire program. With the expectation that it is infeasible to fix programs that require significant
or even complete rewrite, we prioritize modifications that minimize changes to the original program.

Once potential modifications are identified, we use “backtesting” to further examine each of them and eval-
uate whether it is actually a “correct” modification. That is, given the same system configurations and external
inputs, the modified program should rectify faulty execution traces, and avoid altering the progress of execution
traces that are previously correct. We leverage multi-query optimization [16, 31] from the database literature to
speed up the backtesting, which enables us to validate multiple repairs in a single run.

We have applied meta provenance to subsets of three different SDN controller languages: NDlog [30],
Pyretic [36], and Trema [48]. Results from several case studies show that our system can generate high-quality
repairs for realistic bugs, typically in less than one minute.

5 Related Work

Provenance. Provenance is a concept initiated from the database community [4], but it has recently been ap-
plied in several other areas, including network systems [52, 58–61], storage systems [37], cloud computing
platforms [23,40], and natural language processing [13]. Our work is mainly related to projects that use network
provenance for diagnostics in distributed systems. In this area, ExSPAN [61] was the first system to maintain
network provenance at scale; SNP [59] added integrity guarantees in adversarial settings, DTaP [60] a temporal
dimension, and Y! [52] support for negative events. These systems generate an explanation on why some data
exist or do not exist, but provide limited support for further diagnosis such as providing suggestions for system
repair. There have been proposals for automating system repair based on provenance. Huang et al. [22] and
Meliou et al. [34, 35] focus on instance-based explanations for missing answers, that is, how to obtain the miss-
ing answers by making modifications to the value of base instances (tuples); Why-Not [5] and ConQueR [47]
provide query-based explanations for SQL queries, which reveal over-constrained conditions in the queries and
suggest modifications to them.
System debugging and repair. Network debugging can be achieved by static analysis, e.g., as in Batfish [15],
Header Space Analysis [26], NetPlumber [25], VeriFlow [27], Libra [55] rcc [14], or dynamic testing, e.g.,
as in Minimal Causal Sequence analysis [43], DEMi [42], OFRewind [53], and ATPG [54]. Some domain-
specific languages, e.g., NetKAT [1], Flowlog [38], Kinect [28], can enable verification of specific classes
of SDN programs. The software engineering community has used genetic programming [29] and symbolic
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execution [39], for system repair; they are designed to fix small programs, or to propose specific kinds of fixes.
ClearView [41] mines invariants in programs, correlates violations with failures, and generates fixes at runtime;
ConfDiagnoser [56] compares correct and undesired executions to find suspicious predicates in the program; and
Sidiroglou et al. [44] runs attack vectors on instrumented applications and then generates fixes automatically.
These systems primarily rely on heuristics, whereas provenance-based approaches can track causality and can
thus pinpoint specific root causes.

6 Future Directions

Timing causality. Faulty temporal behaviors can happen in distribute systems. For instance, suppose that
a virtual machine takes unusually long to boot, because a misconfigured machine is overloading the shared
storage backend. Existing tools, such as DTaP [60] or Dapper [45], offer little help with this scenario – in fact,
the actual root cause (the misconfigured machine) would not even appear in the explanation! Because existing
tools only capture functional causality, that is, events which directly contributed to the occurrence of the observed
symptom, and will miss root causes that contributed only in terms of timing. We are currently studying ways
to generalize provenance to track not only functional causality but also temporal causality, which is any event
that has contributed to the timing of the observed symptom, regardless of whether it is functionally-related. This
should allow provenance to explain faulty temporal behaviors.
Causality networks. Existing work on provenance only explains why a single event did or did not come about.
While this is a useful starting point for diagnosis, it does not capture a range of other types of causality between
events. For instance, operators may be interested to know why two events e1 and e2 always happen at the same
time, or why e1 and e1 never happen at the same time, or even why only one of these events happens. To
capture such complex, inter-event causality, we would need to extend the existing provenance abstraction to
allow for reasoning about multiple events at the same time. Currently, we are looking at the possibility to extend
provenance to causal networks [18], which encodes the inter-dependencies among events, and then using causal
networks to answer queries of the more complex form. This advanced form of provenance may be helpful to
process diagnostic queries that cannot be easily answered with the current provenance tree abstraction.
Probabilistic causality. Another intriguing direction is to develop models and efficient evaluation for proba-
bilistic provenance. Unlike traditional provenance models, the inputs and derivations themselves are set to true
or false based on a probabilistic distribution. This is motivated by multiple scenarios. First, the use of machine
learning and model-based prediction means that a significant portion of causality relationships are inherently
probabilistic in nature. Second, in some environments, the derived provenance themselves can be subjected to
probabilistic distributions, for example, on a lossy communication channel, the likelihood of links being up or
packets being transmitted correctly may themselves be probabilistic. Finally, in the case of applications written
in a non-declarative language, the input-output dependencies themselves may be inferred probabilistically. A
key challenge is to maintain provenance for all possible combinations of variable assignment. Inspired by prior
work on probabilistic databases, a potential solution is to develop a provenance model based on the possible-
worlds semantics [11]. An associated challenge is potential of state explosion when evaluation probabilistic
provenance. One possible approach to address this challenge is to explore tradeoffs between accuracy and per-
formance (e.g., query latency, and communication overhead).
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