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Abstract

Entity resolution (ER) seeks to identify which records in a data set refer to the same real-world entity.

Given the diversity of ways in which entities can be represented, ER is a challenging task for automated

strategies, but relatively easier for expert humans. We abstract the knowledge of experts with the notion

of a boolean oracle, that can answer questions of the form “do records u and v refer to the same entity?”,

and formally address the problem of maximizing progressive recall and F-measure in an online setting.

1 Introduction

Humans naturally represent information about real-world entities in very diverse ways. Entity resolution (ER)

seeks to identify which records in a data set refer to the same underlying real-world entity [4, 8]. ER is an

intricate problem. For example, collecting profiles of people and businesses, or specifications of products and

services from websites and social media sites can result in billions of records that need to be resolved. Further-

more, these entities are represented in a wide variety of ways that humans can match and distinguish based on

domain knowledge, but would be challenging for automated strategies. For these reasons, many frameworks

have been developed to leverage humans for performing entity resolution tasks [17, 9].

The problem of designing human-machine ER strategies in a formal framework was studied by [18, 16, 6].

These works introduce the notion of an Oracle that correctly answers questions of the form “do records u and

v refer to the same entity?”, showing how different ER logics can achieve different performance having access

to such a “virtual” tool and a set of machine-generated pairwise matching probabilities. In this setting, the

knowledge of experts is abstracted with the notion of a boolean oracle. However, certain questions can be

difficult to answer correctly even for humans experts. To this end, the work in [7] formalizes a robust version

of the above ER problem, based on a “Noisy oracle” that can incorrectly label some queried matching and non-

matching pairs. The same paper describes a general error correction tool, based on a formal way for selecting

indirect “control queries”, that can be plugged into any correction-less oracle strategy while preserving the

orignal ER logic. We refer to both the perfect and the noisy boolean oracle models as CrowdOracle.

Earlier CrowdOracle strategies, such as [18], consider ER to be an off-line task that needs to be completed

before results can be used. Since it can be extremely expensive in resolving billions of records, more recent

strategies [6, 7] focus on an on-line view of ER, which enables more complete results in the event of early
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termination or if there is limited resolution time available. On-line strategies consider progressive recall and F-

measure as the metrics to be maximized in this setting. If one plots a curve of recall (or, analogously, F-measure)

as a function of the number of oracle queries, progressive recall is quantified as the area under this curve.

Contributions and outline We describe the CrowdOracle pipelines introduced by [6, 7, 16, 18] by using a

common framework. The building blocks of the framework enable the definition of new strategies, which can

perform even better than those in the most recent works in certain applications. Problem formulation, error

correction and some examples are taken from [6, 7]. However, framework formulation, strategy categorization,

and an illustrative experiment are original contributions of this paper. This paper is organized as follows.

• In Section 2, we describe our ER problem leveraging the formal notion of a CrowdOracle that can (possi-

bly incorrectly) label some queried matching and non-matching pairs.

• In Section 3, we discuss the components of our descriptive framework for CrowdOracle strategies. Key

techniques and theoretical results of [7] are also given in this section.

• In Section 4, we describe previous CrowdOracle strategies leveraging our framework, and show how

combining its building blocks in new ways can lead to more efficient algorithms for specific applications.

• Finally, related work is discussed in Section 5.

2 Preliminaries

Let V = {v1, . . . , vn} be a set of n records. Given u, v ∈ V , we say that u matches v when they refer to the

same real-world entity. Let H = (V,A, pm), A ⊆ V ×V , be a graph with pairwise machine-generated matching

probabilities pm : A→ [0, 1]. We may not have probabilities of all record pairs, and we may have |A| <<
(

n
2

)

.

Consider a graph C = (V,E+), where E+ is a subset of V ×V and (u, v) ∈ E+ represents that u matches with

v. C is transitively closed, that is, it partitions V into cliques representing distinct entities. We call the nodes in

each clique a cluster of V , and we refer to the clustering C as the ground truth for the ER problem. We refer

to the cluster including a given node u, as c(u) ∈ C. Consider a black box which can answer questions of the

form “are u and v matching?”. Edges in C can be either asked to the black box or inferred leveraging previous

answers. If the black box always tells the truth, a user can reconstruct C exactly with a reasonable number of

queries [18, 16]. In real crowdsourcing applications, however, some answers can be erroneous and we can only

build a noisy version of C, which we refer to as C ′. c′(u) refers to the cluster in C ′ including a given node u.

Definition 1: A CrowdOracle for C is a function q : V × V → {Y ES,NO} × [0, 0.5]. If q(u, v) = (a, e),
with a ∈ {Y ES,NO} and e ∈ [0, 0.5], then Pr[(u, v) ∈ E+] = 1− e if a=YES, and e otherwise. In the ideal

case, when e = 0 for any pair (u, v), we refer to the CrowdOracle as perfect oracle.

For instance, if q(u, v) = (YES, 0.15), then (u, v) ∈ E+ with probability 0.85, and if q(u, v) = (NO, 0.21),
then probability of (u, v) ∈ E+ is 0.21. We refer to the probability of a specific answer for the pair (u, v) being

erroneous, conditioned on the answer being YES or NO, as its error probability pe(u, v). Let Q = Q+ ∪Q− be

a graph containing all the edges that have been queried until a given moment, along with the oracle answers, we

state pe : Q → [0, 0.5]. An ER strategy s takes as input matching probability graph H and grows a clustering

C ′ by asking edges as queries to the noisy oracle. We call inference the process of building a clustering C ′

from Q. C ′ initially consists of singleton clusters: s can either merge existing clusters into larger clusters, or

split an already established cluster. Note that the sub-graph of Q− induced by c′(u) (that is, Q− ∩ c′(u)) can be

non-empty, because of wrong answers. We refer to such a sub-graph as Q−[c
′(u)].
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Input data There are many ways of estimating the matching probability function pm. For instance, automated

classifier methods can provide pairwise similarities, which can be mapped to matching probabilities, as in Sec-

tion 3.1 of [20]. Analogously, there are many ways of accessing error probabilities. For instance, the crowd

platform could return a confidence score associated with each answer. Another option is to learn a function

mapping similarity scores to error probabilities, akin to matching probabilities [20]. However, computing all the
(

n
2

)

pairwise matching probabilities may not be feasible when the number of records n is large, and adopting a

crowd-only approach may be prohibitively expensive. To this end, people often remove obvious non-matching

pairs during a pre-processing phase. Then, they ask the crowd to examine the remaining pairs, which lead to

a relatively sparse graph. One approach is to put obviously non-matching nodes (e.g., watches and dishwash-

ers in an e-commerce dataset) in separate “domains” and consistently remove cross-domain edges. The result,

similarly to what is done in [15], is a collection of disconnected complete sub-graphs that can be resolved inde-

pendently. Another approach, exploited for instance in [3, 14], is to remove obviously non-matching edges either

by a matching probability threshold or other cheap procedures such as (overlapping) blocking. The result is a

sparse graph, possibly consisting of several connected components (not necessarily cliques). In the traditional

(non-crowdsourcing) setting, there is an extensive literature about blocking (see for instance [22]).

3 CrowdOracle Framework

We now define a conceptual framework for describing recent CrowdOracle strategies in terms of basic opera-

tions. The input of each CrowdOracle strategy includes the CrowdOracle answers Q, the matching probability

function pm, and the error probabilities pe, as in definition of Problem 1. In our framework, a strategy is a mech-

anism for selecting non-exhaustive sequence of CrowdOracle queries (i.e., less than
(

n
2

)

queries) and inferring

clusters according to answers. An oracle strategy also uses the following shared data and methods.

• The partition C ′, which can be updated upon the arrival of new answers.

• The method query pair(u, v), which returns a {Y ES,NO} oracle answer for the pair (u, v). Every

invocation of such method contributes to the cost of the ER process and each strategy can be thought

of determining a different sequence of query pair() invocations. We note that given two partially

grown clusters c1, c2 ∈ C ′ in the perfect oracle setting, the result of query pair(u, v) is consistently

the same for any (u, v) ∈ c1 × c2. For sake of simplicity, then, we sometimes use notations such as

query pair(u, c2) or query pair(c1, c2) for referring to an arbitrary inter-cluster pair-wise query.

Our framework consists of three aspects, useful for describing a variety of CrowdOracle strategies:

• the cost model of the ER task, which can represent off-line or on-line ER;

• the CrowdOracle model and the selection criteria for issued queries;

• the algorithms for updating the partition C ′, which we refer to as “building blocks”.

We discuss each of the above components in the following sub-sections.

3.1 Cost model

Recall and F-measure denote, respectively, the fraction of positive edges found among those of the unknown

clustering C, and the harmonic mean of this value and precision, which is the fraction of positive edges found that

truly belong to C. Specifically, F-measure is defined as
2·recall·precision
recall+precision

. Recall and F-measure naturally represent

the “amount” of the information that is available to the user at a given point. However, they cannot distinguish

the dynamic behaviour of different strategies. In other words, they cannot represent whether a strategy achieves
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high F-measure only at the end of the ER process or earlier on, thus enabling early usage by the user. Consider

the following example with perfect oracle access. In this ideal setting, we can leverage transitivity: if u matches

with v, and v matches with w, then we can deduce that u matches with w without needing to ask the oracle.

Similarly, if u matches with v, and v is non-matching with w, then u is non-matching with w.

Example 1 (Running Example): There are many colleges and universities around the Italian city of Rome,

each with its own aliases or abbreviated names and acronyms1 which humans can distinguish using domain

knowledge. Given the six institutions (ra) Università di Roma, (rb) La Sapienza, (rc) Uniroma 1, (rd) Roma

Tre, (re) Università degli Studi Roma Tre, (rf ) American University of Rome, humans can determine that

these correspond to three entities: ra, rb, and rc refer to one entity, rd and re refer to a second entity, and rf refers

to a third entity. Let us assume that we have the following probability estimates for record pairs. Matching pairs:

p(rd, re) = 0.80, p(rb, rc) = 0.60, p(ra, rc) = 0.54, p(ra, rb) = 0.46. Non-matching pairs: p(ra, rd) = 0.84,

p(rd, rf ) = 0.81, p(rc, re) = 0.72, p(ra, re) = 0.65, p(rc, rd) = 0.59, p(re, rf ) = 0.59, p(ra, rf ) = 0.55,

p(rb, rd) = 0.51, p(rb, re) = 0.46, p(rc, rf ) = 0.45, p(rb, rf ) = 0.29. We let some non-matching pairs have

higher probability than matching pairs. Some observers, for instance, may consider ra and re more likely to be

the same entity, than ra and rb. Consider two strategies S1 and S2. Let S1 ask subsequently (ra, rb), (ra, rc),
(rd, re), (ra, rd), (ra, rf ), and (rd, rf ). Let S2 ask instead (ra, rd), (ra, rf ), (rd, rf ), (rd, re), (ra, rb), and

(ra, rc). Both strategies issue to the oracle the same 6 pair-wise queries and can get recall 1 by leveraging

transitivity. However, the recall of S1 would be 0.75 after labeling the first two record pairs and 1.0 after the

third, while the recall of S2 would be still 0.0 after the first three record pairs, 0.25 after labeling the fourth pair,

0.5 after labeling the fifth record pair, and 1.0 only after labeling the sixth record pair.

In response to the above concerns, we introduce two variants of recall and F-measure, dubbed progressive

recall and progressive F-measure. If one plots a curve of recall as a function of the number of oracle queries,

progressive recall denotes the area under the curve. Progressive F-measure is defined analogously.

CrowdOracle problems We are now ready to define our progressive CrowdOracle problems, where we aim

for high F-measure early on, which we refer to as on-line ER, and its traditional off-line version. In the perfect

oracle setting, optimizing F-measure is the same as optimizing recall.2

Problem 1 (On-line): Given a set of records V , a CrowdOracle access to C, and a matching probability function

pm (possibly defined on a subset of V × V ), find the strategy that maximizes progressive F-measure.

Problem 2 (Off-line): Given a set of records V , a CrowdOracle access to C, and a matching probability func-

tion pm (possibly defined on a subset of V × V ), find the strategy that maximizes F-measure and minimizes

queries.

An optimal strategy for Problem 1 is also optimal for Problem 2, making Problem 1 more general.3 For

instance, strategy S1 in Example 1 is optimal for both problems, whereas S2 is optimal only for Problem 2.4

The theory in [18] yields that both problems require at least n − k questions for growing all k clusters (i.e.,

the size of a spanning forest of C+) and at least
(

k
2

)

extra questions for proving that clusters represent different

entities. Intuitively, a strategy for Problem 2 tries to ask positive queries before negative ones, whereas a strategy

for Problem 1 also does this in a connected fashion, growing larger clusters first. We call ideal() the optimal

1https://en.wikipedia.org/wiki/Category:Universities_and_colleges_in_Rome
2In the perfect oracle setting, precision is 1 and F-measure is equal to 2·recall

recall+1
3In practice, some strategy can have great performance in the on-line setting at the cost of slightly worse final recall-queries ratio.
4For sake of completeness, we also give an example of sub-optimal strategy for Problem 2 and Example 1. Consider S3 as (ra, rd),

(rb, rd), (ra, rf ), (rd, rf ), (rd, re), (ra, rb), (ra, rc). The second query (rb, rd) is somewhat “wasted” in the perfect oracle setting as

the corresponding negative edge would have been inferred after (ra, rb) by leveraging transitivity.
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strategy for the on-line problem. Consider Example 1, ideal() first grows the largest cluster c1 = {ra, rb, rc}
by asking adjacent edges belonging to a spanning tree of c1 (that is, every asked edge shares one of its endpoints

with previously asked edges). After c1 is grown, ideal() grows c2 = {rd, re} in a similar fashion. Finally,

ideal() asks negative edges in any order, until all the labels are known, and also c3 = {rf} can be identified5.

3.2 Oracle model and query selection

A strategy S can be thought of as a sequence6 of queries. While in the perfect oracle setting S can leverage

transitivity, in real CrowdOracle applications, S can only trade-off queries for F-measure. Let T be the set of

positive answers collected by S at a given point of the ER process. We can think of two extreme behaviors.

• S skips all the queries that can be inferred by transitivity, that is, T is a spanning forest of V . This is

necessary and sufficient to resolve the clusters in the absence of answer error, as shown in Example 1.

• S asks exhaustively all the queries in V × V , that is, T is a noisy collection of cliques, and infers clusters

by minimizing disagreements (for instance, via correlation clustering).

In the middle of the spectrum, the work in [7] shows that the error of resolution can be minimized if we

strengthen the min-cuts of T with “control queries”7, exploiting the notion of expander graphs. Expander

graphs are sparse graphs with strong connectivity properties. We first describe spanning forest approaches for

error correction and then we summarize the methods in [7].

Spanning forest As discussed at the end of Section 3.1, the goal of a perfect oracle strategy S is two-fold:

promoting positive queries and growing clusters sequentially (only for Problem 1). In order to achieve this

goal, the query selection of S can be driven by the recall gain of discovering that two specific clusters refer

to the same entity. Depending on how S estimates the recall gain of a cluster pair cu, cv ∈ C ′, we can have

optimistic and realistic query selection. The optimistic approach only considers the maximum inter-cluster

matching probability, that is, it estimates the recall gain of cu and cv as maxu∈cu,v∈cv pm(u, v)|cu|·|cv|. Selecting

queries optimistically can be computationally efficient, and can give good results if matching probabilities are

accurate. However, it can perform badly in presence of non-matching pairs having higher probability than

matching pairs [6]. To this end, realistic approach uses a robust estimate, based on the notion of cluster benefit

cbn(cu, cv) =
∑

u,v∈cu×cv
pm(u, v). We note that if |cu| = |cv| = 1 then cbn(cu, cv) = pm(u, v), as in the

optimistic approach.8 Difference between optimistic and realistic is illustrated below.

Example 2 (Optimistic and realistic): Consider clusters grown by S2 of Example 1 after 4 queries C ′ =
{ra, rb}, {rc}, {rd, re}, {rf}. Optimistic estimate of recall gain between non-matching {ra, rb} and {rf} is

2 · 1 · 0.55 = 1.1, which is comparable to matching {ra, rb} and {rc}, i.e., 2 · 1 · 0.60 = 1.2. By switching to re-

alistic, we get cbn({ra, rb}, {rf})= 0.55+0.29 = 0.84 as opposite to cbn({ra, rb}, {rc})= 0.60+0.54 = 1.14.

Expander graph Control queries for handling CrowdOracle errors can be selected among those that provide

strongest connectivity between records of each cluster, based on the concept of graph expanders, which are

sparse graphs with formal connectivity properties. Expansion properties of clusters translate into (i) robustness

since the joint error probability of each cut is small, all the subsets of nodes are likely matching pair-wise;

5We note that recall is 1 as soon as c2 is fully grown.
6Partially ordered if parallel.
7In addition to the spanning forest.
8One may wonder why not take the average. We note that the recall gain is larger for large clusters. However the average would be a

robust estimate of the probability that the two clusters are matching.
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Figure 1: (a) Joint error probability. (b-c) Comparison of spanning forest with no error, and expander graphs.

Positive (negative) answers are represented with solid (dashed) edges. Wrong answers are shown in blue.

(ii) cost-effectiveness: the total number of queries is small, as edge density of expander is small. Technically,

different formalizations of connectivity give rise to different notions of expanders. We focus on edge expansion.9

Definition 2 (Edge expansion): The edge expansion parameter h(G) of a graph G = (V,E) is defined as the

minimum cut size (V ′, V \ V ′) for every subset of nodes V ′ ⊆ V , |V ′| ≤ |V |/2. Cut size is defined as the

number of edges crossing the cut. If h(G) is small, we say that the graph has at least one weak cut.

G is a γ-expander if h(G) ≥ γ. Intuitively, every subset of the nodes of G that is not “too large” has a “large”

boundary. In our ER setting, the boundary of a subset of nodes of the same entity provides evidence of how the

subset relates to the rest of the graph. A disconnected graph is not an expander (the boundary of a connected

component is empty), and every connected graph is an expander. However, different connected graphs have

different edge expansion parameters. Consider an entity C being partitioned in two clusters A and B at some

point of the ER process, like in Figure 1(a). Upon a positive answer for the pair (u, v) with error probability

0.3, the two clusters are connected but the probability of the whole cluster C = A ∪ B of being correct is only

0.7. At this point, whatever answers have been collected inside A, the boundary of A consists indeed of a mere

edge. Upon two positive answers for the pairs (u1, v1), and (u2, v2)
10 with error respective probabilities 0.2 and

0.4, the connection between A and B becomes more robust. The probability of the whole cluster C = A ∪ B
can be quantified with the product of the cut error probabilities under the assumption of independent error, that

is 1 − 0.3 · 0.2 · 0.4 = 0.976. At this point, the boundary of A consists indeed of three edges. The larger

the boundary the higher the success probability. Suppose at this point the ER algorithm decides to merge A
and B. Since C is unknown a priori, in order to trust the result, the large boundary property has to hold for

all the possible partitions A and B. Therefore, the structure we are looking for is an expander. The weights

are introduced because the product value, which is related to the weight of the cut, matters more than the cut

cardinality (i.e., number of edges). The complete graph has the best expansion property, but it also has largest

possible degree, and it would be prohibitively expensive to build. Informally, a graph is a good expander if it has

low degree and high expansion parameters. In the following example and in Figure 1(c) we show the possible

result of having an expander (γ = 1) for data in Example 1, compared with spanning forests of Figure 1(b).

Example 3 (Spanning forest and expander graph): Consider the six places of Example 1, plus three extra

names (r1) Studium Urbis, (r2) Città Universitaria, (r3) Uniroma 3. Correct clustering is {ra, rb, rc, r1, r2},
{rd, re, r3}, and {rf}. Both connected components of Figure 1(b) (i.e., trees in the spanning forest) and expander

graphs of Figure 1(c) yield the same, correct, clustering. While connected components only work in absence of

errors, expander produces the correct clustering also in presence of plausible human errors such as (ra, rf )
11,

9Other expansion notions include node expanders, and spectral expanders. We refer the interested reader to [1] for more discussion.
10u1, u2 ∈ A, and v1, v2 ∈ B
11“Università di Roma” means “University of Rome”.
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(rc, r3) (false positives) and (rc, r2) (false negative). Even though expansion requires more queries than building

a spanning forest, it is far from being exhaustive: in the larger clusters, only 5 queries are asked out of
(

5

2

)

= 10.

The method query cluster() in [7] is meant to be called in place of query pair() with the purpose of

growing clusters with good expansion properties. Given a query (u, v) selected by a strategy (represented with

the two corresponding clusters cu and cv), query cluster() provides an intermediate layer between the ER

logic and the CrowdOracle. Similarly to query pair(), indeed, query cluster() provides functionalities

for deciding when two clusters (or any two sets of nodes) are matching. However, instead of asking the selected

query (u, v) as query pair(u, v) would do, query cluster(cu, cv, β) selects a bunch of random queries

between cu = c′(u) and cv = c′(v), and returns a YES answer only if the estimated precision of the cluster cu∪cv
is high. The parameter β controls the edge expansion value γ trading-off queries for precision.12 Smaller values

of β correspond to sparser clusters, and therefore to less queries (β = 0 asks a single positive question, yielding

result similar to query pair()). Greater values of β correspond to denser clusters and to higher precision.

Formally, expected precision increases exponentially with β. We refer the interested reader to Theorem 3 in [7].

Discussion By analogy with the optimistic and realistic spanning forest approaches, we refer to graph ex-

panders as pessimistic approach. We note that a CrowdOracle strategy S can leverage multiple approaches

together, as discussed later in Section 4. For instance, S can select a cluster pair to compare by using the re-

alistic cluster benefit but then use query cluster() as a substitute of plain connectivity, and so on. Finally,

experiments in [7] show that β = 1 achieves the best progressive F-measure, and we set this as default value.

3.3 Building block algorithms

We now describe the basic operations of our framework. The operations can be implemented either with the sim-

ple query pair() oracle interface, or can be modified to apply random expansion with query cluster().

• Insert node This operation grows already established clusters by adding a new node u. Possible outcomes

are success, when u is recognized as part of one of the clusters, or fail, in which case {u} is established

as a new singleton cluster. Specifically, insert-node(u) compares u to cluster ci, i = 1, 2, . . . until

query pair(u, ci) (or query cluster({u}, ci), when using the error-correction layer) returns a pos-

itive answer. The main lemma in [16] proves that an insert-node-only strategy in the perfect oracle setting

requires at most n − k +
(

k
2

)

queries. We can do better by introducing an “early termination” condition

(e.g., at most τ comparisons before establishing a new cluster) at the price of possible loss in recall.

• Merge clusters Recall of an insert-node-only algorithm can be smaller than 1 for two reasons: (i) positive-

to-negative errors of CrowdOracle, and (ii) positive questions “deferred” for early termination. This op-

eration can boost recall by merging pairs of partially grown clusters that represent the same entity. To

this end, merge-clusters(ci, cj) can rely upon a single intra-cluster query query pair(u, v) with

arbitrary u, v ∈ ci × cj , or leverage query cluster(ci, cj) for expander-like control queries.

In real CrowdOracle applications, the above methods can make mistakes – even when equipped with the

pessimistic random expansion toolkit – by adding a node to the wrong cluster or by putting together clusters

referring to different entities. Specifically, false negatives can separate in different clusters nodes referring to

the same entity, while false positives can include in the same cluster nodes referring to different entities. This

is more likely to happen early in the ER process, when we have collected few CrowdOracle answers. Luckily,

mistakes can become evident later on, upon the arrival of new answers. The methods below are useful for

identifying and correcting insert-node() and merge-clusters() mistakes.

12Technically, β controls the ratio between the edge expansion parameter and the log of the given cluster size.
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STRATEGY COST MODEL QUERIES insert-node() delete-node() merge-clusters()

wang() off-line

spanning forest

optimistic

vesd() on-line optimistic

hybrid() on-line realistic optimistic

mixed() on-line realistic realistic

lazy() off-line
edge expansion

realistic pessimistic
realistic phase +
pessimistic phase

eager() on-line realistic/pessimistic pessimistic realistic/pessimistic

adaptive() on-line both realistic/pessimistic pessimistic realistic/pessimistic

Table 1: Recent strategies categorization. We note that spanning forest strategies do not use delete-node(),

and that edge expansion strategies can leverage optimistic and realistic approaches in some of their phases.

• Delete node This operation removes erroneous nodes from the clusters. Specifically, delete-node(u)

triggers query cluster(u, c′(u)) and whenever it returns NO, it pulls out the node and sets up a new

singleton cluster {u}. We note that delete-node() can successfully fix both single-node errors due to

insert-node() failure and larger merge-clusters() errors if one of the clusters c is sufficiently

small. In the latter case, we can indeed repeatedly apply delete-node() to remove the smaller cluster,

and then put it back together with insert-node() and merge-clusters() operations.

• Split cluster In case of severe merge-clusters() errors, we can try to recover by identifying “weak

cuts” (see Definition 2) and splitting low confidence clusters into high confidence sub-graphs. To this

end, split-cluster(c) selects the minimum cut (cu, cv) of a given cluster c (which corresponds to

maximum joint error probability) and tries to expand it with query cluster(cu, cv). If it succeeds, no

changes to c need do be done. Otherwise, the cluster is split into the two sides of the cut.

In the next section, we will illustrate how combining the above operations leads to various strategies.

4 CrowdOracle Strategies

We now describe prior CrowdOracle strategies using the framework in Section 3, as summarized in Table 1.

Then, we summarize the experimental results of the original papers [6, 7] and provide intuitions and illustrative

experiments for a new strategy – mixed() – that can outperform hybrid() in specific application scenarios.

4.1 Strategy description

We consider wang(), vesd() and hybrid() from [6] in the perfect oracle setting, and lazy(), eager() and

adaptive() from [7] in the general CrowdOracle model. (We refer the interested reader to original papers for

more discussion.) For the perfect oracle – or, equivalently, spanning forest – strategies, we also report the key

approximation results in [6] for our two problems 1 and 2, under a realistic edge noise model for pm.

Wang The strategy in [18], which we refer to as wang(), is purely based on optimistic merge clusters opera-

tions. Every node starts as a singleton cluster. Then, cluster pairs are possibly merged in non-increasing order

of matching probability, leveraging transitivity. Consider Example 1, where (ra, rd) is the edge with highest

pm value. The first operation is merge-clusters({ra}, {rd}) – which is equivalent to query pair(ra, rd)

in this setting – yielding a negative outcome. The next edge in non-increasing order of matching probabil-

ity is (rd, rf ), thus, the second operation is merge-clusters({rd}, {rf}), yielding another negative re-

sult. Something different happens upon the third operation, which is merge-clusters({rd}, {re}), because
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query cluster(rd, re) yields a positive answer. The singleton clusters ra and rd are merged into a “dou-

bleton” cluster {rd, re}, and – given that the next edge in the ordering is (ra, re) – the fourth operation is

merge-clusters({ra}, {rd, re}) and so on. We note that, being based on spanning forests, the optimistic

merge-clusters() variant used by wang() asks only one of the two inter-cluster edges (ra, rd) and (ra, re).
We can make the strategy pessimistic by replacing the query pair() step with query cluster().13

The wang() strategy has an approximation factor of Ω(n) for Problem 1 and O(log2 n) for Problem 2.

Vesd The strategy in [16], which we refer to as vesd(), leverages optimistic insert node operations. Differently

from wang(), vesd() starts with a unique singleton cluster, corresponding to the node with highest expected

cluster size. In our running example, this is the cluster {rd}.14 Nodes are possibly inserted in current clusters

in non-increasing order of expected cluster size: the next node in the ordering is re, thus the first operation is

insert-node(re). This operation triggers query pair(re, rd) as the first query (differently from wang())

and yields a positive answer, upon which the initial cluster {rd} is “grown” to {rd, re}. After processing ra
and rc, the current clusters are c1 = {rd, re} and c2{ra, rc}. When we consider rf (which represents a different

entity) we have two candidate clusters for insertion, and four intra-cluster edges connecting rf to nodes in c1 and

c2. Since optimistic insert node is driven by the highest matching probability edge among those (i.e., (ra, rf ))
the first cluster selected for comparison – with no success – is c = {ra, rc}. Similarly to wang(), vesd()

requires one query for comparing rf and c, which can be arbitrarily chosen between query pair(ra, rf ) and

query pair(rc, rf ). Before moving to node rb, insert-node(rf ) compares rf to the other clusters (i.e.,

c2) until possibly success. Otherwise, a new cluster is created. Analogously to wang(), the strategy can be made

pessimistic by replacing query pair() with query cluster().

The vesd() strategy has better approximation factor of Ω(
√
n) than wang() for Problem 1 and same

O(log2 n) for Problem 2. Without assumptions on matching probabilities, vesd() is shown to be O(k) (which

is usually O(n)) for the off-line setting15, while wang() can be arbitrarily bad.

Hybrid The hybrid() strategy in [6] combines wang() and vesd(), and can be modified to apply random

expansion similarly. Specifically, it first applies a variant of vesd() where insert-node() is modified with

a parametric early termination option.16 That is, some edges between established clusters may be non-resolved

(i.e., non-inferable) at some point. In addition, nodes to add are selected based on their singleton-cluster benefit

(i.e., sum of incident matching probabilities) with respect to established clusters, making hybrid() a realistic

insert node strategy. After this phase, recall can be smaller than 1. To this end, hybrid() applies wang() taking

care of “deferred” questions due to early termination. The early termination’s parameters can be set such that

i) hybrid() becomes a realistic variant of vesd(), by letting insert-node() terminate only in case there

are no more clusters to consider (that is, no further merge-clusters() operations are needed); 2) hybrid()

works like wang(), by inhibiting insert-node() completely; 3) anything in between.

In the worst case, hybrid() provides an O(
√
n)-approximation to the on-line Problem 1. If matching

probabilities are such that we can pick two representatives from any cluster A before elements of a smaller

cluster B, then (no matter what the matching probability noise is) hybrid() performs like ideal(), because

the benefit of a third node in the same cluster is higher than any other node in a different cluster, and so on.

Lazy This pipeline is described in [7] and can be thought of as the simplest edge expansion strategy in the

framework. lazy() is indeed focused towards optimizing the progressive F-measure at the cost of lower preci-

sion at the start. It does so by following a mix of perfect oracle strategies vesd() and wang() – similarly to what

13parameters correspond to the clusters of the edge endpoints
14Expected cluster size of rd is 3.55
15In this setting, we only need to minimize the number of queries.
16Intuitively, insert-node(u) fails not only if there are no more clusters to examine to, but also if cbn(u, c) drops below a given

threshold θ or the number of questions related to node u exceeds a given amount of trials τ .
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Figure 2: Experiments on cora dataset, featuring ≈ 1.9K records and 191 entities. Figure 2(b) considers a

subset of 200 records, representing different entities. pape and waldo strategies are described respectively

in [13, 15]

hybrid() does – in the beginning to avoid asking extra queries as required to form expanders. However, at the

end, lazy() runs merge-clusters() with query cluster() over all cluster pairs and delete-node()

over all the nodes, aiming at the correction of recall and precision errors, respectively. We note that the final

error correction phase may be challenged by large merge-clusters() errors17, and delete-node() could

give better results. This was not considered in [7], where lazy() is used as a baseline. In the beginning, the only

difference with hybrid() is merge-clusters(), because cluster pairs are possibly merged in non-increasing

order of cluster benefit (rather than matching probability), making lazy() a realistic merge cluster strategy.

Eager The strategy eager() in [7] has “orthogonal” behaviour with respect to lazy(). Indeed, it main-

tains high precision at the cost of low progressive F-score. It is a pessimistic version of lazy() where both

insert-node() and merge-clusters() use query cluster() as a substitute of query pair(). Since

expander properties are maintained throughout the execution, large cluster merge errors are unlikely. Therefore,

split-cluster() is not used and the final error correction phase of eager() is the same as lazy().

Adaptive The strategy adaptive() in [7] achieves the best of eager() and lazy() in real CrowdOracle

applications. It provides the same final F-measure of eager() earlier in the querying procedure, along with the

high progressive F-measure of lazy(). The intuition is to switch between query pair() and query cluster()

depending on the current answer. We compare clusters with query pair() as in lazy(), but we use our robust

comparison tool query cluster() if the result is in “disagreement” with matching probabilities. Formally,

a disagreement can be: (i) a positive answer in case of low average matching probability (< 0.5); (ii) a nega-

tive answer in case of high average matching probability (≥ 0.5). hybrid() runs two executions of the error

correction merge-clusters()+delete-node() procedure, one at the end (similarly to what lazy() and

eager() do) and another when switching from the insert node phase to the merge cluster phase. Such extra-

execution is useful for correcting early errors due to the adaptive nature of the initial insert-node() phase.

4.2 Empirical evaluation

Depending on matching and error probabilities (i.e., how accurate machine-based methods and crowd can

be on the specific application), the considered strategies may have different performances. hybrid() and

adaptive() are shown to be comparable or better than other strategies in their respective settings. However,

when comparable, a user may prefer simpler strategies. Next, we report the main takeaways from [6, 7].

17Only removing singleton nodes of one of two erroneously merged clusters, without putting them back together.
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1. Suppose there are no erroneous answers, and matching probabilities have uniform edge noise. If the size

distribution of clusters is skewed (i.e., there are few large clusters and a long tail of small clusters), we

expect vesd() to be better than wang() and hybrid() to be comparable or better than vesd().

2. In the same setting, but with small clusters (for instance, in Clean-Clean ER tasks where most clusters

have size 2), we expect wang() to be much better than vesd() and hybrid() to perform like wang().

3. Suppose now the error rate of answers is high and matching probabilities are correlated with the ground

truth, that is, truly positive edges have high probability and truly negative edges have low probability. We

expect eager() to perform better than lazy(), and adaptive() to perform like eager().

4. Similarly, if the error is high and matching probabilities are uncorrelated with the ground truth, we expect

eager() to be better than lazy(), and adaptive() to be like eager().

5. Instead, when the error is low and matching probabilities are correlated with the ground truth, we expect

lazy() to be better than eager(), and adaptive() to be like lazy().

6. In the less realistic case where the error is low and matching probabilities are uncorrelated with the ground

truth, we still expect lazy() to be better, but we expect adaptive() to be like eager().

7. There can be mixed cases of reasonable error rate and matching probability noise. We expect the different

edge expansion strategies to have similar progressive F-measure in such cases.

Figures 2(a) and 2(b) report an experimental comparison of the considered strategies, against the popular cora

bibliographic dataset.18 cora is an example of a dataset where matching probabilities are correlated with the

ground truth and the cluster size distribution is skewed (the top three clusters account for more then one third of

the records), thus matching with application scenarios 1) and 3). The plots confirm the expected behaviour of

strategies, with adaptive(), eager(), hybrid(), and vesd() being close to ideal().

Mixed Consider the perfect oracle setting, for sake of simplicity. Suppose that the matching probabilities

have, in addition to the noise observed in the experiments of Figures 2(a) and 2(b), also a new, systematic

noise, which only affects specific clusters and “splits” them in two parts. This can happen in many applications,

where real-world entities are represented in well-defined variations. Examples include different sweetness –

dry, extra dry – of the same wine entity, or the ArXiv and conference versions of the same paper. They are

not really different entities, but we can expect lower pm values between records of the two variations, than

between records of the same variation. Systematic “split” error is correlated with entity variations rather than

ground truth, and is a challenging scenario for hybrid() strategy. After growing the first variation, indeed, if

inter-variation pm values are such that corresponding questions are skipped by insert-node() and deferred

to the merge-clusters() phase, hybrid() would seed the new variation as a separate cluster and grow it

as if it was a different entity, until the start of the second phase. Our framework enables the design of a new

strategy, that we call mixed(), that at every step selects insert-node() or merge-clusters() depending

on the realistic cluster benefit, rather than having two separated phases. Experimental comparison of hybrid()

and mixed() is shown in Figure 2(c), against a synthetic version of the cora dataset. In the synthetic cora,

we artificially add the systematic error in the largest cluster c and set pm(u, v) to 0.001, u, v ∈ c, if u is

odd and v is even.19 The mixed() strategy consists of a sequence of realistic merge clusters operations, with

sporadic realistic insert node (with the same early termination as hybrid()). Specifically, whenever the next

pair of clusters in non-increasing order of benefit (see Section 2) corresponds to two singleton nodes {u} and

18We refer the reader to the original papers [6, 7] for more details about the dataset and the experimental methodology.
19We also augment inter-variation pm values and re-scale all the other scores in the graph, so that ranking of nodes by expected cluster

size does not change for the purpose of the experiment.
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{v} never seen before, mixed() substitutes merge-clusters({u}, {v}) with insert-node(w), where w
is the largest unprocessed node in non-increasing order of expected cluster size. We observed that mixed()

performs like hybrid() with the original cora dataset. However, in the presence of systematic error, after

growing the first entity variation ca, as soon as the second variation of c – which we refer to as cb – grows large

enough that the cbn(ca, cb) becomes relevant, the two sub-clusters are merged early by merge-clusters()

into c.

5 Related Work

Entity Resolution (ER) has a long history (see, e.g., [4, 8] for surveys), from the seminal paper by Fellegi and

Sunter in 1969 [5], which proposed the use of a learning-based approach, to rule-based and distance-based

approaches (see, e.g., [4]), to the recently proposed hybrid human-machine approaches (see, e.g., [17, 9]). We

focus on the latter line of work, which we refer to as crowdsourced ER, where we typically have access to

machine-generated probabilities that two records represent the same real-world entity, and can ask “are u and v
matching?” questions to humans.

The strategies described in [16, 18, 6] abstract the crowd as a whole by an oracle, which can provide a

correct YES/NO answer for a given pair of items. Traditional ER strategies consider ER to be an offline task

that needs to be completed before results can be used, which can be extremely expensive in resolving billions of

records. To address this concern, recent strategies [21, 13] propose to identify more duplicate records early in

the resolution process. Such online strategies are empirically shown to enable higher recall (i.e., more complete

results) in the event of early termination or if there is limited resolution time available. The strategies focus on

different ER logics and their performances, which can be formally compared in terms of the number of questions

asked for 100% recall [6, 12]. Unfortunately, the strategies do not apply to low quality of answers: if an answer

involving two clusters C1, and C2, is wrong, the error propagates to all the pairs in C1 × C2.

The oracle errors issue raised by [18, 16, 6] is addressed by recent works such as [10, 14, 15, 7]. The solution

provided by these works consists of a brand new set of techniques for replicating the same question (i.e. about

the same pair) and submitting the replicas to multiple humans, until enough evidence is collected for labeling

the pair as matching or non-matching (see Section 5). New techniques include voting mechanisms [10], robust

clustering methods [14], and query-saving strategies such as classifying questions into easy and difficult [15].

These algorithms show how to make effective use of machine-generated probabilities for generating replicas and

correcting errors, sometimes for the specific pair-wise answers and sometimes for the entities as a whole. In this

setting, each YES/NO answer for a given pair of items can be interpreted as a matching probability: 1 − pE if

the pair is supposed to be matching, and pE otherwise. (An information theoretic perspective of it is provided

in [11].) General purpose answer-quality mechanisms are described in the crowd-sourcing literature [2, 19].

6 Conclusions

In this paper, we considered the pipelines described in [18, 16, 6, 7] in the general CrowdOracle model. We

summarized their goals, provable guarantees and application scenarios. Specifically, we described a common

framework consisting of simple operations that combined together lead to the considered strategies. This frame-

work raised the issue of a specific scenario, which can be challenging for strategies in [18, 16, 6, 7]. To this end,

we leveraged the simple operations introduced in this paper for defining an original strategy, which is better than

hybrid() in the challenging scenario (and comparable in the traditional setting).
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