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Abstract

Amazon Redshift features integrated, in-place access to data residing in a relational database and to

data residing in the Amazon S3 object storage. In this paper we discuss associated query planning and

processing aspects. Redshift plays the role of the integration query processor, in addition to the usual

processor of queries over Redshift tables. In particular, during query execution, every compute node of

a Redshift cluster issues (sub)queries over S3 objects, employing a novel multi-tenant (sub)query execu-

tion layer, called Amazon Redshift Spectrum, and merges/joins the results in an streaming and parallel

fashion. The Spectrum layer offers massive scalability, with independent scaling of storage and compu-

tation. Redshifts optimizer determines how to minimize the amount of data scanned by Spectrum, the

amount of data communicated to Redshift and the number of Spectrum nodes to be used. In particular,

Redshifts query processor dynamically prunes partitions and pushes subqueries to Spectrum, recogniz-

ing which objects are relevant and restricting the subqueries to a subset of SQL that is amenable to

Spectrums massively scalable processing. Furthermore, Redshift employs novel dynamic optimization

techniques in order to formulate the subqueries. One such technique is a variant of semijoin reduction,

which is combined in Redshift with join-aggregation query rewritings. Other optimizations and rewrit-

ings relate to the memory footprint of query processing in Spectrum, and the SQL functionality that it is

being supported by the Spectrum layer. The users of Redshift use the same SQL syntax to access scalar

Redshift and external tables.

1 Introduction and Background

The database literature has described mediators (also named polystores) [6, 1, 4, 2, 3, 5] as systems that provide

integrated access to multiple data sources, which are not only databases. In response to a client query that refers

to multiple sources, the mediator formulates a distributed query plan, which obtains source data by issuing

subqueries and/or (generally) data requests to the sources and consequently merges the results received from the

multiple sources.

The advent of scalable object storage systems, such as Amazon’s S3, has created a new kind of non-DBMS

data source. The S3 data are stored across multiple storage nodes, which are accessible by the multiple Compute
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Figure 1: Amazon Redshift and the Spectrum processing layer

Nodes of a parallel database. Many users have data in an Amazon Redshift database and also have data in

Amazon S3. A typical use case is very large fact data (in the data cube terminology) residing in S3, with

matching dimension tables residing in Amazon Redshift. For such users, Amazon Redshift acts as mediator: It

provides a logical view of the S3 data as external tables in addition to providing access to the Redshift tables.

Queries received by Redshift may refer to both the Redshift tables and the S3 data, while the SQL syntax used

when accessing scalar tables, regardless whether they are in Redshift or external, it remains the same. We discuss

query planning and query processing issues solved by Redshift.

Using Spectrum in Query Processing. Spectrum is a multi-tenant execution layer of Amazon Redshift that

provides massively scalable access and SQL processing capabilities over collections of Amazon S3 objects. It

efficiently reads records from objects of various file formats stored in Amazon S31 and processes them before

streaming the results to Redshift’s Compute Nodes. The benefit of massive parallelism is realized when each

Spectrum node computes a (sub)query that processes a lot of data but the results returned to Redshift are rela-

tively small. Queries that filter, project and aggregate have this property. Thus, when accessing external tables

on S3, Redshift’s query optimizer pushes filters, projections and aggregations to the Spectrum layer, while joins

(either between local and external tables or even between external tables), order-by’s and final aggregations (of

1Currently, the supported file formats include columnar formats like Parquet, RCFile and ORC, as well as row-wise formats like

CSV, TSV, Regex, Grok, Avro, Sequence, JSON and Ion.
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the results of the multiple subqueries that have been sent to the Spectrum layer) are computed at the Redshift

Compute Nodes. As we exhibit in Section 2, external table data filtering includes filters that correspond to semi-

join reductions (Section 3.4). Furthermore, Redshift is aware (via catalog information) of the partitioning of an

external table across collections of S3 objects. It utilizes the partitioning information to avoid issuing queries

on irrelevant objects and it may even combine semijoin reduction with partitioning in order to issue the relevant

(sub)query to each object (see Section 3.5).

Spectrum’s massive parallelism comes with some challenges for the mediator/query planner: The Spectrum

nodes are stateless - they are not supposed to cooperate and keep state in multi-phase plans. Second, the Spec-

trum subqueries must be computable within a memory budget; no local disk is used by Spectrum nodes. The

hard memory limit leads to the use of partial aggregation (Section 3.3) and run-time decided semijoin reduction

(Section 3.4). Further, the SQL functionality supported by each Spectrum node, is not fully aligned to the one

of Redshift. Thus, the mediator (Redshift) also considers which SQL processing can be pushed to the Spectrum

execution layer and which needs to be complemented in the Redshift processing layer.

2 Running Example

The setting of the scenario is an imaginary future where JK Rowling is launching the 8th book in the original

Harry Potter series and the publisher’s marketers want to direct the marketing campaign for this book. The

particular marketers are in Miami and are looking to build a billboard advertising campaign. They had set such

billboard campaigns in the past and they want to find out where and how much they succeeded. So, they want to

find out the regions (postal codes) in Miami where the book sales were most improved by the past campaigns.

The described scenario was exhibited in Amazon’s reInvent 2017 conference, with an exabyte sales (fact) table.2

The first step to answer this question is to create a temporary table hp book data that holds the raw

aggregated data about each Harry Potter book sales per Miami zip code, for the sales that followed within 7 days

of its release. The second step of the analysis is to compare the book-over-book improvements per zip code and

join with knowledge of which release/zip code combinations had billboard campaigns. Thus a comparison can

be made between the cases that had the benefit of a campaign and those that did not. The second step is not

challenging from a performance point of view, since hp book data will be very small. Rather the challenge

is in computing hp book data.

The marketers have data in both the Redshift database and on S3. In particular, they have an exabyte fact table

S3.D CUSTOMER ORDER ITEM DETAILS stored as a collection of S3 object, while the dimension tables are

in Redshift. Having fact tables as external tables on S3 and dimension tables at Redshift table is indeed a com-

mon case of Redshift usage of external tables. In this case there are two tables, named ASIN ATTRIBUTES and

PRODUCTS, that provide information (author, title, release date) about the book editions, which are identified

by the ASIN numbers. The REGION dimension table provides the country, state and city of the REGION IDs

that appear in the fact table.

The S3-residing fact table is partitioned by the ORDER DAY attribute. The partitions table in the catalog

provides the association between ORDER DAY’s and the id’s of the object prefixes (partitions) that are associated

to each ORDER DAY.

The following query computes the hp book data.

SELECT

SUM(D.QUANTITY * D.OUR_PRICE) AS SALES,

P.TITLE, R.POSTAL_CODE, P.RELEASE_DATE

FROM

S3.D_CUSTOMER_ORDER_ITEM_DETAILS D,

ASIN_ATTRIBUTES A, PRODUCTS P, REGIONS R

2The scenario is imaginary and, to the best of our knowledge, does not correspond to a particular marketing campaign.
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Spectrum (sub)query

ϒP.TITLE, R.POSTAL_CODE, P.RELEASE_DATE;

SUM(MERGE_PART_SALES) → SALES

SCANREGION R

HASH→TempR

D.REGION_ID=R.REGION_ID

HASH→TempAP

SCANASIN_ATTRIBUTES A SCANPRODUCTS P

A.ASIN=P.ASIN

PARTITION LOOP

for each object in

issue query

ϒD.ASIN, R.D.REGION_ID, D.ORDER_DATE;

SUM(D.QUANTITY*D.OUR_PRICE) → SPEC_PART_SALES

˜

SCANS3.D_CUSTOMER_ORDER_ITEM_DETAILS D

w/ filter D.REGION_ID in TempR

AND D.ASIN in TempAP

SCANcatalog.partitions P SCANTempAP T

P.ORDER_DATE >= T.RELEASE_DATE

AND P.ORDER_DATE < T.RELEASE_DATE+7

ϒD.ASIN, R.D.REGION_ID, D.ORDER_DATE;

SUM(SPEC_PART_SALES) → MERGE_PART_SALES

Figure 2: The query plan of the running example. The aggregation operator γG;f(A) 7→S stands for a grouping on

the grouping list G and aggregating with the aggregate funftion f(A), leading to an aggregate attribute S. The

partial aggregation variation γ̃ is explained in Section 3.3

WHERE

D.ASIN = P.ASIN AND P.ASIN = A.ASIN AND

D.REGION_ID = R.REGION_ID AND

A.EDITION like ’%FIRST%’ AND P.TITLE like ’%Potter%’ AND

P.AUTHOR = ’JK Rowling’ AND

D.ORDER_DAY >= P.RELEASE_DATE AND

D.ORDER_DAY < P.RELEASE_DATE + 7 Days AND

R.COUNTRY_CODE=’US’ AND R.STATE = ’WA’ AND

R.CITY = ’Miami’

GROUP BY

P.TITLE, R.POSTAL_CODE, P.RELEASE_DATE

The plan of Figure 2 executes the query. Informally, its steps are:

1. Combine the Redshift tables Products and ASIN Attributes to find the ASIN’s, TITLE’s and

RELEASE DATE’s of the first editions of Harry Potter books. There will be relatively few such tuples.

2. Scan the REGIONS table to find the REGION ID’s and POSTAL CODE’s of the Miami regions. Again,
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there will be relatively few such tuples.

3. Retrieve from the catalog the list of partitions, identified by ORDER DAY, that have sales data for the 7

days that followed each release. (See the semijoin in Figure 2.)

4. To each S3 object contained in a qualified partition, issue a Spectrum query that aggregates the revenue

per Miami region, book edition and date. Notice the Spectrum query also includes IN filters, sof that only

Miami data and Harry Potter book editions are aggregated.

5. On the Redshift side, merge the partially aggregated results per S3 object returned by the Spectrum layer.

6. For each group pull the corresponding values from the dimension tables, by performing the joins.

7. Perform the final aggregation.

The efficiency of the plan comes from Steps 3 and 4. In Step 3, Redshift prunes work at the partition level,

and ends up having to only process the (relatively few) objects that follow the 7-days-post-release condition.

Consequently, it sends much fewer (sub)queries to the Spectrum layer than a blind querying of all objects would

lead to. In Step 4, the large amount of data per object boils down to returning only a few tuples, thanks to the

IN filters and the presence of the aggregation. Of course, it matters that the Redshift optimizer first executed the

joins of Steps 1 and 2, figures the relevant regions and book editions, and thus focused Steps 3 and Steps 4 to

partitions and data in S3 objects that matter.

3 Redshift Dynamic Distributed Query Optimization

We discuss next the optimization steps that Redshift engages into, focusing primarily on special aspects of the

optimization.

3.1 Join Ordering

In its first step, the Redshift query optimization creates a query plan, as it would have done even if the S3 table

(or S3 tables in the general case) were database tables. In a cost-based fashion, using the statistics of the local

and (external) S3 tables it creates the join order that yields the smallest intermediate results and minimizes the

amount of data that are exchanged. Since the S3 tables are expected to be much larger than the Redshift tables,

the typical plan will have the S3 table(s) at the left-most side of joins sequences. We will focus the rest of our

optimization discussion to this pattern.

While join ordering is an expected functionality of databases, it is interesting to note that many SQL-on-

Hadoop engines do not offer such. Often their SQL queries are not declarative but rather the join orders have an

operational/execution order meaning as well.

3.2 Aggregation PushDown

Pushing the aggregations down to Spectrum has a large effect on performance and scalability, as it dramatically

reduces the amount of data each Spectrum node needs to return to the Redshift cluster. In the running example,

the aggregation pushdown rewriting leads to Spectrum queries that perform a pre-aggregation by grouping on

ASIN and REGION ID. 3 The pre-aggregation of Spectrum, leading to SPEC PART SALES is followed by a

3From a technical perspective, the ORDER DATE is also included in the grouping attributes of the pre-aggregation. However, since the

example’s partitioning dictates that each S3 object has the same ORDER DATE, the ORDER DATE is not really accomplishing grouping

and could also be eliminated.
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merge aggregation that aggregates the Spectrum derived SPEC PART SALES into the MERGE PART SALES.4

A final aggregation happens after the joins, since the grouping attributes of the pushed-down aggregation and the

query’s aggregation are not the same. The generalization of the rewriting behind the push-down of aggregation

below a sequence of joins is:5

γF.G,D1.G,...,Dn.G;agg(e(F.A)) 7→R(. . . (F ⊲⊳c1 D1) . . . ⊲⊳cn Dn)

= γF.G,D1.G,...,Dn.G;postagg(preR) 7→R(. . . (γF.G,F/c1...cn;preagg(e(F.A)) 7→preR
F ) ⊲⊳c1 D1) . . . ⊲⊳cn Dn)

The notation Rel .Attr stands for a list of attributes from the table Rel . In the running example, the

“fact” table F is the S3 table, which joins twice with dimensions tables (or expressions involving join ta-

bles) before the aggregation, i.e., n = 2. Figure 2 shows the plan before the aggregation pushdown. The

condition c1 of the first join is D.ASIN = P.ASIN AND D.ORDER DAY >= P.RELEASE DATE AND

D.ORDER DAY < P.RELEASE DATE + 7 Days and the condition c2 of the second join is D.REGION ID

= R.REGION ID. The operator γF.G,D1.G,...,Dn.G;agg(e(F.A)) 7→R denotes grouping the input on the (concatena-

tion of the) lists of columns F.G from the table F and columns Di.G from the dimensions tables Di. In the

running example, F.G happens to be empty, i.e., the original plan has no aggregation on the S3 table attributes.

The notation F/c1, . . . , cn stands for the list of F attributes that appeared in the conditions c1, . . . , cn. Infor-

mally, the rewriting says that a pre-aggregation can be pushed to F by replacing the dimension attributes in the

grouping list with the fact table attributes that appeared in the joins. Notice that despite our use of the intu-

itive terms “fact table” and “dimension table”, the rewriting does not pose foreign key/primary key constraints

between the “facts” and “dimensions”.

The rewriting requires that the aggregation agg is an associative aggregation, such as SUM, MIN, MAX, etc.

The expression e is arbitrary. For each aggregation agg , there is a corresponding pre-aggregation preagg and

post-aggregation postagg . For example, if the aggregation is COUNT(e(. . .)) 7→ R then the preaggregation

is COUNT(e(. . .)) 7→ preR and the post-aggregation is SUM(preR) 7→ R. Similar pre-aggregation and post-

aggregation applies to all associative aggregation operators, such as MIN, MAX, etc. Other aggregate functions

such as AVG and STDEV can be emulated by combinations of the associative aggregations. As is well known, a

few aggregation operators, such as the median, are neither associative, nor emulatable by associative ones.

There are many special cases that can lead to simpler, more effective rewritings. For example, in certain

cases knowledge of the foreign key constraint allows elimination of the post-aggregation. In other cases, the

semijoin reduction may render the join at Redshift unnecessary.

Before we proceed in the next optimizations, we raise the question of the rewriting’s effectiveness and

applicability in the case where the memory needed for grouping exceeds the available main memory.

4The merge aggregation is actually two aggregations: A first local aggregation by the computing nodes of Redshift and a second,

global integration of the results of the local one. Depending on the expected cardinality of the aggregation, the global integration step

may be executed by a single or more compute nodes. We do not depict this two-staging in Figure 2.
5Note, an alternate form of this rewriting would involve an aggregation and a single join, at a time. This would push an aggregation

below the join and thus positioning it above the next join in the chain, which would trigger the next application of pushing aggregation

below join. In the running example, under this variant we would have (a) a first aggregation at Spectrum on fact table attributes

ASIN, ORDER DAY and REGION ID, as is the case in Figure 2 also, then (b) the join with the ASIN ATTRIBUTES and PRODUCTS

tables, again as is in Figure 2, (c) an aggregation on dimension table attributes TITLE, RELEASE DATE and (still) fact table attribute

REGION ID (this is the point where the variant is different from Figure 2), (d) the join with the REGIONS table and (e) the final

aggregation on the dimension attributes TITLE, POSTAL CODE and RELEASE DATE dictated by the query. At present time we elect

the “single” rewriting option that detects the full tree of joins and pushes a single aggregation below it, as typically the very first

aggregation (which happens on the Spectrum layer) is responsible for (vastly) most of the performance optimization.
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ϒP.TITLE, R.POSTAL_CODE, P.RELEASE_DATE;

SUM(MERGE_PART_SALES) → SALES

SCANREGION R

HASH→TempR

D.REGION_ID=R.REGION_ID

HASH→TempAP

SCANASIN_ATTRIBUTES A SCANPRODUCTS P

A.ASIN=P.ASIN

SCANS3.D_CUSTOMER_ORDER_ITEM_DETAILS D

ϒP.TITLE, R.POSTAL_CODE, P.RELEASE_DATE;

SUM(MERGE_PART_SALES) → SALES

SCANREGION R

HASH→TempR

D.REGION_ID=R.REGION_ID

HASH→TempAP

SCANASIN_ATTRIBUTES A SCANPRODUCTS P

A.ASIN=P.ASIN

ϒD.ASIN, R.D.REGION_ID, D.ORDER_DATE;

SUM(D.QUANTITY*D.OUR_PRICE) → SPEC_PART_SALES

SCANS3.D_CUSTOMER_ORDER_ITEM_DETAILS D

Figure 3: Plans before and after pushing aggregation below joins

3.3 Partial Aggregation

Aggregation pushdown comes with a risk: Aggregation, as usual, employs a data structure with pairs of group-

by attribute values and aggregates. For each input tuple, the aggregation finds the relevant pair and updates the

aggregate. If the group-by attributes of the input tuple have not appeared in any pair, then a new pair is created.

But what if the grouping data structure exceeds the amount of memory that a Spectrum (sub)query may use? In

the running example, this can happen if the amount of memory needed to store the pairs consisting of the group-

by attributes ASIN and REGION ID and the respective aggregate exceed the amount of available memory.

This risk is mitigated by turning the pre-aggregation γ into a partial aggregation γ̃. A partial aggregation has

generally a non-deterministic result and is allowed to output more than one tuples with the same grouping

values. This allowance enables γ̃ to deal with aggregations that have results larger than the available memory,

as follows. Assume that, at some point during the execution of γ̃ (a) the grouping structure has reached its

maximum memory size and (b) a new input tuple arrives, with a ASIN a, REGION ID r and 〈a, r〉 are not in the

grouping structure. The γ̃ will pick a pair (〈a′, r′〉, c′) from the grouping structure, output it, and use its spot in

the grouping table for the new entry (〈a, r〉, 1).6 Multiple replacement strategies are possible. A good strategy

6Theoretically, γ̃ could output (a, r, 1) and leave the grouping structure as-is. This would probably be the worst replacement strategy,

since there is most probably locality in the arrival of tuples with the same ASIN and REGION ID.
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minimizes the probability that the newly evicted entry will need to be re-established in the grouping table, while

keeping low the computation cost of discovering which entry to evict.

3.4 Semijoin Reduction by Dynamic Optimization

In the running example there are multiple regions but relatively few Miami regions. Similarly, there are multiple

books but few Harry Potter books. Thus the Spectrum queries should focus on the few Miami regions and Harry

Potter books. To achieve this, Redshift engages into semijoin reduction. Once the REGION ID’s and ASIN’s

are known (i.e., upon having evaluated the respective parts of the join tree), Redshift introduces the discovered

REGION ID’s and ASIN’s in the Spectrum queries, as IN semijoin filter lists. Thus a Spectrum query may look

like (when formatted in SQL)

SELECT REGION_ID, ASIN, SUM(OUR_PRICE*QUANTITY) AS PART_SALES

FROM S3object

WHERE REGION_ID IN [45, 12, 179] AND ASIN IN [35, 6, 17]

GROUP BY REGION_ID, ASIN

There is a risk that the semijoin filter lists may be too long and exceed the available memory. Thus the

semijoin reduction cannot be absolutely decided during query planning time. Rather, the Redshift query executor

makes the decision at run time upon executing the filters and the joins between the dimension tables of Figure 2.

If the right hand side results (TempAP and TempR) turn out to be small enough, then the queries issued to

Spectrum will incude the corresponding semijoin filters.

3.5 Smart Partitioning, driven by Joins

The partition loop operator is responsible for finding the partitions that contain objects that are relevant to the

query and emitting Spectrum queries to them. Its operation is based on the catalog.partitions table,

which associates each partition of an S3 table with a value of the partition attribute(s) of the S3 table - the

ORDER DAY in the example. The partition attribute, which is typically time-related, is often constrained by the

query. The simple form of constraining is when a selection filter applies on the partition attribute. For example,

this would be the case if the running query also had a condition D.ORDER DATE > ’04/01/2005’. Any

filter on the partitioned attribute should turn into a filter that is used to find the relevant partitions.

A more interesting case emerges when the constraint on the partition attribute is expressed by a join. In the

running query, the ORDER DAYs are constrained by the conditions placed on PRODUCTS and ASIN ATTRIBUTES:

The only ORDER DAYs that matter are the seven days that followed a Harry Potter book release. Technically,

these are the ORDER DAYs in the result TempAP in Figure 2. Thus, only the partitions that are associated with

these ORDER DAYs should be queried. The partition loop operator (Figure 2) finds the partition id’s by execut-

ing the depicted semijoin of the catalog.partitions with TempAP. Generally, the semijoin’s condition

is derived as follows: Detect the join conditions on the partitioned S3 table that involve the partition attribute.

Assuming the join condition is in conjunctive normal form, pick the maximum number of conjunction argu-

ments that involve the partition attribute and adjust the partition attribute references to refer to the catalog table

(as opposed to the partitioned table).

4 Conclusions

Amazon Redshift provides integrated access to relational tables and S3 objects. The S3 data are accessed via a

highly parallel, multi-tenant processing layer, called Amazon Redshift Spectrum. Multiple optimizations ensure

that the queries executed at the scalable Spectrum layer process only the relevant S3 objects and return to the

Redshift cluster small results, while cost-based optimizations, such as join ordering, are still in effect.
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