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1 The Arrival of the Category

It is widely accepted that the majority of time in any data analysis project is devoted to preparing the data [25].

In 2012, noted data science leader DJ Patil put the fraction of time spent on data preparation at 80%, based on

informal discussions in his team at LinkedIn [28]. Analysts we interviewed in an academic study around the

same time put the percent time “munging” or “wrangling” data at “greater than half” [19]. Judging from these

user stories, the inefficiency of data preparation is the single biggest problem in data analytics.

The database community does have a tradition of research on related topics. Most common is algorithmic

work (covered in various surveys, e.g. [15, 4, 3, 26]) that focuses on automating certain aspects of data integration

and cleaning, or that uses humans as passive computational elements via crowdsourcing.

What computer science researchers often miss are the skills realities in real-world organizations. In practice,

the primary bottleneck is not the quality of the inner-loop algorithms, but rather the lack of technology enabling

domain experts to perform end-to-end data preparation without programming experience. Fully preparing a

dataset requires an iterated cycle of input data quality assessment, transform specification, and output quality

assessment—all in service of a larger “preparedness” goal that tends to shift fluidly as the work reveals additional

properties of the data. Traditionally there has been a divide between the people who know the data and use case

best, and the people who have the skills to prepare data using traditional programmatic approaches. This results

in the data preparation cycle being split across parties and across time: domain experts try to express their desired

outcomes for prepared data to developers or IT professionals, who in turn try to satisfy the needs. A single

iteration of this cycle can take from hours to weeks in a typical organization, and rarely produces a satisfying

outcome: typically either the end-user did not specify their desires well, or the developer did not achieve the

desired outcome. Neither tends to enjoy the experience. In short, the primary problem in data preparation is

self-service: we need to enable the people who know the data best to prepare it themselves.

Research focused on these user-facing concerns is scattered across the fields of databases, HCI and pro-

gramming languages (e.g., [7, 29, 13, 24, 17, 9, 16]). While under-investigated in the research community, the

topic has become an important force in the industry. In 2015, industry analysts began publishing rankings in an

emerging new market category dubbed “Self-Service” or “End-User” Data Preparation [5, 1]. Two years later,

the established analyst firm Forrester did a first annual Forrester Wave report on Data Preparation [23]: a mark

of arrival for this category. Another major analyst firm, Gartner, has weighed in with various reports on the

Data Preparation market (e.g. [35, 8]). Meanwhile, in 2017 Google Cloud Platform was the first cloud provider

to launch Self-Service Data Preparation as a native service in their cloud [27], while Azure and Amazon Web

Services also announced partnerships with data preparation vendors in 2018. Market size estimates for Data

Preparation start at $1 billion [35] and go well upwards depending on the analyst and projected time horizon.

Not bad for a technology that was seeded from academic research, and did not even have a name four years ago.
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In this article we share some of our experience navigating the path from research to commercial products in

this domain, which we and our users at Trifacta affectionately refer to as Data Wrangling. We begin by providing

a snapshot of the space as we are seeing it, including motivating customer use cases, and distinctions between

the new Data Wrangling market and co-existing older markets in Data Integration and ETL. Then we go back to

the research roots of Trifacta and talk about how our views of users and technical requirements have evolved.

1.1 A Data Wrangling Case Study

At Trifacta, we have seen Data Wrangling use cases in a wide variety of contexts and markets; any organization

that does data analysis needs to do data preparation. There is broad usage in traditional industries like finan-

cial services, telecommunications, pharmaceuticals and health care. But we also see interesting use cases in

everything from assembling national voter rolls for the 2016 presidential election to decoding data from drones.

As a case study, consider the following example usage in public health. In late 2014 there was surge of HIV

cases in rural Scott County, Indiana, which eventually infected nearly 200 people. The US Center for Disease

Control (CDC) came in to study patients and assemble a large number of data sources, and found that sharing of

opioid needles was the primary vector for infection. Their recommendation for the best way to stop the spread

of AIDS in Scott County: establish clean needle exchanges for drug users. The governor of Indiana at the

time, Mike Pence, was “morally opposed to needle exchanges on the grounds that they supported drug abuse”.

However, after the CDC made its recommendation, the governor said “I’m going to go home and pray on it”. In

the end, Gov. Pence reportedly “found the science convincing”, and approved the needle exchanges. This was

21 months before Pence became Vice President of the US. [33].

During the investigation, the CDC worked under time pressure with a number of disparate data sets in-

cluding “HIV outbreak clusters, geographic factors, epidemiological patterns, and drug resistance data, among

others” [34]. They brought in a systems integrator called Leidos who provided a software platform called

CAADS that combines visual data technologies from multiple vendors: Trifacta for data preparation, Tableau

for charting, and Alpine Data and Centrifuge Analytics for analytics. Leidos staff reported that Trifacta substan-

tially reduced time for wrangling. “Work that would have taken six weeks now can take as little as a day” [14].

CDC researchers also noted that Trifacta enabled them to detect missing records and outliers that would have

otherwise polluted the analysis, and that were overlooked by prior data cleaning tools [22].

The CDC is now recommending that state health departments prepare and monitor data from an increasingly

large pool of sources on an ongoing basis, “to identify jurisdictions that, like this county in Indiana, may be at

risk of an IDU-related HIV outbreak. These data include drug arrest records, overdose deaths, opioid sales and

prescriptions, availability of insurance, emergency medical services, and social and demographic data” [2].

Some of the key–and archetypal–features of this example include the following:

Self Service: The data was being acquired, prepared and analyzed not by computer experts, but by the domain

experts who understood the data best: public health experts in the field. “CAADS is very much built to ...

support the range of public health aspects and to allow people who would otherwise not be able to get into data

analytics to have access and do so in a responsible way.” [34]

Agility: The users were engaged in rapid collaboration with visual tools to explore multiple hypotheses in a

lightweight iterative fashion. “They would be on a call discussing the outbreak and someone would say ‘What

if we did it this way?’ They’d step away for a minute, run the analysis, and say, ‘No that didn’t work. But if we

do it this other way, here’s the result”’ [34].

Veracity and Explainability: The results of the study were to be presented for executive decision-making with

an expectation of critical feedback. In that setting, intuitive explanations of recommendations were critical.

More Data, More Data Sources: The Indiana effort involved a wide range of data, acquired quickly from a

variety of source in a variety of ways. Looking ahead, the CDC expects this set of sources to grow, and sees a

need to monitor feeds from these sources over time.
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2 Key Tasks in Data Wrangling

Here we briefly overview the main tasks in wrangling data. For a more thorough treatment we refer the reader

to a book on the subject [32].

Unboxing: Discovery & Assessment: If you have worked with new data you know that the first step is the

wonder of unboxing: what’s in there? Basic questions arise right away. How is the data structured: does it

have discrete records and fields? Is it flat or nested, uniform or irregular, dense or sparse? Is there metadata

embedded in the data that should be pulled out? What types of fields are there, and how are they coded? Do

particular values of interest occur in the data...am I in the data? What are the data distributions: the popular and

rare categorical variables, the distribution of numerical variables? You cannot begin thinking about data analysis

before understanding the answers to these basic questions. Visualization can help a great deal here, but note that

only the last questions above match typical charting packages and BI. The other questions relate more closely to

parsing and second-order schematic transformations that involve manipulating both data and metadata.

Structuring. Analytics software likes its data in rectangles: tables or matrices. Different rectangles fuel different

analyses: sometimes a matrix or pivot table is the right thing, other times a relational table is better. As a result,

it is common to restructure data whether or not it arrives structured. Typical (re)structuring transformations

include pivoting tables into matrices and vice versa, as well as unnesting key/value sets (“dictionaries”, “maps”

or “objects”) or arrays/lists into columns. These transforms have the property that they convert data (say keys

in a JSON document) into metadata (column names) or vice versa: they are second order data transformations

unfamiliar from SQL and logic. Users tend to find these transformations very non-intuitive, so various visual

metaphors are often used to help users route values to appropriate coordinates in a grid.

Cleaning. Neat is not the same as clean: tabular or matrix data can often be dirty in the sense of failing to capture

expectations. One class of expectations capture the notion of “central” and “outlying” values. Outliers can be

statistical (e.g. distance from the center of a distribution) or semantic (’Italy’ is the not the name of a US state.)

Another class of expectations are logical: boolean properties like functional dependencies. Yet another class

relates to encoding: e.g., in entity resolution, objects with multiple categorical labels need to have their labels

mapped together. Expectation checking for data cleaning often involves consideration of individual records with

respect to a larger dataset or population, which can be difficult for humans to do manually—algorithms are

needed. But the outputs of these algorithms are often uncertain or ambiguous, and human intervention can be

required to complete the job. The surveys mentioned earlier provide overviews of these issues [15, 4, 3, 26], but

some of the hardest problems are in enabling users to assess and correct algorithm outputs.

Enriching & Blending. Data is rarely self-contained; it often benefits from or requires additional data for further

context. As a simple example, unresolved “reference” or “foreign key” identifiers need to be decoded by joining

to a lookup table. Softer issues also drive the need for data enrichment: for example, to assess the likelihood

of the data you have, you may want to compare it to a larger sample from a similar or different population. Or

to assess the significance of a correlation between two attributes in your data (say, disease occurrence and age)

you may want to join in a third column from another data set to establish if there is conditional independence

via a confounding variable (say tobacco use). Algebraically, these activities—often called “data blending” in

industry marketing material—encompass a range of transformations including joins, unions, and subqueries with

aggregation. It is not always easy to figure out how to do these tasks, or to assess if they were done correctly.

Optimizing & Publishing. Once a dataset is structured and cleaned to an analyst’s level of comfort, it is often

necessary to do additional preparation to produce appropriate output for the next phase of analysis. For example,

publishing data to a relational data warehouse may require normalizing a single nested dataset into a number of

tables with key/foreign key relationships. The traditional schema mapping problem that occupied the ETL and

Data Integration communities during the 1990’s can be viewed as a general example of this kind of work. In

modern “big data” environments with machine-generated data, it is often necessary to perform data reduction
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before visualizing the results in a traditional charting tool: aggregation or sampling of the cleaned data is still

required. In other cases, data has to be recoded to suit the specific API of a downstream product for analysis or

charting. These tasks can be as demanding and detail-oriented as any of the other steps in the pipeline.

In sum, in 2018 we should all be aware that data is not “truth”: it is evidence to be assessed in the context of

specific use cases. If your data is familiar, your use case may change—or vice versa—requiring you to rethink

some or all of the steps above.

2.1 Isn’t this just ETL? Not really.

At a high level, ETL and data preparation solve similar problems: transforming multiple input datasets to some

desired output. However, modern data preparation differs from ETL in nearly every basic question of Who,

Why, What and Where, resulting in very different requirements for new software solutions.

ETL technologies are targeted at IT professionals (Who), tasked with establishing static data pipelines

for reference data (Why), given structured inputs (What) in on-premises datacenters running legacy software

(Where). These ETL systems exist to help IT implement data pipelines for downstream consumers. IT receives

data requirements from a line of business, and implements and optimizes these pipelines on behalf of those

consumers. IT is also responsible for ensuring security and quality of the data used by analysts. The “Who”

does not scale well with the rising tide of data: As organizations become more data-driven and the number of

consumers and analytic use cases grows, IT can become an unscalable bottleneck in the analysis lifecycle.

Data preparation tools instead focus on enabling analysts in a specific line of business (Who) to design and

maintain data preparation recipes that solve problems relevant to the their job success (Why). They typically

bring bespoke data from their own processes, and often blend in external data as well (What). In many cases these

organizations are working on net new projects, and are given the latitude to set up on new modern infrastructure,

e.g. using public clouds or open source technologies (Where).

The difference in the Who drives the need for self-service technology, reflecting the changing nature of data

in large organizations. The line of business likes self-service data preparation because they best understand

their own requirements, and self-service cuts out time-consuming communication and delivery cycles with IT.

IT increasingly likes self-service, because analysts are not burdening them with tedious and ill-specified data

provisioning requests. Self-service data preparation enables organizations to scale the number of analysis tasks

they can perform beyond what IT could centrally manage, and make the whole process more efficient and

satisfying. Moreover, the change in Why often makes these exercises highly valuable: line-of-business use

cases typically use data to make more money or reduce costs. This is creative, competitive data work.

The difference in What is not to be minimized. Legacy ETL is designed to handle well-structured data

originating from a variety of operational systems or databases. Many ETL tools are entirely schema-driven:

users are not shown data when they specify ETL pipelines. This makes it a poor fit to data that is not clearly

schematized in one uniform way, or data that needs cleaning as much as it needs republishing. A growing

amount of analysis occurs in environments where the schema of data is not defined or known ahead of time.

This means the analyst doing the wrangling determines how the data can be leveraged for analysis as well as

the schema (structure) to be imposed to perform that analysis. Legacy ETL systems were not optimized for

large-scale data or complex raw sources that require substantial restructuring and derivation.

Finally the Where is changing quickly. To be most effective, ETL and data preparation products should both

be integrated into an ecosystem of other tools for storage, processing and consumption. Legacy ETL products

were designed when most data was on-premises in relational and operational systems. Because the locus of

data gravity is moving to big data and cloud environments, many forward-looking data preparation solutions are

focused on working well in those environments.

This is not to say that ETL is dead. Like many legacy technologies, it plays a key role in the standard

operating procedure of traditional IT. Rather, the point is that data preparation solutions should provide a new
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How to respond to the new Who, Why, What and Where. Legacy ETL use cases are already handled adequately,

and there is less of a pressing need for new technologies to solve those old problems.

3 Evolutionary Paths

We launched the original Wrangler prototype on an academic website in Fall 2011, and quickly saw thousands

of unique users: our first feedback on the importance of the area. Since that time, we have been through many

iterations of refining our understanding of the data wrangling problem and the key issues in improving user

productivity. Here we share our learning on a number of fronts, from users to interfaces to backend systems.

3.1 Personas

A critical question for any product, but especially in an emerging market, is this: Who are my users? This

question can be particularly difficult to answer in the early stages of design, when there are few if any actual

users and instead one has to develop personas of who the likely intended users are. Personas are “fictional

representations and generalizations of ... your target users who exhibit similar attitudes, goals, and behaviors

in relation to your product.” [6]. In the case of Trifacta, our understanding of who we are designing for has

evolved tremendously as we have engaged different user communities and observed industry-wide changes in

organizational data analysis roles.

Unsurprisingly, our initial outlook was anchored in the university environment in which we were pursuing

research. We were motivated by our own trials and tribulations with data wrangling, as well as those of our

academic peers. This orientation was reflected in our early user studies [18, 10]: largely due to convenience, a

majority of our study participants were computer science students with some degree of analysis training.

We recognized the limits of studying this population, and set out to conduct an interview study of analysts

in industry [19], involving professionals with varied titles such as “business analyst”, “data analyst” and “data

scientist”. We found that our respondents were well-described by three archetypes (“hackers”, “scripters”, and

“application users”) that differed in terms of skill set and typical workflows. These archetypes varied widely

in terms of programming proficiency, reliance on information technology (IT) staff, and diversity of tasks,

but varied less in terms of statistical proficiency. These initial archetypes, and their corresponding tasks and

workflows, served as a major touchstone for our early commercialization efforts.

That is not, however, to say that our archetypes were unbiased. The analysts we interviewed at that time

spanned a spectrum of programming proficiency, but all worked in dedicated analysis positions. Increasingly we

see people working with data when that is not their primary job role: our case study in Section 1.1 is an example.

In addition, we have observed industry-wide shifts in six years as “data science” has matured. While early data

scientists were often a “jack of all trades” with a mix of skills including statistical analysis and large-scale

processing, many organizations eventually differentiated the roles of data scientist (more focused on analytical

tasks) and data engineer (more focused on analysis infrastructure). Moreover, traditional IT departments still

play a critical role in organization-wide data efforts, but were not a focus of our interview study.

In the six years since our interviews, engagement with customers (including user studies, site visits, surveys,

and interviews) has led us to refine and expand our personas. For example, while highly-skilled data scientists

remain a constituency, we focus on them less than we did on campus. Users with programming ability often

choose to complete data wrangling tasks using code, foregoing the efficiency and feedback afforded by improved

visual tools in favor of the familiar walled garden of their favorite programming language. On the other hand,

analysts in a specific line of business have driving questions and deep domain expertise, but may lack either the

time or programming knowledge to write scalable data transformation code. These users also greatly outnumber

data scientists, and so represent a larger business opportunity. Separately, we have learned to appreciate an

additional class of user other than the data analyst: users tasked with operationalizing, scheduling, and deploying
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workflows generated by self-service analysts. These users often need to oversee the use of computing resources,

and the governance of data—an issue made all the more clear by the recent focus on privacy and the GDPR

legislation in Europe. Some Trifacta customers choose the product not for its ease of use, but because it can be

used to ensure a reliable, auditable process for preparing data for legislative or administrative compliance.

3.2 Interface Evolution

Figure 1: Potter’s Wheel with its menu-driven interface

Data wrangling is fundamentally a pro-

gramming task: users must choose a se-

quence of transformations to raw data,

mapping it into a more usable and action-

able form. Many data preparation solu-

tions, including ours, formulate a domain-

specific language (DSL) for expressing the

various transformations needed, such as

formatting, filtering, aggregation, and in-

tegration operations. While writing high-

level DSL programs can be an attractive

alternative to writing low-level code in a more general language, it still imposes a technical burden. Instead, at

Trifacta we enable end users to express DSL statements through interactions with a graphical user interface.

A primary source of inspiration was Raman & Hellerstein’s Potter’s Wheel system [29]. Potter’s Wheel

involved a scalable table grid view for directly inspecting data, coupled with menu-driven commands (and ac-

companying modal dialogs) for applying transformations (Figure 1). These graphical commands were translated

into statements in an underlying DSL: a sequence of user commands generates a data transformation script.

Figure 2: Wrangler research prototype, with predictive interaction.

In lieu of menus, our Data Wrangler

research prototypes [18, 10] focused on

more direct manipulation interactions. We

initially explored interface gestures for ex-

pressing transformations, but this led to

ambiguity, as the same gesture might be

used for different transformations. For ex-

ample, if you select a span of text, do

you intend to extract, replace, or split up

the text? However, we realized that for

a range of simple interactions (e.g., row,

column, and text selection), typically only

a small number of transformations make

sense. This insight led us to an approach

called predictive interaction, analogous to auto-complete, in which simple gestures guide automated predictions

of which transformations to apply. The system searches over relevant DSL statements compatible with the user

selection and recommends those it believes will most improve the data [11]. To help users select among the

suggestions, we provided transformation summaries in a natural text format and visualizations that conveyed the

effect the transformation would have on the data table (Figure 2).

After founding Trifacta, we rebuilt the DSL and interface from the ground up. We maintained the predictive

interaction approach, including visual transform previews. We incorporated more powerful means of transform

customization. For example, predictions may be close to a user’s intent but not a perfect match, requiring further

refinement. Users also needed means to express custom calculation formulae. These requirements, combined

with a startup’s zeal for agility, led to us to an early version that surfaced recommendations directly as DSL code
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statements, alongside a code editor for drafting or modifying statements (Figure 3). This provided maximal

expressiveness, but required learning the syntax of our Wrangle DSL. While valuable for trained users, user

feedback indicated that this design imposed an unattractive learning curve for our target personas.

Figure 3: An early version of Trifacta Wran-

gler, with explicit DSL editing.

We also incorporated visual profiles: automatically-

generated summary visualizations that convey the shape and

structure of the data. We added histograms to the column head-

ers in the grid view, while also providing dedicated per-column

views with statistical summaries and type-specific visualizations,

such as maps for geospatial data and aggregate trends by month,

week, day, etc. for temporal data. Akin to interaction with table

cells, interaction with visual profiles trigger transform sugges-

tions, for example filtering to a selected data range.

As both our product and personas evolved, we further elabo-

rated the interface model with additional features. For example,

we sought to improve users’ ability to interpret transform sugges-

tions through the inclusion of a navigable gallery of small visual

summaries of suggested transformations. As shown in Figure 4, these cards pair DSL code snippets with before

& after comparisons to complement our existing visual previews.

Figure 4: Trifacta Wrangler with suggestion cards. The first sug-

gestion highlighted in blue is previewed in the main grid. Hovering

over an alternative suggestion (low in the list) yields a visual pre-

view of its effects.

To help users create new transforms

or refine suggested ones without writ-

ing textual code, we developed a trans-

form builder: a structured graphical edi-

tor for transformation authoring and mod-

ification. Builder scaffolds the transforma-

tion authoring process with input widgets

for each transform parameter (Figure 5).

Users can directly configure a transform

without having to learn the syntax of the

underlying DSL. Builder also provides in

situ help and documentation to further aid

the process. The transform types and pa-

rameters in builder are isomorphic to those

in Wrangle DSL, facilitating learning over

time. Finally, we found that many users

migrating from traditional tools like Ex-

cel wanted a menu bar to browse for func-

tionality; choosing an item from Trifacta’s

menu bar populates the builder with sug-

gested parameters.

3.3 Architecture Evolution

The original Potter’s Wheel tool was built as a desktop application, centered on a DSL of transforms that were

surfaced as menu commands [29]. (Many current data preparation tools are designed this way.) Potter’s Wheel

was distinguished architecturally by a unique ability to allow instantaneous interaction on large datasets. It would

begin scanning a file or table, and stream it immediately into an online reordering algorithm that bucketized the

incoming data [31]. Sample rows would immediately appear in the user interface from buckets biased toward

the current scrollbar position, giving the illusion of fluid scrolling over an unbounded table of data. Meanwhile,
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streaming anomaly detection algorithms could work in the background on the data while it was being scanned.

Figure 5: Menus and builder for explicit transformation. Choos-

ing a menu item opens and populates the builder interface on the

right, which provides a structured graphical editor over the DSL

code from Figure 3.

Ten years later, the academic Wran-

gler prototype [18] was implemented as

a browser-based Javascript application. It

accepted only very small datasets pasted

into a text buffer, but focused on generat-

ing not only output data, but output scripts

in one of a variety of external languages

including Javascript, Python, SQL and

MapReduce. This shift in primary focus

from data manipulation to code generation

was critical in the design of Trifacta.

When designing Trifacta’s first version

in 2012, we were interested in extending

the reach of Wrangler beyond casual web

use to a full range of challenging data-rich

scenarios. Our goals included tackling a

rich variety of data representations, from

unstructured to semi-structured and rela-

tional data. We were also determined to

address potentially unbounded volumes of

data—not just generating “big data” code

as a proof of concept, but working in a seamless and performant way in a big data ecosystem.

This led us to consider two deployment targets. The first was to host Trifacta Wrangler, this time as a scalable

service embedded in public cloud infrastructure. The second choice was to deliver an on-premises solution that

would integrate with the emerging “big data” stack. Architecturally, we believed that a design targeted to run as

a service would also work well on premises, so we essentially designed for running as a service. As it happened,

2012 was far too early for most enterprise customers to bring serious data to the cloud, so we opted to deliver

Trifacta as an on-premises “big data” solution first. However, when Google approached us four years later to

deliver Trifacta as a service called Google Cloud Dataprep, we were architecturally in a good position to meet

that challenge, and now we have offerings on all three public clouds.

3.3.1 Trifacta Architecture

The key goals of Trifacta’s coarse-grained architecture were to scale from a single-user desktop up to the biggest

SaaS deployments in the cloud, while preserving end-user simplicity and immediacy at every scale.

Trifacta was designed from the start as a three-tier solution, consisting of a Trifacta client built on browser

technology (currently both Javascript and WebAssembly), a middle tier of soft-state Trifacta services, and a

lower tier of commodity (non-Trifacta) services for persistence and big-data compute. The lower tier was de-

signed to be pluggable with a variety of cloud-hosted or on-premises solutions including the Apache big data

stack for on-premises deployment, and the native services of the popular public clouds. Key to this design was

the focus going back to Potter’s Wheel of having a DSL representation of user intent at the heart of the system,

and—like Wrangler—an ability to cross-compile that DSL to multiple candidate execution services.

The top (“client”) tier of Trifacta runs in a web browser, or in a desktop application using web components

via the Chromium framework. The Trifacta client combines an intelligent Transformer user interface with

a DSL cross-compiler—both written in Javascript—and also includes a C++-based in-memory query engine

called Photon [12] that is compiled to WebAssembly to run in the browser. The user interface includes many

of Trifacta’s characteristic visual profiling and ML-based predictive interaction [11] model for transformation,
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as well as the ability to manage flows and external datasets from a wide variety of remote sources: filesystems,

web-based storage, databases and so on. When a user identifies a dataset of interest, Trifacta’s middle tier fetches

the raw data and pushes it into the browser for initial visualization; if the dataset will not fit in browser memory,

the middle tier pushes a sample of the data into the browser. As the user manipulates data in the Transformer

interface, “recipes” (transformation scripts) are generated in Trifacta’s DSL, “Wrangle”. For every action in the

Transformer interface, the recipe up to that point is compiled into a Photon query plan, executed by Photon on

the browser-based data, and rendered on screen in a range of visualizations. This provides a rich, responsive

direct-manipulation experience in the browser, and ensures that users can fluidly explore and transform their data

without any backend processing. When the user chooses to run or schedule a job, the front-end cross-compiles

their recipe to the backend execution framework of choice in their deployment—the list of targets has evolved

over time as big data engines have waxed and waned in popularity, but current offerings at this date include

hosted editions of Photon, Apache Spark, Google Dataflow, AWS Elastic MapReduce, and Azure HDInsight.

Figure 6: Sketch of Trifacta Wrangler Enterprise.

Trifacta’s rich interface places significant demands on

Photon in the browser: nearly every user gesture generates a

multitude of transformation tasks (queries)—different tasks

for each different suggestion to the user—which all need

to be run through Photon at the speed of human interac-

tion to generate visual previews. This need for concur-

rent, responsive query processing is the primary reason we

built our own in-memory query engine. Some products for

data transformation use backend technologies like Spark

for their interactive processing. In designing Photon, we

evaluated Spark to back each client, but found that Spark’s

performance was far too unpredictable—in startup, latency

and especially memory pressure—to service our interactive

user experience. Instead, Photon was inspired by a num-

ber of similar high-performance in-memory query engines

including Hyper [20] (now embedded similarly in Tableau)

and Cloudera Impala [21]. An overview of the Photon ar-

chitecture is beyond the scope of this paper, but was pre-

sented in a conference talk viewable online [12].

Trifacta’s middle tier is a set of soft-state services that

power the frontend, and connect it to scalable data process-

ing and storage. First, there is a web application that routes requests and controls the user interface’s metadata,

including browsing and storage of a registry of user Flows, Datasets, scheduled jobs, collaborations with other

users, and so on. There is a jobrunner for running transformation jobs in big data engines in the lower tier, and a

monitoring service to track those jobs throug their lifecycle. There is a “virtual filesystem” service for abstract-

ing access to datasets from various storage systems, and a backend C++ Photon engine for running jobs that are

too large to run in the browser, but small enough to run most quickly in memory on a single machine. Finally

there is a machine learning (ML) service for serving predictions from a variety of models that power Trifacta’s

intelligent features. A non-exhaustive list of these ML features includes auto-detection of data types, recom-

mendation of transformation steps, recommendations for join keys, synthesis of regular expressions from textual

examples, and extraction/conversion of canonical patterns for variant data (e.g., for understanding a mixture of

date formats, log records, addresses and so on, and optionally standardizing them.)

The bottom tier of a Trifacta installation is not Trifacta code at all—it is a set of commodity infrastructure

services that provide persistence and compute resources. These include a relational database for maintaining

user metadata for the webapp, a scalable file system for unstructured dataset inputs and outputs, a dataflow

execution service (query processor) and native services for identity and access management (e.g., Kerberos).
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Trifacta also offers a REST API for integrating with third-party services and applications: for example for

publishing clean datasets to downstream analytics or charting tools, or for reading and writing metadata and job

lineage to third party data catalogs. This API is critical for Trifacta to “play nice” with other pieces of the data

stack, including infrastructure as well as downstream user-facing applications.

3.3.2 Agile Exploration of Big Data: Sampling

A key design imperative for Trifacta is to allow users to see and directly manipulate their data during trans-

formation, which requires a responsive user interface. For very large datasets, the only way to get responsive

interaction is to reduce the data to an efficient size—either via precomputation (summary structures like data

cubes) or via subsetting the data (using indexes or random samples). Because the process of data wrangling

transforms the dataset step-by-step, it is infeasible to assume precomputed structure like cubes or indexes are

available on the full dataset—these structures would have to be rebuilt after every transform step! Instead, for

data wrangling to both scale up and provide an immediate, responsive user experience, sampling is in some

form is quite natural. Data preparation products that do not offer built-in sampling either (a) do not provide a

responsive user experience, or (b) effectively force the user to do sampling by hand outside the product. Worse,

when users do their own sampling in many products, they often are only able to get a transformed copy of their

sample data—the wrangling work they author in the product is not transferrable to the larger dataset.

Potter’s Wheel scaled fluidly via a unique sampling technique integrated into the UI. The design was innova-

tive but not without problems: the sampling was a best-effort approach on streaming read, and had randomness

guarantees that were hard to interpret statistically. The user experience was unpredictable as well, in terms of

what data would actually be seen during scrolling: in particular, if a user saw a particular row at some scrollbar

location, it was not guaranteed that said row would still be there if they scrolled away and scrolled back [30].

Wrangler, by contrast, took a simple approach that put the burden on the user. Because Wrangler could only

consume as much data as the OS “clipboard” could cut-and-paste, users with big datasets had to downsample

their data themselves. Importantly, though, Wrangler could still be useful for users with big data sets: after

the user transformed their sample dataset to their satisfaction, Wrangler (like Potter’s Wheel before it) could

output a reusable transformation script to transform the full dataset using a variety of programming languages

(Javascript, Python, SQL, etc.) Hence while Wrangler itself did not scale, it provided a clear “contract” to the

user about how it could and could not help with large data sets.

Trifacta was designed to preserve Wrangler’s spirit of user clarity, but with significantly better scale and au-

tomation using an approach we call sample-to-scale. The goals of sample-to-scale are to guarantee a responsive

but rich visual experience, to put users in control of sampling in intuitive and low-friction ways, and to ensure

that users’ visual work is encoded in recipes that can be run at scale on unbounded amounts of data. To get

started quickly when opening a new dataset, Trifacta loads the “head” of the dataset into the browser by default,

while in the background Trifacta’s services are assembling a statistically robust simple random sample on the

fly. The user is alerted when the random sample is available, and can switch between samples in the browser

at any time. Because Trifacta user behaviors are captured in declarative recipes, the new sample can be run

through the existing recipe and rendered in the browser immediately, to allow the user to see how their recipe

to that point would work on a different sample. Trifacta also allows users to specify specific sampling meth-

ods including stratified sampling on particular columns, samples that ensure that certain values appear in their

output, or samples that ensure that certain anomalies of interest are in evidence so they can be addressed. For

UX consistency, Trifacta remembers the samples that users have worked with, and ensures that it is possible to

go back to prior states of transformation history with the same samples that were originally seen. Finally, when

users are satisfied with the properties of their transformed sample (or samples) they can run a full job, which

executes the recipe over the entire datasets and produces both an output file and a data profile.
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3.4 Deployments

Trifacta’s architecture allowed us to deploy it in multiple environments. There are three basic patterns.

In an on-premises deployment, the lowest tier is the customer’s existing installation of Hadoop and Spark

from vendors like Cloudera and Hortonworks. Trifacta’s middle tier is deployed on an “edge node” that sits

alongside the Hadoop cluster, and provides metadata storage via a relational database.

We also offer a similar cloud tenant deployment for customers whose data lives in the cloud. In this format,

Trifacta’s middle tier runs in Kubernetes-managed containers on behalf of the client, and native cloud services

(database, dataflow, filesystem) replace the metadata database and the various functions of Hadoop.

Trifacta can also be deployed as multitenant SaaS, as we do for Google Cloud Dataprep. In this configu-

ration, Trifacta’s middle tier is run in an elastic environment of containers managed with Kubernetes. Jobs are

compiled to run on elastic cloud dataflow services like Google Cloud Dataflow. Metadata is stored in a multi-

tenant cloud database. We have seen users of this deployment routinely transform petabytes of data and consume

thousands of compute hours. Yet they share the same agile experience in the browser enjoyed by smaller user

cases thanks to the immediacy of photon and the philosophy of sample-to-scale.

To stay connected to our roots in the academic Wrangler prototype, we maintain a free photon-based edition

of Trifacta Wrangler for use by the general public at https://www.trifacta.com. The global community of

data wranglers provides us with front-line awareness of how the software can be improved over time.

4 Conclusion

After years of scattered research, Self-Service Data Preparation has emerged as a significant category in the

data industry. It has a different technical focus than legacy data integration/ETL due to evolution in the users

who wrangle data, the variety of data they face, and the data systems they favor. Usage at major enterprises

demonstrates that new technologies improve processes for experienced users, and enable new classes of users to

wrangle their own data. The area remains important for further innovation across Databases, AI, PL and HCI;

we encourage our fellow researchers to further explore industry reports on the area [1, 5, 8, 23, 35] as well as

free offerings of data preparation solutions online to get a sense of issues in the field.
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