
Human-in-the-loop Rule Learning for Data Integration

Ju Fan

Renmin University of China

fanj@ruc.edu.cn

Guoliang Li

Tsinghua University

liguoliang@tsinghua.edu.cn

Abstract

Rule-based data integration approaches are widely adopted due to its better interpretability and effective

interactive debugging. However, it is very challenging to generate high-quality rules for data integration

tasks. Hand-crafted rules from domain experts are usually reliable, but they are not scalable: it is time

and effort consuming to handcraft many rules with large coverage over the data. On the other hand,

weak-supervision rules automatically generated from machines, such as distant supervision rules, can

largely cover the items; however, they may be very noisy that provide many wrong results. To address

the problem, we propose a human-in-the-loop rule learning approach with high coverage and high

quality. The approach first generates a set of candidate rules, and proposes a machine-based method

to learn a confidence for each rule using generative adversarial networks. Then, it devises a game-

based crowdsourcing framework to refine the rules, and develops a budget-constraint crowdsourcing

algorithm for rule refinement at affordable cost. Finally, it applies the rules to produce high-quality data

integration results.

1 Introduction

Despite that machine learning (ML)-based solutions are widely used for data integration tasks due to high effec-

tiveness, the rule-based approach is often preferred as it provides better interpretability that enables interactive

debugging. According to a survey [3] over 54 information extraction vendors, 67% of the tools are rule-based

while only 17% are ML-based. In addition, Walmart applies rule-based approaches in their product classification

to allow domain experts to improve the system [21]. For example, entity extraction aims to extract entity from

textual data. The rules like “C including e” can be used to extract entities, e.g., Canon 40D and Nikon D80, for

an entity type, say camera. In entity matching, it is usually necessary to generate blocking rules to discriminate

entity pairs that cannot match.

There are two widely-used methods to construct rules: hand-crafted rules from domain experts and weak-

supervision rules automatically generated by machines. Hand-crafted rules ask experts to write domain-specific

labeling heuristics based on their domain knowledge. However, hand-crafted rules are not scalable, especially

for large datasets, as it is time and effort consuming to handcraft many rules with large coverage. Therefore,

weak-supervision rules automatically generated by machines are introduced [19, 18], e.g., distant supervision

rules in information extraction. Weak-supervision rules can largely cover the items; however, they may be very

unreliable that provide wrong labels.

Copyright 2018 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for

advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any

copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

104

For effective rule generation, we first generate a set of candidate rules using machine algorithms and then

use a human-in-the-loop approach to select high-quality rules. There are two important objectives to select high-

quality rules. 1) high coverage: select the rules that cover as many items as possible to label the data. 2) high

quality: select the rules that induce few wrong labels on their covered items. It is easy to obtain the coverage

of the rules but it is hard to get the quality of the rules, as the ground-truth of items covered by the rules is

unknown. To address this problem, we propose a human-in-the-loop framework.

We first utilize a machine-based rule evaluation phase to provide a coarse evaluation on rule quality (Sec-

tion 3): how likely a rule can correctly label items. A naı̈ve evaluation method solely based on the training data

is far from sufficient, as the training data is usually very limited. To address the problem, we propose to infer

labels for the data items not included in the training set, and take inferred labels as the basis for rule quality

estimation. We fulfill the label inference by leveraging a recently proposed learning mechanism, generative

adversarial networks (GAN) [10, 23]. The idea is to learn a label generative model that captures what feature

characteristics of items can generate a particular label, using an adversarial game process. Moreover, we also

devise a recurrent neural networks (RNN) based encoder-decoder neural network model to realize the GAN

mechanism, and the model can alleviate the tedious burden of feature engineering.

However, rule evaluation based on inferred data labels may not be accurate because the inference is computed

based on the static training data and may not be effectively adapted to others. Thus, the framework devises an

active crowdsourcing approach (Section 4) for rule refinement to further select a subset of “high-quality” rules,

by leveraging the human intelligence from crowdsourcing. A straightforward method asks the crowd to answer

a rule validation task, which asks the crowd to check whether a rule with high coarsely-evaluated precision is

valid or invalid. However, the crowd may give low-quality answers for a rule validation task, because a rule may

cover many items and the workers cannot examine all the items covered by the rule. To alleviate this problem,

we can ask the crowd to answer an item checking task, which asks the crowd to give the label of an item and

utilizes the result to validate/invalidate rules that cover the item. However it is expensive to ask many item

checking tasks. To address this problem, we devise a two-pronged crowdsourcing task scheme that effectively

combines these two task types. We also develop a crowdsourcing task selection algorithm to iteratively select

rule-validation and item-checking tasks until the crowdsourcing budget is used up.

Finally, in the third phase, we use the selected rules to annotate data with labels (Section 5.1). The challenge

here is that an item can be covered by rules with diverse quality or even with conflicting labels. For example,

in entity extraction, one rule may provide label 1 while another one labels −1. To address this problem, we

develop an aggregation approach to consolidate the rules and provide high-quality labels for the items.

2 Overview of Human-in-the-loop Rule Learning for Data Integration

Most of the data integration tasks can be formalized as the problem that assigns a set of data items with one

of the two possible labels, −1 and 1. We also call items with label 1 (−1) positive (negative) items. Figure 1

illustrates two data integration tasks, entity matching and entity extraction. A more detailed entity matching

example is shown in Figure 2: It aims to identify any pair of product records (Figure 2(a)) is matched (i.e., being

the same product entity) or not. Here, we regard each item as a possible record pair, as shown in Figure 2(b).

Moreover, entity extraction task aims at identifying the entities (e.g., Canon 40D and Nikon D80) that belong to

a specific class (e.g., camera) from the unstructured text. Formally, given a target class, we can regard this task

as a labeling problem that assigns an entity with 1 if the entity is of the class, or −1 otherwise.

Rule-Based Data Integration Approach. The rule-based approach is often preferred as it provides better

interpretability that enables interactive debugging. More formally, a rule is defined as a function rj : E →
{L, nil} that maps item ei ∈ E into either a label L ∈ L or nil (which means rj does not cover ei). In

particular, let C(rj) = {e|rj(e) 6= nil} denote the covered item set of rj , C(R) = {e|∃r ∈ R|r(e) 6= nil}
denote the covered set of a rule setR, and li denote the true label of ei,

105

!"#$%$%& '#(#

)%*#+,*,-

'#(#

!"#$ %&#'(&)'*+

,,,

!"#$ -*+.'($+/$

./01'20)/.345 678!90/:

/)7; /;934;:;4! <= ./01'20)/.345

!"#$ %&#'(&)'*+

!"#$ %&''$%()

!"#$ %&#'(&)'*+

,,,

0)$1 -2$/3'+4

*($+ %&''$%()

/)7; ;>87)8!304)2345 584

5&6$#$(7&)&

8$+$9&)*9

:$);*93

7'</9'1'+&)*9

:$);*93

8$+$9&)$(7&)& 5&6$#<

'8!8 78<;7345)2345 /)7;2

!"#$%$%& '#(#

!"#$!"

!"#$!#

!"#$!$

=>

?>

?>

!"#$?@++*)&)$(

7&)& 5&6$#<

7&)&

!"#$<

!"#$<

0)$1

;%($(? :#(@A$%&

!"#$#%%&'(%)*+%%+,-,."/%%(01%%!"234"%%5#% 6/"78%%

9"#":$#,7%%(,/;34%%+37.%<=*%%!$4>/3::%%?3/3@A$#3

BB

BB

BB

'8!8 34!;5/8!304

!82C2

;%($(? ;D("#@($E%

!"#$%& !"#$%" '($)%*+& ,-*.%),-/

&"'(')*+,,"-) -./(' +0*

.84'3'8!; /)7;2

!"#$!" %&'

!"#$!# % ('

AA

-&+('(&)$!"#$

-*+<)9"/)*9

7&)&

Figure 1: Framework of Human-in-the-loop Rule Learning.

There are two widely-used ways to generate rules for data integration: hand-crafted rules from domain ex-

perts and weak-supervision rules automatically generated by machines. Hand-crafted rules ask users to write

domain-specific labeling heuristics based on their domain knowledge. However, hand-crafted rules are not scal-

able, especially for large datasets, as it is time and effort consuming to handcraft many rules with large coverage.

Weak-supervision rules automatically generated by machines are introduced [19, 18]. Weak-supervision rules

can largely cover the items; however, some of them may be very unreliable that provide wrong labels.

Example 1 (Weak-Supervision Rule): For entity extraction, distant supervision [17] is commonly used to

identify some textual patterns as extraction rules based on a small amount of known positive entities (label

+1) and negative ones (label −1). For example, considering the text “famous camera products including Canon

40D” and a known “camera” entity Canon 40D, we may obtain a rule that “C including e” indicates that e is

an entity of class C. For entity matching, blocking rules are also extensively used to eliminate the record pairs

that could not be matched. For example, a camera from manufacture Canon cannot be matched with another

one with Nikon, and thus we can use this rule to eliminate record pairs across Canon and Nikon.

Human-in-the-loop Rule Learning. Note that candidate rules, especially weak-supervision rules automatically

generated by machines, could be unreliable. For instance, pattern “C including e” for entity extraction may

not always indicate e is an entity of class C, and thus incur false positives. On the other hand, a bad blocking

rule, such as using color to discriminate products, may introduce many false negatives.

To formalize rule quality, we introduce rule confidence, denoted by λj , of a rule rj as the ratio of the items in

C(rj) correctly annotated with label L of rj , i.e., λj =

∑
ei∈C(rj)

 {li=L}

|C(rj)|
, where {li=L} is an indicator function

that returns 1 if li = L or 0 otherwise. Rule confidence is rather challenging to evaluate because most of the

data items are unlabeled (denoted as gray circles in the figure).

To address this challenge, we introduce a human-in-the-loop framework, as shown in Figure 1. The frame-

work takes a set of data items E = {e1, e2, . . . , em} as input, where a subset of data items is labeled with ground

truth as the training data. In particular, we use black (red) circles to represent data items with label 1 (−1), and

gray circles as unlabeled items. The framework also considers a set of candidate rules, which are constructed in

either hand-crafted or weak supervision ways. To effectively label data items, it utilizes a rule learning approach

that consists of the following three phases.

• Phase I - Rule Evaluation using Generative Adversarial Networks (GAN): This phase aims to utilize

machine-based methods to provide a coarse evaluation of rule confidence. A straightforward way is to

106

!" #$%&'()*+,-.

!" #$%&'()*+''#,-./0'1234$3

!5)33-/'60$'7-289':$4/;$$9

!<)33-/'=287$$9''60$ #,-./0'1234$3

!>)33-/'?@7'#,-./0'>@ ,6$A'

!B =287$$9'60$':$4/;$$9' #,-./0

(a) product records.

!"#$ %&'# ()*#+ !"#$ %&'# ()*#+

!" ! "#$%&#'()$ #$, -./01.23 45

!% ! "#$%&#*()$!& ! "#'%&#+($

!' ! "#$%&#,()$ #(, -.601.23 45

!) ! "#$%&#+()$!* ! "#*%&#+($

#+ , -./01.63 5 !", ! "#,%&#+()$

(b) items (record pairs).

!"#$%&'()*"+ ,#-+./(+

!"! "#$%&'()**+,- #"' #$' #%

!$! ".)/0'(1234$$5- #$' #&

!%! "4+235'(#6+7,8- #"' '(' #)' '*

!&! "92*:$*'(;$:,<$$5- #"' #&'('(' '+

(c) candidate blocking rules.

Figure 2: A running example for rule learning in entity matching task.

directly use the training data: a rule is of high confidence if it provides correct labels for most of the

items in the training set, or vice versa. However, in most of the data integration tasks, the training set is

usually far from sufficient to provide effective rule evaluation. To address this problem, our framework

infers labels for the unlabeled items using a recently proposed learning approach, generative adversarial

networks (GAN) [10, 23]. Intuitively, the objective is toward that one cannot easily distinguish whether an

item is annotated with the true or inferred label. Then, fed with the inferred labels, it provides the coarse

evaluation for rule quality. We will present the details of this phase in Section 3.

• Phase II - Rule Refinement by Crowdsourcing: Rule evaluation in the previous phase may not be accurate

because the inference is computed based on the static training data and may not be effectively adapted

to other items. We devise an active crowdsourcing approach for rule refinement that selects a subset

of “high-quality” rules from the candidates. A straightforward method asks the crowd to answer a rule

validation task, which asks the crowd to check whether a rule with high coarsely-evaluated confidence is

valid or invalid. However, the crowd may give low-quality answers for a rule validation task, because a

rule may cover many items and the workers cannot examine all the items covered by the rule. To alleviate

this problem, we can ask the crowd to answer an item checking task, which asks the crowd to give the label

of an item and utilizes the result to validate/invalidate rules that cover the item. However it is expensive

to ask many item checking tasks. To address this problem, we devise a two-pronged crowdsourcing task

scheme that effectively combines these two task types. We also develop a crowdsourcing task selection

algorithm to iteratively select rule-validation and item-checking tasks until the crowdsourcing budget is

used up. We discuss the techniques in this phase in Section 4.

• Phase III - Data Labeling using Rules: This phase applies a rule-based labeling model with the learned

rule confidence to obtain “high-quality” item labels. Note that some items may not be labeled by rules

either because no rules cover the items, or because the labels provided by rules with low confidence. Thus,

it calls for an aggregation approach to consolidate the rules. We discuss the approach in Section 5.1.

Figure 2(c) illustrates some “blocking rules” for entity matching. Each rule, represented by two keywords,

expresses how we discriminate the product pairs covered by the rule. For example, r1 : (sony, apple) expresses

the following blocking rule: any item, say e1 = {s1, s2}, that satisfies s1 containing sony and s2 containing

apple (or s1 containing apple and s2 containing sony) cannot be matched.

Example 2 (Human-in-the-loop Rule Learning for Entity Matching): We illustrate how the proposed frame-

work works for the entity matching task in Figure 2. In the first phase, based on a small training set {e5, e6, e8}
with known labels, the framework utilizes a GAN-based approach to infer labels for the unlabeled items. The

intuition is to learn a generative model that describes “how is a matched pair like” from the training set, and

then use the model to label the items. In the second phase, the framework can either ask the crowd to directly

validate a rule, e.g., whether (laptop, notebook) is effective for blocking, or utilize the crowd to check items

covered by rules. Given a crowdsourcing budget, the framework unifies these two task types to further refine rule

quality evaluation. Finally, the third phase determines whether to use the rules, so as to balance the following

107

tradeoff: using more rules may improve the coverage, while increase the risk of incurring error labels. Finally,

the framework outputs the labeled items as the result.

3 Machine-Based Rule Evaluation

Rule confidence evaluation heavily relies on data labels: a rule is of high confidence if it provides correct labels

for most of the items it covers, or vice versa. However, in most data integration tasks, the amount of labeled

items in the training data is usually very small, and thus evaluation solely using the training data is far from

sufficient. To address this problem, we propose to infer labels for the items not included in the training data, and

take this as the basis for rule confidence estimation. We fulfill item label inference by developing a GAN-based

approach. The objective is to learn a label generator that captures what feature characteristics of items can

generate a particular label (e.g., label 1). For example, records s2 and s3 in Figure 2(a) share representative

words, Apple and Pro, which can be taken as feature characteristics to generate positive labels. To obtain a

good generator, our approach introduces label discriminator, and lets it play an adversarial game with the label

generator. On the one hand, the generator tries to identify the items with a particular label that look like the ones

in our training data, so as to deceive the discriminator. On the other hand, the discriminator tries to make a clear

distinction on which items are from the training set and which are generated by the generator. Next, we first

present the formalization of our GAN-based learning model, and then introduce RNN-based neural networks

that fulfill the model.

GAN-based learning mechanism. We formalize the label generator as a probabilistic distribution over set

E that generates positive items, denoted by pG(ei|θ), where θ is the model parameters. Moreover, we use

ptrue(ei) to represent the ground-truth distribution of positive items in E . Among all items, the larger the

ptrue(ei) (pG(ei|θ)) is, the more likely that ei can be sampled as a true (generated) positive item. Naturally, the

objective of model learning is to compute a good θ that approximates generator pG(ei|θ) to the ground-truth

ptrue(ei): the positive items that our generator generates are almost the same as the true positive items.

We utilize the generative adversarial networks to effectively learn parameters θ. We introduce a discriminator

model D(ei) as a binary classifier that determines whether ei is a true positive item. More specifically, D(ei)
outputs a probability that ei is a true positive item instead of a generative one. The generator and discriminator

play an adversarial game as follows. On the one hand, the generator samples items from E according to the

current distribution pG(ei|θ), and mixes the sampled items with the true positive ones in the training data. On

the other hand, the discriminator tries to identify which ones in the mixed item set are true positive items.

Formally, this can be formalized as a minimax game with a value function V (G,D).

min
G

max
D

V (G,D) = Eei∼ptrue(ei)[logD(ei)] + Eei∼pG(ei|θ)[1− logD(ei)], (5)

where G and D are the generator and the discriminator model respectively. We defer the discussion on how to

derive them later, and focus on presenting how generator and discriminator optimize their objectives now.

Discriminator plays as a maximizer: given the current pG(ei), it tries to train D(ei) by maximizing the

probability that assigns correct label for both training and generative positive items, i.e.,

D∗ = argmax
D

(

Eei∼ptrue(ei)[logD(ei)] + Eei∼pG(ei|θ)[1− logD(ei)]
)

. (6)

Generator plays as a minimizer: given the current D(ei), it tries to deceive the discriminator to believe that

a generated ei is a true positive item. To this end, it trains G by optimizing the following objective

G∗ = argmin
G

(

Eei∼ptrue(ei)[logD(ei)] + Eei∼pG(ei|θ)[1− logD(ei)]
)

(7)

= argmax
θ

(

Eei∼pG(ei|θ)[logD(ei)]
)

108

!"#$%&'

(&#$%&'

!"

!""#$

!#

%&'

!$!%

(#)*+

&" &# &% &$

!""#$,)*-''+ %&' .)"/'"

(a) An encoder-to-decoder mode (ENC-DEC).

!" !# !$

!""#$ %&' (#)*+

%# %$

&$'"

%&'

! !

,

-)*.''+

&$'#
&$'$

(b) ENC-DEC with attention.

Figure 3: A RNN-based encoder-decoder neural network model for entity matching.

To learn the parameters of generator and discriminator, we can iteratively use the optimization principle,

such as stochastic gradient descent (SGD) used in the existing works [10, 23].

RNN-based encoder-decoder model. To apply the GAN mechanism, we need to derive both generative distri-

bution pG(ei|θ) and the discriminator D(ei). For pG(ei|θ), we can use a method of first computing the likelihood

G(ei, θ) that ei is a positive item given model θ, and then applying a softmax function, i.e.,

pG(ei|θ) =
exp(G(ei, θ))

∑

e′∈E exp(G(e′, θ))
(8)

Then, we design neural networks that fulfill both G(ei, θ) and D(ei). We introduce a recurrent neural

networks (RNN) based encoder-decoder model [4], as illustrated in Figure 3. For ease of presentation, we use

the entity matching task to illustrate how it works. Intuitively, given an item ei with record pair (si1 , si2), the

model computes the probability that si2 can be “translated” from si1 . To this end, we model si1 as a sequence of

words, x = {x1, x2, . . . , x|si1 |}, where xt is an embedding representation (i.e., numeric vector) of the t-th word

in the sequence. Similarly, we model si2 as a sequence of words, y = {y1, y2, . . . , y|si2 |}. For simplicity, we

introduce the model for computing G(ei, θ), and it can also be applied to compute D(ei).
We employ a Recurrent Neural Network (RNN) composed by Long Short-Term Memory (LSTM) units

to realize the encoder, where each LSTM unit ht encodes the hidden state of the t-th word in si1 , i.e., ht =
fLSTM(xt,ht−1), where fLSTM denotes the output of the LSTM neural network (we omit its derivation due to the

space limit. Please refer to [9] for more details).

The decoder takes the encoded hidden states {h1,h2, . . . ,h|si1 |
} as input, and computes G(ei, θ) as the joint

probability G(ei, θ) = P (y|h1,h2, . . . ,h|si1 |
) of “decoding” y from the hidden states. A simple way is to also

employ an RNN composed by LSTM units (Figure 3(a)), where each unit is the hidden state of decoding word

yt in si2 . Then, we compute the joint probability by decomposing it into a sequence of conditional probabilities

P (y|h1,h2, . . . ,h|si1 |
) =

|si2 |
∏

t=1

P (yt|y<t), (9)

where y<t is the “context” words before yt, i.e., y<t = {y1, . . . yt−1}. To obtain P (yt|y<t), we let d0 = h|si1 |
,

and then compute

P (yt|y<t) = Softmax(dt); dt = fLSTM(yt,dt−1) (10)

where Softmax is the softmax neural-network layer that maps hidden state dt to a probabilistic distribution

on the word vocabulary. We may also extend the decoding process with attention mechanism, as illustrated in

Figure 3(b). The idea is to consider different importance of the encoded hidden states {h1,h2, . . . ,h|si1 |
} when

decoding word yt by introducing a weight αt,r, i.e.,

d̃t =

|si1 |
∑

r=1

hr · αt,r =

|si1 |
∑

r=1

hr
exp(dt · hr)

∑

r′ exp(dt · hr′)
(11)

109

Based on this, the decoder computes the conditional probability as P (yt|y<t) = Softmax([dt; d̃t]), where

[dt; d̃t] is a concatenation of hidden states dt and d̃t.

Example 3 (Machine-based rule evaluation using GAN and ENC-DEC): Figure 3 provides examples of the

encoder-decoder model. As shown in Figure 3(a), the model uses LSTM units to encode “Apple Pro Black” into

hidden states h1 to h3, and then uses another set of LSTM units to compute the probability of decoding “Apple

Macbook Pro Laptop” from the hidden states. Figure 3(b) illustrates the attention-based model. For instance, for

decoding word Pro, it considers weights α3,1 to α3,3. Intuitively, weight α3,3 would be smaller than α3,2, as Pro

is not very relevant to word Black. We use this encoder-decoder model for computing G(ei, θ) and D(ei), and

then apply the GAN mechanism on the training set (e.g., the items with blue color in Figure 2(b)). Intuitively,

given a true positive item e5 = (s2, s3), we may use GAN to generate another positive item e7 = (s2, s5).
Finally, based on the generated labels, we compute rule confidence for machine-based rule evaluation.

4 Rule Refinement by Game-Based Crowdsourcing

The generative model G(ei, θ) learned in the previous section can be used as an estimate of the probability that

ei is a positive item. Then, given a rule rj with label L, we can estimate its confidence, denoted by λ̂j as

λ̂j =







∑
ei∈C(R) G(ei,θ)

|C(R)| , L = 1

1−

∑
ei∈C(R) G(ei,θ)

|C(R)| , L = −1
(12)

Based on Equation (12), a simple way for rule refinement is to select rules with larger confidence estimates.

However, despite of using GAN and RNN, the estimation may not be accurate enough, because the training set

is static and thus the inferred labels may not be adapted to other items. Thus, this section presents our active

crowdsourcing approach named CROWDGAME for more effective rule refinement.

4.1 Overview of CrowdGame

The objective of CROWDGAME is to leverage the human intelligence in crowdsourcing for selecting high-

confidence rules. A naı̈ve crowdsourcing approach is to refine the estimation in Equation (12) by sampling

some items covered by a rule, checking them through crowdsourcing, and updating the estimation. However, as

the crowdsourcing budget, i.e., the affordable number of tasks, is usually much smaller than item set size, such

“aimless” item checking without focusing on specific rules may not be effective.

Two-pronged task scheme. To address the problem, we devise a two-pronged crowdsourcing task scheme that

first leverages the crowd to directly validate a rule and then applies item checking tasks on validated rule. To

this end, we introduce another type of task, rule validation. For example, a rule validation task asks the crowd

to validate whether rule r1 (sony, apple) in Figure 2(c) is good at discriminating products. Intuitively, human

is good at understanding rules and roughly judges the validity of rules, e.g., r1 is valid as the brand information

(sony and apple) is useful to discriminate products. However, it turns out that rule validation tasks may produce

false positives because the crowd may not be comprehensive enough as they usually neglect some negative cases

where a rule fails. Thus, the fine-grained item checking tasks are also indispensable.

Crowdsourcing task selection. Due to the fixed amount of crowdsourcing budget, there is usually a tradeoff

between the rule-validation tasks and item-checking tasks. On the one hand, assigning more budget on rule

validation will lead to fewer item checking tasks, resulting in less accurate evaluation on rules. On the other

hand, assigning more budget on item checking, although being more confident on the validated rules, may miss

the chance for identifying more good rules.

110

!"

!#

!$

!%

&"

&#

&$

&%

&'

&(

&)

&*

(a) RULEGEN (1st round).

!"

!#

!$

!%

&"

&#

&$

&%

&'

&(

&)

&*

(b) RULEREF (1st round).

!"

!#

!$

!%

&"

&#

&$

&%

&'

&(

&)

&*

(c) RULEGEN (2nd round).

!"

!#

!$

!%

&"

&#

&$

&%

&'

&(

&)

&*

(d) RULEREF (2nd round).

Figure 4: Illustration of game-based crowdsourcing.

We address the challenge by employing two groups of crowd workers from a crowdsourcing platform: one

group answers rule validation tasks to play a role of rule generator (RULEGEN), while the other group answers

item checking tasks to play a role of rule refuter (RULEREF). Then, we unify these two worker groups by

letting them play a game. On the one hand, RULEGEN tries to elect some rules R from the candidates RC for

crowdsourcing via rule validation tasks, such that the elected rules can not only cover more items but also incur

less errors. It is easy to examine the coverage of a rule. For the second factor, we take the machine-based rule

estimation in Equation (12) to evaluate whether a rule may incur less errors. On the other hand, RULEREF tries

to refute its opponent RULEGEN by checking some items that provide enough evidence to “reject” more rules in

R. Note that, although also using a game-based strategy, the above process is essentially different from GAN,

as it focuses on task selection instead of model (parameters) learning.

Example 4 (Crowdsourced Rule Refinement): Figure 4 shows how CROWDGAME works under a crowd-

sourcing budget with 4 affordable tasks, which is like a round-based board game between two players. For

simplicity, we apply an extreme refuting strategy that one counter-example is enough to refute all rules covering

the item, and we consider all rules have the same estimated confidence obtained from Equation (12). In the first

round, RULEGEN selects r3 for rule validation, as it has a large item coverage. However, its opponent RULEREF

finds a “counter-example” e5 using an item checking task. Based on this, RULEREF refutes both r3 and r4 and

rejects their covered items to maximize the loss. Next in the second round, RULEGEN selects another crowd-

validated rule r1, while RULEREF crowdsources e1, knows e1 is correctly labeled, and finds no “evidence” to

refute r1. As the budget is used up, we findR2 = {r1} as the refined rule set.

4.2 Crowdsourcing Task Selection

Formalization of rule set loss. Intuitively, We want to select rules with two objectives. 1) high coverage: we

would like to select the rules that cover as many items as possible. 2) high confidence: we also prefer the rules

that induce few wrong labels on their covered items. For simplicity, we focus on the case that there is only one

kind of label L provided by the rules, e.g., L = −1 for blocking rules in entity matching.

We formalize the objectives by defining the loss of a rule set Φ(R) as the following combination of the

number of uncovered items |E| − |C(R)| and the expected number of errors
∑

ei∈C(R) P (li 6= L): Φ(R) =
γ(|E| − |C(R)|)+ (1− γ)

∑

ei∈C(R) P (li 6= L), where γ is a parameter between [0, 1] to balance the preference

among coverage and quality. For example, let us consider two rule sets R1 = {r1} and R2 = {r1, r3}. R1

covers three items without any errors, while R2 covers more (6 items) with wrongly labeled items (e5 and e7).

Note that entity matching prefers quality over coverage on the blocking rules, and thus one needs to set a small

parameter γ, say γ = 0.1 to achieve this preference. Obviously, under this setting, we have Φ(R1) < Φ(R2).
It is non-trivial to estimate P (li 6= L). To solve the problem, we use rule confidence to quantify the

probability P (li 6= L). Moreover, we extend the notation λ̂j to λ̂j(Eq), which denotes an estimator of λj for

rule rj based on a set Eq of items checked by the crowd, and Λ̂R(Eq) = {λ̂j(Eq)} is the set of estimators,

111

each of which is used for evaluating an individual rule rj ∈ R. We will discuss how to estimate λ̂j(Eq) later.

Let Ri ⊆ R denote the set of rules in R covering item ei, i.e., Ri = {rj ∈ R|rj(ei) 6= nil}. For ease of

presentation, we denote P (li = L) as P (ai) if the context is clear. Then, we introduce Φ(R|Eq) to denote the

estimated loss based on a set Eq of items checked by the crowd, i.e.,

Φ(R|Eq) = γ(|E| − |C(R)|) + (1− γ)
∑

ei∈C(R)

1− P (ai|Λ̂
Ri

(Eq))

= γ|E| − (1− γ)
∑

ei∈C(R)

{

P (ai|Λ̂
Ri

(Eq))−
1− 2γ

1− γ

}

(13)

The key in Equation 13) is P (ai|Λ̂
Ri
(Eq)), which captures our confidence about whether li = L (ei is

correctly labeled) given the observations that ei is covered by ruleRi with confidence ΛR
i
(Eq). We discuss how

to compute P (ai|Λ̂
Ri
(Eq)) in our technical report [24].

Minimax optimization task selection. Now, we are ready to formalize a minimax objective in the aforemen-

tioned RULEGEN-RULEREF game. Let Rq and Eq respectively denote the sets of rules and items, which are

selected by RULEGEN and RULEREF, for crowdsourcing. Given a crowdsourcing budget constraint k on num-

ber of crowdsourcing tasks, the minimax objective is defined as

OR
∗
q ,E

∗
q = min

Rq

max
Eq

Φ(Rq|Eq) ⇐⇒ max
Rq

min
Eq

∑

ei∈C(Rq)

{

P (ai|Λ̂
Ri(Eq))−

1− 2γ

1− γ

}

(14)

such that task numbers |Rq|+ |Eq| ≤ k.

Based on Equation (14), we can better illustrate the intuition of CROWDGAME. Overall, CROWDGAME aims

to find the optimal task sets R∗q and E∗q from the choices with constraint |Rq|+ |Eq| ≤ k. RULEGEN prefers to

validate rules with large coverage and high confidence to minimize the loss. On the contrary, RULEREF aims

to check items which are helpful to identify low-confidence rules that cover many items, so as to effectively

maximize the loss. These two players iteratively select tasks until all crowdsourcing budget is used up.

Our minimax objective is fulfilled by asking crowdsourcing tasks, as bothRq and Eq defined in Equation (14)

depend on the crowd answers. We develop an iterative crowdsourcing algorithm. The algorithms takes as

input a candidate rule set RC, an item set E , and a crowdsourcing budget k. It produces the generated rule

set Rq as output. Overall, the algorithm runs in iterations until k tasks have been crowdsourced, where each

iteration consists of a RULEGEN step and a RULEREF step. RULEGEN selects rule-validation tasks. We apply

a commonly-used batch crowdsourcing mode: We select a b-sized rule set R
(t)
q that achieves the maximization

in Equation (14) at the most. We can prove that the problem of selecting such a rule set is NP-hard, and design

an approximate algorithm with theoretical bound to solve it [24]. Similarly, RULEREF selects a batch of b item

checking tasks E
(t)
q , so as to achieve the minimization.

Rule Confidence Updating Model. To achieve minimax task selection, we need to estimate rule confidence.

Initially, we can use the machine-based estimation in Equation (12) as prior. Then, we can use item checking

crowdsourcing tasks to continuously update the estimation as more items are checked. The key challenge is how

to effectively integrate the crowd’s evaluation from rule validation and item checking tasks into the prior. To

address this problem, we utilize the Bayesian estimation technique [2]. The basic idea is that we use the crowd

results as “data observation” to adjust the prior, so as to obtain a posterior of rule confidence.

Example 5 (Crowdsourcing Task Selection): Consider the example in Figure 4 with k = 4 and b = 1. In

the 1st iteration, RULEGEN and RULEREF respectively select r3 and e5 for crowdsourcing. Based on the

crowdsourcing answers, the algorithm updates confidence estimates and continues to the 2rd iteration as shown

in Figures 4(c) and 4(d). After these two iterations, the budget is used up, and the algorithm returnsRq = {r1}.

112

5 Discussions

5.1 Data Labeling using Rules

This section discusses how we annotate an item ei given a set Ri of rules with the estimated confidence ΛR
i
=

{λ̂j} that covers ei. We first present how to extend crowdsourced rule refinement to more general labeling rules,

and then discuss some methods for rule aggregation.

Extension of labeling rules. We discuss a more general case that some rules in the candidates RC annotate

label−1 (called negative rules for simplicity) while others annotate 1 (called positive rules). Consider our entity

extraction example that annotates 1 if an entity belongs to a specific class or −1 otherwise. In this case, an item,

e.g., an entity-class pair (Canon 40D, camera) could be covered by conflicting rules (textual patterns), e.g., a

L2 rule “camera such as Canon 40D” and a L1 rule “cameras not including Canon 40D”. We devise a simple

extension by taking the refinement of positive and negative rules independently. More specifically, we split the

crowdsourcing budget into two parts: one for positive rules and the other for negative ones. Then, we apply the

techniques described in Section 4 to separately learn positive/negative rules using crowdsourcing.

Rule label aggregation methods. After the above rule refinement, an item ei is now covered by conflicting

rules, i.e., a setR+
i of positive rules and a setR−i of negative rules. We determine label of ei based on these two

rule set, following the two steps below.

1) Low-confidence rule elimination: We prune rules with λ̂j < 1−2γ
1−γ as they are useless as shown in Equa-

tion (14). For example, considering a setting that γ = 0.1, we would not consider rules with λ̂j ≤ 0.89, and

they would increase the overall loss. As a result, if all rules covering item ei satisfying the pruning criterion, we

leave ei unlabeled, as no candidate rule is capable of labeling the item.

2) Confidence-aware label aggregation: After the elimination step, if R+
i or R−i of item ei is not empty, an

label aggregation method should be applied. A simple method is to simply follow the label of the rule with the

maximum estimated confidence, i.e., r∗ = argrj∈R+
i ∪R

−
i
max {λ̂j}. A more sophistication aggregation method

is to apply weighted majority voting [6], where rule confidence is taken the weight in voting. We may also apply

a discriminative deep learning model (e.g., multi-layer perceptron, MLP) that takes rules inR+
i andR−i as input

and trains the aggregation weights, like the existing works [19, 18].

5.2 Candidate Rule Generation for Different Data Integration Tasks

Our human-in-the-loop approach can be easily applied to different data integration tasks. The key of the appli-

cation is to devise task-specific methods for generating candidate rules. Next, we discuss some representative

data integration tasks as follows.

Entity matching task. For entity matching, we want to generate candidate blocking rules annotating label −1
to record pairs. Although blocking rules are extensively studied (see a survey [5]), most of the approaches are

based on structured data, and there is limited work on generating blocking rules from unstructured text. The idea

of our approach is to automatically identify keyword pairs, which are effective to discriminate record pairs, from

raw text. For example, in Figure 2(c), keyword pairs, such as (Canon, Panasonic) and (Camera, Telephone),
tend to be capable of discriminating products, because it is rare that records corresponding to the same electronic

product mention more than one manufacture name or product type.

The challenge is how to automatically discover these “discriminating” keyword pairs. We observe that such

keyword pairs usually have similar semantics, e.g., manufacture and product type. Based on this intuition, we

utilize word embedding based techniques [15, 16], which are good at capturing semantic similarity among words.

We first leverage the word2vec toolkit1 to generate an embedding (i.e., a numerical vector) for each word, where

words with similar semantics are also close to each other in the embedding space. Then, we identify keyword

1https://code.google.com/p/word2vec/

113

pairs from each record pair (sa, sb) using the Word Mover’s Distance (WMD) [14]. WMD optimally aligns

words from sa to sb, such that the distance that the embedded words of sa “travel” to the embedded words of sb
is minimized (see [20] for details). Figure 1 illustrates an example of using WMD to align keywords between

two records, where the alignment is shown as red arrows. Using the WMD method, we identify keyword pairs

from multiple record pairs and remove the ones with frequency smaller than a threshold.

Relation extraction task. Relation extraction aims to discover a target relation of two entities in a sentence or

a paragraph, e.g., spouse relation between Kerry Robles and Damien in a sentence “Kerry Robles was living

in Mexico City with her husband Damien”. We can use keywords around the entities as rules for labeling 1
(entities have the relation) or−1 (entities do not have the relation). For example, keyword husband can be good

at identifying the spouse relation (i.e, labeling 1), while brother can be regarded as a rule to label −1. We

apply the distant supervision [17], which is commonly used in relation extraction, to identify such rules, based

on a small amount of known positive entity pairs and negative ones. For example, given a positive entity pair

(Kerry Robles, Damien), we identify words around these entities, e.g., living, Mexico City and husband

between them (stop-words like was and with are removed), as the rules labeling +1. Similarly, we can identify

rules that label −1 from negative entity pairs.

Schema matching task. Schema matching aims to discover the semantic correspondences between the columns

of two tables [7]. For example, consider a table A with address information building and street, and another

table B with columns bld and st. Schema matching aims to find column correspondences, (A.building, B.bld)
and (A.street, B.st). In this task, we can generate candidate rules using both schema- and instance-level in-

formation. For schema-level, we can learn string transformation rules from some examples of matched column

names, such as (street, st) using techniques in [1]. For instance-level, we can devise different similarity func-

tions, such as Jaccard, edit distance, and etc., over entity sets of any two columns, e.g., if the Jaccard similarity

between the sets is larger than a threshold (e.g., 0.8), the two columns are matched.

Data repairing task. There are many data repairing rules, such as editing rules [8], fixing rules [22], Sherlock

rules [13], similarity-based rules [11] and knowledge-based rules [12]. However these rules are data dependent,

and they usually work well for some datasets. To produce high-quality, high-coverage, and general rules, we can

mix these rules together and use our techniques to effectively select high-quality rules.

6 Conclusion and Future Works

In this paper, we present how to learn high-quality rules for data integration. We first discuss how to generate

a set of candidate rules, and then propose a GAN-based method to learn a confidence for each rule. Next we

devise a game-based crowdsourcing framework to refine the rules. Finally, we discuss how to apply the rules to

address data integration problems.

Next we discuss some research challenges in rule learning for data integration. First, there are many machine

learning techniques, e.g., deep learning and reinforcement learning, but they are hard to interpret. So a challenge

is how to use machine learning techniques to generate explainable rules. Second, most rules are data dependent

and it is hard to transfer the rules from one dataset to another. Thus a challenge is to devise a transfer-learning

based method that can apply the knowledge of rule learning on one dataset to another dataset. Third, most rules

rely on human knowledge, e.g., synonyms and common senses. A challenge is to build a common-sense base

and utilize the common senses to help data integration.

References

[1] A. Arasu, S. Chaudhuri, and R. Kaushik. Learning string transformations from examples. PVLDB, 2(1):514–525,

2009.

114

[2] C. M. Bishop. Pattern recognition and machine learning, 5th Edition. Information science and statistics. Springer,

2007.

[3] L. Chiticariu, Y. Li, and F. R. Reiss. Rule-based information extraction is dead! long live rule-based information

extraction systems! In ACL, pages 827–832, 2013.

[4] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase

representations using RNN encoder-decoder for statistical machine translation. In EMNLP, pages 1724–1734, 2014.

[5] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey. IEEE Trans. Knowl.

Data Eng., 19(1):1–16, 2007.

[6] J. Fan, G. Li, B. C. Ooi, K. Tan, and J. Feng. icrowd: An adaptive crowdsourcing framework. In SIGMOD, pages

1015–1030, 2015.

[7] J. Fan, M. Lu, B. C. Ooi, W. Tan, and M. Zhang. A hybrid machine-crowdsourcing system for matching web tables.

In ICDE, pages 976–987, 2014.

[8] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu. Towards certain fixes with editing rules and master data. VLDB J.,

21(2):213–238, 2012.

[9] F. A. Gers, J. Schmidhuber, and F. A. Cummins. Learning to forget: Continual prediction with LSTM. Neural

Computation, 12(10):2451–2471, 2000.

[10] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. C. Courville, and Y. Bengio.

Generative adversarial nets. In NIPS, pages 2672–2680, 2014.

[11] S. Hao, N. Tang, G. Li, J. He, N. Ta, and J. Feng. A novel cost-based model for data repairing. IEEE Trans. Knowl.

Data Eng., 29(4):727–742, 2017.

[12] S. Hao, N. Tang, G. Li, and J. Li. Cleaning relations using knowledge bases. In ICDE, pages 933–944, 2017.

[13] M. Interlandi and N. Tang. Proof positive and negative in data cleaning. In ICDE, 2015.

[14] M. J. Kusner, Y. Sun, N. I. Kolkin, and K. Q. Weinberger. From word embeddings to document distances. In ICML,

pages 957–966, 2015.

[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word representations in vector space. CoRR,

abs/1301.3781, 2013.

[16] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of words and phrases and

their compositionality. In NIPS, pages 3111–3119, 2013.

[17] M. Mintz, S. Bills, R. Snow, and D. Jurafsky. Distant supervision for relation extraction without labeled data. In

ACL, pages 1003–1011, 2009.

[18] A. Ratner, S. H. Bach, H. R. Ehrenberg, J. A. Fries, S. Wu, and C. Ré. Snorkel: Rapid training data creation with

weak supervision. PVLDB, 11(3):269–282, 2017.

[19] A. J. Ratner, C. D. Sa, S. Wu, D. Selsam, and C. Ré. Data programming: Creating large training sets, quickly. In

NIPS, pages 3567–3575, 2016.

[20] Y. Rubner, C. Tomasi, and L. J. Guibas. A metric for distributions with applications to image databases. In ICCV,

pages 59–66, 1998.

[21] P. Suganthan, C. Sun, K. Gayatri, H. Zhang, F. Yang, N. Rampalli, S. Prasad, E. Arcaute, G. Krishnan, R. Deep,

V. Raghavendra, and A. Doan. Why big data industrial systems need rules and what we can do about it. In SIGMOD,

pages 265–276, 2015.

[22] J. Wang and N. Tang. Towards dependable data repairing with fixing rules. In SIGMOD, 2014.

[23] J. Wang, L. Yu, W. Zhang, Y. Gong, Y. Xu, B. Wang, P. Zhang, and D. Zhang. IRGAN: A minimax game for unifying

generative and discriminative information retrieval models. In SIGIR, pages 515–524, 2017.

[24] J. Yang, J. Fan, Z. Wei, G. Li, T. Liu, and X. Du. Rule generation using game-based crowdsourcing. In Technical

Report, 2018. http://iir.ruc.edu.cn/˜fanj/papers/crowdgame-tr.pdf.

115

