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Abstract

Collaborative data science activities are becoming pervasive in a variety of communities, and are often
conducted in teams, with people of different expertise performing back-and-forth modeling and analysis
on time-evolving datasets. Current data science systems mainly focus on specific steps in the process
such as training machine learning models, scaling to large data volumes, or serving the data or the
models, while the issues of end-to-end data science lifecycle management are largely ignored. Such
issues include, for example, tracking provenance and derivation history of models, identifying data pro-
cessing pipelines and keeping track of their evolution, analyzing unexpected behaviors and monitoring
the project health, and providing the ability to reason about specific analysis results. In this article, we
present an overview of a unified provenance and metadata management system, called PROVDB, that
we have been building to support lifecycle management of complex collaborative data science work-
flows. PROVDB captures a large amount of fine-grained information about the analysis processes and
versioned data artifacts in a semi-passive manner using a flexible and extensible ingestion mechanism;
provides novel querying and analysis capabilities for simplifying bookkeeping and debugging tasks for
data analysts; and enables a rich new set of capabilities like identifying flaws in the data science process.

1 Introduction

Over the last two decades, we have seen a tremendous increase in collaborative data science activities, where
teams of data engineers, data scientists, and domain experts work together to analyze and extract value from
increasingly large volumes of data. This has led to much work in industry and academia on developing a wide
range of tools and techniques, including big data platforms, data preparation and wrangling tools, new and
sophisticated machine learning techniques, and new environments like Jupyter Notebooks targeted at data scien-
tists. However, the widespread use of data science has also exposed the shortcomings of the overall ecosystem,
and has brought to the forefront a number of critical concerns about how data is collected and processed, and
how insights or results are obtained from those. There are numerous examples of biased and unfair decisions
made by widely used data science pipelines, that are often traced back to flaws in the training data, or mistakes
or assumptions made somewhere in the process of constructing those pipelines. Data analysis processes are rel-
atively easy to “hack” today, increasingly resulting in a general lack of trust in published results (“fake news”)
and many incidents of unreproducible and/or retracted results.
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Addressing these concerns requires a holistic approach to conducting, auditing, and continuously monitor-
ing collaborative data science projects. This however is very challenging, because of the fundamentally ad hoc
nature of collaborative data science. It typically features highly unstructured and noisy datasets that need to be
cleaned and wrangled; amalgamation of different platforms, tools, and techniques; significant back-and-forth
among the members of a team; and trial-and-error to identify the right analysis tools, algorithms, machine learn-
ing models, and parameters. The data science pipelines are often spread across a collection of analysis scripts,
possibly across different systems. Metadata or provenance information about how datasets were generated, in-
cluding the programs or scripts used for generating them and/or values of any crucial parameters, is often lost.
As most datasets and analysis scripts evolve over time, there is also a need to keep track of their versions over
time; using version control systems (VCS) like git can help to some extent, but those don’t provide sufficiently
rich introspection capabilities.

Lacking systematic platforms to support collaborative data science, we see users manually track and act upon
such information. For example, users often manually keep track of which derived datasets need to be updated
when a source dataset changes; they use spreadsheets to list which parameter combinations have been tried
out during the development of a machine learning model; and so on. This is however tedious and error-prone,
requires significant discipline from the users, and typically lacks sufficient coverage.

In this article, we present an overview of our PROVDB system, for unified management of all kinds of
metadata about collaborative data science workflows that gets generated during the analysis processes. PROVDB
is being developed under the umbrella of the DataHub project [13], where our overarching goal is to understand
and investigate the major pain points for data engineers and scientists today, and develop tools and techniques
for managing a large number of datasets, their versions over time, and derived data products and for supporting
the end-to-end data science lifecycle. PROVDB is designed to be a standalone system, with complementary
functionality to dataset versioning tools developed in [14, 28, 33, 17, 15]. Specifically, PROVDB manages
and enables querying information about: (a) version lineages of data, scripts, and results (collectively called
artifacts), (b) data provenance among artifacts which may or may not be structured, and (c) workflow metadata
on derivations and dependencies among artifact snapshots, and (d) other context metadata that may be collected
(e.g., summary logs). By making it easy to mine and query this information in a unified fashion, PROVDB
enables a rich set of functionality to simplify the lives of data scientists, to make it easier to identify and eliminate
errors, and to decrease the time to obtain actionable insights.

To accommodate the wide variety of expected use cases, PROVDB adopts a “schema-later” approach, where
a small base schema is fixed, but users can add arbitrary semistructured information (in JSON) for recording
additional metadata. The specific data model we use generalizes the standard W3C PROV data model, extended
to allow flexibly capturing a variety of different types of information including versioning and provenance infor-
mation, parameters used during experiments or modeling, statistics gathered to make decision, analysis scripts,
and notes or tags. We map this logical data model to a property graph data model, and use the Neo4j graph
database to store the information.

PROVDB features a suite of extensible provenance ingestion mechanisms. The currently supported ingestors
are targeted at users who conduct the data analysis using either UNIX Shell or Jupyter Notebooks. In
the former case, user-run shell commands to manipulate files or datasets are intercepted, and the before- and
after-state of the artifacts is analyzed to generate rich metadata. Several such ingestors are already supported and
new ingestors can be easily registered for specific commands. For example, such an ingestion program is used
to analyze log files generated by Caffe (a deep learning framework) and to generate metadata about accuracy
and loss metrics (for learned models) in a fine-grained manner. PROVDB also features APIs to make it easy to
add provenance or context information from other sources.

Finally, PROVDB features many different mechanisms for querying and analyzing the captured data. In ad-
dition to being able to use the querying features of Neo4j (including the Cypher and Gremlin query languages),
PROVDB also features two novel graph query operators, graph segmentation and graph summarization, that are
geared towards the unique characteristics of provenance information.
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2 ProvDB Architecture

PROVDB is a stand-alone system, designed to be used in conjunction with a dataset version control system
(DVCS) like git or DataHub [13, 18, 17, 14] (Figure 1). The DVCS will handle the actual version manage-
ment tasks, and the distributed and decentralized management of individual repositories. A repository consists
of a set of versions, each of which is comprised of a set artifacts (scripts, datasets, derived results, etc.). A
version, identified by an ID, is immutable and any update to a version conceptually results in a new version with
a different version ID (physical data structures are typically not immutable and the underlying DVCS may use
various strategies for compact storage [14]). New versions can also be created through the application of trans-
formation programs to one or more existing versions. We assume the DVCS supports standard version control
operations including CHECKOUT a version, COMMIT a new version, create a BRANCH, MERGE versions, etc.
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Versioned Project Artifacts Provenance Model Storage
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Query Execution Engine
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Operator 
Cypher Engine 

(Neo4j)

Query Facilities Frontend

Introspection Monitoring Cypher

Versioned File Store
(Git / other DVCS)

Ingestion

CLI Toolkit

Git Wrapper

Pipeline

Data Science Team analyze project lifecycle
via rich facilities

Figure 1: Architecture Overview of PROVDB

Most of the PROVDB mod-
ules are agnostic to the DVCS
being used, as long as appropri-
ate pipelines to transfer versioning
metadata and context data are set
up. The current implementation is
based on git, in which case, the
repository contents are available as
files for the users to operate upon;
the users can run whichever analysis
tools they want on those after check-
ing them out, including distributed
toolkits like Hadoop or Spark.

Broadly speaking, the data main-
tained across the system can be cate-
gorized into:

(a) raw data that the users can directly access and analyze including the datasets, analysis scripts, and any
derived artifacts such as trained models, and

(b) metadata or provenance information transparently maintained by the system, and used for answering
queries over the versioning or provenance information.

Fine-grained record-level provenance information may or may not be directly accessible to the users depending
on the ingest mechanism used. Note that, the split design that we have chosen to pursue requires duplication of
some information in the DVCS and PROVDB. We believe this is a small price to pay for the benefits of having
a standalone provenance management system.

PROVDB Ingestion module is a thin layer on top of the DVCS (in our case, git) that is used to capture
the provenance and metadata information. This layer needs to support a variety of functionality to make it easy
to collect a large amount of metadata and provenance information, with minimal overhead to the user (Sec. 4).
The PROVDB instance itself is a separate process, and currently uses the Neo4j graph database for provenance
model storage; we chose Neo4j because of its support for the flexible property graph data model, and graph
querying functionality out-of-the-box (Sec. 3). The data stored inside PROVDB can be queried using Cypher
through the Neo4j frontend; PROVDB query execution engine also supports two novel types of segmentation
and summarization queries that we breifly describe in Section 5. Richer queries can be supported on top of these
low-level querying constructs; PROVDB currently supports a simple form of continuous monitoring query, and
also has a visual frontend to support a variety of provenance queries (Section 5).
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Figure 2: Illustration of Provenance Data Model and Query Operators in Data Science Lifecycles

3 Provenance Data Model and Provenance Graphs

The ingested provenance over the lifecycle of a data science project naturally forms a directed acyclic graph1,
combining heterogeneous information including a version graph representing the artifact changes, a workflow
graph reflecting the derivations of those artifact versions, and a conceptual model graph showing the involvement
of problem solving methods in the project [21, 30]. To represent the provenance graph and keep our discussion
general to other provenance systems, after originally using a custom model, we switched to using the W3C
PROV data model [35], which is a standard interchange model for different provenance systems. We use the
core set of PROV data model shown in Fig. 2(b). There are three types of vertices (V) in the provenance graph
in our context:

a) Entities (E) are the project artifacts (e.g., files, datasets, scripts) which the users work on and talk about;

b) Activities (A) are the system or user actions (e.g., train, git commit, cron jobs) which act upon or
with entities over a period of time, [ti, tj);

c) Agents (U) are the parties who are responsible for some activity (e.g., a team member, a system component).

Among the vertices, there are five types of directed edges (E):

i) An activity started at time ti often uses some entities (‘used’, U⊆ A× E);

ii) then some entities were generated by the same activity at time tj (tj ≥ ti) (‘wasGeneratedBy’, G⊆ E× A);

iii) An activity is associated with some agent during its period of execution (‘wasAssociatedWith’, S⊆ A× U);

iv) Some entity’s presence can be attributed to some agent (‘wasAttributedTo’, A⊆ E× U); and

v) An entity was derived from another entity (’wasDerivedFrom’, D⊆ E× E), such as versions of the same
artifact (e.g., different model versions in v1 and v2 in Fig. 2(a)).

1We use versioning to avoid cyclic self-derivations of the same entity and overwritten entity generations by some activity.
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In the provenance graph, both vertices and edges have a label to encode their vertex type in {E , A, U} or edge
type in {U , G , S , A, D}. All other ingested provenance records are modeled as properties, that are ingested by
a set of configured project ingestors during activity executions and represented as key-value pairs.

PROV standard defines various serializations of the concept model (e.g., RDF, XML, JSON) [37]. In our
system, we use a physical property graph data model to store it, as it is more natural for the users to think of the
artifacts as nodes when writing queries using Cypher or Gremlin. It is also more compact than RDF graph for
the large amount of provenance records, which are treated as literal nodes.

Definition 1 (Provenance Graph): Provenance in a data science project is represented as a directed acyclic
graph, G(V,E, λv, λe, σ, ω), where vertices have three types, V= E∪ A∪ U , and edges have five types, E=
U∪ G∪ S∪ A∪ D . Label functions, λv: V7→ {E , A, U}, and λe: E7→ {U , G , S , A, D} are total functions
associating each vertex and each edge to its type. In a project, we refer to the set of property types as P and
their values as O, then vertex and edge properties, σ: V× P7→ O and ω: E× P7→ O, are partial functions from
vertex/edge and property type to some value.

Example 1: In Fig. 2(a), Alice and Bob work together on a classification task to predict face IDs given an
image. Alice starts the project and creates a neural network by modifying a popular model. She downloads
the dataset and edits the model definitions and solver hyperparameters, then invokes the training program with
specific command options. After training the first model, she examines the accuracy in the log file, annotates
the weight files, then commits a version using git via PROVDB command-line interface (CLI, Fig. 1). As the
accuracy of the first model is not ideal, she changes the network by editing the model definition, trains it again
and derives new log files and weight parameters. However the accuracy drops, and she turns to Bob for help.
Bob examines what she did, trains a new model following best practices by editing the learning rate in solver
configuration in version v1.

Behind the scenes, PROVDB tracks users’ activities, ingests provenance, and manages versioned artifacts
(e.g., datasets, models, solvers). In the Fig. 2(a) tables, we show ingested information in detail: a) history of
user activities (e.g., the first train command uses model v1 and solver v1 and generates logs v1 and weights v1),
b) versions and changes of entities (e.g., weights v1, v2 and v3) and derivations among those entities (e.g., model
v2 is derived from model v1), and c) provenance records as associated properties to activities and entities (e.g.,
dataset is copied from some url, Alice changes a pool layer type to AVG in v2, accuracy in logs v3 is 0.75).

Example 2: In Fig. 2(c), we show the corresponding provenance graph of the project lifecycle illustrated in
Example 1. Names of the vertices (e.g., ‘model-v1’, ‘train-v3’, ‘Alice’) are made by using their representative
properties and suffixed using the version ids to distinguish different snapshots. Activity vertices are ordered from
left to right w.r.t. the temporal order of their executions. We label the edges using their types and show a subset
of the edges in Fig. 2(a) to illustrate usages of five relationship types. Note there are many snapshots of the same
artifact in different versions, and between the versions, we maintain derivation edges ‘wasDerivedFrom’ (D) for
efficient versioning storage. The property records are shown as white boxes but not treated as vertices in the
property graph.

4 Capturing and Ingesting Provenance

The biggest challenge for a system like PROVDB is capturing the requisite provenance and context information.
Transparent instrumentation approaches, where the information is captured with minimal involvement from the
users are most likely to be used in practice, but are difficult to develop (since they must cover different user
environments) and may generate large amounts of frivolous information (since they cannot be targetted). On
the other hand, approaches that require explicit instrumentation or hints from the users can capture more useful
information, but require significant discipline from the users and rarely work in the long run. We use a hybrid
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approach in PROVDB, where we transparently instrument some of the most common data science environments,
but allow users to explcitly instrument and send additional information to the PROVDB server. Here we briefly
enumerate the ingestion mechanisms that PROVDB currently supports, which include a general-purpose UNIX
shell-based ingestion framework, ingestion of DVCS versioning information, and a mechanism called file views
which is intended to both simplify workflow and aid in fine-grained provenance capture.

Shell command-based Ingestion Framework: The provenance ingestion framework is centered around the
UNIX commandline shell (e.g., bash, zsh, etc). We provide a special command called provdb that users
can prefix to any other command, and that triggers provenance ingestion (shell extensions can be leveraged to do
this automatically for every command). Each run of the command results in creation of a new implicit version,
which allows us to capture the changes at a fine granularity. In other words, we commit a new version before
and after running every such command. These implicit versions are kept separate from the explicit versions
created by a user through use of git commit, and are not visible to the users. A collection of ingestors is
invoked by matching the command that was run, against a set of regular expressions registered a priori along
with the ingestors. PROVDB schedules ingestor to run before/during/after execution the user command, and
expects the ingestor to return a JSON property graph consisting of a set of key-value pairs denoting properties of
the snapshots or derivations. Note that, it is vital that we take a snapshot before running the command in order
to properly handle modifications made using external tools (e.g., text editors) or commands not prefixed with
provdb. That way we can capture a modification even if we don’t know the specific operation(s) that made that
modification. An ingestor can also provide record-level provenance information, if it is able to generate such
information.

A default ingestor handles abitrary commands by parsing them following POSIX standard (IEEE 1003.1-
2001) to annotate utility, options, option arguments and operands. For example, mkdir -p dir is parsed as
utility mkdir, option p and operand dir. Concatenations of commands are decomposed and ingested separately,
while a command with pipes is treated as a single command. If an external tool has been used to make any edits
(e.g., a text editor), an implicit version is created next time provdb is run, and the derivation information is
recorded as missing.

Caffe (Deep Learning Framework) Ingestor: PROVDB also supports several specialized ingestion plugins
and configurations to cover important data science workflows. In particular, it has an ingestor capable of ingest-
ing provenance information from runs of the Caffe deep learning framework. If the command is recognized
as a caffe command, then the ingestor parses the configuration file (passed as an argument to the command)
to extract and record the learning hyperparameters. The ingestor also extracts accuracy and loss scores on an
iteration-by-iteration basis from the result logging file. All of these are attached as properties to the coarse-
grained derivation edge that is recorded in the provenance graph.

File Views: PROVDB provides a functionality called file views to assist dataset transformations and to ingest
provenance among data files. Analogous to views in relational databases, a file view defines a virtual file as a
transformation over an existing file. A file view can be defined either: (a) as a script or a sequence of commands
(e.g., sort | uniq -c, which is equivalent to an aggregate count view), or (b) as an SQL query where the
input files are treated as tables. For instance, the following query counts the rows per label that a classifier
predicts wrongly comparing with ground truth.
provdb fileview -c -n=’results.csv’ -q=’

select t._c2 as label, count(*) as err_cnt

from {testfile.csv} as t, {predfile.csv} as r

where t._c0 = r._c0 and t._c2 != r._c2 group by t._c2’

The SQL feature is implemented by loading the input files into an in-memory sqlite database and executing
the query against it. Instead of creating a view, the same syntax can be used for creating a new file instead,
saving a user from coding similar functionality.

File views serves as an example of a functionality that can help make the ad hoc process of data science
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more structured. Aside from making it easier to track dependencies, SQL-based file views also enable capturing
record-level provenance by drawing upon techniques developed over the years for provenance in databases.

User Annotations: Apart from plugin framework, PROVDB GUI allows users to organize, add, and annotate
properties, along with other query facilities. The user can annotate project properties, such as usage descriptions
for collaborations on artifacts, or notes to explain rationale for a particular derivation. A user can also annotate
a property as parameter and add range/step to its domains, which turns a derivation into a template and enables
batch run of an experiment. For example, a grid search of a template derivation on a start snapshot can be
configured directly in the UI. Maintaining such user annotations (and file views discussed above) as the datasets
evolve is a complicated issue in itself [25].

5 Storing, Querying and Analyzing Provenance Graphs

Provenance graphs represent a unique and new usage scenario for graph databases, that necessitates development
of new techniques both for storing and for querying them. In particular, the following characteristics of the
provenance graph need to be considered:

• Versioned Artifacts: Each entity is a point-in-time snapshot of some artifact in the project, e.g., the
query ‘accuracy of model-v1’ discusses a particular snapshot of the model artifact, while ‘what are the
common updates for solver before train’ refer to the artifact but not an individual snapshot. This
impacts both storage and declarative query facilities. First, given the potentially large properties associated
with the nodes in the graph (e.g., scripts, notebooks, log files), the standard model of storing each node
independently of the others does not work because of the verbosity and duplication in the properties of the
data [29]. Second, any high-level query languages must support versioning as a first-class construct [18].

• Evolving Workflows: Data science lifecycle is exploratory and collaborative in nature, so there is no static
workflow skeleton, and no clear boundaries for individual runs in contrast with workflow systems [20];
e.g., the modeling methods may change (e.g., from SVM to neural networks), the data processing steps
may vary (e.g., split, transform or merge data files), and the user-committed versions may be mixed with
code changes, error fixes, thus may not serve as query boundaries. Thus, we cannot assume the existence
of a workflow skeleton and we need to allow flexible boundary conditions.

• Partial Knowledge in Collaboration: Each team member may work on and be familiar with a subset
of artifacts and activities, and may use different tools or approaches, e.g., in Example 1, Alice and Bob
use different ways to improve accuracy. When querying retrospective provenance of the snapshots or
understanding activity process over team behaviors, the user may only have partial knowledge at query
time, thus may find it difficult to compose the right query. Hence, it is important to support queries with
partial information reflecting users’ understanding and induce correct result.

• Verboseness for Usage: In practice, the provenance graph would be very verbose for humans to use and in
large volume for the system to manage. Depending on the granularity, storing the graphs could take dozens
of GBs within several minutes [9]. With similar goals to recent research efforts [22, 34, 36, 2], our system
aims to let the users understand the essence of provenance at their preference level by transforming the
provenance graph. R4: The query facility should be scalable to large graph and process queries efficiently.

In addition, most of the provenance query types of interest involve paths [1], and require returning paths
instead of answering yes/no queries like reachability [22]. Writing queries to utilize the lifecycle provenance is
beyond the capabilities of the pattern matching query (BPM) and regular path query (RPQ) support in popular
graph databases [7, 6, 42]. For example, answering ‘how is today’s result file generated from today’s data file’
requires a segment of the provenance graph that includes not only the mentioned files but also others that are not

32



(a) Diff Artifacts (Result logging files for two deep neural net-
works)

(b) Cypher Query to Find Related Changes via Derivations

Figure 3: Illustration of PROVDB interfaces

on the lineage paths and the users may not know at all (e.g., ‘a configuration file’); answering ‘how do the team
members typically generate the result file from the data file?’ requires summarizing several query results of the
above query while keeping the result meaningful from provenance perspective.

This lack of proper query facilities in modern graph databases not only limits the value of lifecycle prove-
nance systems for data science, but also of other provenance systems. The specialized query types of interest in
the provenance domain [1, 22] had often led provenance systems to implement specialized storage systems [38]
and query interfaces [16, 4] on their own [20]. Recent works in the provenance community propose various
task-specific graph transformations, which are essentially different template queries from the graph querying
perspective; these include grouping vertices together to handle publishing policies [34], aggregating similar ver-
tices to understand commonalities and outliers [36], segmenting a provenance graph for feature extractions in
cybersecurity [2].

To handle the wide variety of usage scenarios, PROVDB currently supports several different mechanisms to
interact with the provenance information, that we briefly discuss next.

5.1 Interactive Queries using Cypher

In a collaborative workflow, provenance queries to identify what revision and which author last modified a line
in an artifact are common (e.g., git blame). PROVDB allows such queries at various levels (version, artifact,
snapshot, record) and also allows querying the properties associated with the different entities (e.g., details of
what parameters have been used, temporal orders of commands, etc). In fact, all the information exposed in the
property graph can be directly queried using the Neo4j Cypher query language, which supports graph traversal
queries and aggregation queries.

The latter types of queries are primarily limited by the amount of context and properties that can be au-
tomatically ingested. Availability of this information allows users to ask more meaningful queries like: what
scikit-learn script files contain a specific sequence of commands; what is the learning accuracy curve of a caffe
model artifact; enumerate all different parameter combinations that have been tried out for a given learning
task, and so on.

Many such queries naturally result in one or more time series of values (e.g., properties of an artifact over
time as it evolves, results of “diff” queries discussed below); PROVDB supports a uniform visual interface for
plotting such time series data, and comparing two different time series (see below for an example).

Illustrative Example: Figure 3 shows the PROVDB Web GUI using a caffe deep learning project. In this
project, 41 deep neural networks are created for a face classification task. The user tries out models by editing
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and training models. In Fig 3(a), an introspection query asks how different are two trained models (model-0 and
9). Using the GUI, the user filters artifacts, and diffs their result logging files. In the right side query result pane,
the ingested properties are diffed. The caffe ingestor properties are numerical time series; using the provided
charting tool, the user plots the training loss and accuracy against the iteration number. From the results, we
can see that model-9 does not train well in the beginning, but ends up with similar accuracy. To understand
why, a deep diff between the two can be issued in the GUI and complex Cypher queries can be used as well.
In Fig. 3(b), the query finds previous derivations and shared snapshots, which are training config files; more
introspection can be done by finding changed hyperparameters.

5.2 Graph Segmentation and Summarization Queries

As discussed above, the extant graph query languages are not rich enough to support common provenance
analysis queries. One of our goals with ongoing work is to initiate a more systematic study of abstract graph
operators that modern graph databases need to support to be a viable option for storing provenance graphs. By
observing the characteristics of the provenance graph in analytics lifecycle and identifying the requirements for
the query facilities, we propose two new graph operators as a starting point:

Segmentation: A very important provenance query type of interest is querying ancestors and descendants of
entities [20, 22]. In our context, the users introspect the lifecycle and identify issues by analyzing dependencies
among snapshots. Lack of a workflow skeleton and clear boundaries makes the provenance query more difficult.
Moreover the user may not be able to specify all interested entities in a query due to partial knowledge. We
propose a segmentation operator that takes sets of source and destination entities, and induces other important
unknown entities satisfying a set of specified boundary criteria.

Example 3: In Fig. 4(a), we show two examples of segmentation query. In Query 1 (Q1), Bob was interested
in what Alice did in version v2. He did not know the details of activities and the entities Alice touched, instead
he set {dataset}, {weight} as querying entities to see how the weight in Alice’s version v2 was connected to the
dataset. He filtered out uninterested edge types (.e.g, A, D) and excluded actions in earlier commits (e.g., v1)
by setting the boundaries as two activities away from those querying entities. The system found connections
among the querying entities, and included vertices within the boundaries. After interpreting the result, Bob knew
Alice updated the model definitions in model. On the other hand, Alice would understand how Bob improved
the accuracy and learn from him. In Query 2 (Q2), instead of learned weight, accuracy property associated log
entity is used as querying entity along with dataset. The result showed Bob only updated solver file.

Summarization: In workflow systems, querying the workflow skeleton (aka prospective provenance) is an im-
portant use case [12] and one of the provenance challenges [1]. In our context, even though a static workflow
skeleton is not present, summarizing a skeleton of similar processing pipelines, showing commonalities and
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identifying abnormal behaviors are very useful query capabilities. However, general graph summarization tech-
niques [26] are not applicable to provenance graphs due to the subtle provenance meanings and constraints of
the data model [35, 34, 36]. Hence, we propose a summarization operator with multi-resolution capabilities for
provenance graphs. It operates over query results of segmentation and allows tuning the summary by ignoring
vertex details and characterizing local structures, and ensures provenance meaning through path constraints.

Example 4: In Fig. 4(b), an outsider to the team (e.g., auditor, new team member) wanted to see the activity
overview in the project. Segmentation queries (e.g., Q1, Q2 in Fig. 4(a)) only show individual trails of the
analytics process at the snapshot level. The outsider issued a summarization query, Query 3 (Q3), by specifying
the aggregation over three types of vertices (viewing Alice and Bob as an abstract team member, ignoring details
of files and activities), and defining the provenance meanings as a 1-hop neighborhood. The system merged Q1

andQ2 into a summary graph. In Fig. 4(b), the vertices suffixed name with provenance types to show alternative
generation process, while edges are labeled with their frequency of appearance among segments. The query
issuer would vary the summary conditions at different resolutions.

See [31] for a more in-depth discussion, including new query execution techniques for such queries.

6 Related Work

There has been much work on scientific workflow systems over the years, with some of the prominent systems
being Kepler, Taverna, Galaxy, iPlant, VisTrails, Chimera, Pegasus, to name a few2. These systems often
center around creating, automating, and monitoring a well-defined workflow or data analysis pipeline. But
they cannot easily handle fast-changing pipelines, and typically are not suitable for ad hoc collaborative data
science workflows where clear established pipelines may not exist except in the final, stable versions. Moreover,
these systems typically do not support the entire range of tools or systems that the users may want to use,
they impose a high overhead on the user time and can substantially increase the development time, and often
require using specific computational environment. Further, many of these systems require centralized storage
and computation, which may not be an option for large datasets.

Many users find version control systems (e.g., git, svn) and related hosted platforms (e.g., GitHub,
GitLab) more appropriate for their day-to-day needs. However, these systems are typically too “low-level”,
and don’t support capturing higher-level workflows or provenance information. The versioning API supported
by these systems is based on a notion of files, and is not capable of allowing data researchers to reason about
data contained within versions and the relationships between the versions in a holistic manner. PROVDB can be
seen as providing rich introspection and querying capabilities those systems lack.

Recently, there is emerging interest in developing systems for managing different aspects in the modeling
lifecycle, such as building modeling lifecycle platforms [11], accelerating iterative modeling process [45], man-
aging developed models [44, 33], organizing lifecycle provenance and metadata [21, 30, 41], auto-selecting
models [27], hosting and discovering reference models [43, 32], and assisting collaboration [24]. Issues of
querying evolving and verbose provenance effectively are typically not considered in that work.

There has also been much work on provenance, with increasing interest in the recent years. The work
in that space can be roughly categorized in two types: data provenance (aka fine-granularity) and workflow
provenance (aka coarse-granularity). Data provenance is discussed in dataflow systems, such as RDBMS, Pig
Latin, and Spark [19, 3, 23], while workflow provenance studies address complex interactions among high-level
conceptual components in various computational tasks, such as scientific workflows, business processes, and cy-
bersecurity [20, 20, 12, 9]. Unlike retrospective query facilities in scientific workflow provenance systems [20],
their processes are predefined in workflow skeletons, and multiple executions generate different instance-level

2We omit the citations for brevity; a more detailed discussion with citations can be found in [30, 31]
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provenance run graphs and have clear boundaries. Taking advantages of the skeleton, there are lines of research
for advanced ancestry query processing, such as defining user views over such skeleton to aid queries on verbose
run graphs [16], executing reachability query on the run graphs efficiently [8], storing run graphs generated by
the skeletons compactly [5], and using visualization as examples to ease query construction [10].

Most relevant work is querying evolving script provenance [39, 40]. Because script executions form clear run
graph boundary, query facilities to visualize and difference execution run graphs are proposed. In our context,
as there are no clear boundaries of run graphs, it is crucial to design query facilities allowing the user to express
the logical run graph segments and specify the boundary conditions first. Our method can also be applied on
script provenance by segmenting within and summarizing across evolving run graphs.

7 Conclusion

In this paper, we presented our approach to simplify lifecycle management of ad hoc, collaborative analysis
workflows that are becoming prevalent in most application domains today. Our system, PROVDB, is based
on the premise that a large amount of provenance and metadata information can be captured passively, and
analyzing that information in novel ways can immensely simplify the day-to-day processes undertaken by data
analysts. Our initial experience with using this prototype for a deep learning workflow (for a computer vision
task) shows that even with limited functionality, it can simplify the bookkeeping tasks and make it easy to
compare the effects of different hyperparameters and neural network structures. However, many interesting and
hard systems and conceptual challenges remain to be addressed in capturing and exploiting such information to
its fullest extent. In particular, there are many potential ways to use the rich provenance and context metadata
that PROVDB collects to answer explanation queries to understand the origins of a piece of data or introspection
queries to identify practices like p-value hacking. Continuous monitoring of this data can also help identify
issues during deployment of data science pipelines (e.g., concept drifts). In addition, the large volumes of
versioned provenance information requires development of new graph data management systems, including new
graph query operators, that we are actively investigating in ongoing work.
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abstracting PROV graphs. In Intl. Provenance and Annotation Workshop (IPAW), 2014.

[35] P. Missier and L. Moreau. PROV-dm: The PROV data model. W3C recommendation, W3C, 2013.
http://www.w3.org/TR/2013/REC-prov-dm-20130430/.

[36] L. Moreau. Aggregation by provenance types: A technique for summarising provenance graphs. In Pro-
ceedings Graphs as Models, GaM@ETAPS 2015, London, UK, 11-12 April 2015., pages 129–144, 2015.

[37] L. Moreau and P. Groth. PROV-overview. W3C note, W3C, 2013. http://www.w3.org/TR/2013/NOTE-
prov-overview-20130430/.

[38] K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M. I. Seltzer. Provenance-aware storage systems. In
Proceedings of the 2006 USENIX Annual Technical Conference, 2006.

[39] L. Murta, V. Braganholo, F. Chirigati, D. Koop, and J. Freire. noworkflow: Capturing and analyzing
provenance of scripts. In International Provenance and Annotation Workshop (IPAW), 2014.

[40] J. F. Pimentel, J. Freire, V. Braganholo, and L. Murta. Tracking and analyzing the evolution of provenance
from scripts. In International Provenance and Annotation Workshop (IPAW), 2016.

[41] S. Schelter, J. Boese, J. Kirschnick, T. Klein, and S. Seufert. Automatically tracking metadata and prove-
nance of machine learning experiments. In NIPS Workshop on ML Systems (LearningSys), 2017.

[42] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. PGQL: a property graph query language. In Proc.
of the Intl. Workshop on Graph Data Management Experiences and Systems (GRADES), 2016.

[43] J. Vanschoren, J. N. van Rijn, B. Bischl, and L. Torgo. Openml: networked science in machine learning.
SIGKDD Explorations, 15(2):49–60, 2013.

[44] M. Vartak, H. Subramanyam, W.-E. Lee, S. Viswanathan, S. Husnoo, S. Madden, and M. Zaharia. Mod-
elDB: a system for machine learning model management. In Workshop on Human-In-the-Loop Data
Analytics, HILDA@SIGMOD, 2016.
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