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Abstract

To support analytics on massive graphs such as online social networks, RDF, Semantic Web, etc. many
new graph algorithms are designed to query graphs for a specific problem, and many distributed graph
processing systems are developed to support graph querying by programming. A main issue to be ad-
dressed is how RDBMS can support graph processing. And the first thing is how RDBMS can support
graph processing at the SQL level. Our work is motivated by the fact that there are many relations stored
in RDBMS that are closely related to a graph in real applications and need to be used together to query
the graph, and RDBMS is a system that can query and manage data while data may be updated over
time. To support graph processing, we propose 4 new relational algebra operations, MM-join, MV-join,
anti-join, and union-by-update. Here, MM-join and MV-join are join operations between two matrices
and between a matrix and a vector, respectively, followed by aggregation computing over groups, given
a matrix/vector can be represented by a relation. Both deal with the semiring by which many graph
algorithms can be supported. The anti-join removes nodes/edges in a graph when they are unnecessary
for the following computing. The union-by-update addresses value updates to compute PageRank, for
example. The 4 new relational algebra operations can be defined by the 6 basic relational algebra op-
erations with group-by & aggregation. We revisit SQL recursive queries and show that the 4 operations
with others are ensured to have a fixpoint, following the techniques studied in DATALOG, and we en-
hance the recursive with clause in SQL’99. RDBMSs are capable of dealing with graph processing in
reasonable time.

1 Introduction

Graph processing has been extensively studied to respond the needs of analyzing massive online social net-
works, RDF, Semantic Web, knowledge graphs, biological networks, and road networks. A large number
of graph algorithms have been used/proposed/revisited. Such graph algorithms include BFS (Breadth-First
Search) [20], Connected-Component [57], shortest distance [20], topological sorting [34], PageRank [42],
Random-Walk-with-Restart [42], SimRank [31], HITS [42], Label-Propagation [55], Maximal-Independent-
Set [46], and Maximal-Node-Matching [52], to name a few. In addition to the effort to design efficient graph
algorithms to analyze large graphs, many distributed graph processing systems have been developed using the
vertex-centric programming. A recent survey can be found in [44]. Such distributed graph processing systems

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

6



provide a framework on which users can implement graph algorithms to achieve high efficiency. Both new
graph algorithms and distributed graph processing systems focus on efficiency. On the other hand, graph query
languages have also been studied [69, 15, 24, 28, 38, 28]. In addition, DATALOG has been revisited to support
graph analytics [63, 62, 61, 59, 60, 17].

In this work, we investigate how RDBMS can support graph processing at SQL level for the following
reasons. First, RDBMS is to manage various application data in relations as well as to query data in relations
efficiently using the sophisticated query optimizer. A graph may be a labeled graph with node/edge label, and
it is probable that additional information is associated with the graph (e.g. attributed graphs). A key point is
that we need to provide a flexible way for users to manage and query a graph together with many relations
that are closely related to the graph. The current graph systems are developed for processing but not for data
management. We need a system to fulfill both. Second, there is a requirement to query graphs. In the literature,
many new graph algorithms are studied to query a specific graph problem. And the current graph processing
systems developed do not have a well-accepted graph query language for querying graphs. In other words, it
needs coding, when there is a need to compute a graph algorithm based on the outputs of other graph algorithms.

We revisit recursive SQL queries [22] and show that a large class of graph algorithms can be supported by
SQL in RDBMSs in [74]. The issue of supporting graph algorithms in RDBMS at SQL level is the issue how
recursive SQL can be used to support graph algorithms. There are two main concerns regarding recursive SQL
queries. One is a set of operations that are needed to support a large pool of graph algorithms and can be used
in recursive SQL queries. The other is the way to ensure the recursive SQL queries can obtain a unique answer.
The two concerns are interrelated.

The paper is organized as follows. Section 2 reviews the related works. Section 3 discusses the recursion
handling by SQL in RDBMSs. In Section 4, we present our approach to support graph processing by SQL
followed by the discussion on how to ensure the fixpoint semantics in Section 5. We conclude our work in
Section 6.

2 Related Works

Graph Processing and Management. Many graph systems have been extensively studied recent years. Dis-
tributed graph processing systems like Pregel [41], Giraph [1], GraphLab [2] and GraphX [3] adopt ’think like
a vertex’ programming model. Program logic is expressed by vertex-centric push/pull based message passing,
which is scalable for very large graph data. Apart from using some common built-in algorithms, users need to
implement algorithms using the system APIs provided. The optimization techniques are system-dependent and
at individual algorithm level. Such systems compute graphs imported and do not support graph maintenance.
Different from graph processing systems, graph management systems e.g. Neo4j [4], AgensGraph [5], Titan [6]
are designed for the transactional graph-like query. Neo4j adopts the property graph model and supports a visual
UI for querying by the declarative language Cypher. AgensGraph is a multi-model graph database based on
PostgreSQL RDBMS. Titan uses the functional language Gremlin to query and update graph.

Graph Query Languages. Graph query languages have been studied. A survey on query languages for graph
databases can be found in [69], which covers conjunctive query (CQ), regular path query (RPQ), and CRPQ
combining CQ and RPQ. Also, it surveys a large number of languages including Lorel, StruQL, UnQL, G,
G+, GraphLog, G-Log, SoSQL, etc. Barceló investigates the expressive power and complexity of graph query
languages [15]. Libkin et al. in [38] study how to combine data and topology by extending regular expressions
to specify paths with data. The declarative, SQL-inspired query language Cypher [4], and functional language
Gremlin [6] are integrated into transactional graph databases to describe graph patterns and traversal queries.
There are several new attempts to query graphs. The PGQL [68] is a property graph query language in the
Oracle Parallel Graph AnalytiX (PGX) toolkit, and is an SQL-like query language for graph matching. PGQL
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supports path queries and has the graph intrinsic type for graph construction and query composition. Moffitt and
Stoyanovich in [47] present a declarative query language Portal for querying evolving graphs, which is based on
temporal relational algebra and is implemented on GraphX. Gao et al. in [24] propose a graph language GLog
on Relational-Graph, which is a data model by mixing relational and graph data. A GLog query is converted into
a sequence of MapReduce jobs to be processed on distributed systems. Jindal and Madden propose graphiQL in
[32] by exploring a way to combine the features of Pregel (vertex-centric programming) and SQL. He and Singh
in [28] propose the language GraphQL on graph algebra which deals with graphs with attributes as a basic unit,
where the operations in the graph algebra include selection, Cartesian product, and composition. Salihoglu and
Widom in [58] propose HeLP, a set of basic operations needed in many graph processing systems.

Recursive SQL Queries: SQL’99 supports recursive queries [45, 22]. As mentioned, in supporting graph
algorithms, there are two main issues regarding recursive SQL queries: a set of operations that can be used in
recursive SQL queries, and a way to ensure unique solution by recursive SQL queries. For the former, Cabrera
and Ordonez in [18] and Kang et al. in [36] discuss an operation to multiply a matrix with a vector using joins
and group-by & aggregation. Cabrera and Ordonez in [18] discuss semiring for graph algorithms, and give
a unified algorithm which is not in SQL. For the latter, recursive query processing is well discussed in [12].
Ordonez et al. in [50] compare SQL recursive query processing in columnar, row and array databases. Ghazal
et al. propose an adaptive query optimization scheme for the recursive query in Teradata, which employs multi-
iteration pre-planning and dynamic feedback to take advantage of global query optimization and pipelining [26].
Aranda et al. in [13] study broadening recursion in SQL. The SQL level optimizations for computing transitive
closures are discussed in [49], with its focus on monotonic aggregation for transitive closures. All the works in
[50, 26, 13, 49] do not deal with negation and aggregation. It is important to note that aggregation and negation
in general are needed for a large pool of graph algorithms, but aggregations and negations cannot be used within
a recursive SQL query for ensuring that an SQL query can get a unique solution.

Graph Analytics by SQL. Graph analytics in RDBMSs using SQL have been studied. Srihari et al. in [64]
introduce an approach for mining dense subgraphs in a RDBMS. Gao et al. in [23] leverage the window functions
and the merge statement in SQL to implement shortest path discovery in RDBMS. Zhang et al. in [73] provide
an SQL-based declarative query language SciQL to perform array computation in RDBMSs. Fan et al. in
[21] propose GRAIL, a syntactic layer converting graph queries into SQL script. GraphGene [70] is a system
for users to specify graph extraction layer over relational databases declaratively. MADLib is designed and
implemented to support machine learning, data mining and statistics on database systems [19, 29]. Passing et
al. in [51] propose a PageRank operator in main-memory RDB. This operator is implemented by extending
the SQL recursive query by lambda expression. In [33], Vertica relational database is studied as the platform
for vertex-centric graph analysis. In [65], a graph storage system SQLGraph is designed, which combines the
relational storage for adjacency information with JSON for vertex and edge properties. It shows that it can
outperform popular NoSQL graph stores. GQ-Fast [39] is an indexed and fragmented database which supports
efficient SQL relationship queries for typed graph analytics. Ma et. al in [40] present G-SQL, an SQL dialect
for graph exploration. Multi-way join operations are boosted by underlying graph processing engine. Aberger
et al. in [11] develop a graph pattern engine, called EmptyHead, to process graph patterns as join processing in
parallel.

Datalog-based Systems. DATALOG is a declarative query language used in early deductive databases. As
its new applications derive from information extraction, data analytics and graph analytics, many DATALOG-
based systems have been developed recently. A survey of early deductive database systems can be found in
[56]. LDL++ is a deductive database system in which negation and aggregation handling in recursive rules are
addressed [71, 14]. Based on LDL++, a new deductive application language system DeALS is developed to
support graph queries [63], and the optimization of monotonic aggregations is further studied [62]. SociaLite
[59] allows users to write high-level graph queries based on DATALOG that can be executed in parallel and
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distributed environments [60]. These systems support graph analytics, especially iterative graph analytics e.g.
transitive closure, weakly connect components, single source shortest distance since DATALOG has a great
expressive power for recursion. DATALOG for machine learning is studied with Pregel and map-reduce-update
style programming [17]. The efficient evaluation of DATALOG is investigated on data flow processing system
Spark [61] and BSP-style graph processing engines [48]. In this work, we introduce the DATALOG techniques
into RDBMSs to deal with recursive SQL queries, since DATALOG has greatly influenced the recursive SQL
query handling.

3 The Recursion in RDBMS

Over decades, RDBMSs have provided functionality to support recursive queries, based on SQL’99 [45, 22].
The recursive queries are expressed using with clause in SQL. It defines a temporary recursive relation R in
the initialization step, and queries by referring the recursive relation R iteratively in the recursive step until
R cannot be changed. As an example, the edge transitive closure can be computed using with over the edge
relation E(F, T ), where F and T are for “From” and “To”. As shown below, initially, the recursive relation TC
is defined to project the two attributes, F and T , from the relation E. Then, the query in every iteration is to
union TC computed and a relation with two attributes TC.F and E.T by joining the two relations, TC and E.

with TC (F, T ) as ( select F , T from E union all select TC.F , E.T from TC, E where TC.T = E.F )

SQL’99 restricts recursion to be a linear recursion and allows mutual recursion in a limited form [45].
Among the linear recursion, SQL’99 only supports monotonic queries, which is known as the monotonicity. In
the context of recursion, a monotonic query means that the result of a recursive relation in any iteration does not
lose any tuples added in the previous iterations. Such monotonicity ensures that the recursion ends at a fixpoint
with a unique result. The definition of monotonicity can be found in [66]. As given in Theorem 3.3 in [66],
union, select, projection, Cartesian product, natural joins, and θ-joins are monotone. On the other hand, negation
is not monotone [25]. In SQL, the operations such as except, intersect, not exists, not in, <> some, <> all,
distinct are the operations leading to negation. Also, aggregation can violate the monotonicity. SQL’99 does
not prohibit negation in recursive queries completely since the monotonicity of recursive query is ensured if the
negation is only applied to the relations that are completely known or computed prior to processing the result of
the recursion. This is known as stratified negation [72].

SQL Recursion Handling in RDBMS: SQL’99 supports stratified negation. Below, we discuss SQL recur-
sion handling in RDBMSs, following the similar discussions given in [53] in which Przymus et al. survey
recursive queries handling in RDBMSs. We focus on Microsoft SQL Server (2016) [8], Oracle (11gR2) [9],
IBM DB2 10.5 Express-C [7], and PostgreSQL (9.4) [10], where Oracle is not covered in [53]. We investigate
the features related to recursive query processing in 5 categories. (A) linear/nonlinear/mutual recursion. (B)
multiple queries used in the with clause, (C) the set operations other than union all that can be used to separate
queries in the with clause, (D) the restrictions on group by, aggregate function, and general functions in the
recursive step, and (E) the function to control the looping. Table 1 shows the summary, where “3”, “7”, and
“–” denote the corresponding functionality is supported, prohibited, and not applicable, respectively, in the with
clause.

Handing Recursion by PSM in RDBMS: There is another way to implement recursion, which is SQL/PSM
(Persistent Stored Modules) included in SQL standard [66]. By SQL/PSM (or PSM), users can define func-
tions/procedures in RDBMSs, and call such functions when querying. In a function/procedure definition, users
can declare variables, create temporary tables, insert tuples, and use looping where conditions can be specified
to exit (or leave) the loop. PSM provides users with a mechanism to issue queries using a general-purpose
programming language.
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Features PostgreSQL DB2 Oracle SQL Server

A
Linear Recursion 3 3 3 3
Nonlinear Recursion 7 7 7 7
Mutual Recursion 7 7 7 7

B Initial Step 3 3 3 3
Recursive Step 7 3 7 3

C
Between initial queries 3 3 3 3
Across initial & recursive queries 3 7 7 7
Between recursive queries – 7 – 7

D

Negation 7 7 7 7
Aggregate functions 7 7 7 7
group by, having 7 7 7 7
partition by 3 3 3 3
distinct 3 7 7 7
General functions 3 7 3 3
Analytical functions 3 7 3 3
Subqueries without recursive ref 3 3 3 3
Subqueries with recursive ref 7 7 7 7

E

Infinite loop detection 7 7 3 3
Cycle detection 7 7 3 7
cycle 7 7 3 7
search 7 7 3 7

Table 1: The with Clause Supported by RDBMSs
4 The Power of Algebra

In this paper, we model a graph as a weighted directed graph G = (V,E), where V is a set of nodes and E is a
set of edges. A node is associated with a node-weight and an edge is associated with an edge-weight, denoted
as ω(vi) and ω(vi, vj), respectively. A graph can be represented in matrix form. The nodes with node-weights
can be represented as a vector of n elements, denoted as V. The edges with edge-weights can be represented
as a n × n matrix, denoted as M, where its Mij value can be 1 to indicate that there is an edge from vi to vj ,
or the value of the edge weight. Such matrices and vectors have their relation representation. Let V and M be
the relation representation of vector V and matrix M, such that V (ID, vw) and M(F, T, ew). Here, ID is the
tuple identifier in V . F and T , standing for “From” and “To”, form a primary key in M . vw and ew are the
node-weight and edge-weight respectively.

4.1 The Four Operations

We discuss a set of 4 relational algebra operations, MM-join, MV-join, anti-join, and union-by-update. Here,
MM-join and MV-join support the semiring by which many graph algorithms can be supported. The anti-join
is used to remove nodes/edges in a graph when they are unnecessary in the following computing and serves
as a selection. The union-by-update is used to deal with value updates in every iteration to compute a graph
algorithm, e.g., PageRank. It is worth noting that there is no such an operation like union-by-update in relational
algebra.

We show that all the 4 relational algebra operations can be defined using the 6 basic relational algebra
operations (selection (σ), projection (Π), union (∪), set difference (−), Cartesian product (×), and rename (ρ)),
together with group-by & aggregation. For simplicity, below, we use “Ri → Rj” for the rename operation to
rename a relation Ri to Rj , and use “←” for the assignment operation to assign the result of a relational algebra
to a temporal relation.

We explain why we need the 4 operations which can be supported by the relational algebra because they
do not increase the expressive power of relational algebra. First, it is known that relational algebra can support
graph algorithms. However, it is not well discussed how to support explicitly. The set of 4 operations is such an
answer. Second, it is known that recursive query is inevitable. In other words, new operations cannot function
if they cannot be used in recursive SQL queries in RDBMS. The 4 operations are the non-monotonic operations
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that cannot be used in recursive SQL queries allowed in SQL’99. With the explicit form of the 4 operations, in
this work, we show that they can be used in recursive SQL queries which lead to a unique answer (fixpoint) by
adopting the DATALOG techniques. Third, with the explicit form as a target, we can further study how to support
them efficiently. We discuss the 4 operations below.

To support graph analytics, the algebraic structure, namely semiring, is shown to have sufficient expressive
power to support many graph algorithms [37, 18]. The semiring is a set ofM including two identity elements,
0 and 1, with two operations: addition (+) and multiplication (·). In brief, (1) (M,+) is a commutative monoid
with 0, (2) (M, ·) is a monoid with 1, (3) the multiplication (·) is left/right distributes over the addition (+),
and (4) the multiplication by 0 annihilatesM. Below, A and B are two 2 × 2 matrix, and C is a vector with 2
elements.

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
, C =

(
c1
c2

)
The matrix-matrix (matrix-vector) multiplication (·), and matrix entrywise sum (+) are shown below.

A · B =

(
a11 � b11 ⊕ a12 � b21 a11 � b12 ⊕ a12 � b22
a21 � b11 ⊕ a22 � b21 a21 � b12 ⊕ a22 � b22

)
A + B =

(
a11 ⊕ b11 a12 ⊕ b12
a21 ⊕ b21 a22 ⊕ b22

)
A · C =

(
a11 � c1 ⊕ a12 � c2
a21 � c1 ⊕ a22 � c2

)
We focus on the multiplication (·), since it is trivial to support the addition (+) in relational algebra. Let A and
B be two n×n matrices, and C be a vector with n elements. For the multiplication AB = A ·B, and AC = A ·C,
we have the following.

ABij =

n⊕
k=1

Aik � Bkj (1)

ACi =

n⊕
k=1

Aik � Ck (2)

Here, Mij is the value at the i-th row and j-th column in the matrix M, and Vi is the element at the i-th row in
the vector V. Let A(F, T, ew) and B(F, T, ew) be the relation representation for a n×n matrix and C(ID, vw)
be a relation representation for a vector with n elements. To support matrix-matrix multiplication (Eq. (1)) and
matrix-vector multiplication (Eq. (2)), we define two aggregate-joins, namely, MM-join and MV-join. The first
aggregate-join, called MM-join, is used to join two matrix relations A and B, to compute A ·B. The MM-join is

denoted as A
⊕(�)
1

A.T=B.F
B , and it is defined by the following relational algebra.

A
⊕(�)
1

A.T=B.F
B =A.F,B.T G⊕(�)(A 1

A.T=B.F
B) (3)

The second aggregate-join, called MV-join, is used to join a matrix relation and a vector relation, A and C, to

compute A · C. The MV-join is denoted as A
⊕(�)
1

T=ID
C, and it is defined by the following relational algebra.

A
⊕(�)
1

T=ID
C =F G⊕(�)(A 1

T=ID
C) (4)

Here, XGY is a group-by & aggregation operation to compute the aggregate function defined by Y over the
groups by the attributes specified in X . Note that MV-join is discussed in [49, 36], and MM-join is similar to
MV-join. There are two steps to compute MM-join. The first step is to join A and B by the join condition
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A.T = B.F . This step is to join the k value in order to compute� for Aik�Bkj as given in Eq. (1). The second
step is to do group-by & aggregation, where the group-by attributes are the attributes that are in the primary
key but do not appear in the join condition, namely, A.F and B.T , and the aggregate function is to compute
Eq. (1). In a similar fashion, there are two steps to compute MV-join. The first step is to join A and C by the
join condition A.T = C.ID. This step is to join the k value in order to compute � for Aik � Ck as given in
Eq. (2). The second step is to do group-by & aggregation, where the group-by attribute is the attribute A.F , and
the aggregate function is to compute Eq. (2).

We adopt the anti-join, R n S, which is defined as the result of R that cannot be semi-joined by S, such
that R − (R n S). In addition, we propose a new union operation, called union-by-update, for the purpose of
updating values in either a matrix or a vector, denoted as ]. Let R(A,B) and S(A,B) be two relations, where
A and B are two sets of attributes. R ]A S is a relation, RS(A,B). Let r be a tuple in R and s be a tuple in S.
Different from the conventional union operation (∪) where two tuples are identical if r = s, with R ]A S, two
tuples, r and s, are identical if r.A = s.A. The union-by-update is to update the B attributes values of r by the
B attributes values of s if r.A = s.A. In other words, if r.A = s.A, then s is in RS but not r. There are 2 cases
that r and s do not match. If s does not match any r, then s is in RS. If r does not match any s, then r is in
RS. It is worth noting that there can be multiple r match multiple s on the attributes A. We allow multiple r to
match a single tuple s, but we do not allow multiple s to match a single r, since the answer is not unique. When
A attributes in both R and S are defined as the primary key, there is at most one pair of r and s matches.

The 4 operations are independent among themselves, since we can discover a property that is possessed by
one operation but is not possessed by the composition of the other three only [66].

4.2 Relational Algebra plus While

To support graph processing, a control structure is needed in addition to the relational algebra operations dis-
cussed. We follow the “algebra + while” given in [12].

initialize R
while (R changes) { · · · ; R← · · · }

In brief, in the looping, R may change by the relational algebra in the body of the looping. The looping will
terminate until R becomes stable. As discussed in [12], there are two semantics for “algebra + while”, namely,
noninflationary and inflationary. Consider the assignment, R ← E , which is to assign relation R by evaluating
the relational algebra expression E . By the noninflationary, the assignment can be destructive in the sense that
the new value will overwrite the old value. By the inflationary, the assignment needs to be cumulative. For the
termination of the looping, as pointed out in [12], explicit terminating condition does not affect the expressive
power. In this work, the conventional union (∪) is for the inflationary semantics, whereas union-by-update (])
is for the noninflationary semantics.

In this work, the expressive power, and the complexity remain unchanged as given in [12] under the scheme
of “algebra + while”, because the 4 operations added can be supported by the existing relational algebra opera-
tions. From the viewpoint of relational algebra, we can support all basic graph algorithms, including those that
need aggregation (Table 2) but excluding those complicated algorithms for spectral analytics that need matrix
inverse. The 4 operations make it clear how to support graph algorithms in relational algebra. In particular, all
graph algorithms, that can be expressed by the semiring, can be supported under the framework of “algebra +
while” and hence SQL recursion enhanced.

4.3 Supporting Graph Processing

We show how to support graph algorithms by the “algebra + while” approach, using MM-join and MV-join,
anti-join, union-by-update, as well as other operations given in relational algebra. For simplicity, we represent
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a graph G = (V,E) with n nodes by an n × n E and a vector V with n elements. We represent the vector V
by a relation V (ID, vw), where ID is the tuple identifier for the corresponding node with value vw associated.
Moreover, we represent the matrix E by a relation E(F, T, ew), where F and T , standing for “From” and “To”,
form a primary key in E, which is associated with an edge value ew. Below, to emphasize the operations in
every iteration, we omit the while looping. Note that some graph algorithms can be computed by either union or
union-by-update.

We use the examples of PageRank, Floyd-Warshall and TopoSort to illustrate how to support graph algo-
rithms by the new algebra. The relational algebra for PageRank is given below.

V ← ρV (E
f1(·)
1

T=ID
V ) (5)

Here, f1(·) is a function to calculate c ∗ sum(vw ∗ ew) + (1− c)/n, where c is the damping factor and n is the
total number of tuples in V . Note, vw ∗ ew is computed when joining the tuples from E and V , regarding �,
and the aggregate function sum is computed over groups, given vw ∗ ew computed, along with other variables
in f1(·), regarding ⊕.

To implement Floyd-Warshall, the relational algebra is given as follows.

E ← ρE((E → E1)
min(E1.ew+E2.ew)

1
E1.T=E2.F

(E → E2)) (6)

In Eq (6), we use one MM-join with + and min serving as the � and ⊕ respectively. For PageRank and
Floyd-Warshall, one union-by-update operation is performed to update recursive relation V and E.

Below, we show how to support TopoSort (Topological Sorting) for DAG (Directed Acyclic Graph) using
anti-join. To compute TopoSort, we assign a level L value to every node. For two nodes, u and v, if u.L < v.L,
then u < v in the TopoSort; if u.L = v.L, then either u < v or v < u is fine, since the TopoSort is not unique.
Let Topo(ID,L) be a relation that contains a set of nodes having no incoming edges with initial L value 0. The
initial Topo can be generated by ΠID,0(V nID=E.T E). In the recursive part, it is done by several steps.

Ln ← ρL(Gmax(L)+1Topo)

V1 ← V n
V.ID=T.ID

Topo

E1 ← ΠE.F,E.T (V1 1
ID=E.F

E) (7)

Tn ← ΠID,L(V1 n
V1.ID=E1.T

E1)× Ln

Topo ← Topo ∪ Tn

Here, first, we compute the L value to be used for the current iteration, which is the max L value used in the
previous iteration plus one. It is stored in Ln. Next, we remove those nodes that have already been sorted by
anti-join and obtain V1. With V1 ⊆ V , we obtain the edges among nodes in V1 as E1. Tn is the set of nodes that
are sorted in the current iteration. Finally, we get the new Topo by union of the previous Topo and the newly
sorted Tn. It repeats until Tn is empty.

Table 2 shows some representative graph algorithms that can be supported by the 4 operations including
MM-join, MV-join, anti-join and union-by-update. As a summary, MV-join together with union-by-update can
be used to implement PageRank, weakly Connected-Component, HITS, Label-Propagation, Keyword-Search
and K-core, whereas MM-join together with union-by-update can be used to support Floyd-Warshall, SimRank
and Markov-Clustering. The anti-join serves as a selection to filter nodes/edges which are unnecessary in the
following iterations. It is important to note that anti-join is not only for efficiency but also for the correctness.
Equipped with anti-join, TopoSort is easy to be implemented. The combination of MV-join and anti-join support
Maximal-Independent-Set and Maximal-Node-Matching.
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Graph Algorithm MV/MM-join ]/∪ anti-join linear nonlinear
TC [20] – ∪ 3 3

BFS [20] MV ] 3

Connected-Component [57] MV ] 3

Bellman-Ford [20] MV ] 3

Floyd-Warshall [20] MM ] 3

PageRank [42] MV ] 3

Random-Walk-with-Restart [42] MV ] 3

SimRank [31] MM ] 3

HITS [42] MV ] 3

TopoSort [34] – ∪ 3 3

Keyword-Search [16] MV ] 3

Label-Propagation [55] MV ] 3

Maximal-Independent-Set [46] – ∪ 3 3

Maximal-Node-Matching [52] MV ∪ 3 3

Diameter-Estimation [35] – ∪ 3

Markov-Clustering [67] MM ] 3

K-core [43] MV ] 3

K-truss [54] – ] 3

Graph-Bisimulation [30] – ∪ 3

Table 2: Graph Algorithms

5 XY-Stratified

As discussed in Section 3, SQL’99 supports stratified negation in recursion, which means it is impossible to
support graph processing that needs the functions beyond stratified negation. Recall that the 4 operations are
not monotone and are not stratified negation. To address this issue, we discuss relational algebra operations
in the context of DATALOG using rules. The rules for selection, projection, Cartesian product, union, θ-join
are given in [66]. In a similar way, we can express the 4 new operators using rules. As union, selection,
projection, Cartesian product and θ-joins are monotone, recursive queries using such operations are stratified.
But, MM-join, MV-join, anti-join, and union-by-update are not monotonic. The approach we take is based on
XY-stratification [71, 72, 14]. An XY-stratified program is a special class of locally stratified programs [27]. As
proposed by Zaniolo et al. in [71], it is a syntactically decidable subclass for non-monotonic recursive programs
to handle negation and aggregation, and it captures the expressive power of inflationary fixpoint semantics [12].
An XY-program is a locally stratified DATALOG program that can be checked at compile-time by syntax.

Based on XY-stratification, we extend the with clause in SQL’99, “with R as 〈 R initialization 〉 〈 recursive
querying involving R 〉”, to support a class of recursive query that can be used to support many graph analytical
tasks. To minimize such extension, we restrict that the with clause only has one recursive relationR, and there is
only one cycle in the corresponding dependency graph. The extension is to allow negation as well as aggregation
in a certain form for a recursive query. We show that the recursive queries using the 4 operations discussed can
have a fixpoint by which a unique answer can be obtained [74].

6 Conclusion

To support a large pool of graph algorithms, we propose 4 operations, namely, MM-join, MV-join, anti-join and
union-by-update, that can be supported by the basic relational algebra operations, with group-by & aggregation.
Among the 4 operations, union-by-update plays an important role in allowing value updates in iterations. The
4 non-monotonic operations are not allowed to be used in a recursive query as specified by SQL’99. We show
that the 4 operations proposed together with others have a fixpoint semantics based on its limited form, based on
DATALOG techniques. In other words, a fixpoint exists for the 4 operations that deal with negation and aggre-
gation. We enhance the recursive with clause in SQL and translate the enhanced recursive with into SQL/PSM
to be processed in RDBMSs. In [74], we conduct extensive performance studies to test 10 graph algorithms

14



using 9 large real graphs on 3 major RDBMSs (Oracle, DB2, and PostgreSQL) at SQL level, and we show that
RDBMSs are capable of dealing with graph processing in reasonable time. There is high potential to improve
the efficiency by main-memory RDBMSs, efficient join processing in parallel, and new storage management.
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