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Abstract

Data management and machine learning are two important tasks in data science. However, they have
been independently studied so far. We argue that they should be complementary to each other. On the
one hand, machine learning requires data management techniques to extract, integrate, clean the data,
to support scalable and usable machine learning, making it user-friendly and easily deployable. On
the other hand, data management relies on machine learning techniques to curate data and improve its
quality. This requires database systems to treat machine learning algorithms as their basic operators,
or at the very least, optimizable stored procedures. It poses new challenges as machine learning tasks
tend be iterative and recursive in nature, and some models have to be tweaked and retrained. This calls
for a reexamination of database design to make it machine learning friendly.

In this position paper, we present a preliminary design of a graph model for supporting both data
management and usable machine learning. To make machine learning usable, we provide a declara-
tive query language, that extends SQL to support data management and machine learning operators,
and provide visualization tools. To optimize data management procedures, we devise graph optimiza-
tion techniques to support a finer-grained optimization than traditional tree-based optimization model.
We also present a workflow to support machine learning (ML) as a service to facilitate model reuse
and implementation, making it more usable and discuss emerging research challenges in unifying data
management and machine learning.

1 Introduction

A data science workflow includes data extraction, data integration, data analysis, machine learning and inter-
pretation. For example, consider healthcare analytics. Heterogeneity, timeliness, complexity, noise and incom-
pleteness with big data impede the progress of creating value from electronic healthcare data [10]. We need
to extract high quality data from multiple sources, clean the data to remove the inconsistency and integrate the
heterogeneous data. Next we can use data analytics techniques to discover useful information and analyze the
data to find interesting results (e.g., cohort analysis [7]). We also need to utilize machine learning techniques to
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learn important features and make decision (e.g., Readmission risk [25]). Finally, we need to present the results
in the medical context to enable users to better appreciate the findings.

The data science workflow (as shown in Figure 1) contains both data management components (data extrac-
tion, data integration, data analysis) and machine learning component. However, data management and machine
learning have been independently studied, be it in industry or academia, even though they are in fact comple-
mentary to each other. First, machine learning requires high quality data to guarantee learning results. Thus it
needs data management techniques to extract, integrate and clean the data. Second, machine learning relies on
data management techniques to enable scalable machine learning. It is widely recognized that machine learning
is hard for users without machine learning background to use while database has been featured prominently
and used as the underlying system in many applications. Thus machine learning should borrow ideas from the
database to make machine-learning algorithms usable and easily deployable. Third, many data management
components rely on machine learning techniques to improve the quality of data extraction and integration. For
example, we can use machine learning to learn the features that play important roles in data integration. This
calls for a new framework to support data management and machine learning simultaneously, and their interac-
tion and dependency in big data analytics.

To address these problems, we propose a unified graph model for modeling both data management and ma-
chine learning. We use a graph to model relational data, where nodes are database tuples and edges are foreign
key relationships between tuples. A graph can be used to model the unstructured data, semi-structured data and
structured data together by linking the tuples in relational database, documents or objects in unstructured data
and semi-structured data. More importantly, most machine learning algorithms work on graph. We can there-
fore use a unified graph model to support both data management and machine learning. Hence, we propose a
graph-based framework that integrates data management and machine learning together, which (1) supports data
extraction, data integration, data analysis, SQL queries, and machine learning simultaneously and (2) provide
machine learning (ML) as a service such that users without machine learning background can easily use machine
learning algorithms.

In summary, we cover the following in this position paper.
(1) We sketch a unified graph model to model unstructured data, semi-structured data, and structured data

and can support both data management and machine learning.
(2) We propose a user-friendly interface for the users to use data management and machine learning. We pro-

vide a declarative query language that extends SQL to support data management and machine learning operators.
We also provide visualization tools to assist users in using the machine learning algorithms.

(3) We devise graph optimization techniques to improve the performance, which provide a finer-grained
optimization than traditional tree-based optimization model.

(4) We discuss design principles and the important components in providing machine learning as a service
workflow.

(5) We discuss research challenges in unifying data management and machine learning.

2 A Unified Graph Model

Graph Model. A graph G = (V, E) includes a vertex set V and an edge set E , where a vertex can be a database
tuple, a document, or a user, and an edge is a relationship between two vertices, e.g., foreign key between
tuples for structured data, hyperlink between documents for unstructured data, or friendship among users in
semi-structured data (e.g., social networks).
Graph Model for Relational Data. Given a database D with multiple relation tables T1, T2, · · · , Tn, we can
model the relational data as a graph, where each tuple is a vertex and there is an edge between two vertexes
if their corresponding tuples have foreign key relationships [12, 14]. Given a SQL query q, we find compact
subtrees corresponding to the query from the graph as answers [14] and the details will be discussed in Section 4.
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Figure 1: Workflow of Data Science.

Graph Model for Heterogeneous Data. Given heterogeneous data consisting of structured data, semi-structured
data and unstructured data, we can also use a unified graph model to represent them. For unstructured data,
e.g., html documents, the vertexes are documents and the edges are hyperlinks between documents. For semi-
structured data, e.g., Facebook, the vertexes are users and the edges are friendships between users. We can also
link the heterogeneous data together using the data extraction and integration techniques [4, 14].
Data Extraction. Data extraction aims to extract entities from the data, including documents, lists, tables,
etc. There are some variants of entity extraction. Firstly, given a dictionary of entities and a document, it
aims to extract entities from the document that exactly or approximately match the predefined entities in the
dictionary [13]. Secondly, given a document and entities in knowledge bases, it aims to link the entities in
knowledge base to the entities in the document to address the entity ambiguity problem [19]. Thirdly, it utilizes
rules to identify the entities, e.g., a person born in a city, a person with PhD from a university [20]. We can use
data extraction techniques to extract entities, based on which we can integrate the heterogeneous data.
Data Integration. We can also link the structured data and unstructured data together and use a unified graph
model to represent the data. There are several ways to link the data. First, we can use a similarity-based
method [8]. If two objects from different sources have high similarity, we can link them together. Second, we
can use crowd-based method to link the data [3]. Given two data from different sources, we ask the crowd to
label whether they can be linked. Since crowdsourcing is not free, it is expensive to ask the crowd to check every
pair of data and we can use some reasoning techniques to reduce the crowd cost, e.g., transitivity. Third, we can
use a knowledge-based method to link the data. We map the data from different sources to entities in knowledge
bases and the data mapped to the same entity can be linked [11].
Graph Model for Machine Learning. Most machine learning algorithms adopt a graph model, e.g., PageRank,
probabilistic graphical model, neural network, etc.

To summarize, we can utilize a unified graph to model heterogeneous data which can support both data
management (including SQL queries, data extraction, data integration) and machine learning (any graph based
learning algorithms).

3 A Versatile Graph Framework

We propose a versatile graph framework to support both data management and machine learning simultaneously
with a user-friendly interface.
Query Interace. A natural challenge is to utilize the same query interface to support both data management and
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Figure 2: A Unified Graph Model and System.

machine learning. We aim to support two types of query interfaces: declarative query language and visualization
tools. The declarative query language extends traditional SQL to support data analysis and machine learning. For
example, we can use UDF to support machine learning. We can also add native keywords into declarative query
language to enable in-core optimization. Thus users only need to specify what they want to obtain but do not
need to know how to get the result. Our framework supports both of the two cases. To support the second case,
we need to abstract the machine learning operators, e.g., regression, clustering, classification, correlation. Then
our framework supports all the database operators, e.g., selection, join, group, sort, top-k, and machine learning
operators, e.g., clustering, classification, correlation, regression, etc. The visualization tool can help users to
better understand the data and can also use visualization charts as examples (e.g., line charts, bar charts, pie
charts) to provide users with instant feedback, and the framework can automatically compute similar trends or
results. More importantly, users can utilize visualization tools, e.g., adding or deleting an attribute like tableau,
to visualize the data. Our framework can also automatically analyze the data and suggest the visualization charts.
Since the data and features are very complicated, we need to utilize the machine learning techniques to learn the
features, decide which charts are interesting and which charts are better than others.
Graph Query Plan. Based on the graph query, we generate a graph query plan. We use a workflow to represent
the query plan, which includes multiple query operators (including data management and machine learning op-
erators) and the query operators have some relationships (e.g., precedence order, dependency, decision relation).
A straightforward method directly generates the physical plan, executes each query operators based on the rela-
tionships, and executes the physical plan without optimization. Note that it is important to select a good query
plan to improve the performance and scalability.
Graph Optimization. Traditional database system employs a tree-based optimization model. It employs a
table-level coarse-grained optimization, which selects an optimized table-level join order to execute the query.
The motivation is to reduce the random access in disk-based setting. However a table-level join order may not be
optimal, because different tuples may have different optimal join orders. In disk-based setting, it is hard to get the
optimal order for different tuples. However, in memory setting, we have an opportunity to attempt more effective
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Figure 3: A Graph-Based Optimization Model.

optimizations. To address this problem, we propose a fine-grained tuple-level optimization model, which can
find the best order for different tuples (see Section 4). We can also provide graph optimization techniques for
other operations.
Graph Management System. There are many graph systems to support graph-based query processing, in-
cluding disk-based graph systems, in-memory graph systems, and distributed graph systems [6, 5, 9, 18, 6, 24].
Disk-based systems optimize the model to reduce random access. In-memory graph systems utilize the trans-
action techniques to guarantee high parallelism. Distributed graph systems include synchronized model and
asynchronized model, where the former has straggler and imbalance problem while the latter is hard to imple-
ment. Our framework should support any graph management system and we focus on automatic suggestion of
the best graph execution paths to support different applications.

4 Fine-Grained Graph Processing Model

Given a SQL query, we utilize the graph to directly find the answers of the SQL query. We first consider a simple
case that the tables are joined by a chain structure, i.e., each table is joined with at most two other tables and
there is no cycle. There are some other join structures, e.g., star join structure and graph join with cycles, while
will be discussed later [12].) Suppose there are x join predicates in the SQL. The answers of such SQL query
are chains of the graph with x edges.

For example, consider four tables, R,S, T, V in Figure 3 and each table has five tuples. The tuples are
connected based on foreign keys. Consider a SQL query with 3 join predicates to join the four tables, e.g.,
Select * from R,S,T,V where R.A = S.A, S.B = T.B and T.C = V.C. The answers of the
SQL query are chains in the graph that contain 3 edges and 4 tuples such that the tuples are from different
tables. Traditional database systems employ a tree-based optimization model, possibly due to the disk-based
optimization requirement. The tree-based optimization model employs a coarse-grained optimization and selects
the best table-level join order. For example, the tree model first checks the join predicates between the first two
tables and then joins with the third and the fourth tables. The cost of the tree based model is 28. Obviously we
can select different best orders for different tuples. For example, we only need to check s4, t4 and r5, s5, t5, v4.
The cost is only 6. Thus the graph-based optimization order has much lower cost and can provide finer-grained
optimizations.
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Graph-Based Optimization Techniques. We can first partition the graph into multiple disjoint connected
components. The vertexes in different components cannot form a result. Then we can compute answers from
each connected component. We assign each vertex in the graph with a pruning power, i.e., if the vertex is
checked, how many tuples will be pruned. For example, the pruning power of s4 is 8 and the pruning power
of t4 is also 8. Thus we can first check s4 and t4. Then we can prune r1, r2, r3, r4, t1, t2, t3, t4, s1, s2, s3, s4,
v1, v2, v3, v4. Then we can get only one result (r4, s5, t5, v5).

Next we consider other join structures of queries.
Tree Join Structure. The tables are joined by a tree structure and there is no cycle. We can transform it into
a chain structure as follows. We first find the longest chain in the tree. Suppose the chain is T1, T2, · · · , Tx.
Then for each vertex Ti on the chain, which (indirectly) connects other vertices T ′1, T

′
2, · · · , T ′y that are not on

the chain, we insert these vertices into the chain using a recursive algorithm. If these vertices are on a chain,
i.e., Ti, T

′
1, T

′
2, · · · , T ′y, then we insert them into the chain by replacing Ti with Ti, T

′
1, T

′
2, · · · , T ′y−1, T ′y, T ′y−1,

· · · , Ti. If these vertices are not on a chain, we find the longest chain and insert other vertices not on the chain
into this chain using the above method. In this way, we can transform a tree join structure to a chain structure.
Note that the resulting chain has some duplicated tables. Hence, joining those tables may result in invalid join
tuples (e.g., a join tuple that uses one tuple in the first copy of Ti, and a different tuple in the second copy of Ti).
We need to remove those invalid join tuples.
Graph Join Structure. The tables are joined by a graph structure, i.e., there exist cycles in the join structure.
We can transform it into a tree structure. For example, given a cycle (T1, T2, · · · , Tx, T1), we can break the
cycle by inserting a new vertex T ′1 and replacing it with T1. Thus we can transform a cycle to a tree structure,
by first finding a spanning tree of the graph using breadth first search, and breaking all non-tree edges.

In summary, given a graph query, a SQL query, a machine learning query, we can use a unified graph model
and system to answer the query efficiently. However there are still many open problems in this unified graph
based query optimization.

(1) How to build efficient indexes to support various SQL and machine learning queries?
(2) How to support both transactions in data management components and data analytics in machine learning

component simultaneously?
(3) How to support concurrency control?
(4) How to support iterative processing?

5 ML As A Service

In 1970s, database was proposed to manage a collection of data. Database has been widely accepted and de-
ployed in many applications because it is easy to use due to its user-friendly declarative query language. In
1990s, search engine was proposed to help Internet users to explore web data, which is also widely used by
lay users. Although machine learning is very hot in recent years (every vertical domains claim that they want
to use machine learning to improve the performance) and several machine learning systems have been de-
ployed [17, 22, 21, 1, 16, 23], it is still not widely used by non-machine-learning users, because (1) machine
learning requires users to understand the underlying model; (2) machine learning requires experts to tune the
model to learn the parameters; (3) there is no user-friendly query interface for users to use machine learning; (4)
some machine learning algorithms are not easy to explain and users may not appreciate the learning results that
are hard to interpret. Stanford also launches a project DAWN on providing infrastructures for machine learn-
ing [2]. Different from DAWN, we focus on providing machine learning as a service, which enables ordinary
users adopt the machine learning techniques and easily deploy machine learning applications.

Next we shall outline the design requirements.
(1) Scalability. The framework should scale up/out well and scale on volume and dimensionality.
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(2) Efficiency. The framework should have low latency and high throughput and we also need to balance the
workload.

(3) Reliability. The framework can easily recover for data/machine/network failures.
(4) Flexibility. The framework can support various learning applications.
(5) Usability. The framework should be easy to use for any users. We need to have good abstraction and

programming model.
Based on these five factors, we design a new graph-based framework to support ML as a service (as shown

in Figure 4).
Encapsulated Operators. We need to encapsulate the machine learning operators so that ordinary users can
easily use the operators to accomplish machine learning tasks. For each operator, we also encapsulate multiple
algorithms to support the operator. Note that the algorithms are transparent to the end users. For example,
we encapsulate clustering, classification, and regression operators. For clustering, we encapsulate multiple
clustering algorithms, e.g., K-means, density-based clustering, hierarchical clustering, etc. The users can utilize
a single operator or multiple operators to support various applications.
ML Workflow. Each ML operator can support some simple applications (e.g., clustering), and there are some
complex applications that require multiple operators (e.g., healthcare). Thus we need to design a model to
support applications with multiple operators. We can use a machine learning workflow to describe the model,
where each node is an operator and each directed edge is a relationship between two operators. Then we can
optimize a machine learning query based on the workflow. (1) We can select the appropriate algorithm for each
operator for different applications. (2) We can change the order of two operators to optimize the workflow. (3)
We can optimize the structure of the workflow. We can also devise cost-based model and rule-based model to
optimize the ML workflow.
Parameter Learning. Machine learning algorithms contain many parameters that significantly affect the per-
formance. Thus it is important to get good parameter values in different applications. However it is tedious and
complicated to tune the parameters and therefore, experts are required to be involved to tune the parameters.
This is an important reason why users without machine learning background are hard to use the ML algorithms.
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Thus it is important to automatically learn the parameter values. In addition, it is important to automate the
discovery of data transformation and automatically discover the data drift.
Human-in-the-loop Machine Learning. Machine learning requires to use high-quality labelled data to learn
the results. However it is hard to use purely machine learning algorithms. Thus we propose human-in-the-loop
machine learning, which utilizes both crowdsourcing and experts to improve machine learning [15]. We use
crowd workers to provide high quality labelled data. We can ask the experts to guide the feature selection and
parameter learning. Most importantly, we can use active learning techniques to decide when/where to use crowd
and when/where to use experts.

6 Research Challenges

Explainable Machine Learning. Most existing machine-learning algorithms function like blackbox and the
learning results are not easy to explain, e.g., SVM. As many applications and users require to understand the
results to make decision, they require the algorithms to be explainable. For example, in healthcare analytics, the
doctors should be convinced why machine-learning results are meaningful and applicable. Thus we require to
design explainable techniques to help users better understand machine learning algorithms. We can utilize visu-
alization techniques to visualize the learning process and results. We can also deign new explainable machine
learning models.
End-to-end Learning and Deployment. It is expensive to learn the machine learning model and tune the
parameters. It is rather hard to deploy the machine learning system for users without machine learning back-
ground. Thus it requires to build end-to-end systems that automatically learn the model, tune the parameters, and
deploy the system for various applications. The system can also adapt to various domains and involves manual
intervention as little as possible.
Incremental Machine Learning. In many applications, machine learning employs a standalone model, which
loads the data outside the repository and runs the model out-of-core. However if the data is updated, the method
needs to reload the data and run the model from scratch. Obviously this method is not efficient. Thus it calls for
incremental learning model that utilizes the original model and the updated data to learn the new model without
needing to relearn the model.
Machine Learning on New Hardware. With the development of new hardware, e.g., NVM, GPU, FPGA,
RDMA, these new hardware pose new challenges in data management and machine learning. Thus we require
to design new techniques and utilize the features of new hardware inherently to improve the performance and
scalability of machine learning algorithms. We need to extend the graph model, graph algorithms and graph
system to support the new hardware, and devise device-aware optimization techniques.
Graph Processing. Distributed graph processing has straggler and imbalance problems, and we have to design
more efficient graph management systems and optimization techniques. Moreover, existing systems focus on
iteration graph processing applications, they are expensive for some non-iterative graph applications, e.g., com-
puting shortest path. Thus we need to design new efficient graph systems and framework to support general
graph queries.
Machine Learning for Data Integration. We can use machine learning techniques to facilitate data integration.
For example, we can use deep learning and embedding techniques to find candidate matching entity/column pairs
in data integration. We can also use active learning techniques to reduce the monetary cost. There are two big
challenges in using machine learning techniques. The first is to find a large training data to feed the machine
learning algorithms. The second is to design new machine learning models for data integration.
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7 Conclusion

In this position paper, we sketched a unified graph model for supporting both data management and machine
learning. We proposed to provide a user-friendly interface for users to easily use data management and machine
learning. We outlined graph-based optimization techniques to improve the performance, which provides a finer-
grained optimization than traditional tree-based optimization model. We discussed machine learning as a service
and presented a ML workflow with the aim of achieving high flexibility. We discussed emerging research
challenges in unifying data management and machine learning.
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