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Abstract

Online social networks are rich in terms of structural connections between entities and the content
propagated between them. When this data is available as a continuous stream of interactions on the
social graph, it is referred to as a social stream. Social streams have several challenges: (1) size of
the underlying graph, (2) volume of the interactions, and (3) heterogeneity of the content and type of
interactions between the entities. Mining social streams incorporates discovering patterns and trends
using both structure and interaction data.

In this work, we discuss two important social stream applications: (1) event detection and (2) influ-
ence analysis. Event detection is seen as a social stream clustering problem that can be either supervised
and unsupervised, depending on the availability of labeled data. While influence analysis is an unsu-
pervised problem modeled in a query-based framework. We discuss the key characteristics of these two
problems, their computational difficulties and efficient modeling techniques to address them. Finally, we
highlight several challenges and future opportunities for research in this area.

1 Introduction

The prominence of social network and the rise of cloud- and web-based applications, in the last decade, has
enabled greater availability of streaming social data. The data available in the stream could be a continuous
stream of edges as in the case of new friendships in Facebook or streaming interactions between users such
as stream of tweets in Twitter. There are several challenges in mining and discovering patterns in streaming
social data. Some of them are (a) processing the data in single pass (i.e., one-pass constraint), (b) continuous
maintenance of the model, and (c) its efficient representation in memory through hashing, sampling, or latent
factors. Depending on the availability of supervised knowledge, the learned model can be either supervised or
unsupervised. characteristics of such social streams and their applications.

Social streams consist of content-based interactions between structurally connected entities in the data. Let
us assume that the structure of the social network is denoted by the graph G = (N,A). The node set is denoted
by N and edge set is denoted by A. The concept of a social stream is overlaid on this social network structure
G.

Definition 1 (Social Stream): A social stream is a continuous and temporal sequence of objects S1 . . . Sr . . .,
such that each object Si is a tuple of form (qi, Ri, Ti) where,
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• qi ∈ N is the sender of the message Ti to other nodes.

• Ti corresponds to the content of the interaction.

• Ri ⊆ N is a set of one or more receiver nodes, which correspond to all recipients of the message Ti from node
qi. It is assumed that each edge (qi, r) belongs to the set A, for all r ∈ Ri.

One can also view a social stream as an enriched version of a graph stream, which does not have associated
content [1].

1.1 Social Stream Applications

There are numerous applications that are popular in the context of social streams. We discuss some of them
below and with their key characteristics.

• Event Detection The problem of event detection [3, 22] is to identify the most important set of keywords
that describe a trending event. Such trending events often occur in temporal bursts in specific network
localities. This problem is typically unsupervised where the new events are detected with no prior knowl-
edge. In some cyber-security applications, such as detecting terrorist attacks or civilian unrest, previous
occurrences of such instance can be used to supervise and detect their repeating occurrence.

• Influence Analysis The diffusion of information in a social network via re-sharing is referred to as cas-
cades. Identifying influential users [24] in these information cascades in social streams is a challenging
problem. The streaming nature of the data makes it harder to track the diffusion of information across
longer paths in the network when there are numerous messages propagated. Moreover, to be able to query
and understand the influential users in a time-sensitive manner requires efficient data structures and their
maintenance.

• Link Prediction Discovering links in streaming graph data can be important in a variety of applications
where the graph is changing rapidly. For instance camera-first applications, like Snapchat or Instagram,
where an user visits the application several times a day, recommending the right group or user to follow
is critical to maintain a low churn rate. In such scenarios computing centrality measures, such as Jaccard
coefficient, common neighbors, and Adar-Adamic in streaming graphs can be computationally hard. There
are some recent approaches [30] that tackle this problem using cost-effective graph sketches based on
hashing and sampling techniques.

In this paper, we will discuss the first two applications: (1) Event detection and (2) Influence Analysis. For
event detection [3], we discuss an online clustering algorithm which tracks both content and network structure
efficiently using hashing schemes. In the case of influence analysis [26], we consider a more flexible query-
ing model to query influence scores either using the set of influencers, set of users influenced, the context or
time. Event detection is discussed in both supervised and unsupervised settings. While influence analysis is an
unsupervised problem modeled in a query-based framework.

2 Event Detection

The problem of event detection is closely related to that of topic detection and tracking [5, 4, 7, 29]. This
problem is also closely related to stream clustering, and attempts to determine new topical trends in the text
stream and their significant evolution. The idea is that important and newsworthy events in real life are often
captured in the form of temporal bursts of closely related messages in a network locality. Clearly, messages
which are sent between a tightly knit group of actors may be more indicative of a particular event of social
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interest, than a set of messages which are more diffusely related from a structural point of view. At the same
time, the content and topics of the documents should also play a strong role in the event detection process. Thus,
both network locality and content of interaction need to be leveraged in a dynamic streaming scenario for the
event detection process [3].

2.1 Social Stream Clustering

We begin with describing an unsupervised technique for event detection. This approach continuously character-
izes the incoming interactions in the form of clusters, and leverages them in order to report events in the social
stream. Formally, the problem of social stream clustering can be defined as follows:

Definition 2 (Social Stream Clustering): A social stream S1 . . . Sr . . . is continuously partitioned into k cur-
rent clusters C1 . . . Ck, such that:

• Each object Si belongs to at most one of the current clusters Cr.

• The objects are assigned to the different clusters with the use of a similarity function which captures both
the content of the interchanged messages, and the dynamic social network structure implied by the different
messages.

As the clusters are created dynamically, they may change considerably over time with the addition of new points
from an evolving stream. Furthermore, in some cases, an incoming object may be significantly different from
the current clusters. In that case, it may be put into a cluster of its own, and one of the current clusters may be
removed from the set C1 . . . Ck. Such an event may be an interesting one, especially if the newly created cluster
starts a new pattern of activity in which more stream objects are subsequently added. Therefore, there are two
kinds of events novel and evolutionary events.

The arrival of a data point Si is said to be a novel event if it is placed as a single point within a newly created
cluster Ci. It is often possible for previously existing clusters to match closely with a sudden burst of objects
related to a particular topic. This sudden burst is characterized by a change in fractional presence of data points
in clusters. Let F (t1, t2, Ci) be the fractional cluster presence of objects arrived during time period (t1, t2) which
belong to cluster Ci normalized by the total number of objects in cluster Ci.

In order to determine evolutionary events, we determine the higher rate at which data points points have
arrived to this cluster in the previous time window of length H , as compared to the event before it. A parameter
α is used in order to measure this evolution rate and t(Ci) is the creation time for cluster Ci. This condition of
evolution rate is formally defined in Eqn. 1. Here it is assumes that the value of tc − 2 · H is larger than the
cluster creation time t(Ci) in order to define the evolution rate in a stable way.

F (tc −H, tc, Ci)
F (t(Ci), tc −H, Ci)

≥ α (1)

2.2 Online Model Maintenance

The design of an effective online clustering algorithm is the key to event detection. There are two main com-
ponents that decide the efficiency of online clustering in social streams: (a) representation of clusters and (b)
efficient similarity computation using text and structural content.

In order to detect a novel or an evolutionary event it is critical to decide which cluster to assign the incoming
social stream object. Hence, the similarity score computed between the incoming object and the clusters, using
structure and content information, plays a crucial role. The structure and content of the incoming object is usually
smaller and easier to represent in-memory. However, the cluster information is extremely large to fit in-memory,
as the cluster may represent all the incoming social stream objects until that time. Hence, we need an efficient
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summarization of clusters. A typical way to summarize the clusters is using bit vectors or normalized frequency
counters [3, 2]. However, when the size of the vectors become extremely large it needs to be compressed to fit
in-memory for tracking the social stream clusters. In the following we discuss one such efficient summarization
and hash-based similarity computation approach for online model maintenance

2.2.1 Cluster Summarization

Each of the social stream clusters for event detection must maintain both text and network information in their
summaries. The cluster-summary ψi(Ci) of cluster Ci is defined as follows:

• It contains the node-summary, which is a set of nodes Vi = {ji1, ji2 . . . jisi} together with their frequen-
cies ηi = νi1 . . . νisi . The node set Vi is assumed to contain si nodes.

• It contains the content-summary, which is a set of word identifiers Wi = {li1, li2, . . . liui} together with
their corresponding word frequencies Φi = φi1, φi2 . . . φiui . The content-summary Wi is assumed to
contain ui words.

The overall summary is ψi(Ci) = (Vi, ηi,Wi,Φi).

2.2.2 Efficient Similarity Computation

The size of word frequencies |Φi| is generally smaller compared to |ηi|. This is because the size of vocabulary
(in 100 thousands) is often much smaller than the number of users in the social network (usually in billions).
Hence, it requires efficient computation of similarity for the structural part. Note that the content-based similarity
computation SimC(Si, Cr) is straightforward, and is simply the tf-idf based [21] similarity between the content
Ti and Wr.

The structural similarity between the nodes Vr and the nodes Ri ∪ {qi} in the social stream is computed as
follows. Let B(Si) = (b1, b2, . . . bsr) be the bit-vector representation of Ri ∪ {qi}, which has a bit for each
node in Vr, and in the same order as the frequency vector η = (νr1, νr2, . . . νrsr) of Vr. The bit value is 1, if the
corresponding node is included in Ri ∪ {qi} and otherwise it is 0. The structural similarity between the object
Si and the frequency-weighted node set of cluster Cr is defined as follows:

SimS(Si, Cr) =

∑sr
t=1 bt · νrt√

||Ri ∪ {qi}|| · (
∑sr
t=1 νrt)

(2)

Note the use of L1-norm for the node-frequency vector (as opposed to L2-norm) in the denominator, in order to
to penalize the creation of clusters which are too large. This will result in more balanced clusters. Note that the
incoming node set contains both sender and the receivers.

The overall similarity Sim(Si, Cr) can be computed as a linear combination of the structural and content-
based similarity values.

Sim(Si, Cr) = λ · SimS(Si, Cr) + (1− λ) · SimC(Si, Cr) (3)

The parameter λ is the balancing parameter, and lies in the range (0, 1). This parameter is usually specified by
the user.

The numerator of Eqn. 2 is harder to compute as maintaining the vector ηr is expensive. One approach is to
compress the size of ηr and estimate the numerator using count min-hash technique [10]. Consider w pairwise
independent hash function, each of which resulting in a hash table of size 0 to h − 1. Whenever a node is
encountered in qi ∪ Ri it is hashed using all w hash functions and the corresponding counts in each of the hash
tables are incremented. Since there are collisions in hash table there may be an over-estimate of the exact count
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of nodes in each hashtable. To upper-bound this over-estimate one can use the minimum value across w hash
tables. The numerator of Eqn. 2 can be thus obtained using the sum of minimum counts of hashed incoming
nodes in the social stream object. Let this estimated structural similarity be denoted as EstSimS(Si, Cr). In
Lemma 3 the upper bound of this estimated similarity is shown. We ask the readers to refer to [3] for details of
this upper bound proof and [10] for min-hash count technique.

Lemma 3: If a sketch-table with length h and width w is used, then for some small value ε >
√
|Ri|+ 1/h, the

estimated value of the similarity EstSimS(Si, Cr) is bounded to the following range with probability at least

1−
(√

|Ri|+1

h·ε

)w
:

SimS(Si, Cr) ≤ EstSimS(Si, Cr) ≤ SimS(Si, Cr) + ε. (4)

The similarity of the social stream object to the assigned cluster is often maintained as a distribution. If the
similarity of the newly arrived object is β standard deviations away from the mean, then the object is assigned
to its own cluster, resulting in a novel event (See Section 2.1). When β is too small it results in highly unstable
clusters and when too large it leads to stale clusters. Note that one must maintain the zeroth, first and second
order moments M0, M1 and M2 of the closest similarity values continuously to compute the mean (µ) and
standard deviation (σ). These values can be easily maintained in the streaming scenario, because they can be
additively maintained over the social stream. The mean and standard deviation can be expressed in terms of
these moments as follows:

µ = M1/M0, σ =
√
M2/M0 − (M1/M0)2.

2.3 Supervised Event Detection

In several cyber-security applications users look for suspicious events, based on historical occurrences of these
instances. This is the case of supervised event detection. Here, we assume that we have access to the past
history of the stream in which the event E has been known to have occurred. The event signature of a social
stream is a k-dimensional vector V (E) containing the (average) relative distribution of event-specific stream
objects to clusters. Here k is the number of clusters in the model. Clearly, the event signature provides a useful
characterization of the relative topical distribution during an event of significance.

During a period of mideast unrest (the event E), some clusters are likely to be much more active than others,
and this can be captured in the vector V (E), as long as ground truth is available to do so. The event signatures
can be compared to horizon signatures, which are essentially defined in the same way as the event signatures,
except that they are defined over the more recent time horizon (tc −H, tc) of length H . One can compute the
dot product similarity of the horizon signature to the event signature and raise an alarm if its value is above a
certain threshold. The tradeoff between false positives and false negatives is determined by the threshold.

3 Influence Analysis

The problem of finding influential actors is important in various domains such as viral marketing [6, 27] and
political campaigns. The problem was formally defined by Kempe et al. [16] as an optimization problem over all
possible subsets of nodes with cardinality k. Subsequently, a significant amount of work [16, 18, 9, 8, 14, 13] has
been done on this area. All these approaches are static in the sense that they work with a fixed model of network
structure and edge probabilities. In practice, however, the influence of actors are defined by how their messages
are propagated in the social network over time. Such propagation can only be observed from the underlying
social stream, such as a Twitter feed or the sequence of Facebook activities. Since the problem is dynamic in
nature, using the actual flow of information is becoming more popular [25].
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A major disadvantage of existing influence analysis methods is that they are not able to query the influencers
in a context-specific fashion. Ideally, one would like to be able to use search terms to determine influencers
that are specific to a given context. For example, the top influencers for the search term “Egypt Unrest” would
be very different from that of the search term “PGA Golf Tour”. The inflexibility of existing methods is, in
part, because the existing methods [16, 18, 9, 8, 14] decouple the problem of influence analysis from learning
content-centric influence probabilities [12].

The influencers in a social stream are time-sensitive and may rapidly evolve [1], as different external events
may lead to changes in the influence patterns over time. For instance, a query such as “winter boots” may gen-
erally have prominent entities associated with shoe stores as the most influential entities, but an (advertisement)
statement from a popular figure in the entertainment industry, such as Justin Bieber, on a specific boot style
may change this ordering. Important events can often dynamically change the influencers, and this can only be
tracked in a time-sensitive and online fashion from the underlying activities in the social stream.

3.1 Influence Querying in Social Streams

Influence function is usually composed of four important components: (a) set of influencers, (b) set of users be-
ing influenced, (c) context of influence (or keywords), and (d) time of influence. One can compute the influence
score as a function of these parameters and use it to query influencers in context-sensitive and time-sensitive
manner using social streams.

Let the influence function I(S1, S2,Q, t) represents the aggregate influence score of actor set S1 on actor set
S2 with respect to contentQ at time t. Most of the queries are resolved by evaluating this score and then ranking
it over various possibilities in the argument. One or more of the arguments in I(S1, S2,Q, t) can be instantiated
to a “*” (don’t care) in order to enable more general queries in which all possibilities for the matching are
considered. For instance, the queries I(“David”, ∗, “Egypt unrest”, t) and I(“John”, ∗, “Egypt unrest”, t) can
be used to compare the total influence of David and John on the topic “Egypt unrest” at time t. Some examples
of useful queries that can be resolved with this approach are as follows:

• For a given query context Q, determining the top-k influencers at time t can be formulated as:

max
X:|X|=k

I(X, ∗,Q, t).

It is also possible to constrain the query to consider a specific subset Y in the second argument, corre-
sponding to the influenced actors. For example, a winter clothing merchant might decide to consider only
those actors whose location profiles correspond to colder regions.

• Determining the top-k influenced actors at time t, for a given query contextQ, can be extremely useful in
context-specific subscriptions and in recommending interesting public content to influenced users.

• Influence queries can also be useful in context-sensitive link recommendation, such as finding the top-k
influencer-influenced pairs, for a given query context Q.

3.2 Information Flow Based Querying

The context information used in the influence function for a query can be a set of hashtags, tokens or keywords.
Such keywords propagated via nodes (or actors) in a social network is considered as an information flow path.
A flow path must also satisfy a valid path in the network structure. For instance, if there is information reshared
from a1 to a2 to a3 and there is no network edge between a2 to a3. Then, the flow is only valid until a1 to a2.
Hence, the valid flow path would be P = 〈a1, a2〉 (not 〈a1, a2, a3〉).
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Figure 1: The decayed flow weights in the flow-path trees follow a Zipf distribution. The best-fit estimate of the
Zipf parameter θ and corresponding R2 for few flow-path trees are shown in the legend.

Time-sensitive influence can be computed using an half-life function or exponentially decaying function
exp(−λδt). Note that the decay rate (λ) is application specific as some social networks may have faster turn
around time and hence information propagates quickly. In such cases λ can be set to a higher value to reduce the
amount of influence effect. The time difference between the sender (to) and the final receiver (tc) of the message
in the flow path P is denoted by δt. Then the influence score for one flow path P for carrying a single keyword
Ki at time tc is given by exp(−λ ∗ (tc − to)) where δt = tc − to.

There can be many paths through which many keywords may propagate between a pair of actors. Hence, one
can accumulate all of that influence between actors aj and ak for keywords Ki at time tc as V(aj , ak,Ki, tc).
When there are several keywords in the queryQ, one can compute the atomic influence as the aggregate pairwise
influence across all keywords in the query Q. Formally, it is defined as follows:

Definition 4 (Influence Function): The atomic influence function I(aj , ak,Q, t) for a node aj to influence ak,
is defined as the sum of the aggregate pairwise flows over all keywords Ki ∈ Q in the data: I(aj , ak,Q, t) =∑
Ki∈Q V(aj , ak,Ki, t).

3.3 Efficient Tracking of Influencers

In order for one to compute the influence function I(ai, aj ,Ki, tc) we need to know all the information flow
paths between ai and aj , for single keyword Ki, until time tc. A simple tree based data structure is proposed
in [26] called Flow Path Tree. The notion of this tree data structure is to have one tree for each keyword and as
the social stream objects are encountered the paths are back tracked and the tree data structure is updated. The
back tracking may seem exponential in nature, particularly due to the power law degree distribution of the social
graphs. However, the keyword Ki is not propagated by all nodes and hence back tracking in practice is much
cheaper from a computational perspective.

The main disadvantage of tracking the flow paths using the tree is the size of the tree. The tree grows at an
exponentially faster rate as the volume of the stream increases. So, we need an efficient way to maintain the
in-memory representation of the flow path tree. The influence weights computed in a single flow path tree for
a single keyword Ki using exponentially decaying functions generally follows a skewed Zipf distribution [26].
This is shown in Fig. 1 using a log-log plot. This observation implies that most of the tree weight is generated
from a very few important flow paths in the tree. Using this observation, one can trim down the tree by a fraction
of 1 − α, where α is the fraction of nodes retained in the tree after trimming. Also, only leaves of the tree
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are trimmed when the number of nodes in the tree reaches a maximum threshold, say N . Then the fraction of
weights that remain in the tree can be lower-bounded using Theorem 5. We request the readers to refer to [26]
for the proof of Theorem 5.

Theorem 5: Let the flow weights on the N nodes in the tree be distributed according to the Zipf distribution
1/iθ for θ ≥ 1. Then, the total fraction F (N,α) of the flow in the top n = α · N nodes of the tree is at least
equal to:

F (N,α) ≥ log(n)/log(N) = 1− log(1/α)/log(N). (5)

The skew helps significantly in retaining the vast majority of the heavy flows. For example, in a flow path
tree with 100, 000 total flow weight, discarding half the nodes (α = 0.5) would result in total flow weight
reduction of only 1 − log(50000)/log(100000) = 0.06. Thus, the vast majority of the heavy flows (i.e. 94%)
are retained, which are the ones most relevant for the influence analysis process. This suggests that the pruning
process can be used to significantly reduce the complexity of the flow-path tree, while retaining most of the
information needed for the influence analysis task.

3.4 Relationship with Katz Measure

The atomic influence function is closely related to the Katz measure [20]. The Katz measure is defined in
terms of the weighted sum of the number of all possible paths between a pair of nodes and the weight decays
exponentially with the length of the underlying path. Specifically, if Pij be the set of paths between nodes ai
and aj , then the Katz measure K(ai, aj) is defined as follows:

K(ai, aj) =
∑
P∈Pij

γ|P | (6)

Here γ is the discount factor on the path length, which is analogous to the flow-based temporal decay factor.
Thus, flow-based approach computes exponentially decayed flow weights across different paths, as a more
dynamic, time- and content-sensitive way of measuring the importance of nodes. In an indirect sense, this way
of computing node importance can be considered a flow-based analogue to the Katz measure in static networks.
Because the Katz measure has been shown to be effective for link recommendation in static networks [20], it
lends greater credence to its use in the flow-based streaming scenario. Of course, the Katz measure is used
rarely in static networks because of the complexity of enumerating over a large number of possible paths. The
important point to understand is that the flow-based measure significantly changes in the importance of different
paths in the update process, and can also be more efficiently computed in the streaming scenario, such as using
the pruning technique discussed in Section 3.3.

4 Future Work and Conclusions

The area of social stream research lies in the intersection of big data, graph mining, and social network analysis.
One of the important characteristics of social streams is the availability of high velocity streaming data that
includes both structural and content information. Moreover, the sheer volume and the heterogeneity of the
underlying social interactions makes the problem much more challenging. For example, a social network could
have billions of nodes, trillions of edges, trillion interactions per day and a wide variety of such interactions (e.g.
like, share, and comment).

There are numerous social network algorithms that are yet to be developed for various social streaming
applications. Community detection falls in the realm of social stream clustering. However, incorporating struc-
ture, content and time aspects simultaneously and being able to query the nearest neighbors within a cluster
or obtaining cluster assignment probabilities in near real-time is a challenging problem. This is different from
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traditional clustering in graph streams as it encompasses content and meta information about nodes and edges.
Link prediction is similarly another interesting problem, which has been solved in static and dynamic scenarios.
However, when given content information propagated by nodes and their meta data, finding relevant links for
recommendation based on recent content interactions is quite challenging. Again this problem is very different
from link prediction in heterogeneous graphs [11] and streaming link prediction [30], as it does not take into
account the content and time of propagation simultaneously.

In several social and online applications users create several implicit signals for analysis, based on their
online interaction. For example, listening habits in Last.Fm or Pandora.com, along with the social relation-
ships, can be used to understand an users musical interests and make right recommendations. There are several
papers [28, 15, 23, 19, 17] that discuss about making recommendations incorporating the temporal dynamics.
However, their models cannot be updated in real-time particularly for such high volume and velocity social data.

The problem of mining social streams is very important to discover real-time trends, using both content and
structural information with a wide variety of practical applications. We discussed two important applications:
event detection and influence analysis. There are other interesting social network problems that are less studied
in the context of social streams, such as link prediction and recommendation. These areas will grow significantly
in the next few years with the advent of scalable and distributed infrastructure, availability of multiple social
streams, and need for real-time answers.
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