
Bulletin of the Technical Committee on

Data
Engineering
September 2017 Vol. 40 No. 3 IEEE Computer Society

Letters
Letter from the Editor-in-Chief . David Lomet 1
Letter from the 2017 IEEE TCDE Impact Award Winner . Susan B. Davidson 2
Letter from the 2017 IEEE TCDE Service Award Winner . Shan Wang 3
Letter from the 2017 IEEE TCDE Early Career Award Winner . Aditya Parameswaran 4
Letter from the Special Issue Editor . Haixun Wang 5

Special Issue on Graph Data Processing

Graph Processing in RDBMSs . Kangfei Zhao, Jeffrey Xu Yu 6
Trinity Graph Engine and its Applications Bin Shao, Yatao Li, Haixun Wang, Huanhuan Xia 18
GRAPE: Conducting Parallel Graph Computations without Developing Parallel Algorithms

. Wenfei Fan, Jingbo Xu, Xiaojian Luo, Yinghui Wu, Wenyuan Yu, Ruiqi Xu 30
Towards a Unified Graph Model for Supporting Data Management and Usable Machine Learning

. Guoliang Li, Meihui Zhang, Beng Chin Ooi 42
Representation Learning on Graphs: Methods and Applications . . William L. Hamilton, Rex Ying, Jure Leskovec 52
On Summarizing Large-Scale Dynamic Graphs .

. Neil Shah, Danai Koutra, Lisa Jin, Tianmin Zou, Brian Gallagher, Christos Faloutsos 75
Billion-Node Graph Challenges . Yanghua Xiao, Bin Shao 89
Mining Social Streams: Models and Applications . Karthik Subbian, Charu C. Aggarwal 100

Conference and Journal Notices
ICDE 2018 Conference . 110
TCDE Membership Form .back cover

Editorial Board

Editor-in-Chief

David B. Lomet

Microsoft Research

One Microsoft Way

Redmond, WA 98052, USA

lomet@microsoft.com

Associate Editors

Tim Kraska

Department of Computer Science

Brown University

Providence, RI 02912

Tova Milo

School of Computer Science

Tel Aviv University

Tel Aviv, Israel 6997801

Haixun Wang

Facebook, Inc.

1 Facebook Way

Menlo Park, CA 94025

Distribution

Brookes Little

IEEE Computer Society

10662 Los Vaqueros Circle

Los Alamitos, CA 90720

eblittle@computer.org

The TC on Data Engineering
Membership in the TC on Data Engineering is open to

all current members of the IEEE Computer Society who

are interested in database systems. The TCDE web page is

http://tab.computer.org/tcde/index.html.

The Data Engineering Bulletin
The Bulletin of the Technical Committee on Data Engi-

neering is published quarterly and is distributed to all TC

members. Its scope includes the design, implementation,

modelling, theory and application of database systems and

their technology.

Letters, conference information, and news should be sent

to the Editor-in-Chief. Papers for each issue are solicited

by and should be sent to the Associate Editor responsible

for the issue.

Opinions expressed in contributions are those of the au-

thors and do not necessarily reflect the positions of the TC

on Data Engineering, the IEEE Computer Society, or the

authors’ organizations.

The Data Engineering Bulletin web site is at

http://tab.computer.org/tcde/bull_about.html.

TCDE Executive Committee

Chair
Xiaofang Zhou

The University of Queensland

Brisbane, QLD 4072, Australia

zxf@itee.uq.edu.au

Executive Vice-Chair
Masaru Kitsuregawa

The University of Tokyo

Tokyo, Japan

Secretary/Treasurer
Thomas Risse

L3S Research Center

Hanover, Germany

Committee Members
Amr El Abbadi

University of California

Santa Barbara, California 93106

Malu Castellanos

HP Labs

Palo Alto, CA 94304

Xiaoyong Du

Renmin University of China

Beijing 100872, China

Wookey Lee

Inha University

Inchon, Korea

Renée J. Miller

University of Toronto

Toronto ON M5S 2E4, Canada

Erich Neuhold

University of Vienna

A 1080 Vienna, Austria

Kyu-Young Whang

Computer Science Dept., KAIST

Daejeon 305-701, Korea

Liaisons
Anastasia Ailamaki

École Polytechnique Fédérale de Lausanne

Station 15, 1015 Lausanne, Switzerland

Paul Larson

Microsoft Research

Redmond, WA 98052

Chair, DEW: Self-Managing Database Sys.
Shivnath Babu

Duke University

Durham, NC 27708

Co-Chair, DEW: Cloud Data Management
Xiaofeng Meng

Renmin University of China

Beijing 100872, China

i

Letter from the Editor-in-Chief

Computer Society Election

The Computer Society has an election annually to choose officers and Board of Governors (BOG) mem-
bers. Officers have one year terms. BOG members have three year terms, with one third being elected an-
nually. The results for the just completed election are posted at https://www.computer.org/web/election/
election-results. Hironori Kashara, elected president-elect last year, becomes president in January. The
newly elected president-elect is Cecilia Metra. I want to congratulate them and wish them well as they begin
their tenures in these leadership offices.

As for me, my current offices as treasurer and first vice president continue through the end of the year. As of
January, I will again become a member of the BOG. I want to thank Computer Society members, and especially
TCDE members, for electing me again to a three year term as a BOG member.

The Current Issue

Graph data management has grown in importance and interest over the past ten years, and especially as a result
of the emergence of social media and social media companies such as Facebook and Twitter. Graphs, among
other things, are used to represent people and their connections to other people. As we know from our own
use of social media, from the importance of online advertising that connects people to shopping interests, and
from how social media influenced the recent US presidential election, social data now has enormous sway on
the lives, not just of technology folks, but the general population as well.

This now pervasive presence of social media and its wide and still growing influence have made catering to
its needs, and especially its need for managing graphs, an important application for data management. Graphs
share many of the problems of earlier data management applications, the need for high performance, low cost,
high availability, security, etc. But managing graphs has some of these problems in the extreme. Scalability and
geo-distribution are huge issues. These make graph partitioning important. Subgraph matching is an issue for
social connectedness analysis, with important applications to ad placement. There are more.

The current issue shows one of the benefits of a publication like the Bulletin. It contains in a single place,
contributions from both industry and academia, providing an up-to-date view of the area that is hard to match
elsewhere. For readers who want to learn the latest about graph data processing, its application, and its impor-
tance, it is hard to beat the current issue. Haixun Wang, from Facebook, has served as the issue editor. He works
in the area and knows it well, and the people who work in the area, both industrial and academic. My thanks to
Haixun for succeeding in bringing this important collection of papers together and serving as issue editor.

David Lomet
Microsoft Corporation

1

Letter from the 2017 IEEE TCDE Impact Award Winner

This year I was honored to be given the Impact Award “For expanding the reach of data engineering within
scientific disciplines.” My interest in scientific applications started in the late 1980’s when I met Dr. Chris
Overton, who held a PhD in Developmental Biology and came to the University of Pennsylvania to complete a
Master’s in Computer and Information Science, because he believed that the future of biology was computational
– quite a visionary for the time! After Chris was hired to head up the informatics component of the Center for
Human Chromosome 22 in the 1990s, we frequently discussed the challenges he faced. This became a rich vein
of research problems that the Database Group at Penn has worked on for over two decades. Most importantly,
addressing these challenges involved a close collaboration between end-users, systems builders and database
experts. Two of my favorite problems were data integration and provenance.

Data integration. Most data integration systems in the 1990’s were built around relational databases, how-
ever genomic data was frequently stored in specialized file formats with programmatic interfaces. This led
experts to state in a report of the 1993 Invitational DOE Workshop on Genome Informatics that “Until a fully
relationalized sequence database is available, none of the queries in this appendix can be answered.” However,
the real problem was twofold: 1) integrating non-relational data sources; and 2) knowing what information was
available and where. We answered the “unanswerable queries” within about a month using our data integra-
tion system, Kleisli, which used a complex-object model of data, language based on a comprehension syntax,
and optimizations that went beyond relational systems. Our team also included experts who knew where the
appropriate data sources were and how to use them. Since then, the database community has made excellent
contributions in developing data integration systems that go well beyond the relational model; less progress has
been made on knowing how to find the appropriate data sources and how to extract the right information.

Data provenance. Our team originally recognized the need for provenance when constructing an integrated
dataset of genomic information: Not all data sources were equally trusted, but no-one wanted to express this
opinion by failing to include a relevant data set. The solution was to make provenance available so that users
could form their own conclusions. Since then, the importance of provenance has been widely recognized, espe-
cially as it relates to reproducibility and debugging, and the database community has made excellent progress
in “coarse-grained” provenance for workflows, “fine-grained” database style provenance, and “event-log” style
provenance. However, the usability of provenance remains a challenge: provenance is collected more often than
it is used!

Bioinformatics is just a precursor of the “tsunami” that is now Data Science, and many even more interesting
challenges lie ahead – see the CRA report on “Computing Research and the Emerging Field of Data Science”
(available at http://cra.org). As before, these problems are best addressed by teams of people working together. I
am encouraged to see our community rising to these challenges, and expanding the chain of end-users, systems
builders and database experts to include statisticians and machine learning researchers, among many other types
of experts required in developing solutions to real problems in Data Science.

Susan B. Davidson
University of Pennsylvania

2

Letter from the 2017 IEEE TCDE Service Award Winner

I am pleased and humbled to receive the 2017 IEEE TCDE Service Award. It is the recognition of my 36 years
of work! Thanks to the award committee and those who nominated me and supported my nomination! Special
thanks to my supervisor, Prof. Shixuan Sa, who was a professor of the Renmin University of China. Professor
Sa introduced me to the field of database research.

From 1984 to 1986, I was a visiting scholar of the University of Maryland, where I learned the modern
database technologies and participated in the system development of XDB (an extensible relational database
system). I founded the first Institute of Data Engineering and Knowledge Engineering in China in 1987. The
Institute specialized in the database system research and development. We have developed a series of database
management system in the past 30 years, including RDBMS, parallel database system, parallel data warehouse,
Chinese Natural Language Interface of RDBMS, Mobile Database System and memory database system, etc.

Many thanks to my colleagues and my students who researched and developed database systems with me.
Together we started an enterprise on database, which is now providing DBMS products ,KingbaseES ,to the
public sector in China.

As an educator I have put continuous efforts in promoting database education in China. I am the author of
one of the classic database textbooks in China. The textbook was first published in 1983 and released its 5th
edition in 2014. This textbook has been sold more than 2 million copies and affected generations of database
researchers in China. The book has been translated in Tibetan and traditional Chinese.

In 1999, the China Computer Federation Technical Committee on Databases(CCF TCDB) was established.
I was the first director of TCDB. One of the TCDB missions is to build and strengthen the relationship between
China and the rest of the world. The CCF TCDB actively hold many international conferences, including
VLDB2002, ER2004, SIGMOD/PODS2007, IEEE ICDE2009, DASFAA(many times), WAIM(many times),
APWEB (many times), and so on. I have served as the general chairman or the honorary chairman for many of
them.

We actively worked with international organizations. For example, the CCF TCDB and the Japanese
Database Committee established good relationship for years. Two committees sent representatives to partici-
pate each other’s national databases events.

I had served in China Computer Federation(CCF) and the TCDB for a long time, and served as vice president
of the CCF. I was also a Steering Committee member of DASFAA, WAIM, APWeb, etc. I treated each work
wholeheartedly and by doing so, I received my college’s respect and trust. I was awarded the CCF Distinguished
Contribution Award, DASFAA Outstanding Contribution Award, WAIM Outstanding Contribution Award, and
APWeb Outstanding Contribution Award, and this 2017 IEEE TCDE Service Award.

Appreciate the recognition from all of the international experts and friends. I am truly honored.

Shan Wang
Renmin University

3

Letter from the 2017 IEEE TCDE Early Career Award Winner

Rethinking Data Analytics with Humans-in-the-loop

From large-scale physical simulations, to high-throughput genomic sequencing, and from conversational agent
interactions, to sensor data from the Internet of Things, the need for data analytics—extracting insights from
large datasets—has never been greater. At the same time, current data analytics tools are powerless in harnessing
the hidden potential within these datasets. The bottleneck is not one of “scale”—we already know how to process
large volumes of data quickly—but instead stems from the humans-in-the-loop. As dataset sizes have grown, the
time for human analysis, the cognitive load taken on by humans, and the human skills to extract value from data,
have either stayed constant, or haven’t grown at a commensurate rate. Thus, at present, there is a severe lack of
powerful tools that incorporate humans as a “first-class citizen” in data analytics, helping them interactively
manage, analyze, and make sense of their large datasets.

My research has centered on the design of efficient and usable Human-in-the-Loop Data Analytics (HILDA)
tools, spanning the spectrum from manipulate → visualize → collaborate → understand: (a) For users not
currently able to even examine or manipulate their large datasets, I am developing DATASPREAD, a spreadsheet-
database hybrid (dataspread.github.io). (b) Then, once users can examine their large datasets, the next step is
to visualize it: I am developing ZENVISAGE, a visualization search and recommendation system, to allow users
to rapidly search for and identify visual patterns of interest, without effort (zenvisage.github.io). (c) Then,
to collaborate on and share the discovered insights with others, I am developing ORPHEUS, a collaborative
analytics system that can efficiently manage and maintain dataset versions (orpheus-db.github.io). (d) Finally, to
understand data at a finer granularity by using humans to annotate data for training machine learning algorithms,
I am developing POPULACE, an optimized crowdsourcing system (populace-org.github.io).

Developing these HILDA tools requires techniques not just in database systems, but also in data mining
and in Human-Computer Interaction (HCI)—we’ve had to evaluate our systems not just in terms of scalability
and latency, but also accuracy and utility (from data mining), and interactivity and usability (from HCI). In
developing these tools, we’ve also had to go outside of our comfort zone in talking to real users: biologists,
battery scientists, ad analysts, neuroscientists, and astrophysicists, in identifying usage scenarios, pain-points,
and challenges, thereby ensuring that our tools meet real user needs. Indeed, many of these individuals and
teams have access to large datasets, and a pressing need to extract insights and value from them, but are not able
to do so. This is due to the lack of powerful tools that can reduce the amount of human effort, labor, time, and
tedium, and at the same time, minimize the need for sophisticated programming and analysis skills.

While our tools represent a promising start, we are barely scratching the surface of this nascent research
field. Future research on HILDA will hopefully enable us to make steps towards meeting the grand challenge
of empowering scientists, business users, consultants, finance analysts, and lay users with a new class of tools
that equips them with what they need to manage, make sense of, and unlock value from data. We envision that
data-driven discovery of insights in the future will no longer be bottlenecked on the “humans-in-the-loop”, and
will instead depend on fluid interactions facilitated by powerful, scalable, usable, and intelligent HILDA tools.

Aditya Parameswaran
University of Illinois UC

4

Letter from the Special Issue Editor

In the last decade, a tremendous amount of work has been devoted to managing and mining large graphs. We
have witnessed during this golden time the dramatic rise of social networks, knowledge graphs, and data of
increasingly rich relationships. Publications on graph related research also thrived. In this issue, we review
some of the biggest challenges, survey a few brilliant solutions, and reflect on the current status and the future
of this field.

Big graphs bring a lot of algorithmic challenges, and as a result, topics such as graph partitioning, graph
reachability, keyword search, subgraph matching, etc. have attracted a lot of attention. In this issue, we chose
not to focus on any specific algorithms, partly because there are just too many to cover. Instead, we take a system
oriented approach, that is, we focus on work on managing and understanding graphs that lead to general purpose
systems that support a variety of algorithms on big graphs. When the data we are dealing with contains billions
of records (nodes) and trillions of relationships (edges), how to manage the data needs to take precedence over
how to design ad-hoc algorithms that assume certain data organization tailored for the algorithms.

In “Graph Processing in RDBMSs,” Zhao and Yu showed that, instead of devising specific algorithms with
specific data organization, many graph processing needs can be supported in RDBMs with an advanced query
language. They revisit and enhance SQL recursive queries and show that a set of fundamental graph opera-
tions are ensured to have a fixpoint. In “Trinity Graph Engine and its Applications,” Shao, Li, Wang and Xia
introduced the Trinity Graph Engine, whichh is an open-source distributed in-memory data processing engine,
underpinned by a strongly-typed in-memory key-value store and a general distributed computation engine. It is
used to serve real-time queries for many real-life big graphs such as Microsoft Knowledge Graph and Microsoft
Academic Graph. In “GRAPE: Conducting Parallel Graph Computations without Developing Parallel Algo-
rithms”, Fan, Xu, Luo, Wu, Yu, and Xu develop a general purpose framework to parallelize existing sequential
graph algorithms, without recasting the algorithms into a parallel model. It is clear that the two most important
tasks are managing and mining graph data. In “Towards A Unified Graph Model for Supporting Data Manage-
ment and Usable Machine Learning,” Li, Zhang, Chen, and Ooi present a preliminary design of a graph model
for supporting both data management and usable machine learning at the same time.

In many graph systems including the above, graphs are stored in their native forms (nodes and edges).
Machine learning tasks on graphs may require a very different representation of graphs. In “Representation
Learning on Graphs: Methods and Applications,” Hamilton, Ying, and Leskovec tried to find a way to represent
or encode graph structure so that it can be easily exploited by machine learning models. They develop a unified
framework to describe recent approaches, and highlighted a number of important applications and directions
for future work. In “On Summarizing Large-Scale Dynamic Graphs,” Shah, Koutra, Jin, Zou, Gallagher, and
Faloutsos focused on how to describe a large, dynamic graph over time using an information-theoretic approach.
Specifically, it compresses graphs by summarizing important temporal structures and finds patterns that agree
with intuition.

Finally, we also highlight the biggest challenges in the field. In “Billion-Node Graph Challenges”, Xiao and
Shao describe the challenges in the managing and mining billon-node graphs in a distributed environment, while
in “Mining Social Streams: Models and Applications,” Subbian and Aggarwal focus specifically on challenges
in online social networks.

Haixun Wang
Facebook

5

Graph Processing in RDBMSs

Kangfei Zhao, Jeffrey Xu Yu
The Chinese University of Hong Kong

Hong Kong, China
{kfzhao,yu}@se.cuhk.edu.hk

Abstract

To support analytics on massive graphs such as online social networks, RDF, Semantic Web, etc. many
new graph algorithms are designed to query graphs for a specific problem, and many distributed graph
processing systems are developed to support graph querying by programming. A main issue to be ad-
dressed is how RDBMS can support graph processing. And the first thing is how RDBMS can support
graph processing at the SQL level. Our work is motivated by the fact that there are many relations stored
in RDBMS that are closely related to a graph in real applications and need to be used together to query
the graph, and RDBMS is a system that can query and manage data while data may be updated over
time. To support graph processing, we propose 4 new relational algebra operations, MM-join, MV-join,
anti-join, and union-by-update. Here, MM-join and MV-join are join operations between two matrices
and between a matrix and a vector, respectively, followed by aggregation computing over groups, given
a matrix/vector can be represented by a relation. Both deal with the semiring by which many graph
algorithms can be supported. The anti-join removes nodes/edges in a graph when they are unnecessary
for the following computing. The union-by-update addresses value updates to compute PageRank, for
example. The 4 new relational algebra operations can be defined by the 6 basic relational algebra op-
erations with group-by & aggregation. We revisit SQL recursive queries and show that the 4 operations
with others are ensured to have a fixpoint, following the techniques studied in DATALOG, and we en-
hance the recursive with clause in SQL’99. RDBMSs are capable of dealing with graph processing in
reasonable time.

1 Introduction

Graph processing has been extensively studied to respond the needs of analyzing massive online social net-
works, RDF, Semantic Web, knowledge graphs, biological networks, and road networks. A large number
of graph algorithms have been used/proposed/revisited. Such graph algorithms include BFS (Breadth-First
Search) [20], Connected-Component [57], shortest distance [20], topological sorting [34], PageRank [42],
Random-Walk-with-Restart [42], SimRank [31], HITS [42], Label-Propagation [55], Maximal-Independent-
Set [46], and Maximal-Node-Matching [52], to name a few. In addition to the effort to design efficient graph
algorithms to analyze large graphs, many distributed graph processing systems have been developed using the
vertex-centric programming. A recent survey can be found in [44]. Such distributed graph processing systems

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

6

provide a framework on which users can implement graph algorithms to achieve high efficiency. Both new
graph algorithms and distributed graph processing systems focus on efficiency. On the other hand, graph query
languages have also been studied [69, 15, 24, 28, 38, 28]. In addition, DATALOG has been revisited to support
graph analytics [63, 62, 61, 59, 60, 17].

In this work, we investigate how RDBMS can support graph processing at SQL level for the following
reasons. First, RDBMS is to manage various application data in relations as well as to query data in relations
efficiently using the sophisticated query optimizer. A graph may be a labeled graph with node/edge label, and
it is probable that additional information is associated with the graph (e.g. attributed graphs). A key point is
that we need to provide a flexible way for users to manage and query a graph together with many relations
that are closely related to the graph. The current graph systems are developed for processing but not for data
management. We need a system to fulfill both. Second, there is a requirement to query graphs. In the literature,
many new graph algorithms are studied to query a specific graph problem. And the current graph processing
systems developed do not have a well-accepted graph query language for querying graphs. In other words, it
needs coding, when there is a need to compute a graph algorithm based on the outputs of other graph algorithms.

We revisit recursive SQL queries [22] and show that a large class of graph algorithms can be supported by
SQL in RDBMSs in [74]. The issue of supporting graph algorithms in RDBMS at SQL level is the issue how
recursive SQL can be used to support graph algorithms. There are two main concerns regarding recursive SQL
queries. One is a set of operations that are needed to support a large pool of graph algorithms and can be used
in recursive SQL queries. The other is the way to ensure the recursive SQL queries can obtain a unique answer.
The two concerns are interrelated.

The paper is organized as follows. Section 2 reviews the related works. Section 3 discusses the recursion
handling by SQL in RDBMSs. In Section 4, we present our approach to support graph processing by SQL
followed by the discussion on how to ensure the fixpoint semantics in Section 5. We conclude our work in
Section 6.

2 Related Works

Graph Processing and Management. Many graph systems have been extensively studied recent years. Dis-
tributed graph processing systems like Pregel [41], Giraph [1], GraphLab [2] and GraphX [3] adopt ’think like
a vertex’ programming model. Program logic is expressed by vertex-centric push/pull based message passing,
which is scalable for very large graph data. Apart from using some common built-in algorithms, users need to
implement algorithms using the system APIs provided. The optimization techniques are system-dependent and
at individual algorithm level. Such systems compute graphs imported and do not support graph maintenance.
Different from graph processing systems, graph management systems e.g. Neo4j [4], AgensGraph [5], Titan [6]
are designed for the transactional graph-like query. Neo4j adopts the property graph model and supports a visual
UI for querying by the declarative language Cypher. AgensGraph is a multi-model graph database based on
PostgreSQL RDBMS. Titan uses the functional language Gremlin to query and update graph.

Graph Query Languages. Graph query languages have been studied. A survey on query languages for graph
databases can be found in [69], which covers conjunctive query (CQ), regular path query (RPQ), and CRPQ
combining CQ and RPQ. Also, it surveys a large number of languages including Lorel, StruQL, UnQL, G,
G+, GraphLog, G-Log, SoSQL, etc. Barceló investigates the expressive power and complexity of graph query
languages [15]. Libkin et al. in [38] study how to combine data and topology by extending regular expressions
to specify paths with data. The declarative, SQL-inspired query language Cypher [4], and functional language
Gremlin [6] are integrated into transactional graph databases to describe graph patterns and traversal queries.
There are several new attempts to query graphs. The PGQL [68] is a property graph query language in the
Oracle Parallel Graph AnalytiX (PGX) toolkit, and is an SQL-like query language for graph matching. PGQL

7

supports path queries and has the graph intrinsic type for graph construction and query composition. Moffitt and
Stoyanovich in [47] present a declarative query language Portal for querying evolving graphs, which is based on
temporal relational algebra and is implemented on GraphX. Gao et al. in [24] propose a graph language GLog
on Relational-Graph, which is a data model by mixing relational and graph data. A GLog query is converted into
a sequence of MapReduce jobs to be processed on distributed systems. Jindal and Madden propose graphiQL in
[32] by exploring a way to combine the features of Pregel (vertex-centric programming) and SQL. He and Singh
in [28] propose the language GraphQL on graph algebra which deals with graphs with attributes as a basic unit,
where the operations in the graph algebra include selection, Cartesian product, and composition. Salihoglu and
Widom in [58] propose HeLP, a set of basic operations needed in many graph processing systems.

Recursive SQL Queries: SQL’99 supports recursive queries [45, 22]. As mentioned, in supporting graph
algorithms, there are two main issues regarding recursive SQL queries: a set of operations that can be used in
recursive SQL queries, and a way to ensure unique solution by recursive SQL queries. For the former, Cabrera
and Ordonez in [18] and Kang et al. in [36] discuss an operation to multiply a matrix with a vector using joins
and group-by & aggregation. Cabrera and Ordonez in [18] discuss semiring for graph algorithms, and give
a unified algorithm which is not in SQL. For the latter, recursive query processing is well discussed in [12].
Ordonez et al. in [50] compare SQL recursive query processing in columnar, row and array databases. Ghazal
et al. propose an adaptive query optimization scheme for the recursive query in Teradata, which employs multi-
iteration pre-planning and dynamic feedback to take advantage of global query optimization and pipelining [26].
Aranda et al. in [13] study broadening recursion in SQL. The SQL level optimizations for computing transitive
closures are discussed in [49], with its focus on monotonic aggregation for transitive closures. All the works in
[50, 26, 13, 49] do not deal with negation and aggregation. It is important to note that aggregation and negation
in general are needed for a large pool of graph algorithms, but aggregations and negations cannot be used within
a recursive SQL query for ensuring that an SQL query can get a unique solution.

Graph Analytics by SQL. Graph analytics in RDBMSs using SQL have been studied. Srihari et al. in [64]
introduce an approach for mining dense subgraphs in a RDBMS. Gao et al. in [23] leverage the window functions
and the merge statement in SQL to implement shortest path discovery in RDBMS. Zhang et al. in [73] provide
an SQL-based declarative query language SciQL to perform array computation in RDBMSs. Fan et al. in
[21] propose GRAIL, a syntactic layer converting graph queries into SQL script. GraphGene [70] is a system
for users to specify graph extraction layer over relational databases declaratively. MADLib is designed and
implemented to support machine learning, data mining and statistics on database systems [19, 29]. Passing et
al. in [51] propose a PageRank operator in main-memory RDB. This operator is implemented by extending
the SQL recursive query by lambda expression. In [33], Vertica relational database is studied as the platform
for vertex-centric graph analysis. In [65], a graph storage system SQLGraph is designed, which combines the
relational storage for adjacency information with JSON for vertex and edge properties. It shows that it can
outperform popular NoSQL graph stores. GQ-Fast [39] is an indexed and fragmented database which supports
efficient SQL relationship queries for typed graph analytics. Ma et. al in [40] present G-SQL, an SQL dialect
for graph exploration. Multi-way join operations are boosted by underlying graph processing engine. Aberger
et al. in [11] develop a graph pattern engine, called EmptyHead, to process graph patterns as join processing in
parallel.

Datalog-based Systems. DATALOG is a declarative query language used in early deductive databases. As
its new applications derive from information extraction, data analytics and graph analytics, many DATALOG-
based systems have been developed recently. A survey of early deductive database systems can be found in
[56]. LDL++ is a deductive database system in which negation and aggregation handling in recursive rules are
addressed [71, 14]. Based on LDL++, a new deductive application language system DeALS is developed to
support graph queries [63], and the optimization of monotonic aggregations is further studied [62]. SociaLite
[59] allows users to write high-level graph queries based on DATALOG that can be executed in parallel and

8

distributed environments [60]. These systems support graph analytics, especially iterative graph analytics e.g.
transitive closure, weakly connect components, single source shortest distance since DATALOG has a great
expressive power for recursion. DATALOG for machine learning is studied with Pregel and map-reduce-update
style programming [17]. The efficient evaluation of DATALOG is investigated on data flow processing system
Spark [61] and BSP-style graph processing engines [48]. In this work, we introduce the DATALOG techniques
into RDBMSs to deal with recursive SQL queries, since DATALOG has greatly influenced the recursive SQL
query handling.

3 The Recursion in RDBMS

Over decades, RDBMSs have provided functionality to support recursive queries, based on SQL’99 [45, 22].
The recursive queries are expressed using with clause in SQL. It defines a temporary recursive relation R in
the initialization step, and queries by referring the recursive relation R iteratively in the recursive step until
R cannot be changed. As an example, the edge transitive closure can be computed using with over the edge
relation E(F, T), where F and T are for “From” and “To”. As shown below, initially, the recursive relation TC
is defined to project the two attributes, F and T , from the relation E. Then, the query in every iteration is to
union TC computed and a relation with two attributes TC.F and E.T by joining the two relations, TC and E.

with TC (F, T) as (select F , T from E union all select TC.F , E.T from TC, E where TC.T = E.F)

SQL’99 restricts recursion to be a linear recursion and allows mutual recursion in a limited form [45].
Among the linear recursion, SQL’99 only supports monotonic queries, which is known as the monotonicity. In
the context of recursion, a monotonic query means that the result of a recursive relation in any iteration does not
lose any tuples added in the previous iterations. Such monotonicity ensures that the recursion ends at a fixpoint
with a unique result. The definition of monotonicity can be found in [66]. As given in Theorem 3.3 in [66],
union, select, projection, Cartesian product, natural joins, and θ-joins are monotone. On the other hand, negation
is not monotone [25]. In SQL, the operations such as except, intersect, not exists, not in, <> some, <> all,
distinct are the operations leading to negation. Also, aggregation can violate the monotonicity. SQL’99 does
not prohibit negation in recursive queries completely since the monotonicity of recursive query is ensured if the
negation is only applied to the relations that are completely known or computed prior to processing the result of
the recursion. This is known as stratified negation [72].

SQL Recursion Handling in RDBMS: SQL’99 supports stratified negation. Below, we discuss SQL recur-
sion handling in RDBMSs, following the similar discussions given in [53] in which Przymus et al. survey
recursive queries handling in RDBMSs. We focus on Microsoft SQL Server (2016) [8], Oracle (11gR2) [9],
IBM DB2 10.5 Express-C [7], and PostgreSQL (9.4) [10], where Oracle is not covered in [53]. We investigate
the features related to recursive query processing in 5 categories. (A) linear/nonlinear/mutual recursion. (B)
multiple queries used in the with clause, (C) the set operations other than union all that can be used to separate
queries in the with clause, (D) the restrictions on group by, aggregate function, and general functions in the
recursive step, and (E) the function to control the looping. Table 1 shows the summary, where “3”, “7”, and
“–” denote the corresponding functionality is supported, prohibited, and not applicable, respectively, in the with
clause.

Handing Recursion by PSM in RDBMS: There is another way to implement recursion, which is SQL/PSM
(Persistent Stored Modules) included in SQL standard [66]. By SQL/PSM (or PSM), users can define func-
tions/procedures in RDBMSs, and call such functions when querying. In a function/procedure definition, users
can declare variables, create temporary tables, insert tuples, and use looping where conditions can be specified
to exit (or leave) the loop. PSM provides users with a mechanism to issue queries using a general-purpose
programming language.

9

Features PostgreSQL DB2 Oracle SQL Server

A
Linear Recursion 3 3 3 3
Nonlinear Recursion 7 7 7 7
Mutual Recursion 7 7 7 7

B Initial Step 3 3 3 3
Recursive Step 7 3 7 3

C
Between initial queries 3 3 3 3
Across initial & recursive queries 3 7 7 7
Between recursive queries – 7 – 7

D

Negation 7 7 7 7
Aggregate functions 7 7 7 7
group by, having 7 7 7 7
partition by 3 3 3 3
distinct 3 7 7 7
General functions 3 7 3 3
Analytical functions 3 7 3 3
Subqueries without recursive ref 3 3 3 3
Subqueries with recursive ref 7 7 7 7

E

Infinite loop detection 7 7 3 3
Cycle detection 7 7 3 7
cycle 7 7 3 7
search 7 7 3 7

Table 1: The with Clause Supported by RDBMSs
4 The Power of Algebra

In this paper, we model a graph as a weighted directed graph G = (V,E), where V is a set of nodes and E is a
set of edges. A node is associated with a node-weight and an edge is associated with an edge-weight, denoted
as ω(vi) and ω(vi, vj), respectively. A graph can be represented in matrix form. The nodes with node-weights
can be represented as a vector of n elements, denoted as V. The edges with edge-weights can be represented
as a n × n matrix, denoted as M, where its Mij value can be 1 to indicate that there is an edge from vi to vj ,
or the value of the edge weight. Such matrices and vectors have their relation representation. Let V and M be
the relation representation of vector V and matrix M, such that V (ID, vw) and M(F, T, ew). Here, ID is the
tuple identifier in V . F and T , standing for “From” and “To”, form a primary key in M . vw and ew are the
node-weight and edge-weight respectively.

4.1 The Four Operations

We discuss a set of 4 relational algebra operations, MM-join, MV-join, anti-join, and union-by-update. Here,
MM-join and MV-join support the semiring by which many graph algorithms can be supported. The anti-join
is used to remove nodes/edges in a graph when they are unnecessary in the following computing and serves
as a selection. The union-by-update is used to deal with value updates in every iteration to compute a graph
algorithm, e.g., PageRank. It is worth noting that there is no such an operation like union-by-update in relational
algebra.

We show that all the 4 relational algebra operations can be defined using the 6 basic relational algebra
operations (selection (σ), projection (Π), union (∪), set difference (−), Cartesian product (×), and rename (ρ)),
together with group-by & aggregation. For simplicity, below, we use “Ri → Rj” for the rename operation to
rename a relation Ri to Rj , and use “←” for the assignment operation to assign the result of a relational algebra
to a temporal relation.

We explain why we need the 4 operations which can be supported by the relational algebra because they
do not increase the expressive power of relational algebra. First, it is known that relational algebra can support
graph algorithms. However, it is not well discussed how to support explicitly. The set of 4 operations is such an
answer. Second, it is known that recursive query is inevitable. In other words, new operations cannot function
if they cannot be used in recursive SQL queries in RDBMS. The 4 operations are the non-monotonic operations

10

that cannot be used in recursive SQL queries allowed in SQL’99. With the explicit form of the 4 operations, in
this work, we show that they can be used in recursive SQL queries which lead to a unique answer (fixpoint) by
adopting the DATALOG techniques. Third, with the explicit form as a target, we can further study how to support
them efficiently. We discuss the 4 operations below.

To support graph analytics, the algebraic structure, namely semiring, is shown to have sufficient expressive
power to support many graph algorithms [37, 18]. The semiring is a set ofM including two identity elements,
0 and 1, with two operations: addition (+) and multiplication (·). In brief, (1) (M,+) is a commutative monoid
with 0, (2) (M, ·) is a monoid with 1, (3) the multiplication (·) is left/right distributes over the addition (+),
and (4) the multiplication by 0 annihilatesM. Below, A and B are two 2 × 2 matrix, and C is a vector with 2
elements.

A =

(
a11 a12
a21 a22

)
, B =

(
b11 b12
b21 b22

)
, C =

(
c1
c2

)
The matrix-matrix (matrix-vector) multiplication (·), and matrix entrywise sum (+) are shown below.

A · B =

(
a11 � b11 ⊕ a12 � b21 a11 � b12 ⊕ a12 � b22
a21 � b11 ⊕ a22 � b21 a21 � b12 ⊕ a22 � b22

)
A + B =

(
a11 ⊕ b11 a12 ⊕ b12
a21 ⊕ b21 a22 ⊕ b22

)
A · C =

(
a11 � c1 ⊕ a12 � c2
a21 � c1 ⊕ a22 � c2

)
We focus on the multiplication (·), since it is trivial to support the addition (+) in relational algebra. Let A and
B be two n×n matrices, and C be a vector with n elements. For the multiplication AB = A ·B, and AC = A ·C,
we have the following.

ABij =

n⊕
k=1

Aik � Bkj (1)

ACi =

n⊕
k=1

Aik � Ck (2)

Here, Mij is the value at the i-th row and j-th column in the matrix M, and Vi is the element at the i-th row in
the vector V. Let A(F, T, ew) and B(F, T, ew) be the relation representation for a n×n matrix and C(ID, vw)
be a relation representation for a vector with n elements. To support matrix-matrix multiplication (Eq. (1)) and
matrix-vector multiplication (Eq. (2)), we define two aggregate-joins, namely, MM-join and MV-join. The first
aggregate-join, called MM-join, is used to join two matrix relations A and B, to compute A ·B. The MM-join is

denoted as A
⊕(�)
1

A.T=B.F
B , and it is defined by the following relational algebra.

A
⊕(�)
1

A.T=B.F
B =A.F,B.T G⊕(�)(A 1

A.T=B.F
B) (3)

The second aggregate-join, called MV-join, is used to join a matrix relation and a vector relation, A and C, to

compute A · C. The MV-join is denoted as A
⊕(�)
1

T=ID
C, and it is defined by the following relational algebra.

A
⊕(�)
1

T=ID
C =F G⊕(�)(A 1

T=ID
C) (4)

Here, XGY is a group-by & aggregation operation to compute the aggregate function defined by Y over the
groups by the attributes specified in X . Note that MV-join is discussed in [49, 36], and MM-join is similar to
MV-join. There are two steps to compute MM-join. The first step is to join A and B by the join condition

11

A.T = B.F . This step is to join the k value in order to compute� for Aik�Bkj as given in Eq. (1). The second
step is to do group-by & aggregation, where the group-by attributes are the attributes that are in the primary
key but do not appear in the join condition, namely, A.F and B.T , and the aggregate function is to compute
Eq. (1). In a similar fashion, there are two steps to compute MV-join. The first step is to join A and C by the
join condition A.T = C.ID. This step is to join the k value in order to compute � for Aik � Ck as given in
Eq. (2). The second step is to do group-by & aggregation, where the group-by attribute is the attribute A.F , and
the aggregate function is to compute Eq. (2).

We adopt the anti-join, R n S, which is defined as the result of R that cannot be semi-joined by S, such
that R − (R n S). In addition, we propose a new union operation, called union-by-update, for the purpose of
updating values in either a matrix or a vector, denoted as]. Let R(A,B) and S(A,B) be two relations, where
A and B are two sets of attributes. R]A S is a relation, RS(A,B). Let r be a tuple in R and s be a tuple in S.
Different from the conventional union operation (∪) where two tuples are identical if r = s, with R]A S, two
tuples, r and s, are identical if r.A = s.A. The union-by-update is to update the B attributes values of r by the
B attributes values of s if r.A = s.A. In other words, if r.A = s.A, then s is in RS but not r. There are 2 cases
that r and s do not match. If s does not match any r, then s is in RS. If r does not match any s, then r is in
RS. It is worth noting that there can be multiple r match multiple s on the attributes A. We allow multiple r to
match a single tuple s, but we do not allow multiple s to match a single r, since the answer is not unique. When
A attributes in both R and S are defined as the primary key, there is at most one pair of r and s matches.

The 4 operations are independent among themselves, since we can discover a property that is possessed by
one operation but is not possessed by the composition of the other three only [66].

4.2 Relational Algebra plus While

To support graph processing, a control structure is needed in addition to the relational algebra operations dis-
cussed. We follow the “algebra + while” given in [12].

initialize R
while (R changes) { · · · ; R← · · · }

In brief, in the looping, R may change by the relational algebra in the body of the looping. The looping will
terminate until R becomes stable. As discussed in [12], there are two semantics for “algebra + while”, namely,
noninflationary and inflationary. Consider the assignment, R ← E , which is to assign relation R by evaluating
the relational algebra expression E . By the noninflationary, the assignment can be destructive in the sense that
the new value will overwrite the old value. By the inflationary, the assignment needs to be cumulative. For the
termination of the looping, as pointed out in [12], explicit terminating condition does not affect the expressive
power. In this work, the conventional union (∪) is for the inflationary semantics, whereas union-by-update (])
is for the noninflationary semantics.

In this work, the expressive power, and the complexity remain unchanged as given in [12] under the scheme
of “algebra + while”, because the 4 operations added can be supported by the existing relational algebra opera-
tions. From the viewpoint of relational algebra, we can support all basic graph algorithms, including those that
need aggregation (Table 2) but excluding those complicated algorithms for spectral analytics that need matrix
inverse. The 4 operations make it clear how to support graph algorithms in relational algebra. In particular, all
graph algorithms, that can be expressed by the semiring, can be supported under the framework of “algebra +
while” and hence SQL recursion enhanced.

4.3 Supporting Graph Processing

We show how to support graph algorithms by the “algebra + while” approach, using MM-join and MV-join,
anti-join, union-by-update, as well as other operations given in relational algebra. For simplicity, we represent

12

a graph G = (V,E) with n nodes by an n × n E and a vector V with n elements. We represent the vector V
by a relation V (ID, vw), where ID is the tuple identifier for the corresponding node with value vw associated.
Moreover, we represent the matrix E by a relation E(F, T, ew), where F and T , standing for “From” and “To”,
form a primary key in E, which is associated with an edge value ew. Below, to emphasize the operations in
every iteration, we omit the while looping. Note that some graph algorithms can be computed by either union or
union-by-update.

We use the examples of PageRank, Floyd-Warshall and TopoSort to illustrate how to support graph algo-
rithms by the new algebra. The relational algebra for PageRank is given below.

V ← ρV (E
f1(·)
1

T=ID
V) (5)

Here, f1(·) is a function to calculate c ∗ sum(vw ∗ ew) + (1− c)/n, where c is the damping factor and n is the
total number of tuples in V . Note, vw ∗ ew is computed when joining the tuples from E and V , regarding �,
and the aggregate function sum is computed over groups, given vw ∗ ew computed, along with other variables
in f1(·), regarding ⊕.

To implement Floyd-Warshall, the relational algebra is given as follows.

E ← ρE((E → E1)
min(E1.ew+E2.ew)

1
E1.T=E2.F

(E → E2)) (6)

In Eq (6), we use one MM-join with + and min serving as the � and ⊕ respectively. For PageRank and
Floyd-Warshall, one union-by-update operation is performed to update recursive relation V and E.

Below, we show how to support TopoSort (Topological Sorting) for DAG (Directed Acyclic Graph) using
anti-join. To compute TopoSort, we assign a level L value to every node. For two nodes, u and v, if u.L < v.L,
then u < v in the TopoSort; if u.L = v.L, then either u < v or v < u is fine, since the TopoSort is not unique.
Let Topo(ID,L) be a relation that contains a set of nodes having no incoming edges with initial L value 0. The
initial Topo can be generated by ΠID,0(V nID=E.T E). In the recursive part, it is done by several steps.

Ln ← ρL(Gmax(L)+1Topo)

V1 ← V n
V.ID=T.ID

Topo

E1 ← ΠE.F,E.T (V1 1
ID=E.F

E) (7)

Tn ← ΠID,L(V1 n
V1.ID=E1.T

E1)× Ln

Topo ← Topo ∪ Tn

Here, first, we compute the L value to be used for the current iteration, which is the max L value used in the
previous iteration plus one. It is stored in Ln. Next, we remove those nodes that have already been sorted by
anti-join and obtain V1. With V1 ⊆ V , we obtain the edges among nodes in V1 as E1. Tn is the set of nodes that
are sorted in the current iteration. Finally, we get the new Topo by union of the previous Topo and the newly
sorted Tn. It repeats until Tn is empty.

Table 2 shows some representative graph algorithms that can be supported by the 4 operations including
MM-join, MV-join, anti-join and union-by-update. As a summary, MV-join together with union-by-update can
be used to implement PageRank, weakly Connected-Component, HITS, Label-Propagation, Keyword-Search
and K-core, whereas MM-join together with union-by-update can be used to support Floyd-Warshall, SimRank
and Markov-Clustering. The anti-join serves as a selection to filter nodes/edges which are unnecessary in the
following iterations. It is important to note that anti-join is not only for efficiency but also for the correctness.
Equipped with anti-join, TopoSort is easy to be implemented. The combination of MV-join and anti-join support
Maximal-Independent-Set and Maximal-Node-Matching.

13

Graph Algorithm MV/MM-join]/∪ anti-join linear nonlinear
TC [20] – ∪ 3 3

BFS [20] MV] 3

Connected-Component [57] MV] 3

Bellman-Ford [20] MV] 3

Floyd-Warshall [20] MM] 3

PageRank [42] MV] 3

Random-Walk-with-Restart [42] MV] 3

SimRank [31] MM] 3

HITS [42] MV] 3

TopoSort [34] – ∪ 3 3

Keyword-Search [16] MV] 3

Label-Propagation [55] MV] 3

Maximal-Independent-Set [46] – ∪ 3 3

Maximal-Node-Matching [52] MV ∪ 3 3

Diameter-Estimation [35] – ∪ 3

Markov-Clustering [67] MM] 3

K-core [43] MV] 3

K-truss [54] –] 3

Graph-Bisimulation [30] – ∪ 3

Table 2: Graph Algorithms

5 XY-Stratified

As discussed in Section 3, SQL’99 supports stratified negation in recursion, which means it is impossible to
support graph processing that needs the functions beyond stratified negation. Recall that the 4 operations are
not monotone and are not stratified negation. To address this issue, we discuss relational algebra operations
in the context of DATALOG using rules. The rules for selection, projection, Cartesian product, union, θ-join
are given in [66]. In a similar way, we can express the 4 new operators using rules. As union, selection,
projection, Cartesian product and θ-joins are monotone, recursive queries using such operations are stratified.
But, MM-join, MV-join, anti-join, and union-by-update are not monotonic. The approach we take is based on
XY-stratification [71, 72, 14]. An XY-stratified program is a special class of locally stratified programs [27]. As
proposed by Zaniolo et al. in [71], it is a syntactically decidable subclass for non-monotonic recursive programs
to handle negation and aggregation, and it captures the expressive power of inflationary fixpoint semantics [12].
An XY-program is a locally stratified DATALOG program that can be checked at compile-time by syntax.

Based on XY-stratification, we extend the with clause in SQL’99, “with R as 〈 R initialization 〉 〈 recursive
querying involving R 〉”, to support a class of recursive query that can be used to support many graph analytical
tasks. To minimize such extension, we restrict that the with clause only has one recursive relationR, and there is
only one cycle in the corresponding dependency graph. The extension is to allow negation as well as aggregation
in a certain form for a recursive query. We show that the recursive queries using the 4 operations discussed can
have a fixpoint by which a unique answer can be obtained [74].

6 Conclusion

To support a large pool of graph algorithms, we propose 4 operations, namely, MM-join, MV-join, anti-join and
union-by-update, that can be supported by the basic relational algebra operations, with group-by & aggregation.
Among the 4 operations, union-by-update plays an important role in allowing value updates in iterations. The
4 non-monotonic operations are not allowed to be used in a recursive query as specified by SQL’99. We show
that the 4 operations proposed together with others have a fixpoint semantics based on its limited form, based on
DATALOG techniques. In other words, a fixpoint exists for the 4 operations that deal with negation and aggre-
gation. We enhance the recursive with clause in SQL and translate the enhanced recursive with into SQL/PSM
to be processed in RDBMSs. In [74], we conduct extensive performance studies to test 10 graph algorithms

14

using 9 large real graphs on 3 major RDBMSs (Oracle, DB2, and PostgreSQL) at SQL level, and we show that
RDBMSs are capable of dealing with graph processing in reasonable time. There is high potential to improve
the efficiency by main-memory RDBMSs, efficient join processing in parallel, and new storage management.

ACKNOWLEDGES: This work was supported by the Research Grants Council of Hong Kong SAR, China, No. 14221716.

References
[1] http://giraph.apache.org.

[2] https://github.com/dato-code/PowerGraph.

[3] http://spark.apache.org/graphx/.

[4] http://neo4j.com.

[5] http://www.agensgraph.com/.

[6] http://thinkaurelius.github.io/titan/.

[7] IBM DB2 10.5 for linux, unix and windows documentation. http://www.ibm.com/support/
knowledgecenter/#!/SSEPGG_10.5.0/com.ibm.db2.luw.kc.doc/welcome.html.

[8] Microsoft SQL documentation. https://docs.microsoft.com/en-us/sql/.

[9] Oracle database SQL language reference. http://docs.oracle.com/cd/E11882_01/server.112/
e41084/toc.htm.

[10] Postgresql 9.4.7 documentation. http://www.postgresql.org/files/documentation/pdf/9.4/
postgresql-9.4-A4.pdf.

[11] C. R. Aberger, S. Tu, K. Olukotun, and C. Ré. Emptyheaded: A relational engine for graph processing. In Proc. o
SIGMOD’16, 2016.

[12] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.

[13] G. Aranda-López, S. Nieva, F. Sáenz-Pérez, and J. Sánchez-Hernández. Formalizing a broader recursion coverage in
SQL. In Proc. of PADL’13, 2013.

[14] F. Arni, K. Ong, S. Tsur, H. Wang, and C. Zaniolo. The deductive database system LDL++. TPLP, 3(1), 2003.

[15] P. Barceló. Querying graph databases. In Proc. of PODS’13, 2013.

[16] G. Bhalotia, A. Hulgeri, C. Nakhe, S. Chakrabarti, and S. Sudarshan. Keyword searching and browsing in databases
using banks. In Proc. of ICDE’02, 2002.

[17] Y. Bu, V. R. Borkar, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie, M. Weimer, and R. Ramakrishnan. Scaling
datalog for machine learning on big data. CoRR, abs/1203.0160, 2012.

[18] W. Cabrera and C. Ordonez. Unified algorithm to solve several graph problems with relational queries. In Proc of
AMW’16, 2016.

[19] J. Cohen, B. Dolan, M. Dunlap, J. M. Hellerstein, and C. Welton. Mad skills: new analysis practices for big data.
PVLDB, 2(2), 2009.

[20] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms. MIT Press, 3 edition, 2009.

[21] J. Fan, A. Gerald, S. Raj, and J. M. Patel. The case against specialized graph analytics engines. In Proc. of CIDR’15,
2015.

[22] S. J. Finkelstein, N. Mattos, I. Mumick, and H. Pirahesh. Expressing recursive queries in SQL. ISO-IEC JTC1/SC21
WG3 DBL MCI, (X3H2-96-075), 1996.

[23] J. Gao, R. Jin, J. Zhou, J. X. Yu, X. Jiang, and T. Wang. Relational approach for shortest path discovery over large
graphs. PVLDB, 5(4), 2011.

15

[24] J. Gao, J. Zhou, C. Zhou, and J. X. Yu. Glog: A high level graph analysis system using mapreduce. In Proc. of
ICDE’14, 2014.

[25] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems The Complete Book. Prentice Hall, 2002.

[26] A. Ghazal, D. Seid, A. Crolotte, and M. Al-Kateb. Adaptive optimizations of recursive queries in teradata. In Proc.
of SIGMOD’12, 2012.

[27] S. Greco and C. Molinaro. Datalog and Logic Databases. Morgan & Claypool Publishers, 2015.

[28] H. He and A. K. Singh. Graphs-at-a-time: query language and access methods for graph databases. In Proc. of
SIGMOD’08, 2008.

[29] J. M. Hellerstein, C. Ré, F. Schoppmann, D. Z. Wang, E. Fratkin, A. Gorajek, K. S. Ng, C. Welton, X. Feng, K. Li,
et al. The madlib analytics library: or mad skills, the sql. PVLDB, 5(12), 2012.

[30] M. R. Henzinger, T. Henzinger, P. W. Kopke, et al. Computing simulations on finite and infinite graphs. In Proc. of
FOCS’95, 1995.

[31] G. Jeh and J. Widom. Simrank: a measure of structural-context similarity. In Proc. of SIGKDD’02, 2002.

[32] A. Jindal and S. Madden. Graphiql: A graph intuitive query language for relational databases. In Proc. of BigData’14,
2014.

[33] A. Jindal, S. Madden, M. Castellanos, and M. Hsu. Graph analytics using the vertica relational database. arXiv
preprint arXiv:1412.5263, 2014.

[34] A. B. Kahn. Topological sorting of large networks. CACM, 5(11), 1962.

[35] U. Kang, C. E. Tsourakakis, A. P. Appel, C. Faloutsos, and J. Leskovec. Hadi: Mining radii of large graphs. TKDD,
5(2), 2011.

[36] U. Kang, C. E. Tsourakakis, and C. Faloutsos. Pegasus: mining peta-scale graphs. Knowledge and information
systems, (2), 2011.

[37] J. Kepner and J. Gilbert. Graph Algorithms in the Language of Linear Algebra. SIAM, 2011.

[38] L. Libkin, W. Martens, and D. Vrgoc. Querying graphs with data. J. ACM, 63(2), 2016.

[39] C. Lin, B. Mandel, Y. Papakonstantinou, and M. Springer. Fast in-memory SQL analytics on typed graphs. PVLDB,
pages 265–276, 2016.

[40] H. Ma, B. Shao, Y. Xiao, L. J. Chen, and H. Wang. G-SQL: fast query processing via graph exploration. PVLDB,
pages 900–911, 2016.

[41] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In Proc. of SIGMOD’10, 2010.

[42] C. D. Manning, P. Raghavan, H. Schütze, et al. Introduction to information retrieval, volume 1. Cambridge University
Press, 2008.

[43] D. W. Matula and L. L. Beck. Smallest-last ordering and clustering and graph coloring algorithms. JACM, 30(3),
1983.

[44] R. R. McCune, T. Weninger, and G. Madey. Thinking like a vertex: A survey of vertex-centric frameworks for
large-scale distributed graph processing. ACM Comput. Surv., 48(2), 2015.

[45] J. Melton and A. R. Simon. SQL: 1999: understanding relational language components. Morgan Kaufmann, 2001.

[46] Y. Métivier, J. M. Robson, N. Saheb-Djahromi, and A. Zemmari. An optimal bit complexity randomized distributed
MIS algorithm. Distributed Computing, 23(5-6), 2011.

[47] V. Z. Moffitt and J. Stoyanovich. Towards a distributed infrastructure for evolving graph analytics. In Proc. of
WWW’16 Companion Volume, 2016.

[48] W. E. Moustafa, V. Papavasileiou, K. Yocum, and A. Deutsch. Datalography: Scaling datalog graph analytics on
graph processing systems. In 2016 IEEE International Conference on Big Data.

16

[49] C. Ordonez. Optimization of linear recursive queries in sql. TKDE, 22(2), 2010.

[50] C. Ordonez, W. Cabrera, and A. Gurram. Comparing columnar, row and array dbmss to process recursive queries on
graphs. Information Systems, 63, 2017.

[51] L. Passing, M. Then, N. Hubig, H. Lang, M. Schreier, S. Günnemann, A. Kemper, and T. Neumann. SQL- and
operator-centric data analytics in relational main-memory databases. In Proc. of EDBT 2017., pages 84–95, 2017.

[52] R. Preis. Linear time 1/2-approximation algorithm for maximum weighted matching in general graphs. In Proc. of
STACS’99, 1999.

[53] P. Przymus, A. Boniewicz, M. Burzańska, and K. Stencel. Recursive query facilities in relational databases: a survey.
In Proc. of DTA/BSBT’10, 2010.

[54] L. Quick, P. Wilkinson, and D. Hardcastle. Using pregel-like large scale graph processing frameworks for social
network analysis. In Proc. of ASONAM’12, 2012.

[55] U. N. Raghavan, R. Albert, and S. Kumara. Near linear time algorithm to detect community structures in large-scale
networks. Physical Review E, 76(3):036106, 2007.

[56] R. Ramakrishnan and J. D. Ullman. A survey of deductive database systems. J. Log. Program., 23(2), 1995.

[57] V. Rastogi, A. Machanavajjhala, L. Chitnis, and A. Das Sarma. Finding connected components in map-reduce in
logarithmic rounds. In Proc. of ICDE’13, 2013.

[58] S. Salihoglu and J. Widom. Help: High-level primitives for large-scale graph processing. In Proc. of Workshop on
GRAph Data management Experiences and Systems, 2014.

[59] J. Seo, S. Guo, and M. S. Lam. Socialite: Datalog extensions for efficient social network analysis. In Proc. of
ICDE’13, 2013.

[60] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed socialite: A datalog-based language for large-scale graph analysis.
PVLDB, 6(14), 2013.

[61] A. Shkapsky, M. Yang, M. Interlandi, H. Chiu, T. Condie, and C. Zaniolo. Big data analytics with datalog queries on
spark. In Proc. of SIGMOD’16, 2016.

[62] A. Shkapsky, M. Yang, and C. Zaniolo. Optimizing recursive queries with monotonic aggregates in DeALS. In Proc.
of ICDE’15, 2015.

[63] A. Shkapsky, K. Zeng, and C. Zaniolo. Graph queries in a next-generation datalog system. PVLDB, 6(12), 2013.

[64] S. Srihari, S. Chandrashekar, and S. Parthasarathy. A framework for sql-based mining of large graphs on relational
databases. In Proc. of PAKDD’10, 2010.

[65] W. Sun, A. Fokoue, K. Srinivas, A. Kementsietsidis, G. Hu, and G. Xie. Sqlgraph: An efficient relational-based
property graph store. In Proc. of SIGMOD’15, 2015.

[66] J. D. Ullman. Principles of Database and Knowledge Base Systems (Vol I). Computer Science Press, 1988.

[67] S. M. van Dongen. Graph clustering by flow simulation. PhD Thesis, University of Utrecht, 2000.

[68] O. van Rest, S. Hong, J. Kim, X. Meng, and H. Chafi. PGQL: a property graph query language. In Proc. of
GRADES’16, 2016.

[69] P. T. Wood. Query languages for graph databases. SIGMOD Record, 41(1), 2012.

[70] K. Xirogiannopoulos, U. Khurana, and A. Deshpande. Graphgen: exploring interesting graphs in relational data.
PVLDB, 8(12), 2015.

[71] C. Zaniolo, N. Arni, and K. Ong. Negation and aggregates in recursive rules: the LDL++ approach. In Proc. of
DOOD, 1993.

[72] C. Zaniolo, S. Stefano, Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian, and R. Zicari. Advanced database
systems. Morgan Kaufmann, 1997.

[73] Y. Zhang, M. Kersten, and S. Manegold. Sciql: Array data processing inside an rdbms. In Proc. of SIGMOD’13,
2013.

[74] K. Zhao and J. X. Yu. All-in-one: Graph processing in rdbmss revisited. In Proc. of SIGMOD’17, 2017.

17

Trinity Graph Engine and its Applications

Bin Shao, Yatao Li, Haixun Wang∗, Huanhuan Xia
Micorosoft Research Asia, ∗Facebook

{binshao, yatli, lexi}@microsoft.com, ∗haixun@gmail.com

Abstract

Big data become increasingly connected along with the rapid growth in data volume. Connected data
are naturally represented as graphs and they play an indispensable role in a wide range of application
domains. Graph processing at scale, however, is facing challenges at all levels, ranging from system
architectures to programming models. Trinity Graph Engine is an open-source distributed in-memory
data processing engine, underpinned by a strongly-typed in-memory key-value store and a general dis-
tributed computation engine. Trinity is designed as a general-purpose graph processing engine with
a special focus on real-time large-scale graph query processing. Trinity excels at handling a massive
number of in-memory objects and complex data with large and complex schemas. We use Trinity to
serve real-time queries for many real-life big graphs such as Microsoft Knowledge Graph and Microsoft
Academic Graph. In this paper, we present the system design of Trinity Graph Engine and its real-life
applications.

1 Introduction

In this big data era, data become increasingly connected along with the rapid growth in data volume. The
increasingly linked big data underpins artificial intelligence, which is expanding its application territory at an
unprecedented rate. Linked data are naturally represented and stored as graphs. As a result graph data have now
become ubiquitous thanks to web graphs, social networks, and various knowledge graphs, to name but a few.

Graph processing at scale, however, is facing challenges at all levels, ranging from system architectures
to programming models. On the one hand, graph data are not special and can be processed by many data
management or processing systems such as relational databases [1] and MapReduce systems [2]. On the other
hand, large graph processing has some unique characteristics [3], which make the systems that do not respect
them in their design suffer from the “curse of connectedness” when processing big graphs. In this paper, we
discuss the challenges faced by real-time parallel large graph processing and how to rise to them in the system
design.

The complex nature of graph. Graph data is inherently complex. The contemporary computer architec-
tures are good at processing linear and simple hierarchical data structures, such as Lists, Stacks, or Trees. Even
when the data scale becomes large and is partitioned over many distributed machines, the divide and conquer

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗This work was done in Microsoft Research Asia.

18

computation paradigm still works well for these data structures. However, when we are handling graphs, espe-
cially big graphs, the situation is changed. Big graphs are difficult to process largely because they have a large
number of interconnected relations encoded. The implication is twofold: 1) From the perspective of data access,
the adjacent nodes of a graph node cannot be accessed without “jumping” in the data store no matter how we
represent a graph. In other words, a massive amount of random data access is required during graph processing.
Many modern program optimizations rely on data reuse. Unfortunately, the random data access nature of graph
processing breaks this premise. Without a careful system design, this usually leads to poor performance since
the CPU cache is not in effect for most of the time. 2) From the perspective of programming, parallelism is
difficult to extract because of the unstructured nature of graphs. As widely acknowledged [3], a lot of graph
problems are inherently irregular and hard to partition; this makes it hard to obtain efficient divide and conquer
solutions for many large graph processing tasks.

Due to the random data access challenge, general-purpose graph computations usually do not have efficient,
disk-based solutions. But under certain constraints, graph problems sometimes can have efficient disk-based
solutions. A good example is GraphChi [4]. GraphChi can perform efficient disk-based graph computations
under the assumption that the computations have asynchronous vertex-centric [5] solutions. An asynchronous
solution is one where a vertex can perform its computation based only on the partially updated information
from its incoming graph edges. This assumption eliminates the requirement of global synchronization, making
performing computations block by block possible. On the other hand, it inherently cannot support traversal-
based graph computations and synchronous graph computations because a graph node cannot efficiently access
the graph nodes pointed by its outgoing edges.

The diversity of graph data and graph computations. There are many kinds of graphs. Graph algorithms’
performance may vary a lot on different types of graphs. On the other hand, there are a large variety of graph
computations such as path finding, subgraph matching, community detection, and graph partitioning. Each
graph computation itself even deserves dedicated research; it is nearly impossible to design a system that can
support all kinds of graph computations. Moreover, graphs with billions of nodes are common now, for example,
the Facebook social network has more than 2 billion monthly active users1. The scale of the data size makes
graph processing prohibitive for many graph computation tasks if we directly apply the classic graph algorithms
from textbooks.

In this paper, we present Trinity Graph Engine – a system designed to meet the above challenges. Instead
of being optimized for certain types of graph computations on certain types of graphs, Trinity tries to directly
address the grand random data access challenge at the infrastructure level. Trinity implements a globally ad-
dressable distributed RAM store and provides a random access abstraction for a variety of graph computations.
Trinity itself is not a system that comes with comprehensive built-in graph computation modules. However,
with its flexible data and computation modeling capability, Trinity can easily morph into a customized graph
processing system that is optimized for processing a certain type of graphs.

Many applications utilize large RAM to offer better performance. Large web applications, such as Facebook,
Twitter, Youtube, and Wikipedia, heavily use memcached [6] to cache large volumes of long-lived small objects.
As the middle tier between data storage and application, caching systems offload the server side work by taking
over some data serving tasks. However, the cache systems cannot perform in-place computations to further
reduce computation latencies by fully utilizing the in-memory data.

The design of Trinity is based on the belief that, as high-speed network access becomes more available
and DRAM prices trend downward, all-in-memory solutions provide the lowest total cost of ownership for
a large range of applications [7]. For instance, RAMCloud [8] envisioned that advances in hardware and
operating system technology will eventually enable all-in-memory applications, and low latency can be achieved
by deploying faster network interface controllers (NICs) and network switches and by tuning the operating
systems, the NICs, and the communication protocols (e.g., network stack bypassing). Trinity realizes this vision

1http://newsroom.fb.com/company-info/.

19

for large graph applications, and Trinity does not rely on hardware/platform upgrades and/or special operating
system tuning, although Trinity can leverage these techniques to achieve even better performance.

The rest of the paper is organized as follows. Section 2 outlines the design of the Trinity system. Section 3
introduces Trinity’s distributed storage infrastructure – Memory Cloud. Section 4 introduces Trinity Specifica-
tion Language. Section 5 discusses fault tolerance issues. Section 6 introduces Trinity applications. Section 7
concludes.

2 An Overview of Trinity

Trinity is a data processing engine on distributed in-memory infrastructure called Trinity Memory Cloud. Trinity
organizes the main memory of multiple machines into a globally addressable memory address space. Through
the memory cloud, Trinity enables fast random data access over a large distributed data set. At the same time,
Trinity is a versatile computation engine powered by declarative message passing.

Trinity Servers

Trinity
Proxy

Trinity
Proxy

Client
Lib

Client
Lib

Client
Lib

Client
Lib

Lib
Client

Lib
Client

Figure 1: Trinity Cluster Structure

Fig. 1 shows the architecture of Trinity. A Trinity system consists of multiple components that communicate
through a network. According to the roles they play, we classify them into three types: servers, proxies, and
clients. A Trinity server plays two roles: storing data and performing computations on the data. Computations
usually involve sending messages to and receiving messages from other Trinity components. Specifically, each
server stores a portion of the data and processes messages received from other servers, proxies, or clients. A
Trinity proxy only handles messages but does not own a data partition. It usually serves as a middle tier between
servers and clients. For example, a proxy may serve as an information aggregator: it dispatches the requests
coming from clients to servers and sends the results back to the clients after aggregating the partial results
received from servers. Proxies are optional, that is, a Trinity system does not always need a proxy. A Trinity
client is responsible for interacting with the Trinity cluster. Trinity clients are applications that are linked to the
Trinity library. They communicate with Trinity servers and proxies through APIs provided by Trinity.

Fig. 2 shows the stack of Trinity system modules. The memory cloud is essentially a distributed key-value
store underpinned by a strongly-typed RAM store and a general distributed computation engine. The RAM
store manages memory and provides mechanisms for concurrency control. The computation engine provides an
efficient, one-sided, machine-to-machine message passing infrastructure.

Due to the diversity of graphs and the diversity of graph applications, it is hard, if not entirely impossible, to
support all kinds of graph computations using a fixed graph schema. Instead of using a fixed graph schema and
fixed computation paradigms, Trinity allows users to define their own graph schemas, communication protocols
through Trinity specification language (TSL) and realize their own computation paradigms. TSL bridges the
needs of a specific graph application with the common storage and computation infrastructure of Trinity.

20

Strongly-typed
RAM Store

General
Computation Engine

Memory Cloud

Trinity Specification Language

Graph Model

Graph APIs
GetInlinks(), Outlinks.Foreach(...), etc

Figure 2: System Layers

3 Trinity Memory Cloud

We build a distributed RAM store – Trinity Memory Cloud – as Trinity’s storage and computation infrastructure.
The memory cloud consists of 2p memory trunks, each of which is stored on one machine. Usually, we have
2p > m, where m is the number of machines. In other words, each machine hosts multiple memory trunks.
We partition a machine’s local memory space into multiple memory trunks so that trunk level parallelism can
be achieved without any locking overhead. To support fault-tolerant data persistence, these memory trunks are
backed up in a shared distributed file system called TFS (Trinity File System) [9], whose design is similar to that
of HDFS [10].

We create a key-value store in the memory cloud. A key-value pair forms the most basic data structure of
any system built on top of the memory cloud. Here, keys are 64-bit globally unique integer identifiers; values
are blobs of arbitrary length. Because the memory cloud is distributed across multiple machines, we cannot
address a key-value pair using its physical memory address. To address a key-value pair, Trinity uses a hashing
mechanism. In order to locate the value of a given key, we first 1) identify the machine that stores the key-value
pair, then 2) locate the key-value pair in one of the memory trunks on that machine. Through this hashing
mechanism as illustrated by Figure 3, we provide a globally addressable memory space.

Specifically, given a 64-bit key, to locate its corresponding value in the memory cloud, we hash the key to a
p-bit value i (i ∈ [0, 2p − 1]), indicating that the key-value pair is stored in memory trunk i within the memory
cloud. Trinity assigns a unique machine identifier mid to each machine in the Trinity cluster. To find out which
machine contains memory trunk i, we maintain an “addressing table” with 2p slots, where each slot stores a mid
with which we can reach the corresponding Trinity server. Furthermore, in order for the global addressing to
work, each machine keeps a replica of the addressing table. We will describe how we ensure the consistency of
these addressing tables in Section 5.

We then locate the key-value pair in the memory trunk i. Each memory trunk is associated with a latch-free
hash table on the machine whose mid is in the slot i of the addressing table. We hash the 64-bit key again to find
the offset and size of the stored blob (the value part of the key-value pair) in the hash table. Given the memory
offset and the size, we now can retrieve the key-value pair from the memory trunk.

The addressing table provides a mechanism that allows machines to dynamically join and leave the memory
cloud. When a machine fails, we reload the memory trunks it owns from the TFS to other alive machines. All
we need to do is to update the addressing table so that the corresponding slots point to the machines that host
the data now. Similarly, when new machines join the memory cloud, we relocate some memory trunks to those
new machines and update the addressing table accordingly.

Each key-value pair in the memory cloud may attach some metadata for a variety of purposes. Most notably,
we associate each key-value pair with a spin lock. Spin locks are used for concurrency control and physical

21

64-bit UID

hash

machine 0 machine 1 machine 2 machine m

. . .

0 1 m 2 · · · 1 2 mp-bit
hash code

0 1 2 3 · · · j k 2p-1

Addressing
Table

. . .
0 1 2 2p-1

Trinity File System

. . .

Memory
Trunk

Trinity
Server

Memory Trunks

cell bytes

Memory Trunk

UID Offset Size
01. . . 321 123
10. . . 423 211
· · · · · · · · ·

Figure 3: Data Partitioning and Addressing

memory pinning. Multiple threads may try to access the same key-value pair concurrently; we must ensure a
key-value pair is locked and pinned to a fixed memory position before allowing any thread to manipulate it. In
Trinity, all threads need to acquire the corresponding spin lock before it can access a key-value pair exclusively.

4 Trinity Specification Language

In this section, we introduce Trinity Specification Language (TSL). It is a declarative language designed to
specify data schemas and message passing protocols using cell and protocol constructs. The TSL compiler is
essentially a code generator: it generates optimized data access methods and message passing code according to
the specificed TSL script.

4.1 Strongly-typed Data Modeling

Trinity supports property graphs2 on top of its key-value store. “Keys” are globally unique identifiers introduced
in Section 3 and their “values” are used for storing application data. The schema of the value part of a key-value
pair can be specified by a cell structure in a TSL script. A cell structure in a TSL script specifies a user-defined
data type. Defining a cell is pretty much like defining a struct in C/C++ as shown in Figure 4. The value part
of such a key-value pair stored in Trinity memory cloud is called a data cell or simply cell when there is no
ambiguity. Correspondingly, the key of the key-value pair is called its cell Id.

The TSL snippet shown in Figure 4 demonstrates how to model a graph node using a cell structure. A graph
node represented by a cell and a cell can be referenced by its 64-bit cell Id, thus simple graph edges which
reference a list of graph nodes can be represented by List<int64>. The data schema of graph edges that have
associated data can be specified using a TSL struct. In the example shown in Figure 4, the schema of MyEdges
is specified by the MyEdge struct.

2The nodes and edges of a property graph can have rich information associated.

22

struct MyEdge
{

int64 Link;
float Weight;

}
[GraphNode]
cell MyGraphNode
{

string Name;
[GraphEdge: Inlinks]
List<int64> SimpleEdges;
[GraphEdge: Outlinks]
List<MyEdge> MyEdges;

}

Figure 4: Modeling a Graph Node

To distinguish the cell fields that specify graph edges from those that do not, we can annotate a cell and
its data fields using TSL attributes. An attribute is a tag associated with a construct in TSL. Attributes provide
the metadata about the construct and can be accessed during run time. An attribute can be a string or a pair of
strings. An attribute is always regarded as a key-value pair. A single-string attribute is regarded as a key-value
pair with an empty value. In the example shown in Figure 4, we use attribute GraphNode to indicate the cell
MyGraphNode is a graph node and use attribute GraphEdge to indidate SimpleEdges and MyEdges are graph
edges.

4.2 Modeling Computation Protocols

Trinity realizes a communication architecture called active messages [11] to support fine-grained one-sided com-
munication. This communication architecture is desirable for data-driven computations and especially suitable
for online graph query processing, which is sensitive to network latencies. TSL provides an intuitive way of
writing such message passing programs.

struct MyMessage
{

string Text;
}
protocol Echo
{

Type: Syn;
Request: MyMessage;
Response: MyMessage;

}

Figure 5: Modeling Message Passing

Fig. 5 shows an example. It specifies a simple “Echo” protocol: A client sends a message to a server, and the
server simply sends the message back. The “Echo” protocol specifies its communication type is synchronous
message passing, and the type of the messages to be sent and received is MyMessage. For this TSL script, the
TSL compiler will generate an empty message handler EchoHandler and the user can implement the message
handling logic for the handler. Calling a protocol defined in the TSL is like calling an ordinary local method.
Trinity takes care of message dispatching, packing, etc., for the user.

23

4.3 Zero-copy Cell Manipulation

Trinity memory cloud provides a key-value pair store, where the values are binary blobs whose data schemas are
specified via TSL. Alternatively, we can store graph nodes and edges as the runtime objects of an object-oriented
programming language. Unfortunately, this is not a feasible approach for the following three reasons. First, we
cannot reference these runtime objects across machine boundaries. Second, runtime objects incur significant
storage overhead. For example, an empty runtime object (one that does not contain any data at all) in .Net
Framwork requires 24 bytes of memory on a 64-bit system and 12 bytes of memory on a 32-bit system. For a
billion-node graph, this is a big overhead. Third, although Trinity is an in-memory system, we do need to store
memory trunks on the disk or over a network for persistence. For runtime objects, we need serialization and
deserialization operations, which are costly.

Storing objects as blobs of bytes seems to be desirable since they are compact and economical with zero
serialization and deserialization overhead. We can also make the objects globally addressable by giving them
unique identifiers and using hash functions to map the objects to memory in a machine. However, blobs are
not user-friendly. We no longer have object-oriented data manipulation interfaces; we need to know the exact
memory layout before we can manipulate the data stored in the blob (using pointers, address offsets, and casting
to access data elements in the blob). This makes programming difficult and error-prone3.

00000011 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000010 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000001 00000000 00000000 00000000 00000000 00000000 00000000 00000000

00000001 00000000 00000000 00000000 00000011 00000000 00000000 00000000

Blob View

using(var cell = UseMyCellAccessor(cellId))
{

int Id = cell.Id; //Get the value of Id
cell.Links[1] = 2; //Set Links[1] to 2

}

Manipulate
MyCell via

Cell Accessor

cell struct MyCell
{

int Id;
List<long> Links;

}

TSL
Script

Generated API

Cell Schema
Defined in TSL

compile Cell
Accessor

Blob

Figure 6: Cell Accessor

To address this problem, Trinity introduces a mechanism called cell accessor to support object-oriented data
manipulation on blob data. Users first declare the schema of a cell in TSL, then the TSL compiler automatically
generates data access methods for manipulating cells stored as blobs in the memory cloud. One of the generated
function is UseMyCellAccessor. Given a cellId, it returns an object of type MyCellAccessor. With the gener-
ated MyCellAccessor, users can manipulate its underlying blob data in an object-oriented manner as shown in
Figure 6.

As a matter of fact, a cell accessor is not a data container, but a data mapper. It maps the data fields declared
in TSL to the correct memory locations in the blob. Data access operations to a data field will be correctly
mapped to the correct memory locations with zero memory copy overhead. In addition, using the spin lock
associated with each key-value pair, Trinity guarantees the atomicity of the operations on a single data cell
when the cell is manipulated via its cell accessor. However, Trinity does not provide built-in ACID transaction
support. This means Trinity cannot guarantee serializability for concurrent threads. For applications that need
transaction support, users can implement light-weight atomic operation primitives that span multiple cells, such
as MultiOp primitives [12] or Mini-transaction primitives [13] on top of the atomic cell operations provided by

3Note that we cannot naively cast a blob to a structure defined in programming languages such as C or C++ because the data elements
of a struct are not always flatly laid out in the memory. We cannot cast a flat memory region to a structured data pointer.

24

cell accessor.

5 Fault Tolerance

As a distributed in-memory system, Trinity needs to deal with subtle fault-tolerance issues. The fault-tolerance
requirements are highly application dependent, we discuss the general fault tolerance approaches in this section
and application developers should choose proper fault tolerance approaches according to their application needs.

5.1 Shared Addressing Table Maintenance

Trinity uses a shared addressing table to locate key-value pairs, as elaborated in Section 3. The addressing table
is a shared data structure. A centralized implementation is unfeasible because of the performance bottleneck and
the risk of single points of failure. A straightforward approach to these issues is to duplicate this table on each
server. However, this leads to the potential problem of data inconsistency.

Trinity maintains a primary replica of the shared addressing table on a leader machine and uses the fault-
tolerant Trinity File System to keep a persistent copy of the primary addressing table. An update to the primary
table must be applied to the persistent replica before being committed.

Both ordinary messages and heartbeat messages are used to detect machine failures. For example, if machine
A attempts to access a data item on machine B that is down, machine A can detect the failure of machine B. In
this case, machine A informs the leader machine of the failure of machine B. Afterwards, machine A waits for
the addressing table to be updated and attempts to access the item again once the addressing table is updated. In
addition, machine-to-machine heartbeat messages are sent periodically to detect network or machine failures.

Upon confirmation of a machine failure, the leader machine starts a recovery process. During recovery, the
leader reloads the data owned by the failed machine to other alive machines, updates the primary addressing
table, and broadcasts it. Even if some machines cannot receive the broadcast message due to a temporary
network problem, the protocol still works since a machine always syncs up with the primary addressing table
replica when it fails to load a data item. If the leader machine fails, a new round of leader election will be
triggered. The new leader sets a flag on the shared distributed file system to avoid multiple leaders in the case
that the cluster machines are partitioned into disjointed sets due to network failures.

5.2 Fault Recovery

We provide different fault recovery mechanisms for different computation paradigms. Checkpoint and “peri-
odical interruption” techniques are adopted for offline computations, while an asynchronous buffered logging
mechanism is designed for online query processing.

5.2.1 Offline Computations

For BSP-based synchronous computations, we can make checkpoints every few super-steps [5]. These check-
points are written to the Trinity File System for future recovery.

Because checkpoints cannot be easily created when the system is running in the asynchronous mode, the
fault recovery is subtler than that of its synchronous counterpart. Instead of adopting a complex checkpoint
technique such as the one described in [14], we use a simple “periodical interruption” mechanism to create
snapshots. Specifically, we issue interruption signals periodically. Upon receiving an interruption signal, all
servers pause after finishing their current job. After issuing the interruption signal, Safra’s termination detection
algorithm [15] is employed to check whether the system has ceased. A snapshot is then written to the Trinity
File System once the system ceases.

25

5.2.2 Online Query Processing

We now discuss how to guarantee that any user query that has been successfully submitted to the system will be
eventually processed, despite machine failures.

The fault recovery of online queries consists of three steps:

1. Log submitted queries.

2. Log all generated cell operations during the query processing,

3. Redo queries by replaying logged cell operations.

Query Logging We must log a user query for future recovery after it is submitted to the system. To reduce
the logging latency, a buffered logging mechanism [16] is adopted. Specifically, when a user query is issued,
the Trinity client submits it to at least two servers/proxies. The client is acknowledged only after the query
replicas are logged in the remote memory buffers. Meanwhile, we use a background thread to asynchronously
flush the in-memory logs to the Trinity File System. Once a query is submitted, we choose one of the Trinity
servers/proxies that have logged the query to be the agent of this query. The query agent is responsible for
issuing the query to the Trinity cluster on behalf of the client. The agent assigns a globally unique query id to
each query once the query is successfully submitted.

For the applications that only have read-only queries, we just need to reload the data from the Trinity File
System and redo the failed queries when a machine fails. For the applications that support online updates, a
carefully designed logging mechanism is needed.

Operation Logging A query during its execution generates a number of messages that will be passed in the
cluster. An update query transforms a set of data cells from their current states to a set of new states through
the pre-defined message handlers. All message handlers are required to be deterministic4 so that we can recover
the system state from failures by replaying the logged operations. The resulting states of the data cells are
determined by the initial cell states and the generated messages.

We designed an asynchronous buffered logging mechanism for handling queries with update operations. We
keep track of all generated cell operations and asynchronously log operations to remote memory buffers. Each
log entry is represented by a tuple< qid, cid,m, sn >, which consists of a query id qid , a cell id cid, a message
m, and a sequential number sn. The query id, cell id, and the message that has trigged the current cell operation
uniquely specifies a cell operation. The messages are logged to distinguish the cell operations generated by the
same query. The sequential number indicates how many cell operations have been applied to the current cell. It
represents the cell state in which the cell operation was generated.

we enforce a sequential execution order for each cell using the spin lock associated with the cell. We can
safely determine a cell’s current sequential number when it holds the spin lock. We send a log entry to at least
two servers/proxies once it acquires the lock. We call asynchronous logging weak logging and synchronous
logging strong logging. When a cell operation is acknowledged by all remote loggers, its state becomes strongly
logged. We allow weak logging if all the cell operations on the current cell with sequential numbers less than
sn − α (α ≥ 1) have been strongly logged, where sn is the sequential number of the current cell and α is
a configurable parameter. Otherwise, we have to wait until the operations with sequential numbers less than
sn−α have been strongly logged. There are two implications: 1) The strongly logged operations are guaranteed
to be consecutive. This guarantees all strongly logged operations can be replayed in the future recovery. 2)
Introducing a weak logging window of size α reduces the chance of blocking. Ideally, if the network round-trip
latency is less than the execution time of α cell operations, then all cell operations can be executed without
waiting for logging acknowledgements.

4Given a cell state, the resulting cell state of executing a message handler is deterministic.

26

System Recovery During system recovery, all servers enter a “frozen” state, in which message processing
is suspended and all received messages are queued. In the “frozen” state, we reload the data from the Trinity
File System and start to redo the logged queries. In this process, we can process these queries concurrently and
replay the cell operations of different cells in parallel.

For any cell, the logged cell operations must be replayed in an order determined by their sequential numbers.
For example, consider the following log snippet:

· · · < q1, c1,m10, 13 >, · · · , < q1, c1,m11, 15 > · · ·

For query q1, after the log entry < q1, c1,m10, 13 > is replayed, the entry < q1, c1,m11, 15 > will be blocked
until the sequential number c1 is increased to 14 by another query.

Let us examine why we can restore each cell to the state before failures occur. Because all message handlers
are deterministic, for a query, its output and the resulting cell states solely depend on its execution context, i.e.,
the cell states in which all its cell operations are executed. Thus, we can recover the system by replaying the
logged cell operations on each cell in their execution order.

Since the system recovery needs to redo all the logged queries, we must keep the log size small to make
the recovery process fast. We achieve this by incrementally applying the logged queries to the persistent data
snapshot on the Trinity File System in the background.

6 Real-life Applications

Trinity is a Microsoft open source project on GitHub5. It has been used in many real-life applications, including
knowledge bases [17], knowledge graphs [18], academic graphs6, social networks [19], distributed subgraph
matching [20], calculating shortest paths [21], and partitioning billion-node graphs [22]. More technical details
and experimental evaluation results can be found in [23], [20], [18], [21], [22], [24], and [25].

In this section, we use a representative real-life application of Trinity as a case to study how to serve real-time
queries for big graphs with complex schemas. The graph used in this case study is Microsoft Knowledge Graph7

(MKG). MKG is a massive entity network; it consists of 2.4+ billion entities, 8.0+ billion entity properties, and
17.4+ billion relations between entities. Inside Microsoft, we have a cluster of Trinity servers serving graph
queries such as path finding and subgraph matching in real time.

Designing a system to serve MKG faces a new challenge of large complex data schemas besides the general
challenges of parallel large graph processing discussed in Section 1. Compared to typical social networks that
tend to have a small number of entity types such as person and post, the real-world knowledge graph MKG
has 1610 entity types and 5987 types of relationships between entities8. Figure 7 shows a small portion (about
1/120) of the MKG schema graph.

The large complex schemas of MKG makes it a challenging task to efficiently model and serve the knowl-
edge graph. Thanks to the flexible design of Trinity Specification Language, Trinity has met the challenge in
an ‘unusual’ but very effective way. With the powerful code generation capability of the TSL compiler, we can
beat the big schema with big code! For MKG, the TSL compiler generated about 18.7 million lines of code for
modeling the knowledge graph entities in an extremely fine-grained manner. With the generated fine-grained
strongly-typed data access methods, Trinity provides very efficient random data access support for the graph
query processor.

5https://github.com/Microsoft/GraphEngine
6https://azure.microsoft.com/en-us/services/cognitive-services/academic-knowledge/
7The knowledge graph is also known as Satori knowledge graph.
8The size of MKG is ever growing; this number is only for an MKG snapshot.

27

Figure 7: A small portion of the MKG schema graph

7 Conclusion

In this paper, we presented Trinity – a graph engine on a distributed in-memory infrastructure called Trinity
Memory Cloud. Instead of being optimized for certain types of graph computations on certain types of graphs,
Trinity is designed as a versatile “graph engine” to support a large variety of graph applications. Trinity now
is a Microsoft open source project on GitHub and we have been using Trinity to support all kinds of graph
applications including knowledge graphs, academic graphs, and social networks.

References
[1] M. A. Bornea, J. Dolby, A. Kementsietsidis, K. Srinivas, P. Dantressangle, O. Udrea, and B. Bhattacharjee, “Building

an efficient rdf store over a relational database,” in SIGMOD, 2013.

[2] U. Kang, C. E. Tsourakakis, and C. Faloutsos, “Pegasus: A peta-scale graph mining system implementation and
observations,” ser. ICDM ’09. IEEE Computer Society, 2009, pp. 229–238.

[3] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W. Berry, “Challenges in parallel graph processing,” Parallel
Processing Letters, vol. 17, no. 1, pp. 5–20, 2007.

[4] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph computation on just a pc,” in OSDI, 2012,
pp. 31–46.

[5] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski, “Pregel: a system for
large-scale graph processing,” ser. SIGMOD ’10. ACM.

[6] B. Fitzpatrick, “Distributed caching with memcached,” Linux J., August 2004.

[7] D. G. Andersen, J. Franklin, M. Kaminsky, A. Phanishayee, L. Tan, and V. Vasudevan, “Fawn: a fast array of wimpy
nodes,” ser. SOSP ’09. ACM, pp. 1–14.

[8] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières, S. Mitra, A. Narayanan, G. Parulkar,
M. Rosenblum, S. M. Rumble, E. Stratmann, and R. Stutsman, “The case for ramclouds: scalable high-performance
storage entirely in dram,” SIGOPS Oper. Syst. Rev., vol. 43, pp. 92–105, 2010.

28

[9] J. Zhang and B. Shao, “Trinity file system specification,” Microsoft Research, Tech. Rep., 2013. [Online]. Available:
http://research.microsoft.com/apps/pubs/?id=201523

[10] D. Borthakur, The Hadoop Distributed File System: Architecture and Design, 2007.

[11] T. von Eicken, D. E. Culler, S. C. Goldstein, and K. E. Schauser, “Active messages: a mechanism for integrated com-
munication and computation,” in Proceedings of the 19th annual international symposium on Computer architecture,
ser. ISCA ’92. New York, NY, USA: ACM, 1992, pp. 256–266.

[12] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: an engineering perspective,” ser. PODC ’07, 2007,
pp. 398–407.

[13] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis, “Sinfonia: a new paradigm for building
scalable distributed systems,” ser. SOSP ’07, 2007, pp. 159–174.

[14] H. Higaki, K. Shima, T. Tachikawa, and M. Takizawa, “Checkpoint and rollback in asynchronous distributed sys-
tems,” ser. INFOCOM ’97. IEEE Computer Society, 1997.

[15] E. W. Dijkstra, “Shmuel Safra’s version of termination detection,” Jan. 1987. [Online]. Available:
http://www.cs.utexas.edu/users/EWD/ewd09xx/EWD998.PDF

[16] D. Ongaro, S. M. Rumble, R. Stutsman, J. Ousterhout, and M. Rosenblum, “Fast crash recovery in ramcloud,” ser.
SOSP ’11. ACM, 2011, pp. 29–41.

[17] W. Wu, H. Li, H. Wang, and K. Q. Zhu, “Probase: a probabilistic taxonomy for text understanding,” in Proceedings
of the 2012 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’12. New York, NY,
USA: ACM, 2012, pp. 481–492.

[18] K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang, “A distributed graph engine for web scale rdf data,” in
Proceedings of the 39th international conference on Very Large Data Bases, ser. PVLDB’13. VLDB Endowment,
2013, pp. 265–276. [Online]. Available: http://dl.acm.org/citation.cfm?id=2488329.2488333

[19] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of overlapping communities,” in Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’13. New York, NY, USA:
ACM, 2013, pp. 277–288.

[20] Z. Sun, H. Wang, H. Wang, B. Shao, and J. Li, “Efficient subgraph matching on billion node graphs,” Proc. VLDB
Endow., vol. 5, no. 9, pp. 788–799, May 2012. [Online]. Available: http://dx.doi.org/10.14778/2311906.2311907

[21] Z. Qi, Y. Xiao, B. Shao, and H. Wang, “Toward a distance oracle for billion-node graphs,” Proc. VLDB Endow.,
vol. 7, no. 1, pp. 61–72, Sep. 2013.

[22] L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to partition a billion-node graph,” in IEEE 30th International
Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014, I. F. Cruz, E. Ferrari,
Y. Tao, E. Bertino, and G. Trajcevski, Eds. IEEE, 2014, pp. 568–579.

[23] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a memory cloud,” in Proceedings of the
2013 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’13. New York, NY, USA:
ACM, 2013, pp. 505–516.

[24] L. He, B. Shao, Y. Li, and E. Chen, “Distributed real-time knowledge graph serving,” in 2015 International
Conference on Big Data and Smart Computing, BIGCOMP 2015, Jeju, South Korea, February 9-11, 2015. IEEE,
2015, pp. 262–265.

[25] H. Ma, B. Shao, Y. Xiao, L. J. Chen, and H. Wang, “G-sql: Fast query processing via graph exploration,” Proc.
VLDB Endow., vol. 9, no. 12, pp. 900–911, Aug. 2016.

29

GRAPE: Conducting Parallel Graph Computations
without Developing Parallel Algorithms

Wenfei Fan1,2, Jingbo Xu1,2, Xiaojian Luo2, Yinghui Wu3, Wenyuan Yu2, Ruiqi Xu1

1University of Edinburgh 2Beihang University 3Washington State University
{wenfei@inf, jingbo.xu@}ed.ac.uk, luoxiaojian@buaa.edu.cn yinghui@eecs.wsu.edu

yuwenyuan@act.buaa.edu.cn, Ruiqi.Xu@ed.ac.uk

Abstract

Developing parallel graph algorithms with correctness guarantees is nontrivial even for experienced
programmers. Is it possible to parallelize existing sequential graph algorithms, without recasting the
algorithms into a parallel model? Better yet, can the parallelization guarantee to converge at correct
answers as long as the sequential algorithms provided are correct? GRAPE tackles these questions, to
make parallel graph computations accessible to a large group of users. This paper presents (a) the par-
allel model of GRAPE, based on partial evaluation and incremental computation, and (b) a performance
study, showing that GRAPE achieves performance comparable to the state-of-the-art systems.

1 Introduction
The need for graph computations is evident in transportation network analysis, knowledge extraction, Web
mining, social network analysis and social media marketing, among other things. Graph computations are,
however, costly in real-life graphs. For instance, the social graph of Facebook has billions of nodes and trillions
of edges [16]. In such a graph, it is already expensive to compute shortest distances from a single source, not to
mention graph pattern matching by subgraph isomorphism, which is intractable in nature.

To support graph computations in large-scale graphs, several parallel systems have been developed, e.g.,
Pregel [23], GraphLab [22], Giraph++ [29], GraphX [15], GRACE [33], GPS [27] and Blogel [34], based on
MapReduce [8] and (variants of) BSP (Bulk Synchronous Parallel) models [30]. These systems, however, do
not allow us to reuse existing sequential graph algorithms, which have been studied for decades and are well
optimized. To use Pregel [23], for instance, one has to “think like a vertex” and recast existing algorithms into
a vertex-centric model; similarly when programming with other systems, e.g., [34], which adopts vertex-centric
programming by treating blocks as vertices. The recasting is nontrivial for people who are not very familiar with
the parallel models. This makes parallel graph computations a privilege of experienced users only.

Is it possible to make parallel graph computations accessible to users who only know conventional graph
algorithms covered in undergraduate textbooks? Can we have a system such that given a graph computation
problem, we can “plug in” its existing sequential algorithms for the problem as a whole, without recasting or
“thinking in parallel”, and the system automatically parallelizes the computation across multiple processors?
Moreover, can the system guarantee that the parallelization terminates and converges at correct answers as long
as the sequential algorithms plugged in are correct? Furthermore, can the system inherit optimization techniques

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

30

well developed for sequential graph algorithms, such as indexing and pruning? Better yet, despite the ease of
programming, can the system achieve performance comparable to the state-of-the-art parallel graph systems?

These questions motivate us to develop GRAPE, a parallel GRAPh Engine [13]. GRAPE advocates a parallel
model based on simultaneous fixpoint computation that starts with partial evaluation and takes incremental
computation as the intermediate consequence operator. It answers all the questions above in the affirmative. As
a proof of concept, we have developed a preliminary implementation of GRAPE [12].

This paper presents (a) a brief introduction to the parallel model of GRAPE, and (b) a performance study of
the system, using real-life larger than those that [13] experimented with.

2 Parallelizing Sequential Graph Algorithms
We present the programming model and parallel computation model of GRAPE, illustrating how GRAPE paral-
lelizes sequential graph algorithms. We encourage the interested reader to consult [13] for more details.

2.1 Programming Model
Consider a graph computation problem Q. Using our familiar terms, we refer to an instance Q of Q as a query
of Q. To answer queries Q ∈ Q with GRAPE, a user only needs to specify three functions as follows.

PEval: an algorithm for Q that given a query Q ∈ Q and a graph G, computes the answer Q(G) to Q in G.

IncEval: an incremental algorithm for Q that given Q, G, Q(G) and updates ∆G to G, computes changes ∆O
to the old outputQ(G) such thatQ(G⊕∆G) = Q(G)⊕∆O, whereG⊕∆G denotes graphG updated by ∆G.

Assemble: a function that collects partial answers computed locally at each worker by PEval and IncEval (see
Section 2.2), and assembles them into complete answer Q(G). It is typically straightforward.

The three functions PEval, IncEval and Assemble are referred to as a PIE program for Q. Here PEval and
IncEval are existing sequential (incremental) algorithms for Q, with the following additions to PEval.

• Update parameters. PEval declares status variables ~x for a set of nodes and edges. As will be seen
shortly, these variables are the candidates to be updated by incremental steps IncEval.
• Aggregate function. PEval specifies a function faggr, e.g., min, max, to resolve conflicts when multiple

workers attempt to assign different values to the same update parameter.

The update parameters and aggregate function are specified in PEval and are shared by IncEval.
From these we can see that programming with GRAPE is as simple as MapReduce, if not simpler. Indeed,

GRAPE asks the users to provide three functions, where PEval and IncEval are existing sequential algorithms
without recasting them into a new model, unlike MapReduce, and Assemble is typically a simple function.

Graph partition. GRAPE supports data-partitioned parallelism. It allows users to pick an (existing) graph
partition strategy P registered in GRAPE, and partitions a (possibly big) graph G into smaller fragments.

More specifically, we consider graphs G = (V,E,L), directed or undirected, where (1) V is a finite set of
nodes; (2) E ⊆ V ×V is a set of edges; (3) each node v in V (resp. edge e ∈ E) carries label L(v) (resp. L(e)),
indicating its content, as found in social networks and property graphs.

Given a numberm, strategyP partitionsG into fragmentsF = (F1, . . . , Fm) such that eachFi = (Vi, Ei, Li)
is a subgraph of G, E =

⋃
i∈[1,m]Ei, and V =

⋃
i∈[1,m] Vi. Here Fi is a subgraph of G if Vi ⊆ V , Ei ⊆ E, and

for each node v ∈ Vi (resp. edge e ∈ Ei), Li(v) = L(v) (resp. Li(e) = L(e)).
Here P can be any partition strategy, e.g., vertex-cut [20] or edge cut [6]. When P is edge-cut, denote by

• Fi.I the set of nodes v ∈ Vi such that there is an edge (v′, v) incoming from a node v′ in Fj (i 6= j);
• Fi.O the set of nodes v′ such that there exists an edge (v, v′) in E, v ∈ Vi and v′ is in Fj (i 6= j); and
• F .O =

⋃
i∈[1,m] Fi.O, F .I =

⋃
i∈[1,m] Fi.I; F .O = F .I .

For vertex-cut, F .O and F .I correspond to exit vertices and entry vertices, respectively.

31

master P0

!
Q(F1) Q(Fm)

PEval

!
Q(F1 ⊕M1) Q(Fm⊕Mm)

master P0

worker worker

workerworker

master P0

IncEval

Assemble

Q(G)

query Q

Figure 1: Workflow of GRAPE

2.2 Parallel Model
Given a partition strategy P and a PIE program ρ (PEval, IncEval, Assemble) for Q, GRAPE parallelizes ρ as
follows. It first partitions G into (F1, . . . , Fm) with P , and distributes fragments Fi’s across m shared-nothing
virtual workers (P1, . . . , Pm). It maps m virtual workers to n physical workers. When n < m, multiple virtual
workers mapped to the same worker share memory. Graph G is partitioned once for all queries Q ∈ Q on G.

Partial evaluation and incremental computation. We start with basic ideas behind GRAPE parallelization.
Given a function f(s, d) and the s part of its input, partial evaluation is to specialize f(s, d) w.r.t. the known

input s [19]. That is, it performs the part of f ’s computation that depends only on s, and generates a partial
answer, i.e., a residual function f ′ that depends on the as yet unavailable input d. For each worker Pi in GRAPE,
its local fragment Fi is its known input s, while the data residing at other workers accounts for the yet unavailable
input d. As will be seen shortly, given a query Q ∈ Q, GRAPE computes Q(Fi) in parallel as partial evaluation.

Workers exchange changed values of their local update parameters with each other. Upon receiving message
Mi that consists of changes to the update parameters at fragment Fi, worker Pi treats Mi as updates to Fi, and
incrementally computes changes ∆Oi to Q(Fi) such that Q(Fi ⊕ Mi) = Q(Fi) ⊕ ∆Oi. This is often more
efficient than recomputing Q(Fi ⊕Mi) starting from scratch, since in practice Mi is often small, and so is Oi.
Better still, the incremental computation may be bounded: its cost can be expressed as a function in |Mi|+|∆Oi|,
i.e., the size of changes in the input and output, instead of |Fi|, no matter how big Fi is [11, 26].

Model. Following BSP [30], given a query Q ∈ Q at master P0, GRAPE answers Q in the partitioned graph G.
It posts the same query Q to all the workers, and computes Q(G) in three phases as follows, as shown in Fig. 1.

(1) Partial evaluation (PEval). In the first superstep, upon receiving Q, each worker Pi applies function PEval
to its local fragment Fi, to compute partial results Q(Fi), in parallel (i ∈ [1,m]). After Q(Fi) is computed,
PEval generates a message at each worker Pi and sends it to master P0. The message is simply the set of update
parameters at fragment Fi, denoted by Ci.x̄. More specifically, Ci.x̄ consists of status variables associated with
a set Ci of nodes and edges within d-hops of nodes in Fi.O. Here d is an integer determined by query Q only,
specified in function PEval. In particular, when d = 0, Ci is Fi.O.

For each i ∈ [1,m], master P0 maintains update parameters Ci.x̄. It deduces a message Mi to worker Pi

based on the following message grouping policy. (a) For each status variable x ∈ Ci.x̄, it collects the set Sx of
values for x from all messages, and computes xaggr = faggr(Sx) by applying the aggregate function faggr. (b)
Message Mi includes only those xaggr’s such that xaggr 6= x, i.e., only changed parameter values.

(2) Incremental computation (IncEval). GRAPE iterates the following supersteps until it terminates. Following
BSP, each superstep starts after the master P0 receives messages (possibly empty) from all workers Pi for
i ∈ [1,m]. A superstep has two steps itself, one at P0 and the other at the workers.

(a) Master P0 routes (nonempty) messages from the last superstep to workers, if there exists any.
(b) Upon receiving message Mi, worker Pi incrementally computes Q(Fi⊕Mi) by applying IncEval, and by

treating Mi as updates, in parallel for i ∈ [1,m].

32

At the end of the process of IncEval, Pi sends a message to P0 that encodes updated values of Ci.x̄, if any. Upon
receiving messages from all workers, master P0 deduces message Mi to each worker Pi following the message
grouping policy given above; it sends message Mi to worker Pi in the next superstep.

(3) Termination (Assemble). At each superstep, master P0 checks whether for all i ∈ [1,m], Pi is inactive, i.e.,
Pi is done with its local computation, and there exists no more change to any update parameter of Fi. If so,
GRAPE pulls partial results from all workers, and applies Assemble to group together the partial results and get
the final result at P0, denoted by ρ(Q,G). It returns ρ(Q,G) and terminates.

Fixpoint. The GRAPE parallelization of the PIE program can be modeled as a simultaneous fixpoint operator
φ(R1, . . . , Rm) defined on m fragments. It starts with PEval for partial evaluation, and conducts incremental
computation by taking IncEval as the intermediate consequence operator, as follows:

R0
i = PEval(Q,F 0

i [x̄i]),

Rr+1
i = IncEval(Q,Rr

i , F
r
i [x̄i],Mi),

where i ∈ [1,m], r indicates a superstep, Rr
i denotes partial results in step r at worker Pi, fragment F 0

i = Fi,
F r
i [x̄i] is fragment Fi at the end of superstep r carrying update parameters x̄i, and Mi is a message indicating

changes to x̄i. More specifically, (1) in the first superstep, PEval computes partial answers R0
i (i ∈ [1,m]). (2)

At step r + 1, the partial answers Rr+1
i are incrementally updated by IncEval, taking Q, Rr

i and message Mi as
input. (3) The computation proceeds until Rr0+1

i = Rr0
i at a fixpoint r0 for all i ∈ [1,m]. Function Assemble is

then invoked to combine all partial answers Rr0
i and get the final answer ρ(Q,G).

Convergence. To characterize the correctness of the fixpoint computation, we use the following notations. (a) A
sequential algorithm PEval for Q is correct if given all queries Q ∈ Q and graphs G, it terminates and returns
Q(G). (b) A sequential incremental algorithm IncEval for Q is correct if given all Q ∈ Q, graphs G, old
output Q(G) and updates ∆G to G, it computes changes ∆O to Q(G) such that Q(G⊕∆G) = Q(G)⊕∆O.
(c) Assemble is correct for Q w.r.t. P if when GRAPE with PEval, IncEval and P terminates at superstep r0,
Assemble(Q(F1[x̄

r0
1]), . . . , Q(Fm[x̄r0m])) = Q(G), where x̄r0i denotes the values of parameters Ci.x̄i at round

r0. (d) We say that GRAPE correctly parallelizes a PIE program ρ with a partition strategy P if for all queries
Q ∈ Q and graphs G, GRAPE guarantees to reach a fixpoint such that ρ(Q,G) = Q(G).

It is shown [13] that under BSP, GRAPE correctly parallelizes a PIE program ρ for a graph computation
problem Q if (a) its PEval and IncEval are correct sequential algorithms for Q, and (b) Assemble correctly
combines partial results, and (c) PEval and IncEval satisfy a monotonic condition. The condition is as follows:
for all variables x ∈ Ci.x̄, i ∈ [1,m], (a) the values of x are computed from the active domain of G and (b)
there exists a partial order px on the values of x such that IncEval updates x in the order of px. That is, x draws
values from a finite domain (condition (a)), and x is updated “monotonically” following px (condition (b)).

Example 1: We show how GRAPE parallelizes the computation of Single Source Shortest Path (SSSP), a
common graph computation problem. Consider a directed graph G = (V,E,L) in which for each edge e, L(e)
is a positive number. The length of a path (v0, . . . , vk) in G is the sum of L(vi−1, vi) for i ∈ [1, k]. For a pair
(s, v) of nodes, denote by dist(s, v) the distance from s to v, i.e., the length of a shortest path from s to v. Given
graph G and a node s in V , SSSP computes dist(s, v) for all v ∈ V .

Adopting edge-cut partition [6], GRAPE takes the set Fi.O of “border nodes” as Ci at each worker Pi, i.e.,
nodes with edges across different fragments. The PIE program of SSSP in GRAPE specializes three functions:
(1) a standalone sequential algorithm for SSSP as PEval, e.g., our familiar Dijkstra’s algorithm [14], to compute
Q(Fi) as partial evaluation; (2) a bounded sequential incremental algorithm of [25] as IncEval that computes
Q(Fi⊕Mi), where messages Mi include updated (smaller) dist(s, u) (due to new “shortcut” from s) for border
nodes u; and (3) Assemble that takes a union of the partial answers Q(Fi) as Q(G).

(1) PEval. As shown in Fig. 2a, PEval (lines 1-14) is verbally identical to Dijsktra’s algorithm [14]. One only

33

Input: Fi(Vi, Ei, Li), source vertex s
Output: Q(Fi) consisting of current dist(s, v) for all v ∈ Vi

Declare: (designated) /*candidate set Ci is Fi.O*/
for each node v ∈ Vi, an integer variable dist(s, v);
message Mi := {dist(s, v) | v ∈ Fi.O};
function aggregateMsg = min(dist(s, v));

/*sequential algorithm for SSSP (pseudo-code)*/
1. initialize priority queue Que;
2. dist(s, s) := 0;
3. for each v in Vi do
4. if v! = s then
5. dist(s, v) :=∞;
6. Que.addOrAdjust(s, dist(s, s));
7. while Que is not empty do
8. u := Que.pop() // pop vertex with minimal distance
9. for each child v of u do // only v that is still in Q
10. alt := dist(s, u) + Li(u, v);
11. if alt < dist(s, v) then
12. dist(s, v) := alt;
13. Que.addOrAdjust(v, dist(s, v));
14. Q(Fi) := {dist(s, v) | v ∈ Vi}

(a) PEval for SSSP

Input: Fi(Vi, Ei, Li), partial result Q(Fi), message Mi

Output: Q(Fi ⊕Mi)

Declare: message Mi = {dist(s, v) | v ∈ Fi.O, dist(s, v) decreased};
1. initialize priority queue Que;
2. for each dist(s, v) in M do
3. Que.addOrAdjust(v, dist(s, v));
4. while Que is not empty do
5. u := Que.pop() /* pop vertex with minimum distance*/
6. for each children v of u do
7. alt := dist(s, u) + Li(u, v);
8. if alt < dist(s, v) then
9. dist(s, v) := alt;
10. Que.addOrAdjust(v, dist(s, v));
11. Q(Fi) := {dist(s, v) | v ∈ Vi}

(b) IncEval for SSSP

Figure 2: GRAPE for SSSP

needs to declare status variable as an integer variable dist(s, v) for each node v, initially ∞ (except dist(s, s)
= 0) and (a) update parameters (in message Mi) as Ci.x̄ = {dist(s, v) | v ∈ Fi.O}, i.e., the status variables
associated with nodes in Fi.O at fragment Fi; and (b) min as an aggregate function (aggregateMsg). If there
are multiple values for the same dist(s, v), the smallest value is taken by the linear order on integers.

At the end of its process, PEval sends Ci.x̄ to master P0. At P0, GRAPE maintains dist(s, v) for all v ∈
F .O = F .I . Upon receiving messages from all workers, it takes the smallest value for each dist(s, v). It finds
those variables with smaller dist(s, v) for v ∈ Fj .O, groups them into message Mj , and sends Mj to Pj .

(2) IncEval. We give IncEval in Fig. 2b. It is the sequential incremental algorithm for SSSP in [26], in response

to changed dist(s, v) for v in Fi.I (deduced by leveraging F .I = F .O). Using a queue Que, it starts with
changes in Mi, propagates the changes to affected area, and updates the distances (see [26]). The partial result
now consists of the revised distances (line 11). At the end of the process, it sends to master P0 the updated
values of those status variables in Ci.x̄, as in PEval. It applies the aggregate function min to resolve conflicts.

The only changes to the algorithm of [26] are underlined in Fig. 2b. Following [26], one can show that
IncEval is bounded: its cost is determined by the sizes of “updates” |Mi| and the changes to the output. This
reduces the cost of iterative computation of SSSP (the While and For loops).

(3) Assemble simply takes Q(G) =
⋃

i∈[1,n]Q(Fi), the union of the shortest distance for each node in each Fi.

The GRAPE process converges at correct Q(G). Updates to Ci.x̄ are “monotonic”: the value of dist(s, v)
for each node v decreases or remains unchanged. There are finitely many such variables. Moreover, dist(s, v) is
the shortest distance from s to v as warranted by the sequential algorithms [14, 26] (PEval and IncEval). 2

Expressive power. The simple parallel model of GRAPE does not come with a price of degradation in the
functionality. More specifically, following [31], we say that a parallel modelM1 can optimally simulate model
M2 if there exists a compilation algorithm that transforms any program with cost C onM2 to a program with
cost O(C) onM1. The cost includes computational cost and communication cost.

As shown in [13], GRAPE optimally simulates parallel models MapReduce [8], BSP [30] and PRAM (Par-
allel Random Access Machine) [31]. That is, all algorithms in MapRedue, BSP or PRAM with n workers can
be simulated by GRAPE using n processors with the same number of supersteps and memory cost. Hence al-
gorithms developed for graph systems based on MapReduce or BSP, e.g., Pregel, GraphLab and Blogel, can be
readily migrated to GRAPE without extra cost. We have established a stronger result, i.e., the simulation result

34

above holds in the message-passing model described above, referred to as the designated message model in [13].

As promised, GRAPE has the following unique features. (1) For a graph computation problem Q, GRAPE
allows one to plug in existing sequential algorithms PEval and IncEval, subject to minor changes, and it automat-
ically parallelizes the computation. (2) Under a monotone condition, the parallelization guarantees to converge
at the correct answer in any graph, as long as the sequential algorithms PEval and IncEval are correct. (3)
MapReduce, BSP and PRAM [31] can be optimally simulated by GRAPE. (4) GRAPE easily capitalizes on ex-
isting optimization techniques developed for sequential graph algorithms, since it plugs in sequential algorithms
as a whole, and executes these algorithms on entire graph fragments. (5) GRAPE reduces the costs of iterative
graph computations by using IncEval, to minimize unnecessary recomputations. The speedup is particularly
evident when IncEval is bounded [26], localizable or relatively bounded (see [9] for the latter two criteria).

2.3 Programming with GRAPE
As examples, we outline PIE programs for graph pattern matching (Sim and SubIso), connectivity (CC) and
collaborative filtering (CF). We will conduct experimental study with this variety of computations. We adopt
edge-cut [6] for the PIE programs below. PIE programs under vertex-cut [20] can be developed similarly.

Graph simulation (Sim). A graph pattern is a graph Q = (VQ, EQ, LQ), in which (a) VQ is a set of query
nodes, (b) EQ is a set of query edges, and (c) each node u in VQ carries a label LQ(u).

A graph G matches a pattern Q via simulation if there is a binary relation R ⊆ VQ×V such that (a) for each
query node u ∈ VQ, there exists a node v ∈ V such that (u, v) ∈ R, and (b) for each pair (u, v) ∈ R, LQ(u) =
L(v), and for each query edge (u, u′) in Eq, there exists an edge (v, v′) in graph G such that (u′, v′) ∈ R.

It is known that if G matches Q, then there exists a unique maximum relation [18], referred to as Q(G). If
G does not match Q, Q(G) is the empty set. Graph simulation is in O((|VQ|+ |EQ|)(|V |+ |E|)) time [10,18].

Given a directed graph G and a pattern Q, graph simulation is to compute the maximum relation Q(G).
We show how GRAPE parallelizes graph simulation. GRAPE takes the sequential simulation algorithm

of [18] as PEval to compute Q(Fi) in parallel. PEval declares a Boolean variable x(u,v) for each query node u
in VQ and each node v in Fi, indicating whether v matches u, initialized true. It takes the set Fi.I of “border
nodes” as candidate set Ci, and Ci.x̄(u,v) as the set of update parameters at Fi. At master P0, GRAPE maintains
x(u,v) for all v ∈ F .I . Upon receiving messages from all workers, it changes x(u,v) to false if it is false in one
of the messages. That is, it uses min as the aggregate function, taking the order false ≺ true. GRAPE identifies
those variables that become false, groups them into messages Mj , and sends Mj to Pj .

IncEval is the semi-bounded sequential incremental algorithm of [11]: its cost is decided by the sizes of
“updates” |Mi| and changes necessarily checked by all incremental algorithms for Sim, not by |Fi|.

The process guarantees to terminate since the update parameters Ci.x̄’s are monotonically updated. At this
point, Assemble simply takes Q(G) =

⋃
i∈[1,n]Q(Fi), the union of the simulation relation at each Fi.

Subgraph isomorphism. Here a match of pattern Q in graph G is a subgraph of G that is isomorphic to Q, and
the problem is to compute the set Q(G) of all matches of Q in G. The problem is intractable.

GRAPE parallelizes subgraph isomorphism with two supersteps, one for PEval and the other for IncEval.
(a) PEval is a sequential Breadth First Search (BFS) algorithm that “fetches” a set

⋃
v∈Fi.I

NdQ(v) of nodes
and edges at Fi in parallel. Here NdQ(v) is the set of nodes and edges that are within dQ hop of v, and dQ is
the diameter of pattern Q, i.e., the length of the undirected shortest path between any two nodes in Q. PEval
declares such dQ-neighbors as Ci.x̄ at each Fi, and identifies the update parameters via BFS. (b) IncEval is
simply VF2, the sequential algorithm of [7] for subgraph isomorphism. It computes Q(Fi⊕Mi) at each worker
Pi in parallel, in fragment Fi extended with dQ-neighbor of each node in Fi.I . (c) Assemble takes the union of
all partial matches computed by IncEval from all workers. The correctness is assured by VF2 and the locality of
subgraph isomorphism: a pair (v, v′) of nodes in G is in a match of Q only if v is in the dQ-neighbor of v′.

When message
⋃

v∈Fi.I
NdQ(v) is large, GRAPE further paralellizes PEval by expanding NdQ(v) step by

step, one hop at each step, to reduce communication cost and stragglers. More specifically, IncEval is revised

35

such that it identifies new “border nodes”, and finds the 1-hop neighbor of each border node via incremental BFS
to propagate the changes. This proceeds until

⋃
v∈Fi.I

NdQ(v) is in place, and at this point VF2 is triggered.

Graph connectivity (CC). Given an undirected graph G, CC computes all connected components of G. It picks
a sequential CC algorithm as PEval, e.g., DFS. It declares an integer variable v.cid for each node v, recording
the component in which v belongs. The update parameters at fragment Fi include v.cid for all v ∈ Fi.I . At
each fragment Fi, PEval computes its local connected components and creates their ids. It exchanges v.cid for
all border nodes v ∈ Fi.I with neighboring fragments. Given message Mi consisting of the changed v.cid’s
for border nodes, IncEval incrementally updates local components in fragment Fi. It merges two components
whenever possible, by using min as the aggregate function that takes the smallest component id. The process
proceeds until no more changes can be made. At this point, Assemble merges all the nodes having the same cid
into a single connected component, and returns all the connected components.

The process terminates since the cids of the nodes are monotonically decreasing. Moreover, IncEval is
bounded: its cost is a function of the number of v.cid’s whose values are changed in response to Mi.

Collaborative filtering (CF). CF takes as input a bipartite graph G that includes users U and products P , and a
set of weighted edges E ⊆ U × P [21]. (1) Each user u ∈ U (resp. product p ∈ P) carries latent factor vector
u.f (resp. p.f). (2) Each edge e = (u, p) in E carries a weight r(e), estimated as u.fT ∗ p.f (∅ for “unknown”)
that encodes a rating from user u to product p. The training set ET refers to edge set {e | r(e) 6= ∅, e ∈ E},
i.e., all the known ratings. Given these, CF computes the missing factor vectors u.f and p.f to minimize an
error function ε(f,ET) = min

∑
((u,p)∈ET)(r(u, p)−u.fT p.f)2 +λ(‖u.f‖2 +‖p.f‖2). This is typically carried

out by the stochastic gradient descent (SGD) algorithm [21], which iteratively (1) predicts error ε(u, p) =
r(u, p)− u.fT ∗ p.f , for each e = (u, p) ∈ ET , and (2) updates u.f and p.f accordingly to minimize ε(f,ET).

GRAPE parallelizes CF by adopting SGD [21] as PEval, and the incremental algorithm ISGD of [32] as
IncEval, using master P0 to synchronize the shared factor vectors u.f and p.f . More specifically, PEval declares
v.x = (v.f, t) for each node v (initially ∅), and t bookkeeps a timestamp at which v.f is lastly updated. At
fragment Fi, the update parameters include v.x for all v ∈ Fi.O. At P0, GRAPE maintains v.x = (v.f, t) for
all v ∈ F .I = F .O. Upon receiving updated (v.f ′, t′) with t′>t, it changes v.f to v.f ′, i.e., takes max as
the aggregate function on timestamps. Given Mi at worker Pi, IncEval operates on Fi ⊕Mi by treating Mi

as updates to factor vectors of nodes in Fi.I , and only modifies affected vectors. The process proceeds until
ε(f,ET) becomes smaller than a threshold, or after a predefined number of step. Assemble simply takes the
union of all the vectors from the workers. As long as the sequential SGD algorithm terminates, the PIE program
converges at the correct answer since the updates are monotonic with the latest changes as in the sequential SGD.

3 Performance Study
We next empirically evaluate GRAPE, for its (1) efficiency, and (2) communication cost, using real-life graphs
larger than those that [13] experimented with. We evaluated the performance of GRAPE compared with Giraph
(an open-source version of Pregel), GraphLab, and Blogel (the fastest block-centric system we are aware of).

Experimental setting. We used five real-life graphs of different types, including (1) movieLens [3], a dense
recommendation network (bipartite graph) that has 20 million movie ratings (as weighted edges) between a set
of 138000 users and 27000 movies; (2) UKWeb [5], a large Web graph with 133 million nodes and 5 billion
edges, (3) DBpedia [1], a knowledge base with 5 million entities and 54 million edges, and in total 411 distinct
labels, (4) Friendster [2], a social network with 65 million users and 1.8 billion relations; and (5) traffic [4], an
(undirected) US road network with 23 million nodes (locations) and 58 million edges. To make use of unlabeled
Friendster for Sim and SubIso, we assigned up to 100 random labels to nodes. We also randomly assigned
weights to all the graphs for testing SSSP.

Queries. We randomly generated the following queries. (a) We sampled 10 source nodes in each graph, and

36

constructed an SSSP query for each node. (b) We generated 20 pattern queries for Sim and SubIso, controlled
by |Q| = (|VQ|, |EQ|), the number of nodes and edges, respectively, using labels drawn from the graphs.

We remark that GRAPE can process query workload without reloading the graph, but GraphLab, Giraph and
Blogel require the graph to be reloaded each time a single query is issued, which is costly over large graphs.

Algorithms. We implemented the core functions PEval, IncEval and Assemble for those query classes given in
Sections 2.3, registered in the API library of GRAPE. We used XtraPuLP [28] as the default graph partition
strategy. We adopted basic sequential algorithms for all the systems without optimization.

We also implemented algorithms for the queries for Giraph, GraphLab and Blogel. We used “default” code
provided by the systems when available, and made our best efforts to develop “optimal” algorithms otherwise
(see [13] for more details). We implemented synchronized algorithms for both GraphLab and Giraph for the
ease of comparison. We expect the observed relative performance trends to hold on other similar graph systems.

We deployed the systems on a cluster of up to 12 machines, each with 16 processors (Intel Xeon 2.2GHz)
and 128G memory (thus in total 192 workers). Each experiment was run 5 times and the average is reported here.

Experimental results. We next report our findings.

Exp-1: Efficiency. We first evaluated the efficiency of GRAPE by varying the number n of worker used, from
64 to 192. For SSSP and CC, we experimented with UKWeb, traffic and Friendster. For Sim and SubIso, we
used over Friendster and DBpedia. We used movieLens for CF as its application in movie recommendation.

(1) SSSP. Figures 3a-3c report the performance of the systems for SSSP over Friendster, UKWeb and traffic,
respectively. The results on other graphs are consistent (not shown). From the results we can see the following.

(a) GRAPE outperforms Giraph, GraphLab and Blogel by 14842, 3992 and 756 times, respectively, over traffic
with 192 workers (Fig 3a). In the same setting, it is 556, 102 and 36 times faster over UKWeb (Fig. 3b), and 18,
1.7 and 4.6 times faster over Friendster (Fig. 3c). By simply parallelizing sequential algorithms without further
optimization, GRAPE already outperforms the state-of-the-art systems in response time.

The improvement of GRAPE over all the systems on traffic is much larger than on Friendster and UKWeb.
(i) For Giraph and GraphLab, this is because synchronous vertex-centric algorithms take more supersteps to
converge on graphs with larger diameters, e.g., traffic. With 192 workers, Giraph take 10749 supersteps over
traffic and 161 over UKWeb; similarly for GraphLab. In contrast, GRAPE is not vertex-centric and it takes 31
supersteps on traffic and 24 on UKWeb. (ii) Blogel also takes more (1690) supersteps over traffic than over
UKWeb (42) and Friendster (23). It generates more blocks over traffic (with larger diameter) than UKWeb and
Friendster. As Blogel treats blocks as vertex, the benefit of parallelism is degraded with more blocks.

(b) In all cases, GRAPE take less time when n increases. On average, it is 1.4, 2.3 and 1.5 times faster for n
from 64 to 192 over traffic, UKWeb and Friendster, respectively. (i) Compared with the results in [13] using
less workers, this improvement degrades a bit. This is mainly because the larger number of fragments leads to
more communication overhead. On the other hand, such impact is significantly mitigated by IncEval that only
ships changed update parameters. (ii) In contrast, Blogel does not demonstrate such consistency in scalability.
It takes more time on traffic when n is larger. When n varies from 160 to 192, it takes longer over Friendster.
Its communication cost dominates the parallel cost as n grows, “canceling out” the benefit of parallelism. (iii)
GRAPE has scalability comparable to GraphLab over Friendster and scales better over UKWeb and traffic.
Giraph has better improvement with larger n, but with constantly higher cost (see (a)) than GRAPE.

(c) GRAPE significantly reduces supersteps. It takes on average 22 supersteps, while Giraph, GraphLab and
Blogel take 3647, 3647 and 585 supersteps, respectively. This is because GRAPE runs sequential algorithms over
fragmented graphs with cross-fragment communication only when necessary, and IncEval ships only changes to
status variables. In contrast, Giraph, GraphLab and Blogel pass vertex-vertex (vertex-block) messages.

(2) CC. Figures 3d-3f report the performance for CC detection, and tell us the following. (a) Both GRAPE and
Blogel substantially outperform Giraph and GraphLab. For instance, when n = 192, GRAPE is on average

37

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
(S

ec
o

n
d

s)

GRAPE
GraphLab

Giraph
Blogel

(a) Varying n: SSSP (traffic)

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
(S

ec
o

n
d

s)

GRAPE
GraphLab

Giraph
Blogel

(b) Varying n: SSSP (UKWeb)

 10

 100

 1000

64 96 128 160 192

T
im

e
(S

ec
o

n
d

s)

GRAPE
GraphLab

Giraph
Blogel

(c) Varying n: SSSP (Friendster)

 0.1

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
(S

ec
o

n
d

s)

GRAPE
GraphLab

Giraph
Blogel

(d) Varying n: CC (traffic)

 0.1

 1

 10

 100

 1000

 10000

64 96 128 160 192

T
im

e
(S

ec
o

n
d

s)

GRAPE
GraphLab

Giraph
Blogel

(e) Varying n: CC (UKWeb)

 1

 10

 100

 1000

64 96 128 160 192

T
im

e
(S

ec
o

n
d

s)
GRAPE

GraphLab
Giraph
Blogel

(f) Varying n: CC (Friendster)

 1

 10

 100

 1000

64 96 128 160 192

T
im

e
(S

ec
o

n
d

s)

GRAPE
GraphLab

Giraph
Blogel

(g) Varying n: Sim (Friendster)

 0.25

 1

 4

 16

 64

64 96 128 160 192

T
im

e
(S

ec
o

n
d

s) GRAPE
GraphLab

Giraph
Blogel

(h) Varying n: Sim (DBpedia)

 1

 10

 100

 1000

64 96 128 160 192

T
im

e
(S

ec
o

n
d

s)

GRAPE
GraphLab

Giraph
Blogel

(i) Varying n:SubIso(Friendster)

 1

 2

 4

 8

 16

 32

64 96 128 160 192

T
im

e
(S

ec
o

n
d

s)

GRAPE
GraphLab

Giraph
Blogel

(j) Varying n: SubIso (DBpedia)

 128

 256

 512

 1024

 2048

 4096

64 96 128 160 192

T
im

e
(S

ec
o

n
d

s)

GRAPE
GraphLab

Giraph
Blogel

(k) Varying n: CF(movieLens)

 0

 0.2

 0.4

 0.6

 0.8

 1

(64, G1) (96, G2) (128, G3) (160, G4) (192, G5)

T
im

e
(S

ec
o

n
d

s)

GRAPE

(l) Scale-up of GRAPE (Synthetic)

Figure 3: Efficiency of GRAPE

12094 and 1329 times faster than Giraph and GraphLab, respectively. (b) Blogel is faster than GRAPE in some
cases, e.g., 3.5s vs. 17.9s over Friendster when n = 192. This is because Blogel embeds the computation of
CC in its graph partition phase as precomputation, while this graph partition cost (on average 357 seconds using
its built-in Voronoi partition) is not included in its response time. In other words, without precomputation, the
performance of GRAPE is already comparable to the near “optimal” case reported by Blogel.

(3) Sim. Fixing |Q| = (6, 10), i.e., patterns Q with 6 nodes and 10 edges, we evaluated graph simulation over
DBpedia and Friendster. As shown in Figures 3g-3h, (a) GRAPE consistently outperforms Giraph, GraphLab
and Blogel over all queries. It is 109, 8.3 and 45.2 times faster over Friendster, and 136.7, 5.8 and 20.8 times
faster over DBpedia on average, respectively, when n = 192. (b) GRAPE scales better with the number n
of workers than the others. (c) GRAPE takes at most 21 supersteps, while Giraph, GraphLab and Blogel take
38, 38 and 40 supersteps, respectively. This empirically validates the convergence guarantee of GRAPE under
monotonic status variable updates and its positive effect on reducing parallel and communication cost.

(4) SubIso. Fixing |Q| = (3, 5), we evaluated subgraph isomorphism. As shown in Figures 3i-3j over Friendster
and DBpedia, respectively, GRAPE is on average 34, 16 and 4 times faster than Giraph, GraphLab and Blogel
when n = 192. It is 2.2 and 1.3 times faster when n varies from 64 to 192 over Friendster and DBpedia,
respectively. This is comparable with GraphLab that is 1.4 and 2.8 times faster, respectively.

(5) Collaborative filtering (CF). We used movieLens [3] with a training set |ET | = 90%|E|. We compared
GRAPE with the built-in CF in GraphLab, and with CF implemented for Giraph and Blogel. Note that CF favors
“vertex-centric” programming since each node only needs to exchange data with their neighbors, as indicated
by that GraphLab and Giraph outperform Blogel. Nonetheless, Figure 3k shows that GRAPE is on average 4.1,
2.6 and 12.4 times faster than Giraph, GraphLab and Blogel, respectively. Moreover, it scales well with n.

(6) Scale-up of GRAPE. The speed-up of a system may degrade over more workers [24]. We thus evaluate the
scale-up of GRAPE, which measures the ability to keep the same performance when both the size of graph G
(denoted as (|V |, |E|)) and the number n of workers increase proportionally. We varied n from 64 to 192, and

38

 0.05

 1

 20

 400

 8000

 160000

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n

 (
M

)

GRAPE
GraphLab

Giraph
Blogel

(a) Varying n: SSSP (traffic)

 1

 10

 100

 1000

 10000

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n

 (
M

)

GRAPE
GraphLab

Giraph
Blogel

(b) Varying n:SSSP (UKWeb)

 1024

 2048

 4096

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n

 (
M

)

GRAPE
GraphLab

Giraph
Blogel

(c) Varying n: SSSP (Friendster)

 0.01

 0.1

 1

 10

 100

 1000

 10000

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n

 (
M

)

GRAPE
GraphLab

Giraph
Blogel

(d) Varying n: CC (traffic)

 0.1

 1

 10

 100

 1000

 10000

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n

 (
M

)

GRAPE
GraphLab

Giraph
Blogel

(e) Varying n: CC (UKWeb)

 1

 10

 100

 1000

 10000

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n

 (
M

)
GRAPE

GraphLab
Giraph
Blogel

(f) Varying n: CC (Friendster)

 8

 16

 32

 64

 128

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n

 (
M

)

GRAPE
GraphLab

Giraph
Blogel

(g) Varying n: Sim (Friendster)

 1

 2

 4

 8

 16

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n

 (
M

)

GRAPE
GraphLab

Giraph
Blogel

(h) Varying n: Sim (DBpedia)

 256

 512

 1024

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n

 (
M

)

GRAPE
GraphLab

Giraph
Blogel

(i) Varying n:SubIso(Friendster)

 16

 32

 64

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n

 (
M

)

GRAPE
GraphLab

Giraph
Blogel

(j) Varying n: SubIso (DBpedia)

 100

 1000

 10000

64 96 128 160 192

C
o

m
m

u
n

ic
at

io
n

 (
M

)
GRAPE

GraphLab
Giraph
Blogel

(k) Varying n: CF(movieLens)

 0

 2000

 4000

 6000

 8000

 10000

 12000

(64, G1) (96, G2) (128, G3) (160, G4) (192, G5)

C
o

m
m

u
n

ic
at

io
n

 (
M

) GRAPE

(l) SSSP (Synthetic)

Figure 4: Communication costs

for each n, deployed GRAPE over a synthetic graph. The graph size varies from (50M, 500M) to (250M, 2.5B)
(denoted as G5), with fixed ratio between edge number and node number and proportional to n . The scale up at
e.g., (128, G3) is the ratio of the time using 64 workers over G1 to its counterpart using 128 workers over G3.
As shown in Fig. 3l, GRAPE preserves a reasonable scale-up (close to linear scale-up, the optimal scale-up).

Exp-2: Communication cost. The communication cost (in bytes) reported by Giraph, GraphLab and Blogel
depends on their own implementation of message blocks and protocols [17], where Giraph ships less data (in
bytes) than GraphLab over specific datasets and queries, and vice versa for others. For a fair and consistent
comparison, we report the total number of exchanged messages.

In the same setting as Exp-1, Figure 4 reports the communication costs of the systems. We observe that
Giraph and GraphLab ship roughly the same amount of messages. GRAPE incurs much less cost than Giraph
and GraphLab. For SSSP with 192 workers, it ships on average 10%, 0.0017%, 45%, and 9.3% of the data
shipped for Sim, CC, SubIso and CF by Giraph (GraphLab), respectively, and reduces their cost by 6 orders
of magnitude! While it ships more data than Blogel for CC due to the precomputation of Blogel, it only ships
13.5%, 54%, 0.014% and 16% of the data shipped by Blogel for Sim, SubIso, SSSP and CF, respectively.

(1) SSSP. Figures 4a-4c show that both GRAPE and Blogel incurs communication costs that are orders of
magnitudes less than those of GraphLab and Giraph. This is because vertex-centric programming incurs a large
number of inter-vertex messages. Both block-centric programs (Blogel) and PIE programs (GRAPE) effectively
reduce unnecessary messages, and trigger inter-block messages only when necessary. We also observe that
GRAPE ships 0.94% and 17.9% of the data shipped by Blogel over UKWeb and Friendster, respectively. Indeed,
GRAPE ships only updated values. This significantly reduces the amount of messages that need to be shipped.

(2) CC. Figures 4d-4f show similar improvement of GRAPE over GraphLab and Giraph for CC. It ships on
average 0.0017% of the data shipped by Giraph and GraphLab. As Blogel precomputes CC (see Exp-1(2)), it
ships little data. Nonetheless, GRAPE is not far worse than the near “optimal” case of Blogel, sometimes better.

39

(3) Sim. Figures 4g and 4h report the communication cost for graph simulation over Friendster and DBpedia,
respectively. One can see that GRAPE ships substantially less data, e.g., on average 8.5%, 8.5% and 11.4%
of the data shipped by Giraph, GraphLab and Blogel, respectively. Observe that the communication cost of
Blogel is much higher than that of GRAPE, even though it adopts inter-block communication. This shows that
the extension of vertex-centric to block-centric by Blogel has limited improvement for more complex queries.
GRAPE works better than these systems by employing incremental IncEval to reduce excessive messages.

(4) SubIso. Figures 4i and 4j report the results for SubIso over Friendster and DBpedia, respectively. On
average, GRAPE ships 26%, 26% and 31% of the data shipped by Giraph, GraphLab and Blogel, respectively.

(5) CF. Figure 4k reports the result for CF over movieLens. On average, GRAPE ships 6.5%, 6.5% and 7.3% of
the data shipped by Giraph, GraphLab and Blogel, respectively.

(6) Communication cost (synthetic). In the same setting as Figure 3l, Figure 4l reports the communication cost
for SSSP. It takes more cost over larger graphs and more workers due to increased “border nodes”, as expected.

Summary. Our experimental study verifies the findings in [13] using larger real-life graphs, with some new
observations. (1) Over large-scale graphs, GRAPE remains comparable to state-of-the-art systems (Giraph,
GraphLab, Blogel) by automatically parallelizing sequential algorithms. (2) GRAPE preserves reasonable scala-
bility and demonstrates good scale-up when using more workers because its incremental computation mitigates
the impact of more border nodes and fragments. In contrast, Blogel may take longer time with larger number of
workers since its communication cost cancels out the improvement from block-centric parallelism. (3) GRAPE
outperforms Giraph, GraphLab and Blogel in communication costs, by orders of magnitude on average.

4 Conclusion
We contend that GRAPE is promising for making parallel graph computations accessible to a large group of
users, without degradation in performance or functionality. We have developed stronger fundamental results in
connection with the convergence and expressive power of GRAPE, which will be reported in a later publication.
We are currently extending GRAPE to support a variant of asynchronous parallel model (ASP).

Acknowledgments. Fan and Xu are supported in part by ERC 652976 and EPSRC EP/M025268/1. Fan,
Luo and Yu are supported by Shenzhen Peacock Program 1105100030834361, NSFC 61421003, 973 Program
2014CB340302, Beijing Advanced Innovation Center for Big Data and Brain Computing, and NSFC Foundation
for Innovative Research Groups. Wu is supported by NSF IIS 1633629 and Google Faculty Research Award.

References
[1] DBpedia. http://wiki.dbpedia.org/Datasets.

[2] Friendster. https://snap.stanford.edu/data/com-Friendster.html.

[3] Movielens. http://grouplens.org/datasets/movielens/.

[4] Traffic. http://www.dis.uniroma1.it/challenge9/download.shtml.

[5] UKWeb. http://law.di.unimi.it/webdata/uk-union-2006-06-2007-05/, 2006.

[6] F. Bourse, M. Lelarge, and M. Vojnovic. Balanced graph edge partition. In SIGKDD, pages 1456–1465, 2014.

[7] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub) graph isomorphism algorithm for matching large graphs.
TPAMI, 26(10):1367–1372, 2004.

[8] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Commun. ACM, 51(1), 2008.

[9] W. Fan, C. Hu, and C. Tian. Incremental graph computations: Doable and undoable. In SIGMOD, 2017.

[10] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern matching: From intractability to polynomial time.
In PVLDB, 2010.

40

[11] W. Fan, X. Wang, and Y. Wu. Incremental graph pattern matching. TODS, 38(3), 2013.

[12] W. Fan, J. Xu, Y. Wu, W. Yu, and J. Jiang. GRAPE: Parallelizing sequential graph computations. In VLDB (demo),
2017. http://grapedb.io/.

[13] W. Fan, J. Xu, Y. Wu, W. Yu, J. Jiang, B. Zhang, Z. Zheng, Y. Cao, and C. Tian. Parallelizing sequential graph
computations. In SIGMOD, 2017.

[14] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms.
JACM, 34(3):596–615, 1987.

[15] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica. GraphX: Graph processing in a
distributed dataflow framework. In OSDI, pages 599–613, 2014.

[16] I. Grujic, S. Bogdanovic-Dinic, and L. Stoimenov. Collecting and analyzing data from E-Government Facebook
pages. In ICT Innovations, 2014.

[17] M. Han, K. Daudjee, K. Ammar, M. T. Ozsu, X. Wang, and T. Jin. An experimental comparison of Pregel-like graph
processing systems. VLDB, 7(12), 2014.

[18] M. R. Henzinger, T. Henzinger, and P. Kopke. Computing simulations on finite and infinite graphs. In FOCS, 1995.

[19] N. D. Jones. An introduction to partial evaluation. ACM Computing Surveys, 28(3), 1996.

[20] M. Kim and K. S. Candan. SBV-Cut: Vertex-cut based graph partitioning using structural balance vertices. Data &
Knowledge Engineering, 72:285–303, 2012.

[21] Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems. IEEE Computer,
42(8):30–37, 2009.

[22] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Distributed GraphLab: A framework
for machine learning in the cloud. PVLDB, 5(8), 2012.

[23] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I. Horn, N. Leiser, and G. Czajkowski. Pregel: a system for
large-scale graph processing. In SIGMOD, 2010.

[24] F. McSherry, M. Isard, and D. G. Murray. Scalability! But at what cost? In HotOS, 2015.

[25] G. Ramalingam and T. Reps. An incremental algorithm for a generalization of the shortest-path problem. J. Algo-
rithms, 21(2):267–305, 1996.

[26] G. Ramalingam and T. Reps. On the computational complexity of dynamic graph problems. TCS, 158(1-2), 1996.

[27] S. Salihoglu and J. Widom. GPS: a graph processing system. In SSDBM, 2013.

[28] G. M. Slota, S. Rajamanickam, K. Devine, and K. Madduri. Partitioning trillion-edge graphs in minutes. In IPDPS,
2017.

[29] Y. Tian, A. Balmin, S. A. Corsten, and J. M. Shirish Tatikonda. From “think like a vertex” to “think like a graph”.
PVLDB, 7(7):193–204, 2013.

[30] L. G. Valiant. A bridging model for parallel computation. Commun. ACM, 33(8):103–111, 1990.

[31] L. G. Valiant. General purpose parallel architectures. In Handbook of Theoretical Computer Science, Vol A. 1990.

[32] J. Vinagre, A. M. Jorge, and J. Gama. Fast incremental matrix factorization for recommendation with positive-only
feedback. In UMAP, 2014.

[33] G. Wang, W. Xie, A. J. Demers, and J. Gehrke. Asynchronous large-scale graph processing made easy. In CIDR,
2013.

[34] D. Yan, J. Cheng, Y. Lu, and W. Ng. Blogel: A block-centric framework for distributed computation on real-world
graphs. PVLDB, 7(14):1981–1992, 2014.

41

Towards A Unified Graph Model for Supporting Data
Management and Usable Machine Learning

Guoliang Li∗, Meihui Zhang+, Gang Chen†, Beng Chin Ooi‡
∗Department of Computer Science, Tsinghua University, Beijing, China

+Department of Computer Science, Beijing Institute of Technology, Beijing, China
†Department of Computer Science, Zhejiang University, Hangzhou, China
‡School of Computing, National University of Singapore, Singapore

Abstract

Data management and machine learning are two important tasks in data science. However, they have
been independently studied so far. We argue that they should be complementary to each other. On the
one hand, machine learning requires data management techniques to extract, integrate, clean the data,
to support scalable and usable machine learning, making it user-friendly and easily deployable. On
the other hand, data management relies on machine learning techniques to curate data and improve its
quality. This requires database systems to treat machine learning algorithms as their basic operators,
or at the very least, optimizable stored procedures. It poses new challenges as machine learning tasks
tend be iterative and recursive in nature, and some models have to be tweaked and retrained. This calls
for a reexamination of database design to make it machine learning friendly.

In this position paper, we present a preliminary design of a graph model for supporting both data
management and usable machine learning. To make machine learning usable, we provide a declara-
tive query language, that extends SQL to support data management and machine learning operators,
and provide visualization tools. To optimize data management procedures, we devise graph optimiza-
tion techniques to support a finer-grained optimization than traditional tree-based optimization model.
We also present a workflow to support machine learning (ML) as a service to facilitate model reuse
and implementation, making it more usable and discuss emerging research challenges in unifying data
management and machine learning.

1 Introduction

A data science workflow includes data extraction, data integration, data analysis, machine learning and inter-
pretation. For example, consider healthcare analytics. Heterogeneity, timeliness, complexity, noise and incom-
pleteness with big data impede the progress of creating value from electronic healthcare data [10]. We need
to extract high quality data from multiple sources, clean the data to remove the inconsistency and integrate the
heterogeneous data. Next we can use data analytics techniques to discover useful information and analyze the
data to find interesting results (e.g., cohort analysis [7]). We also need to utilize machine learning techniques to

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

42

learn important features and make decision (e.g., Readmission risk [25]). Finally, we need to present the results
in the medical context to enable users to better appreciate the findings.

The data science workflow (as shown in Figure 1) contains both data management components (data extrac-
tion, data integration, data analysis) and machine learning component. However, data management and machine
learning have been independently studied, be it in industry or academia, even though they are in fact comple-
mentary to each other. First, machine learning requires high quality data to guarantee learning results. Thus it
needs data management techniques to extract, integrate and clean the data. Second, machine learning relies on
data management techniques to enable scalable machine learning. It is widely recognized that machine learning
is hard for users without machine learning background to use while database has been featured prominently
and used as the underlying system in many applications. Thus machine learning should borrow ideas from the
database to make machine-learning algorithms usable and easily deployable. Third, many data management
components rely on machine learning techniques to improve the quality of data extraction and integration. For
example, we can use machine learning to learn the features that play important roles in data integration. This
calls for a new framework to support data management and machine learning simultaneously, and their interac-
tion and dependency in big data analytics.

To address these problems, we propose a unified graph model for modeling both data management and ma-
chine learning. We use a graph to model relational data, where nodes are database tuples and edges are foreign
key relationships between tuples. A graph can be used to model the unstructured data, semi-structured data and
structured data together by linking the tuples in relational database, documents or objects in unstructured data
and semi-structured data. More importantly, most machine learning algorithms work on graph. We can there-
fore use a unified graph model to support both data management and machine learning. Hence, we propose a
graph-based framework that integrates data management and machine learning together, which (1) supports data
extraction, data integration, data analysis, SQL queries, and machine learning simultaneously and (2) provide
machine learning (ML) as a service such that users without machine learning background can easily use machine
learning algorithms.

In summary, we cover the following in this position paper.
(1) We sketch a unified graph model to model unstructured data, semi-structured data, and structured data

and can support both data management and machine learning.
(2) We propose a user-friendly interface for the users to use data management and machine learning. We pro-

vide a declarative query language that extends SQL to support data management and machine learning operators.
We also provide visualization tools to assist users in using the machine learning algorithms.

(3) We devise graph optimization techniques to improve the performance, which provide a finer-grained
optimization than traditional tree-based optimization model.

(4) We discuss design principles and the important components in providing machine learning as a service
workflow.

(5) We discuss research challenges in unifying data management and machine learning.

2 A Unified Graph Model

Graph Model. A graph G = (V, E) includes a vertex set V and an edge set E , where a vertex can be a database
tuple, a document, or a user, and an edge is a relationship between two vertices, e.g., foreign key between
tuples for structured data, hyperlink between documents for unstructured data, or friendship among users in
semi-structured data (e.g., social networks).
Graph Model for Relational Data. Given a database D with multiple relation tables T1, T2, · · · , Tn, we can
model the relational data as a graph, where each tuple is a vertex and there is an edge between two vertexes
if their corresponding tuples have foreign key relationships [12, 14]. Given a SQL query q, we find compact
subtrees corresponding to the query from the graph as answers [14] and the details will be discussed in Section 4.

43

Data

Extraction

Data

Integration

Machine

Learning
Interpretation

Data

Analysis

Data

Crowdsourcing

Figure 1: Workflow of Data Science.

Graph Model for Heterogeneous Data. Given heterogeneous data consisting of structured data, semi-structured
data and unstructured data, we can also use a unified graph model to represent them. For unstructured data,
e.g., html documents, the vertexes are documents and the edges are hyperlinks between documents. For semi-
structured data, e.g., Facebook, the vertexes are users and the edges are friendships between users. We can also
link the heterogeneous data together using the data extraction and integration techniques [4, 14].
Data Extraction. Data extraction aims to extract entities from the data, including documents, lists, tables,
etc. There are some variants of entity extraction. Firstly, given a dictionary of entities and a document, it
aims to extract entities from the document that exactly or approximately match the predefined entities in the
dictionary [13]. Secondly, given a document and entities in knowledge bases, it aims to link the entities in
knowledge base to the entities in the document to address the entity ambiguity problem [19]. Thirdly, it utilizes
rules to identify the entities, e.g., a person born in a city, a person with PhD from a university [20]. We can use
data extraction techniques to extract entities, based on which we can integrate the heterogeneous data.
Data Integration. We can also link the structured data and unstructured data together and use a unified graph
model to represent the data. There are several ways to link the data. First, we can use a similarity-based
method [8]. If two objects from different sources have high similarity, we can link them together. Second, we
can use crowd-based method to link the data [3]. Given two data from different sources, we ask the crowd to
label whether they can be linked. Since crowdsourcing is not free, it is expensive to ask the crowd to check every
pair of data and we can use some reasoning techniques to reduce the crowd cost, e.g., transitivity. Third, we can
use a knowledge-based method to link the data. We map the data from different sources to entities in knowledge
bases and the data mapped to the same entity can be linked [11].
Graph Model for Machine Learning. Most machine learning algorithms adopt a graph model, e.g., PageRank,
probabilistic graphical model, neural network, etc.

To summarize, we can utilize a unified graph to model heterogeneous data which can support both data
management (including SQL queries, data extraction, data integration) and machine learning (any graph based
learning algorithms).

3 A Versatile Graph Framework

We propose a versatile graph framework to support both data management and machine learning simultaneously
with a user-friendly interface.
Query Interace. A natural challenge is to utilize the same query interface to support both data management and

44

DB Operator ML Operator

Graph Optimization

Declarative

Language
Automatic Data

Visualization

Graph Management System

Graph Query Plan

Graph Modelling

Figure 2: A Unified Graph Model and System.

machine learning. We aim to support two types of query interfaces: declarative query language and visualization
tools. The declarative query language extends traditional SQL to support data analysis and machine learning. For
example, we can use UDF to support machine learning. We can also add native keywords into declarative query
language to enable in-core optimization. Thus users only need to specify what they want to obtain but do not
need to know how to get the result. Our framework supports both of the two cases. To support the second case,
we need to abstract the machine learning operators, e.g., regression, clustering, classification, correlation. Then
our framework supports all the database operators, e.g., selection, join, group, sort, top-k, and machine learning
operators, e.g., clustering, classification, correlation, regression, etc. The visualization tool can help users to
better understand the data and can also use visualization charts as examples (e.g., line charts, bar charts, pie
charts) to provide users with instant feedback, and the framework can automatically compute similar trends or
results. More importantly, users can utilize visualization tools, e.g., adding or deleting an attribute like tableau,
to visualize the data. Our framework can also automatically analyze the data and suggest the visualization charts.
Since the data and features are very complicated, we need to utilize the machine learning techniques to learn the
features, decide which charts are interesting and which charts are better than others.
Graph Query Plan. Based on the graph query, we generate a graph query plan. We use a workflow to represent
the query plan, which includes multiple query operators (including data management and machine learning op-
erators) and the query operators have some relationships (e.g., precedence order, dependency, decision relation).
A straightforward method directly generates the physical plan, executes each query operators based on the rela-
tionships, and executes the physical plan without optimization. Note that it is important to select a good query
plan to improve the performance and scalability.
Graph Optimization. Traditional database system employs a tree-based optimization model. It employs a
table-level coarse-grained optimization, which selects an optimized table-level join order to execute the query.
The motivation is to reduce the random access in disk-based setting. However a table-level join order may not be
optimal, because different tuples may have different optimal join orders. In disk-based setting, it is hard to get the
optimal order for different tuples. However, in memory setting, we have an opportunity to attempt more effective

45

s
1

s
2

s
3

s
4

s
5

r
1

r
2

r
3

r
4

r
5

t
1

t
2

t
3

t
4

t
5

v
1

v
2

v
3

v
4

v
5

Figure 3: A Graph-Based Optimization Model.

optimizations. To address this problem, we propose a fine-grained tuple-level optimization model, which can
find the best order for different tuples (see Section 4). We can also provide graph optimization techniques for
other operations.
Graph Management System. There are many graph systems to support graph-based query processing, in-
cluding disk-based graph systems, in-memory graph systems, and distributed graph systems [6, 5, 9, 18, 6, 24].
Disk-based systems optimize the model to reduce random access. In-memory graph systems utilize the trans-
action techniques to guarantee high parallelism. Distributed graph systems include synchronized model and
asynchronized model, where the former has straggler and imbalance problem while the latter is hard to imple-
ment. Our framework should support any graph management system and we focus on automatic suggestion of
the best graph execution paths to support different applications.

4 Fine-Grained Graph Processing Model

Given a SQL query, we utilize the graph to directly find the answers of the SQL query. We first consider a simple
case that the tables are joined by a chain structure, i.e., each table is joined with at most two other tables and
there is no cycle. There are some other join structures, e.g., star join structure and graph join with cycles, while
will be discussed later [12].) Suppose there are x join predicates in the SQL. The answers of such SQL query
are chains of the graph with x edges.

For example, consider four tables, R,S, T, V in Figure 3 and each table has five tuples. The tuples are
connected based on foreign keys. Consider a SQL query with 3 join predicates to join the four tables, e.g.,
Select * from R,S,T,V where R.A = S.A, S.B = T.B and T.C = V.C. The answers of the
SQL query are chains in the graph that contain 3 edges and 4 tuples such that the tuples are from different
tables. Traditional database systems employ a tree-based optimization model, possibly due to the disk-based
optimization requirement. The tree-based optimization model employs a coarse-grained optimization and selects
the best table-level join order. For example, the tree model first checks the join predicates between the first two
tables and then joins with the third and the fourth tables. The cost of the tree based model is 28. Obviously we
can select different best orders for different tuples. For example, we only need to check s4, t4 and r5, s5, t5, v4.
The cost is only 6. Thus the graph-based optimization order has much lower cost and can provide finer-grained
optimizations.

46

Graph-Based Optimization Techniques. We can first partition the graph into multiple disjoint connected
components. The vertexes in different components cannot form a result. Then we can compute answers from
each connected component. We assign each vertex in the graph with a pruning power, i.e., if the vertex is
checked, how many tuples will be pruned. For example, the pruning power of s4 is 8 and the pruning power
of t4 is also 8. Thus we can first check s4 and t4. Then we can prune r1, r2, r3, r4, t1, t2, t3, t4, s1, s2, s3, s4,
v1, v2, v3, v4. Then we can get only one result (r4, s5, t5, v5).

Next we consider other join structures of queries.
Tree Join Structure. The tables are joined by a tree structure and there is no cycle. We can transform it into
a chain structure as follows. We first find the longest chain in the tree. Suppose the chain is T1, T2, · · · , Tx.
Then for each vertex Ti on the chain, which (indirectly) connects other vertices T ′1, T

′
2, · · · , T ′y that are not on

the chain, we insert these vertices into the chain using a recursive algorithm. If these vertices are on a chain,
i.e., Ti, T

′
1, T

′
2, · · · , T ′y, then we insert them into the chain by replacing Ti with Ti, T

′
1, T

′
2, · · · , T ′y−1, T ′y, T ′y−1,

· · · , Ti. If these vertices are not on a chain, we find the longest chain and insert other vertices not on the chain
into this chain using the above method. In this way, we can transform a tree join structure to a chain structure.
Note that the resulting chain has some duplicated tables. Hence, joining those tables may result in invalid join
tuples (e.g., a join tuple that uses one tuple in the first copy of Ti, and a different tuple in the second copy of Ti).
We need to remove those invalid join tuples.
Graph Join Structure. The tables are joined by a graph structure, i.e., there exist cycles in the join structure.
We can transform it into a tree structure. For example, given a cycle (T1, T2, · · · , Tx, T1), we can break the
cycle by inserting a new vertex T ′1 and replacing it with T1. Thus we can transform a cycle to a tree structure,
by first finding a spanning tree of the graph using breadth first search, and breaking all non-tree edges.

In summary, given a graph query, a SQL query, a machine learning query, we can use a unified graph model
and system to answer the query efficiently. However there are still many open problems in this unified graph
based query optimization.

(1) How to build efficient indexes to support various SQL and machine learning queries?
(2) How to support both transactions in data management components and data analytics in machine learning

component simultaneously?
(3) How to support concurrency control?
(4) How to support iterative processing?

5 ML As A Service

In 1970s, database was proposed to manage a collection of data. Database has been widely accepted and de-
ployed in many applications because it is easy to use due to its user-friendly declarative query language. In
1990s, search engine was proposed to help Internet users to explore web data, which is also widely used by
lay users. Although machine learning is very hot in recent years (every vertical domains claim that they want
to use machine learning to improve the performance) and several machine learning systems have been de-
ployed [17, 22, 21, 1, 16, 23], it is still not widely used by non-machine-learning users, because (1) machine
learning requires users to understand the underlying model; (2) machine learning requires experts to tune the
model to learn the parameters; (3) there is no user-friendly query interface for users to use machine learning; (4)
some machine learning algorithms are not easy to explain and users may not appreciate the learning results that
are hard to interpret. Stanford also launches a project DAWN on providing infrastructures for machine learn-
ing [2]. Different from DAWN, we focus on providing machine learning as a service, which enables ordinary
users adopt the machine learning techniques and easily deploy machine learning applications.

Next we shall outline the design requirements.
(1) Scalability. The framework should scale up/out well and scale on volume and dimensionality.

47

User Interface

ML Workflow

Graph Management System

Graph Operators

Graph Optimization

Parameter Learning

Usability

Usability

Scalability

Efficiency

Flexibility

Reliability

Flexibility

Figure 4: ML as a service

(2) Efficiency. The framework should have low latency and high throughput and we also need to balance the
workload.

(3) Reliability. The framework can easily recover for data/machine/network failures.
(4) Flexibility. The framework can support various learning applications.
(5) Usability. The framework should be easy to use for any users. We need to have good abstraction and

programming model.
Based on these five factors, we design a new graph-based framework to support ML as a service (as shown

in Figure 4).
Encapsulated Operators. We need to encapsulate the machine learning operators so that ordinary users can
easily use the operators to accomplish machine learning tasks. For each operator, we also encapsulate multiple
algorithms to support the operator. Note that the algorithms are transparent to the end users. For example,
we encapsulate clustering, classification, and regression operators. For clustering, we encapsulate multiple
clustering algorithms, e.g., K-means, density-based clustering, hierarchical clustering, etc. The users can utilize
a single operator or multiple operators to support various applications.
ML Workflow. Each ML operator can support some simple applications (e.g., clustering), and there are some
complex applications that require multiple operators (e.g., healthcare). Thus we need to design a model to
support applications with multiple operators. We can use a machine learning workflow to describe the model,
where each node is an operator and each directed edge is a relationship between two operators. Then we can
optimize a machine learning query based on the workflow. (1) We can select the appropriate algorithm for each
operator for different applications. (2) We can change the order of two operators to optimize the workflow. (3)
We can optimize the structure of the workflow. We can also devise cost-based model and rule-based model to
optimize the ML workflow.
Parameter Learning. Machine learning algorithms contain many parameters that significantly affect the per-
formance. Thus it is important to get good parameter values in different applications. However it is tedious and
complicated to tune the parameters and therefore, experts are required to be involved to tune the parameters.
This is an important reason why users without machine learning background are hard to use the ML algorithms.

48

Thus it is important to automatically learn the parameter values. In addition, it is important to automate the
discovery of data transformation and automatically discover the data drift.
Human-in-the-loop Machine Learning. Machine learning requires to use high-quality labelled data to learn
the results. However it is hard to use purely machine learning algorithms. Thus we propose human-in-the-loop
machine learning, which utilizes both crowdsourcing and experts to improve machine learning [15]. We use
crowd workers to provide high quality labelled data. We can ask the experts to guide the feature selection and
parameter learning. Most importantly, we can use active learning techniques to decide when/where to use crowd
and when/where to use experts.

6 Research Challenges

Explainable Machine Learning. Most existing machine-learning algorithms function like blackbox and the
learning results are not easy to explain, e.g., SVM. As many applications and users require to understand the
results to make decision, they require the algorithms to be explainable. For example, in healthcare analytics, the
doctors should be convinced why machine-learning results are meaningful and applicable. Thus we require to
design explainable techniques to help users better understand machine learning algorithms. We can utilize visu-
alization techniques to visualize the learning process and results. We can also deign new explainable machine
learning models.
End-to-end Learning and Deployment. It is expensive to learn the machine learning model and tune the
parameters. It is rather hard to deploy the machine learning system for users without machine learning back-
ground. Thus it requires to build end-to-end systems that automatically learn the model, tune the parameters, and
deploy the system for various applications. The system can also adapt to various domains and involves manual
intervention as little as possible.
Incremental Machine Learning. In many applications, machine learning employs a standalone model, which
loads the data outside the repository and runs the model out-of-core. However if the data is updated, the method
needs to reload the data and run the model from scratch. Obviously this method is not efficient. Thus it calls for
incremental learning model that utilizes the original model and the updated data to learn the new model without
needing to relearn the model.
Machine Learning on New Hardware. With the development of new hardware, e.g., NVM, GPU, FPGA,
RDMA, these new hardware pose new challenges in data management and machine learning. Thus we require
to design new techniques and utilize the features of new hardware inherently to improve the performance and
scalability of machine learning algorithms. We need to extend the graph model, graph algorithms and graph
system to support the new hardware, and devise device-aware optimization techniques.
Graph Processing. Distributed graph processing has straggler and imbalance problems, and we have to design
more efficient graph management systems and optimization techniques. Moreover, existing systems focus on
iteration graph processing applications, they are expensive for some non-iterative graph applications, e.g., com-
puting shortest path. Thus we need to design new efficient graph systems and framework to support general
graph queries.
Machine Learning for Data Integration. We can use machine learning techniques to facilitate data integration.
For example, we can use deep learning and embedding techniques to find candidate matching entity/column pairs
in data integration. We can also use active learning techniques to reduce the monetary cost. There are two big
challenges in using machine learning techniques. The first is to find a large training data to feed the machine
learning algorithms. The second is to design new machine learning models for data integration.

49

7 Conclusion

In this position paper, we sketched a unified graph model for supporting both data management and machine
learning. We proposed to provide a user-friendly interface for users to easily use data management and machine
learning. We outlined graph-based optimization techniques to improve the performance, which provides a finer-
grained optimization than traditional tree-based optimization model. We discussed machine learning as a service
and presented a ML workflow with the aim of achieving high flexibility. We discussed emerging research
challenges in unifying data management and machine learning.

References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard,
et al. Tensorflow: A system for large-scale machine learning. In OSDI, volume 16, pages 265–283, 2016.

[2] P. Bailis, K. Olukotun, C. Ré, and M. Zaharia. Infrastructure for usable machine learning: The stanford
DAWN project. CoRR, abs/1705.07538, 2017.

[3] C. Chai, G. Li, J. Li, D. Deng, and J. Feng. Cost-effective crowdsourced entity resolution: A partial-order
approach. In SIGMOD, pages 969–984, 2016.

[4] D. Deng, G. Li, J. Feng, Y. Duan, and Z. Gong. A unified framework for approximate dictionary-based
entity extraction. VLDB J., 24(1):143–167, 2015.

[5] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin. Powergraph: Distributed graph-parallel
computation on natural graphs. In OSDI, pages 17–30, 2012.

[6] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica. Graphx: Graph processing
in a distributed dataflow framework. In OSDI, pages 599–613, 2014.

[7] D. Jiang, Q. Cai, G. Chen, H. V. Jagadish, B. C. Ooi, K. Tan, and A. K. H. Tung. Cohort query processing.
PVLDB, 10(1):1–12, 2016.

[8] Y. Jiang, G. Li, J. Feng, and W. Li. String similarity joins: An experimental evaluation. PVLDB, 7(8):625–
636, 2014.

[9] A. Kyrola, G. E. Blelloch, and C. Guestrin. Graphchi: Large-scale graph computation on just a PC. In
OSDI, pages 31–46, 2012.

[10] C. Lee, Z. Luo, K. Y. Ngiam, M. Zhang, K. Zheng, G. Chen, B. C. Ooi, and W. L. J. Yip. Big healthcare
data analytics: Challenges and applications. In Handbook of Large-Scale Distributed Computing in Smart
Healthcare, pages 11–41. Springer, 2017.

[11] G. Li. Human-in-the-loop data integration. PVLDB, 10(12):2006–2017, 2017.

[12] G. Li, C. Chai, J. Fan, X. Weng, J. Li, Y. Zheng, Y. Li, X. Yu, X. Zhang, and H. Yuan. CDB: optimizing
queries with crowd-based selections and joins. In SIGMOD, pages 1463–1478, 2017.

[13] G. Li, D. Deng, and J. Feng. Faerie: efficient filtering algorithms for approximate dictionary-based entity
extraction. In SIGMOD, pages 529–540, 2011.

[14] G. Li, B. C. Ooi, J. Feng, J. Wang, and L. Zhou. EASE: an effective 3-in-1 keyword search method for
unstructured, semi-structured and structured data. In SIGMOD, pages 903–914, 2008.

50

[15] B. C. Ooi, K. Tan, Q. T. Tran, J. W. L. Yip, G. Chen, Z. J. Ling, T. Nguyen, A. K. H. Tung, and M. Zhang.
Contextual crowd intelligence. SIGKDD Explorations, 16(1):39–46, 2014.

[16] B. C. Ooi, K. Tan, S. Wang, W. Wang, Q. Cai, G. Chen, J. Gao, Z. Luo, A. K. H. Tung, Y. Wang, Z. Xie,
M. Zhang, and K. Zheng. SINGA: A distributed deep learning platform. In SIGMM, pages 685–688, 2015.

[17] D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J. Crespo,
and D. Dennison. Hidden technical debt in machine learning systems. In Advances in Neural Information
Processing Systems 28: Annual Conference on Neural Information Processing Systems 2015, December
7-12, 2015, Montreal, Quebec, Canada, pages 2503–2511, 2015.

[18] Z. Shang, F. Li, J. X. Yu, Z. Zhang, and H. Cheng. Graph analytics through fine-grained parallelism. In
SIGMOD, pages 463–478, 2016.

[19] Z. Shang, Y. Liu, G. Li, and J. Feng. K-join: Knowledge-aware similarity join. IEEE Trans. Knowl. Data
Eng., 28(12):3293–3308, 2016.

[20] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge. In WWW, pages
697–706, 2007.

[21] W. Wang, G. Chen, H. Chen, T. T. A. Dinh, J. Gao, B. C. Ooi, K. Tan, S. Wang, and M. Zhang. Deep
learning at scale and at ease. TOMCCAP, 12(4s):69:1–69:25, 2016.

[22] W. Wang, M. Zhang, G. Chen, H. V. Jagadish, B. C. Ooi, and K. Tan. Database meets deep learning:
Challenges and opportunities. SIGMOD Record, 45(2):17–22, 2016.

[23] E. P. Xing, Q. Ho, W. Dai, J. K. Kim, J. Wei, S. Lee, X. Zheng, P. Xie, A. Kumar, and Y. Yu. Petuum: A
new platform for distributed machine learning on big data. In SIGKDD, pages 1335–1344, 2015.

[24] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster computing with
working sets. HotCloud, 10(10-10):95, 2010.

[25] K. Zheng, J. Gao, K. Y. Ngiam, B. C. Ooi, and J. W. L. Yip. Resolving the bias in electronic medical
records. In KDD, pages 2171–2180, 2017.

51

Representation Learning on Graphs: Methods and Applications

William L. Hamilton
wleif@stanford.edu

Rex Ying
rexying@stanford.edu

Jure Leskovec
jure@cs.stanford.edu

Department of Computer Science
Stanford University
Stanford, CA, 94305

Abstract

Machine learning on graphs is an important and ubiquitous task with applications ranging from drug
design to friendship recommendation in social networks. The primary challenge in this domain is finding
a way to represent, or encode, graph structure so that it can be easily exploited by machine learning
models. Traditionally, machine learning approaches relied on user-defined heuristics to extract features
encoding structural information about a graph (e.g., degree statistics or kernel functions). However,
recent years have seen a surge in approaches that automatically learn to encode graph structure into
low-dimensional embeddings, using techniques based on deep learning and nonlinear dimensionality
reduction. Here we provide a conceptual review of key advancements in this area of representation
learning on graphs, including matrix factorization-based methods, random-walk based algorithms, and
graph convolutional networks. We review methods to embed individual nodes as well as approaches
to embed entire (sub)graphs. In doing so, we develop a unified framework to describe these recent
approaches, and we highlight a number of important applications and directions for future work.

1 Introduction

Graphs are a ubiquitous data structure, employed extensively within computer science and related fields. Social
networks, molecular graph structures, biological protein-protein networks, recommender systems—all of these
domains and many more can be readily modeled as graphs, which capture interactions (i.e., edges) between
individual units (i.e., nodes). As a consequence of their ubiquity, graphs are the backbone of countless systems,
allowing relational knowledge about interacting entities to be efficiently stored and accessed [2].

However, graphs are not only useful as structured knowledge repositories: they also play a key role in
modern machine learning. Machine learning applications seek to make predictions, or discover new patterns,
using graph-structured data as feature information. For example, one might wish to classify the role of a protein
in a biological interaction graph [28], predict the role of a person in a collaboration network, recommend new
friends to a user in a social network [3], or predict new therapeutic applications of existing drug molecules,
whose structure can be represented as a graph [21].

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

52

Community structure Structural equivalence / roles

Figure 1: Two different views of a character-character interaction graph derived from the Les Misérables novel, where two
nodes are connected if the corresponding characters interact. The coloring in the left figure emphasizes differences in the
nodes’ global positions in the graph: nodes have the same color if they belong to the same community, at a global level.
In contrast, the coloring in the right figure denotes structural equivalence between nodes, or the fact that two nodes play
similar roles in their local neighborhoods (e.g., “bridging nodes” are colored blue). The colorings for both figures were
generated using different settings of the node2vec node embedding method [27], described in Section 2. Reprinted from
[27] with permission.1

The central problem in machine learning on graphs is finding a way to incorporate information about the
structure of the graph into the machine learning model. For example, in the case of link prediction in a social
network, one might want to encode pairwise properties between nodes, such as relationship strength or the
number of common friends. Or in the case of node classification, one might want to include information about
the global position of a node in the graph or the structure of the node’s local graph neighborhood (Figure 1), and
there is no straightforward way to encode this information into a feature vector.

To extract structural information from graphs, traditional machine approaches often rely on summary graph
statistics (e.g., degrees or clustering coefficients) [6], kernel functions [57], or carefully engineered features
to measure local neighborhood structures [39]. However, these approaches are limited because these hand-
engineered features are inflexible—i.e., they cannot adapt during the learning process—and designing these
features can be a time-consuming and expensive process.

More recently, there has been a surge of approaches that seek to learn representations that encode structural
information about the graph. The idea behind these representation learning approaches is to learn a mapping that
embeds nodes, or entire (sub)graphs, as points in a low-dimensional vector space, Rd. The goal is to optimize
this mapping so that geometric relationships in this learned space reflect the structure of the original graph. After
optimizing the embedding space, the learned embeddings can be used as feature inputs for downstream machine
learning tasks. The key distinction between representation learning approaches and previous work is how they
treat the problem of capturing structural information about the graph. Previous work treated this problem as a
pre-processing step, using hand-engineered statistics to extract structural information. In contrast, representation
learning approaches treat this problem as machine learning task itself, using a data-driven approach to learn
embeddings that encode graph structure.

Here we provide an overview of recent advancements in representation learning on graphs, reviewing tech-
niques for representing both nodes and entire subgraphs. Our survey attempts to merge together multiple, dis-
parate lines of research that have drawn significant attention across different subfields and venues in recent

1For this and all subsequent reprinted figures, the original authors retain their copyrights, and permission was obtained from the
corresponding author.

53

A B

Figure 2: A, Graph structure of the Zachary Karate Club social network, where nodes are connected if the corresponding
individuals are friends. The nodes are colored according to the different communities that exist in the network. B, Two-
dimensional visualization of node embeddings generated from this graph using the DeepWalk method (Section 2.2.2) [46].
The distances between nodes in the embedding space reflect proximity in the original graph, and the node embeddings are
spatially clustered according to the different color-coded communities. Reprinted with permission from [46, 48].

years—e.g., node embedding methods, which are a popular object of study in the data mining community, and
graph convolutional networks, which have drawn considerable attention in major machine learning venues. In
doing so, we develop a unified conceptual framework for describing the various approaches and emphasize
major conceptual distinctions.

We focus our review on recent approaches that have garnered significant attention in the machine learning
and data mining communities, especially methods that are scalable to massive graphs (e.g., millions of nodes)
and inspired by advancements in deep learning. Of course, there are other lines of closely related and relevant
work, which we do not review in detail here—including latent space models of social networks [32], embedding
methods for statistical relational learning [42], manifold learning algorithms [37], and geometric deep learning
[7]—all of which involve representation learning with graph-structured data. We refer the reader to [32], [42],
[37], and [7] for comprehensive overviews of these areas.

1.1 Notation and essential assumptions

We will assume that the primary input to our representation learning algorithm is an undirected graph G = (V, E)
with associated binary adjacency matrix, A.2 We also assume that the methods can make use of a real-valued
matrix of node attributes X ∈ Rm×|V| (e.g., representing text or metadata associated with nodes). The goal is to
use the information contained in A and X to map each node, or a subgraph, to a vector z ∈ Rd, where d << |V|.

Most of the methods we review will optimize this mapping in an unsupervised manner, making use of only
information in A and X, without knowledge of the downstream machine learning task. However, we will also
discuss some approaches for supervised representation learning, where the models make use of classification
or regression labels in order to optimize the embeddings. These classification labels may be associated with
individual nodes or entire subgraphs and are the prediction targets for downstream machine learning tasks (e.g.,
they might label protein roles, or the therapeutic properties of a molecule, based on its graph representation).

2Most of the methods we review are easily generalized to work with weighted or directed graphs, and we will explicitly describe how
to generalize certain methods to the multi-modal setting (i.e., differing node and edge types).

54

Figure 3: Overview of the encoder-decoder approach. First the encoder maps the node, vi, to a low-dimensional vector
embedding, zi, based on the node’s position in the graph, its local neighborhood structure, and/or its attributes. Next, the
decoder extracts user-specified information from the low-dimensional embedding; this might be information about vi’s
local graph neighborhood (e.g., the identity of its neighbors) or a classification label associated with vi (e.g., a community
label). By jointly optimizing the encoder and decoder, the system learns to compress information about graph structure
into the low-dimensional embedding space.

2 Embedding nodes

We begin with a discussion of methods for node embedding, where the goal is to encode nodes as low-dimensional
vectors that summarize their graph position and the structure of their local graph neighborhood. These low-
dimensional embeddings can be viewed as encoding, or projecting, nodes into a latent space, where geometric
relations in this latent space correspond to interactions (e.g., edges) in the original graph [32]. Figure 2 visualizes
an example embedding of the famous Zachary Karate Club social network [46], where two dimensional node
embeddings capture the community structure implicit in the social network.

2.1 Overview of approaches: An encoder-decoder perspective

Recent years have seen a surge of research on node embeddings, leading to a complicated diversity of notations,
motivations, and conceptual models. Thus, before discussing the various techniques, we first develop a uni-
fied encoder-decoder framework, which explicitly structures this methodological diversity and puts the various
methods on equal notational and conceptual footing.

In this framework, we organize the various methods around two key mapping functions: an encoder, which
maps each node to a low-dimensional vector, or embedding, and a decoder, which decodes structural information
about the graph from the learned embeddings (Figure 3). The intuition behind the encoder-decoder idea is the
following: if we can learn to decode high-dimensional graph information—such as the global positions of nodes
in the graph and the structure of local graph neighborhoods—from encoded low-dimensional embeddings, then,
in principle, these embeddings should contain all information necessary for downstream machine learning tasks.

Formally, the encoder is a function,
ENC : V → Rd, (1)

that maps nodes to vector embeddings, zi ∈ Rd (where zi corresponds to the embedding for node vi ∈ V). The
decoder is a function that accepts a set of node embeddings and decodes user-specified graph statistics from
these embeddings. For example, the decoder might predict the existence of edges between nodes, given their
embeddings [1, 35], or it might predict the community that a node belongs to in the graph [28, 34] (Figure 3).
In principle, many decoders are possible; however, the vast majority of works use a basic pairwise decoder,

DEC : Rd × Rd → R+, (2)

55

that maps pairs of node embeddings to a real-valued graph proximity measure, which quantifies the proximity
of the two nodes in the original graph.

When we apply the pairwise decoder to a pair of embeddings (zi,zj) we get a reconstruction of the proximity
between vi and vj in the original graph, and the goal is optimize the encoder and decoder mappings to minimize
the error, or loss, in this reconstruction so that:

DEC(ENC(vi), ENC(vj)) = DEC(zi, zj) ≈ sG(vi, vj), (3)

where sG is a user-defined, graph-based proximity measure between nodes, defined over the graph, G. For
example, one might set sG(vi, vj) ≜ Ai,j and define nodes to have a proximity of 1 if they are adjacent and
0 otherwise [1], or one might define sG according to the probability of vi and vj co-occurring on a fixed-
length random walk over the graph G [27, 46]. In practice, most approaches realize the reconstruction objective
(Equation 3) by minimizing an empirical loss, L, over a set of training node pairs, D:

L =
∑

(vi,vj)∈D

ℓ (DEC(zi, zj), sG(vi, vj)) , (4)

where ℓ : R × R → R is a user-specified loss function, which measures the discrepancy between the decoded
(i.e., estimated) proximity values, DEC(zi, zj), and the true values, sG(vi, vj).

Once we have optimized the encoder-decoder system, we can use the trained encoder to generate embeddings
for nodes, which can then be used as a feature inputs for downstream machine learning tasks. For example, one
could feed the learned embeddings to a logistic regression classifier to predict the community that a node belongs
to [46], or one could use distances between the embeddings to recommend friendship links in a social network
[3, 27] (Section 2.7 discusses further applications).

Adopting this encoder-decoder view, we organize our discussion of the various node embedding methods
along the following four methodological components:

1. A pairwise proximity function sG : V × V → R+, defined over the graph, G. This function measures
how closely connected two nodes are in G.

2. An encoder function, ENC, that generates the node embeddings. This function contains a number of
trainable parameters that are optimized during the training phase.

3. A decoder function, DEC, which reconstructs pairwise proximity values from the generated embeddings.
This function usually contains no trainable parameters.

4. A loss function, ℓ, which determines how the quality of the pairwise reconstructions is evaluated in order
to train the model, i.e., how DEC(zi, zj) is compared to the true sG(vi, vj) values.

As we will show, the primary methodological distinctions between the various node embedding approaches are
in how they define these four components.

2.1.1 Notes on optimization and implementation details

All of the methods we review involve optimizing the parameters of the encoder algorithm, ΘENC, by minimizing
a loss analogous to Equation (4).3 In most cases, stochastic gradient descent is used for optimization, though
some algorithms do permit closed-form solutions via matrix decomposition (e.g., [9]). However, note that we
will not focus on optimization algorithms here and instead will emphasize high-level differences that exist across
different embedding methods, independent of the specifics of the optimization approach.

3Occasionally, different methods will add additional auxiliary objectives or regularizers beyond the standard encoder-decoder objec-
tive, but we will often omit these details for brevity. A few methods also optimize parameters in the decoder, ΘDEC.

56

Table 1: A summary of some well-known direct encoding embedding algorithms. Note that the decoders and proximity
functions for the random-walk based methods are asymmetric, with the proximity function, pG(vj |vi), corresponding to
the probability of visiting vj on a fixed-length random walk starting from vi.

Type Method Decoder Proximity measure Loss function (ℓ)

Laplacian Eigenmaps [4] ∥zi − zj∥22 general DEC(zi, zj) · sG(vi, vj)
Matrix Graph Factorization [1] z⊤i zj Ai,j ∥DEC(zi, zj)− sG(vi, vj)∥22

factorization GraRep [9] z⊤i zj Ai,j ,A
2
i,j , ...,A

k
i,j ∥DEC(zi, zj)− sG(vi, vj)∥22

HOPE [44] z⊤i zj general ∥DEC(zi, zj)− sG(vi, vj)∥22

Random walk
DeepWalk [46] ez

⊤
i zj∑

k∈V ez
⊤
i

zk
pG(vj |vi) −sG(vi, vj) log(DEC(zi, zj))

node2vec [27] ez
⊤
i zj∑

k∈V ez
⊤
i

zk
pG(vj |vi) (biased) −sG(vi, vj) log(DEC(zi, zj))

2.2 Direct encoding approaches

The majority of node embedding algorithms rely on what we call direct encoding. For these direct encoding
approaches, the encoder function—which maps nodes to vector embeddings—is simply an “embedding lookup”:

ENC(vi) = Zvi, (5)

where Z ∈ Rd×|V| is a matrix containing the embedding vectors for all nodes and vi ∈ IV is a one-hot indicator
vector indicating the column of Z corresponding to node vi. The set of trainable parameters for direct encoding
methods is simply ΘENC = {Z}, i.e. the embedding matrix Z is optimized directly.

These approaches are largely inspired by classic matrix factorization techniques for dimensionality reduc-
tion [4] and multi-dimensional scaling [36]. Indeed, many of these approaches were originally motivated as
factorization algorithms, and we reinterpret them within the encoder-decoder framework here. Table 1 summa-
rizes some well-known direct-encoding methods within the encoder-decoder framework. Table 1 highlights how
these methods can be succinctly described according to (i) their decoder function, (ii) their graph-based prox-
imity measure, and (iii) their loss function. The following two sections describe these methods in more detail,
distinguishing between matrix factorization-based approaches (Section 2.2.1) and more recent approaches based
on random walks (Section 2.2.2).

2.2.1 Factorization-based approaches

Early methods for learning representations for nodes largely focused on matrix-factorization approaches, which
are directly inspired by classic techniques for dimensionality reduction [4, 36].
Laplacian eigenmaps. One of the earliest, and most well-known instances, is the Laplacian eigenmaps (LE)
technique [4], which we can view within the encoder-decoder framework as a direct encoding approach in which
the decoder is defined as

DEC(zi, zj) = ∥zi − zj∥22
and where the loss function weights pairs of nodes according to their proximity in the graph:

L =
∑

(vi,vj)∈D

DEC(zi, zj) · sG(vi, vj). (6)

Inner-product methods. Following on the Laplacian eigenmaps technique, there are a large number of recent
embedding methodologies based on a pairwise, inner-product decoder:

DEC(zi, zj) = z⊤i zj , (7)

57

1. Run random walks to obtain co-occurrence statistics. 2. Optimize embeddings based on
co-occurrence statistics.

✓

zi

zj

/pG(vj |vi) pG(vj |vi)
vi

vj

Figure 4: The random-walk based methods sample a large number of fixed-length random walks starting from each node,
vi. The embedding vectors are then optimized so that the dot-product, or angle, between two embeddings, zi and zj , is
(roughly) proportional to the probability of visiting vj on a fixed-length random walk starting from vi.

where the strength of the relationship between two nodes is proportional to the dot product of their embeddings.
The Graph Factorization (GF) algorithm4 [1], GraRep [9], and HOPE [44] all fall firmly within this class. In
particular, all three of these methods use an inner-product decoder, a mean-squared-error (MSE) loss,

L =
∑

(vi,vj)∈D

∥DEC(zi, zj)− sG(vi, vj)∥22, (8)

and they differ primarily in the graph proximity measure used, i.e. how they define sG(vi, vj). The Graph
Factorization algorithm defines proximity directly based on the adjacency matrix (i.e., sG(vi, vj) ≜ Ai,j) [1];
GraRep considers various powers of the adjacency matrix (e.g., sG(vi, vj) ≜ A2

i,j) in order to capture higher-
order graph proximity [9]; and the HOPE algorithm supports general proximity measures (e.g., based on Jaccard
neighborhood overlaps) [44]. These various different proximity functions trade-off between modeling “first-
order proximity”, where sG directly measures connections between nodes (i.e., sG(vi, vj) ≜ Ai,j [1]) and
modeling “higher-order proximity”, where sG corresponds to more general notions of neighborhood overlap
(e.g., sG(vi, vj) = A2

i,j [9]).
We refer to these methods in this section as matrix-factorization approaches because, averaging over all

nodes, they optimize loss functions (roughly) of the form:

L ≈ ∥Z⊤Z− S∥22, (9)

where S is a matrix containing pairwise proximity measures (i.e., Si,j ≜ sG(vi, vj)) and Z is the matrix of
node embeddings. Intuitively, the goal of these methods is simply to learn embeddings for each node such that
the inner product between the learned embedding vectors approximates some deterministic measure of graph
proximity.

2.2.2 Random walk approaches

Many recent successful methods that also belong to the class of direct encoding approaches learn the node
embeddings based on random walk statistics. Their key innovation is optimizing the node embeddings so that
nodes have similar embeddings if they tend to co-occur on short random walks over the graph (Figure 4). Thus,
instead of using a deterministic measure of graph proximity, like the methods of Section 2.2.1, these random
walk methods employ a flexible, stochastic measure of graph proximity, which has led to superior performance
in a number of settings [26].

4Of course, Ahmed et al. [1] were not the first researchers to propose factorizing an adjacency matrix, but they were the first to
present a scalable O(|E|) algorithm for the purpose of generating node embeddings.

58

A B

v⇤

v1

v2 v3

v4 v5

v6 v7

v8

v9

v1 v2

v3vs

v⇤

Figure 5: A, Illustration of how node2vec biases the random walk using the p and q parameters. Assuming that the walk
just transitioned from vs to v∗, the edge labels, α, are proportional to the probability of the walk taking that edge at next
time-step. B, Difference between random-walks that are based on breadth-first search (BFS) and depth-first search (DFS).
BFS-like random walks are mainly limited to exploring a node’s immediate (i.e., one-hop) neighborhood and are generally
more effective for capturing structural roles. DFS-like walks explore further away from the node and are more effective for
capturing community structures. Adapted from [27].

DeepWalk and node2vec. Like the matrix factorization approaches described above, DeepWalk and node2vec
rely on direct encoding and use a decoder based on the inner product. However, instead of trying to decode a
fixed deterministic distance measure, these approaches optimize embeddings to encode the statistics of random
walks. The basic idea behind these approaches is to learn embeddings so that (roughly):

DEC(zi, zj) ≜
ez

⊤
i zj∑

vk∈V ez
⊤
i zk

(10)

≈ pG,T (vj |vi),

where pG,T (vj |vi) is the probability of visiting vj on a length-T random walk starting at vi, with T usually
defined to be in the range T ∈ {2, ..., 10}. Note that unlike the proximity measures in Section 2.2.1, pG,T (vj |vi)
is both stochastic and asymmetric.

More formally, these approaches attempt to minimize the following cross-entropy loss:

L =
∑

(vi,vj)∈D

− log(DEC(zi, zj)), (11)

where in this case the training set, D, is generated by sampling random walks starting from each node (i.e.,
where N pairs for each node, vi, are sampled from the distribution (vi, vj) ∼ pG,T (vj |vj)). However, naively
evaluating this loss is prohibitively expensive—in particular, O(|D||V|)—since evaluating the denominator of
Equation (10) has time complexity O(|V|). Thus, DeepWalk and node2vec use different optimizations and
approximations to compute the loss in Equation (11). DeepWalk employs a “hierarchical softmax” technique
to compute the normalizing factor, using a binary-tree structure to accelerate the computation [46]. In contrast,
node2vec approximates Equation (11) using “negative sampling”: instead of normalizing over the full vertex
set, node2vec approximates the normalizing factor using a set of random “negative samples” [27].

Beyond these algorithmic differences, the key distinction between node2vec and DeepWalk is that node2vec
allows for a flexible definition of random walks, whereas DeepWalk uses simple unbiased random walks over
the graph. In particular, node2vec introduces two random walk hyperparameters, p and q, that bias the random
walk (Figure 5.A). The hyperparameter p controls the likelihood of the walk immediately revisiting a node,
while q controls the likelihood of the walk revisiting a node’s one-hop neighborhood. By introducing these
hyperparameters, node2vec is able to smoothly interpolate between walks that are more akin to breadth-first
or depth-first search (Figure 5.B). Grover et al. found that tuning these parameters allowed the model to trade

59

off between learning embeddings that emphasize community structures or embeddings that emphasize local
structural roles [27] (see also Figure 1).
Large-scale information network embeddings (LINE). Another highly successful direct encoding approach,
which is not based random walks but is contemporaneous and often compared with DeepWalk and node2vec, is
the LINE method [53]. LINE combines two encoder-decoder objectives that optimize “first-order” and “second-
order” graph proximity, respectively. The first-order objective uses a decoder based on the sigmoid function,

DEC(zi, zj) =
1

1 + e−z⊤i zj
, (12)

and an adjacency-based proximity measure (i.e., sG(vi, vj) = Ai,j). The second-order encoder-decoder ob-
jective is similar but considers two-hop adjacency neighborhoods and uses an encoder identical to Equation
(10). Both the first-order and second-order objectives are optimized using loss functions derived from the KL-
divergence metric [53]. Thus, LINE is conceptually related to node2vec and DeepWalk in that it uses a prob-
abilistic decoder and loss, but it explicitly factorizes first- and second-order proximities, instead of combining
them in fixed-length random walks.
HARP: Extending random-walk embeddings via graph pre-processing. Recently, Chen et al. [13] in-
troduced a “meta-strategy”, called HARP, for improving various random-walk approaches via a graph pre-
processing step. In this approach, a graph coarsening procedure is used to collapse related nodes in G together
into “supernodes”, and then DeepWalk, node2vec, or LINE is run on this coarsened graph. After embedding
the coarsened version of G, the learned embedding of each supernode is used as an initial value for the random
walk embeddings of the supernode’s constituent nodes (in another round of non-convex optimization on a “finer-
grained” version of the graph). This general process can be repeated in a hierarchical manner at varying levels of
coarseness, and has been shown to consistently improve performance of DeepWalk, node2vec, and LINE [13].
Additional variants of the random-walk idea. There have also been a number of further extensions of the
random walk idea. For example, Perozzi et al. [47] extend the DeepWalk algorithm to learn embeddings using
random walks that “skip” or “hop” over multiple nodes at each step, resulting in a proximity measure similar
to GraRep [9], while Chamberlan et al. [11] modify the inner-product decoder of node2vec to use a hyperbolic,
rather than Euclidean, distance measure.

2.3 Generalized encoder-decoder architectures

So far all of the node embedding methods we have reviewed have been direct encoding methods, where the
encoder is a simply an embedding lookup (Equation 5). However, these direct encoding approaches train unique
embedding vectors for each node independently, which leads to a number of drawbacks:

1. No parameters are shared between nodes in the encoder (i.e., the encoder is simply an embedding lookup
based on arbitrary node ids). This can be statistically inefficient, since parameter sharing can act as a
powerful form of regularization, and it is also computationally inefficient, since it means that the number
of parameters in direct encoding methods necessarily grows as O(|V|).

2. Direct encoding also fails to leverage node attributes during encoding. In many large graphs nodes have
attribute information (e.g., user profiles on a social network) that is often highly informative with respect
to the node’s position and role in the graph.

3. Direct encoding methods are inherently transductive [28], i.e., they can only generate embeddings for
nodes that were present during the training phase, and they cannot generate embeddings for previously
unseen nodes unless additional rounds of optimization are performed to optimize the embeddings for
these nodes. This is highly problematic for evolving graphs, massive graphs that cannot be fully stored in
memory, or domains that require generalizing to new graphs after training.

60

… …

si

zi

ŝi

vi

2. Compress si to low-dimensional embedding, zi
(using deep autoencoder)

(si 2 R|V|
contains vi’s proximity to all other nodes)

1. Extract high-dimensional neighborhood vector

Figure 6: To generate an embedding for a node, vi, the neighborhood autoencoder approaches first extract a high-
dimensional neighborhood vector si ∈ R|V|, which summarizes vi’s proximity to all other nodes in the graph. The si
vector is then fed through a deep autoencoder to reduce its dimensionality, producing the low-dimensional zi embedding.

Recently, a number of approaches have been proposed to address some, or all, of these issues. These approaches
still fall firmly within the encoder-decoder framework outlined in Section 2.1, but they differ from the direct
encoding methods of Section 2.2 in that they use a more complex encoders, which depend more generally on
the structure and attributes of the graph.

2.3.1 Neighborhood autoencoder methods

Deep Neural Graph Representations (DNGR) [10] and Structural Deep Network Embeddings (SDNE) [58] ad-
dress the first problem outlined above: unlike the direct encoding methods, they directly incorporate graph
structure into the encoder algorithm. The basic idea behind these approaches is that they use autoencoders—a
well known approach for deep learning [30]—in order to compress information about a node’s local neighbor-
hood (Figure 6). DNGR and SDNE also differ from the previously reviewed approaches in that they use a unary
decoder instead of a pairwise one.

In these approaches, each node, vi, is associated with a neighborhood vector, si ∈ R|V|, which corresponds
to vi’s row in the matrix S (recall that S contains pairwise node proximities, i.e., Si,j = sG(vi, vj)). The si
vector contains vi’s pairwise graph proximity with all other nodes and functions as a high-dimensional vector
representation of vi’s neighborhood. The autoencoder objective for DNGR and SDNE is to embed nodes using
the si vectors such that the si vectors can then be reconstructed from these embeddings:

DEC(ENC(si)) = DEC(zi) ≈ si. (13)

In other words, the loss for these methods takes the following form:

L =
∑
vi∈V
∥DEC(zi)− si∥22. (14)

As with the pairwise decoder, we have that the dimension of the zi embeddings is much smaller than |V|
(the dimension of the si vectors), so the goal is to compress the node’s neighborhood information into a low-
dimensional vector. For both SDNE and DNGR, the encoder and decoder functions consist of multiple stacked
neural network layers: each layer of the encoder reduces the dimensionality of its input, and each layer of the
decoder increases the dimensionality of its input (Figure 6; see [30] for an overview of deep autoencoders).

61

label

1. Collect neighbors 2. Aggregate feature information
from neighbors

3. Decode graph context and/or label
using aggregated information

aggregator1

k=1

k=2

aggregator2

Figure 7: Overview of the neighborhood aggregation methods. To generate an embedding for a node, these methods first
collect the node’s k-hop neighborhood (occasionally sub-sampling the full neighborhood for efficiency). In the next step,
these methods aggregate the attributes of node’s neighbors, using neural network aggregators. This aggregated neighbor-
hood information is used to generate an embedding, which is then fed to the decoder. Adapted from [28].

SDNE and DNGR differ in the similarity functions they use to construct the neighborhood vectors si and also
in the exact details of how the autoencoder is optimized. DNGR defines si according to the pointwise mutual
information of two nodes co-occurring on random walks, similar to DeepWalk and node2vec. SDNE simply
sets si ≜ Ai, i.e., equal to vi’s adjacency vector. SDNE also combines the autoencoder objective (Equation 13)
with the Laplacian eigenmaps objective (Equation 6) [58].

Note that the encoder in Equation (13) depends on the input si vector, which contains information about
vi’s local graph neighborhood. This dependency allows SDNE and DNGR to incorporate structural information
about a node’s local neighborhood directly into the encoder as a form of regularization, which is not possible
for the direct encoding approaches (since their encoder depends only on the node id). However, despite this
improvement, the autoencoder approaches still suffer from some serious limitations. Most prominently, the
input dimension to the autoencoder is fixed at |V|, which can be extremely costly and even intractable for graphs
with millions of nodes. In addition, the structure and size of the autoencoder is fixed, so SDNE and DNGR are
strictly transductive and cannot cope with evolving graphs, nor can they generalize across graphs.

2.3.2 Neighborhood aggregation and convolutional encoders

A number of recent node embedding approaches aim to solve the main limitations of the direct encoding and
autoencoder methods by designing encoders that rely on a node’s local neighborhood, but not necessarily the
entire graph. The intuition behind these approaches is that they generate embeddings for a node by aggregating
information from its local neighborhood (Figure 7).

Unlike the previously discussed methods, these neighborhood aggregation algorithms rely on node features
or attributes (denoted xi ∈ Rm) to generate embeddings. For example, a social network might have text data
(e.g., profile information), or a protein-protein interaction network might have molecular markers associated
with each node. The neighborhood aggregation methods leverage this attribute information to inform their
embeddings. In cases where attribute data is not given, these methods can use simple graph statistics as attributes
(e.g., node degrees) [28], or assign each node a one-hot indicator vector as an attribute [35, 52]. These methods
are often called convolutional because they represent a node as a function of its surrounding neighborhood, in a
manner similar to the receptive field of a center-surround convolutional kernel in computer vision [34].5

5These methods also have theoretical connections to approximate spectral kernels on graphs [18]; see [34] for a further discussion.

62

Algorithm 1: Neighborhood-aggregation encoder algorithm. Adapted from [28].

Input : Graph G(V, E); input features {xv,∀v ∈ V}; depth K; weight matrices {Wk, ∀k ∈ [1,K]};
non-linearity σ; differentiable aggregator functions {AGGREGATEk, ∀k ∈ [1,K]};
neighborhood function N : v → 2V

Output: Vector representations zv for all v ∈ V
1 h0

v ← xv, ∀v ∈ V ;
2 for k = 1...K do
3 for v ∈ V do
4 hk

N (v) ← AGGREGATEk({hk−1
u ,∀u ∈ N (v)});

5 hk
v ← σ

(
Wk · COMBINE(hk−1

v ,hk
N (v))

)
6 end
7 hk

v ← NORMALIZE(hk
v), ∀v ∈ V

8 end
9 zv ← hK

v ,∀v ∈ V

In the encoding phase, the neighborhood aggregation methods build up the representation for a node in an
iterative, or recursive, fashion (see Algorithm 1 for pseudocode). First, the node embeddings are initialized
to be equal to the input node attributes. Then at each iteration of the encoder algorithm, nodes aggregate the
embeddings of their neighbors, using an aggregation function that operates over sets of vectors. After this ag-
gregation, every node is assigned a new embedding, equal to its aggregated neighborhood vector combined with
its previous embedding from the last iteration. Finally, this combined embedding is fed through a dense neural
network layer and the process repeats. As the process iterates, the node embeddings contain information aggre-
gated from further and further reaches of the graph. However, the dimensionality of the embeddings remains
constrained as the process iterates, so the encoder is forced to compress all the neighborhood information into a
low dimensional vector. After K iterations the process terminates and the final embedding vectors are output as
the node representations.

There are a number of recent approaches that follow the basic procedure outlined in Algorithm 1, includ-
ing graph convolutional networks (GCN) [34, 35, 52, 55], column networks [49], and the GraphSAGE algo-
rithm [28]. The trainable parameters in Algorithm 1—a set of aggregation functions and a set weight matrices
{Wk, ∀k ∈ [1,K]}—specify how to aggregate information from a node’s local neighborhood and, unlike the
direct encoding approaches (Section 2.2), these parameters are shared across nodes. The same aggregation func-
tion and weight matrices are used to generate embeddings for all nodes, and only the input node attributes and
neighborhood structure change depending on which node is being embedded. This parameter sharing increases
efficiency (i.e., the parameter dimensions are independent of the size of the graph), provides regularization, and
allows this approach to be used to generate embeddings for nodes that were not observed during training [28].

GraphSAGE, column networks, and the various GCN approaches all follow Algorithm 1 but differ primarily
in how the aggregation (line 4) and vector combination (line 5) are performed. GraphSAGE uses concatenation
in line 5 and permits general aggregation functions; the authors experiment with using the element-wise mean, a
max-pooling neural network and LSTMs [31] as aggregators, and they found the the more complex aggregators,
especially the max-pooling neural network, gave significant gains. GCNs and column networks use a weighted
sum in line 5 and a (weighted) element-wise mean in line 4.

Column networks also add an additional “interpolation” term before line 7, setting

hk′
v = αhk

v + (1− α)hk−1
v , (15)

where α is an interpolation weight computed as a non-linear function of hk−1
v and hk−1

N (v). This interpolation term

63

allows the model to retain local information as the process iterates (i.e., as k increases and the model integrates
information from further reaches of the graph).

In principle, the GraphSAGE, column network, and GCN encoders can be combined with any of the previ-
ously discussed decoders and loss functions, and the entire system can be optimized using SGD. For example,
Hamilton et al. [28] use an identical decoder and loss as node2vec, while Kipf et al. [35] use a decoder and loss
function similar to the Graph Factorization approach.

Neighborhood aggregation encoders following Algorithm 1 have been found to provide consistent gains
compared to their direct encoding counterparts, on both node classification [28, 34] and link prediction [55, 35,
52] benchmarks. At a high level, these approaches solve the four main limitations of direct encoding, noted at
the beginning of Section 2.3: they incorporate graph structure into the encoder; they leverage node attributes;
their parameter dimension can be made sub-linear in |V|; and they can generate embeddings for nodes that were
not present during training.

2.4 Incorporating task-specific supervision

The basic encoder-decoder framework described thus far is by default unsupervised, i.e., the model is optimized,
or trained, over set of node pairs to reconstruct pairwise proximity values, sG(vi, vj), which depend only on the
graph, G. However, many node embedding algorithms—especially the neighborhood aggregation approaches
presented in Section 2.3.2—can also incorporate task-specific supervision [28, 34, 52, 59]. In particular, it is
common for methods incorporate supervision from node classification tasks in order to learn the embeddings.6

For simplicity, we discuss the case where nodes have an associated binary classification label, but the approach
we describe is easily extended to more complex classification settings.

Assume that we have a binary classification label, yi ∈ Z, associated with each node. To learn to map nodes
to their labels, we can feed our embedding vectors, zi, through a logistic, or sigmoid, function ŷi = σ(z⊤i θ),
where θ is a trainable parameter vector. We can then compute the cross-entropy loss between these predicted
class probabilities and the true labels:

L =
∑
vi∈V

yi log(σ(ENC(vi)
⊤θ)) + (1− yi) log(1− σ(ENC(vi)

⊤θ)). (16)

The gradient computed according to Equation (16) can then be backpropagated through the encoder to optimize
its parameters. This task-specific supervision can completely replace the reconstruction loss computed using the
decoder (i.e., Equation 3) [28, 34], or it can be included along with the decoder loss [59].

2.5 Extensions to multi-modal graphs

While we have focused on simple, undirected graphs, many real-world graphs have complex multi-modal, or
multi-layer, structures (e.g., heterogeneous node and edge types), and a number of works have introduced strate-
gies to cope with this heterogeneity.

2.5.1 Dealing with different node and edge types

Many graphs contain different types of nodes and edges. For example, recommender system graphs consist of
two distinct layers—users and content—while many biological networks have a variety of layers, with distinct
interactions between them (e.g., diseases, genes, and drugs).

A general strategy for dealing with this issue is to (i) use different encoders for nodes of different types [12]
and (ii) extend pairwise decoders with type-specific parameters [42, 52]. For example, in graphs with varying

6The unsupervised pairwise decoder is already naturally aligned with the link prediction task.

64

A B

C D E

Figure 8: A, Example of a 4-layer graph, where the same nodes occur in multiple different layers. This multi-layer
structure can be exploited to regularize learning at the different layers by requiring that the embeddings for the same
node in different layers are similar to each other. B, Multi-layer graphs can exhibit hierarchical structure, where non-root
layers in the hierarchy contain the union of the edges present in their child layers—e.g., a biological interaction graph
derived from the entire human brain contains the union of the interactions in the frontal and temporal lobes. This structure
can be exploited by learning embeddings at various levels of the hierarchy, and only applying the regularization between
layers that are in a parent-child relationship. C-E, Example application of multi-layer graph embedding to protein-protein
interaction graphs derived from different brain tissues; C shows the hierarchy between the different tissue regions, while D
and E visualize the protein embeddings generated at the brainstem and whole-brain layers. The embeddings were generated
using the multi-layer OhmNet method and projected to two dimensions using t-SNE. Adapted from [60].

edge types, the standard inner-product edge decoder (i.e., z⊤i zj ≈ Ai,j) can be replaced with a bilinear form
[12, 42, 52]:

DECτ (zi, zj) = z⊤Aτz, (17)

where τ indexes a particular edge type and Aτ is a learned parameter specific to edges of type τ . The matrix,
Aτ , in Equation (17) can be regularized in various ways (e.g., constrained to be diagonal) [52], which can be
especially useful when there are a large number of edge types, as in the case for embedding knowledge graphs.
Indeed, the literature on knowledge-graph completion—where the goal is predict missing relations in knowledge
graphs—contains many related techniques for decoding a large number of edge types (i.e., relations) [42].7

Recently, Dong et al. [19] also proposed a strategy for sampling random walks from heterogeneous graphs,
where the random walks are restricted to only transition between particular types of nodes. This approach allows
many of the methods in Section 2.2.2 to be applied on heterogeneous graphs and is complementary to the idea
of including type-specific encoders and decoders.

65

2.5.2 Tying node embeddings across layers

In some cases graphs have multiple “layers” that contain copies of the same nodes (Figure 8.A). For example,
in protein-protein interaction networks derived from different tissues (e.g., brain or liver tissue), some proteins
occur across multiple tissues. In these cases it can be beneficial to share information across layers, so that a
node’s embedding in one layer can be informed by its embedding in other layers. Zitnik et al. [60] offer one
solution to this problem, called OhmNet, that combines node2vec with a regularization penalty that ties the
embeddings across layers. In particular, assuming that we have a node vi, which belongs to two distinct layers
G1 and G2, we can augment the standard embedding loss on this node as follows:

L(vi)′ = L(vi) + λ∥zG1
i − zG2

i ∥ (18)

where L denotes the usual embedding loss for that node (e.g., from Equation 8 or 11), λ denotes the regulariza-
tion strength, and zG1

i and zG2
i denote vi’s embeddings in the two different layers, respectively.

Zitnik et al. further extend this idea by exploiting hierarchies between graph layers (Figure 8.B). For exam-
ple, in protein-protein interaction graphs derived from various tissues, some layers correspond to interactions
throughout large regions (e.g., interactions that occur in any brain tissue) while other interaction graphs are more
fine-grained (e.g., only interactions that occur in the frontal lobe). To exploit this structure, embeddings can be
learned at the various levels of the hierarchy, and the regularization in Equation (18) can recursively applied
between layers that have a parent-child relationship in the hierarchy.

2.6 Embedding structural roles

So far, all the approaches we have reviewed optimize node embeddings so that nearby nodes in the graph have
similar embeddings. However, in many tasks it is more important to learn representations that correspond
to the structural roles of the nodes, independent of their global graph positions (e.g., in communication or
transportation networks) [29]. The node2vec approach introduced in Section 2.2.2 offers one solution to this
problem, as Grover et al. found that biasing the random walks allows their model to better capture structural roles
(Figure 5). However, more recently, Ribeiro et al. [50] and Donnat et al. [20] have developed node embedding
approaches that are specifically designed to capture structural roles.

Ribeiro et al. propose struc2vec, which involves generating a a series of weighted auxiliary graphs G′k, k =
{1, 2, ...} from the original graph G, where the auxiliary graph G′k captures structural similarities between nodes’
k-hop neighborhoods. In particular, letting Rk(vi) denote the ordered sequence of degrees of the nodes that are
exactly k-hops away from vi, the edge-weights, wk(vi, vj), in auxiliary graph G′

k are recursively defined as

wk(vi, vj) = wk−1(vi, vj) + d(Rk(vi), Rk(vj)), (19)

where w0(vi, vj) = 0 and d(Rk(vi), Rk(vj)) measures the “distance” between the ordered degree sequences
Rk(vi) and Rk(vj) (e.g., computed via dynamic time warping [50]). After computing these weighted auxillary
graphs, struc2vec runs biased random walks over them and uses these walks as input to the node2vec optimiza-
tion algorithm.

Donnat et al. take a very different approach to capturing structural roles, called GraphWave, which relies on
spectral graph wavelets and heat kernels [20]. In brief, we let L denote the graph Laplacian—i.e., L = D−A
where D contains node degrees on the diagonal and A is the adjacency matrix—and we let U and λi, i = 1...|V|
denote the eigenvector matrix and eigenvalues of L, respectively. Finally, we assume that we have a heat kernel,
g(λ) = e−sλ, with pre-defined scale s. Using U and g(λ), GraphWave computes a vector, ψvi , corresponding
to the structural role of node, vi ∈ V , as

ψvi = UGU⊤vi (20)

7We do not review this literature in detail here, and refer the reader to Nickel et al. [42] for a recent review.

66

A B C D
RolX Struc2vec GraphWave

Figure 9: A, Synthetic barbell graph used as a test dataset for detecting structural roles, where nodes are colored according
to their structural roles. In this case, the structural roles (i.e., colors) are computed by examining the degrees of each node’s
immediate neighbors, and their 2-hop neighbors, and so on (up to |V|-hop neighborhoods). B-D, Visualization of the output
of three role-detection algorithms on the barbell graph, where the model outputs are projected using principal components
analysis. RolX (B) [29] is a baseline approach based upon hand-designed features, while struc2vec (C) and GraphWave
(D) use different representation learning approaches. Note that all methods correctly differentiate the ends of the barbells
from the rest of the graph, but only GraphWave is able to correctly differentiate all the various roles. Note also that there
are fewer visible nodes in part D compared to A because GraphWave maps identically colored (i.e., structurally equivalent)
nodes to the exact same position in the embedding space. Reprinted from [20].

where G = diag([g(λ1), ..., g(λ|V|)]) and vi is a one-hot indicator vector corresponding to vi’s row/column
in the Laplacian.8 Donnat et al. show that these ψvi vectors implicitly relate to topological quantities, such
as vi’s degree and the number of k-cycles vi is involved in. They find that—with a proper choice of scale,
s—WaveGraph is able to effectively capture structural information about a nodes role in a graph (Figure 9).

2.7 Applications of node embeddings

The most common use cases for node embeddings are for visualization, clustering, node classification, and link
prediction, and each of these use cases is relevant to a number of application domains, ranging from computa-
tional social science to computational biology.
Visualization and pattern discovery. The problem of visualizing graphs in a 2D interface has a long history,
with applications throughout data mining, the social sciences, and biology [17]. Node embeddings offer a pow-
erful new paradigm for graph visualization: because nodes are mapped to real-valued vectors, researchers can
easily leverage existing, generic techniques for visualization high-dimensional datasets [56, 54]. For example,
node embeddings can be combined with well-known techniques such as t-SNE [56] or principal components
analysis (PCA) in order to generate 2D visualizations of graphs [46, 53], which can be useful for discovering
communities and other hidden structures (Figures 2 and 8).
Clustering and community detection. In a similar vein as visualization, node embeddings are a powerful tool
for clustering related nodes, a task that has countless applications from computational biology (e.g., discovering
related drugs) to marketing (e.g., discovering related products) [23]. Again, because each node is associated with
real-valued vector embedding, it is possible to apply any generic clustering algorithm to the set of learned node
embeddings (e.g., k-means or DB-scan [22]). This offers an open-ended and powerful alternative to traditional
community detection techniques, and it also opens up new methodological opportunities, since node embeddings
can capture the functional or structural roles played by different nodes, rather than just community structure.
Node classification and semi-supervised learning. Node classification is perhaps the most common bench-
mark task used for evaluating node embeddings. In most cases, the node classification task is a form of semi-
supervised learning, where labels are only available for a small proportion of nodes, with the goal being to
label the full graph based only on this small initial seed set. Common applications of semi-supervised node
classification include classifying proteins according to their biological function [27] and classifying documents,

8Note that Equation (20) can be efficiently approximated via Chebyshev polynomials [20].

67

videos, web pages, or individuals into different categories/communities [27, 34, 46, 53]. Recently, Hamilton et
al. [28] introduced the task of inductive node classification, where the goal is to classify nodes that were not
seen during training, e.g. classifying new documents in evolving information graphs or generalizing to unseen
protein-protein interaction networks.
Link prediction. Node embeddings are also extremely useful as features for link prediction, where the goal
is to predict missing edges, or edges that are likely to form in the future [3]. Link prediction is at the core of
recommender systems and common applications of node embeddings reflect this deep connection, including
predicting missing friendship links in social networks [53] and affinities between users and movies [55]. Link
prediction also has important applications in computational biology. Many biological interaction graphs (e.g.,
between proteins and other proteins, or drugs and diseases) are incomplete, since they rely on data obtained
from costly lab experiments. Predicting links in these noisy graphs is an important method for automatically
expanding biological datasets and for recommending new directions for wet-lab experimentation [40]. More
generally, link prediction is closely related to statistical relational learning [24], where a common task is to
predict missing relations between entities in a knowledge graph [42].

3 Embedding subgraphs

We now turn to the task of representation learning on (sub)graphs, where the goal is to encode a set of nodes
and edges into a low-dimensional vector embedding. More formally, the goal is to learn a continuous vector
representation, zS ∈ Rd, of an induced subgraph G[S] of the full graph G, where S ⊆ V . (Note that these
methods can embed both subgraphs (S ⊂ V) as well as entire graphs (S = V).) The embedding, zS , can then
be used to make predictions about the entire subgraph; for example, one might embed graphs corresponding to
different molecules to predict their therapeutic properties [21].

Representation learning on subgraphs is closely related to the design of graph kernels, which define a dis-
tance measure between subgraphs [57]. That said, we omit a detailed discussion of graph kernels, which is a
large and rich research area of its own, and refer the reader to [57] for a detailed discussion. The methods we
review differ from the traditional graph kernel literature primarily in that we seek to learn useful representations
from data, rather than pre-specifying feature representations through a kernel function.

Many of the methods in this section build upon the techniques used to embed individual nodes, introduced
in Section 2. However, unlike the node embedding setting, most subgraph embedding approaches are fully-
supervised, being used for subgraph classification, where the goal is to predict a label associated with a par-
ticular subgraph. Thus, in this section we will focus on the various different approaches for generating the zS
embeddings, with the assumption that these embeddings are being fed through a cross-entropy loss function,
analogous to Equation (16).

3.1 Sets of node embeddings and convolutional approaches

There are several subgraph embedding techniques that can be viewed as direct extensions of the convolutional
node embedding algorithms (described in Section 2.3.2). The basic intuition behind these approaches is that
they equate subgraphs with sets of node embeddings. They use the convolutional neighborhood aggregation
idea (i.e., Algorithm 1) to generate embeddings for nodes and then use additional modules to aggregate sets of
node embeddings corresponding to subgraphs. The primary distinction between the different approaches in this
section is how they aggregate the set of node embeddings corresponding to a subgraph.

68

3.1.1 Sum-based approaches

For example, “convolutional molecular fingerprints” introduced by Duvenaud et al. [21] represent subgraphs in
molecular graph representations by summing all the individual node embeddings in the subgraph:

zS =
∑
vi∈S

zi, (21)

where the embeddings, {zi, ∀vi ∈ S}, are generated using Algorithm 1.
Dai et al. [16] employ an analogous sum-based approach but note that it has conceptual connections to mean-

field inference: if the nodes in the graph are viewed as latent variables in a graphical model, then Algorithm 1
can be viewed as a form of mean-field inference where the message-passing operations have been replaced
with differentiable neural network alternatives. Motivated by this connection, Dai et al. [16] also propose a
modified encoder based on Loopy Belief Propagation [41]. Using the placeholders and notation from Algorithm
1, the basic idea behind this alternative is to construct intermediate embeddings, ηi,j , corresponding to edges,
(i, j) ∈ E :

ηki,j = σ(Wk
E · COMBINE(xi, AGGREGATE(ηk−1

l,i ,∀vl ∈ N (vi) \ vj})). (22)

These edge embeddings are then aggregated to form the node embeddings:

zi = σ(Wk
V · COMBINE(xi, AGGREGATE({ηKi,l,∀vl ∈ N (vi)})). (23)

Once the embeddings are computed, Dai et al. [16], use a simple element-wise sum to combine the node em-
beddings for a subgraph, as in Equation (21).

3.1.2 Graph-coarsening approaches

Defferrard et al. [18] and Bruna et al. [8] also employ convolutional approaches, but instead of summing the
node embeddings for the whole graph, they stack convolutional and “graph coarsening” layers (similar to the
HARP approach in Section 2.2.2). In the graph coarsening layers, nodes are clustered together (using any graph
clustering approach), and the clustered node embeddings are combined using element-wise max-pooling. After
clustering, the new coarser graph is again fed through a convolutional encoder and the process repeats.

Unlike the convolutional approaches discussed in 2.3.2, Defferrard et al. [18] and Bruna et al. [8] also place
considerable emphasis on designing convolutional encoders based upon the graph Fourier transform [15]. How-
ever, because the graph Fourier transform requires identifying and manipulating the eigenvectors of the graph
Laplacian, naive versions of these approaches are necessarily O(|V|3). State-of-the-art approximations to these
spectral approaches (e.g., using Chebyshev polynomials) are conceptually similar to Algorithm 1, with some
minor variations, and we refer the reader to Bronstein et al. [7] for a thorough discussion of these techniques.

3.1.3 Further variations

Other variants of the convolutional idea are proposed by Neipert et al. [43] and Kearnes et al. [33]. Both
advocate alternative methods for aggregating sets of node embeddings corresponding to subgraphs: Kearnes et
al. aggregate sets of nodes using “fuzzy” histograms instead of a sum, and they also employ edge embedding
layers similar to [16]. Neipart et al. define an ordering on the nodes—e.g. using a problem specific ordering or by
employing an off-the-shelf vertex coloring algorithm—and using this ordering, they concatenate the embeddings
for all nodes and feed this concatenated vector through a standard convolutional neural network architecture.

69

3.2 Graph neural networks

In addition to the convolution-inspired subgraph embedding approaches discussed above, there is a related—
and chronologically prior—line of work on “graph neural networks” (GNNs) [51]. Conceptually, the GNN idea
is closely related to Algorithm 1. However, instead of aggregating information from neighbors, the intuition
behind GNNs is that subgraphs can be viewed as specifying a “compute graph”, i.e., a recipe for accumulating
and passing information between nodes.

In the original GNN framework [25, 51] every node, vi, is initialized with a random embedding, h0
i (node

attributes are ignored), and at each iteration of the GNN algorithm nodes accumulate inputs from their neighbors
using simple neural network layers:9

hk
i =

∑
vj∈N (vi)

σ(Whk−1
j + b), (24)

where W ∈ Rd×d and b ∈ Rd are trainable parameters and σ is a non-linearity (e.g., tanh or a rectified linear
unit). Equation (24) is repeatedly applied in a recursive fashion until the embeddings converge, and special care
must be taken during initialization to ensure convergence [51]. Once the embeddings have converged, they are
aggregated for the entire (sub)graph and this aggregated embedding is used for subgraph classification. Any of
the aggregation procedures described in Section 3.1 could be employed, but Scarselli et al. [51] also suggest that
the aggregation can be done by introducing a “dummy” super-node that is connected to all nodes in the target
subgraph.

Li et al. [38] extend and modify the GNN framework to use Gated Recurrent Units and back propagation
through time [14], which removes the need to run the recursion in Equation (24) to convergence. Adapting the
GNN framework to use modern recurrent units also allows Li et al. to leverage node attributes and to use the
output of intermediate embeddings of subgraphs.

The GNN framework is highly expressive, but it is also computationally intensive compared to the convo-
lutional approaches, due to the complexities of ensuring convergence [51] or running back propagation through
time [38]. Thus, unlike the convolutional approaches, which are most commonly used to classify molecular
graphs in large datasets, the GNN approach has been used for more complex, but smaller scale, tasks, e.g., for
approximate formal verification using graph-based representations of programs [38].

3.3 Applications of subgraph embeddings

The primary use case for subgraph embeddings is for subgraph classification, which has important applications
in a number of areas. The most prominent application domain is for classifying the properties of graphs cor-
responding to different molecules [16, 21, 43, 33]. Subgraph embeddings can be used to classify or predict
various properties of molecular graphs, including predicting the efficacy of potential solar cell materials [16],
or predicting the therapeutic effect of candidate drugs [33]. More generally, subgraph embeddings have been
used to classify images (after converting the image to a graph representation) [8], to predict whether a computer
program satisfies certain formal properties [38], and to perform logical reasoning tasks [38].

4 Conclusion and future directions

Representation learning approaches for machine learning on graphs offer a power alternative to traditional fea-
ture engineering. In recent years, these approaches have consistently pushed the state of the art on tasks such
as node classification and link prediction. However, much work remains to be done, both in improving the per-
formance of these methods, and—perhaps more importantly—in developing consistent theoretical frameworks
that future innovations can build upon.

9Other parameterizations and variations are discussed in [51].

70

4.1 Challenges to future progress

In this review, we attempted to unify a number of previous works, but the field as a whole still lacks a consistent
theoretical framework—or set of frameworks—that precisely delineate the goals of representation learning on
graphs. At the moment, the implicit goal of most works is to generate representations that perform well on a
particular set of classification or link prediction benchmarks (and perhaps also generate qualitatively pleasing
visualizations). However, the unchecked proliferation of disparate benchmarks and conceptual models presents a
real risk to future progress, and this problem is only exacerbated by the popularity of node and graph embedding
techniques across distinct, and somewhat disconnected, subfields within the machine learning and data mining
communities. Moving forward as a field will require new theoretical work that more precisely describes the
kinds of graph structures that we expect the learned representations to encode, how we expect the models to
encode this information, and what constraints (if any) should be imposed upon on these learned latent spaces.

More developed theoretical foundations would not only benefit researchers in the field—e.g., by informing
consistent and meaningful benchmark tasks—these foundations would also allow application domain-experts to
more effectively choose and differentiate between the various approaches. Current methods are often evaluated
on a variety of distinct benchmarks that emphasize various different graph properties (e.g., community structures,
relationship strengths between nodes, or structural roles). However, many real-world applications are more
focused, and it is not necessary to have representations that are generically useful for a wide variety of tasks. As
a field, we need to make it clear what method should be used when, and prescribing such use-cases requires a
more precise theoretical understanding of what exactly our learned representations are encoding.

4.2 Important open problems

In addition to the general challenges outlined above, there are a number of concrete open problems that remain
to be addressed within the area of representation learning on graphs.
Scalability. While most of the works we reviewed are highly scalable in theory (i.e., O(|E|) training time), there
is still significant work to be done in scaling node and graph embedding approaches to truly massive datasets
(e.g., billions of nodes and edges). For example, most methods rely on training and storing a unique embedding
for each individual node. Moreover, most evaluation setups assume that the attributes, embeddings, and edge
lists of all nodes used for both training and testing can fit in main memory—an assumption that is at odds with
the reality of most application domains, where graphs are massive, evolving, and often stored in a distributed
fashion. Developing representation learning frameworks that are truly scalable to realistic production settings
is necessary to prevent widening the disconnect between the academic research community and the application
consumers of these approaches.
Decoding higher-order motifs. While much work in recent years has been dedicated to refining and improving
the encoder algorithm used to generate node embeddings, most methods still rely on basic pairwise decoders,
which predict pairwise relations between nodes and ignore higher-order graph structures involving more than
two nodes. It is well-known that higher-order structural motifs are essential to the structure and function of
complex networks [5], and developing decoding algorithms that are capable of decoding complex motifs is an
important direction for future work.
Modeling dynamic, temporal graphs. Many application domains involve highly dynamic graphs where timing
information is critical—e.g., instant messaging networks or financial transaction graphs. However, we lack
embedding approaches that can cope with the unique challenges presented by temporal graphs, such as the
task of incorporating timing information about edges. Temporal graphs are becoming an increasingly important
object of study [45], and extending graph embedding techniques to operate over them will open up a wide range
of exciting application domains.
Reasoning about large sets of candidate subgraphs. A major technical limitation of current subgraph em-
bedding approaches is that they require the target subgraphs to be pre-specified before the learning process.

71

However, many applications seek to discover subgraphs with certain properties, and these applications require
models that can reason over the combinatorially large space of possible candidate subgraphs. For example, one
might want to discover central subgraphs in a gene regulatory network, or uncover nefarious sub-communities
in a social network. We need improved subgraph embedding approaches that can efficiently reason over large
sets of candidate subgraphs, as such improvements are critical to expand the usefulness of subgraph embeddings
beyond the task of basic subgraph classification.
Improving interpretability. Representation learning is attractive because it relieves much of the burden of
hand designing features, but it also comes at a well-known cost of interpretability. We know that embedding-
based approaches give state-of-the-art performance, but the fundamental limitations—and possible underlying
biases—of these algorithms are relatively unknown. In order to move forward, care must be taken to develop new
techniques to improve the interpretability of the learned representations, beyond visualization and benchmark
evaluation. Given the complexities and representational capacities of these approaches, researchers must be
ever vigilant to ensure that their methods are truly learning to represent relevant graph information, and not just
exploiting statistical tendencies of benchmarks.

Acknowledgments

The authors thank Marinka Zitnik, Zoubin Ghahramani, Richard Turner, Stephen Bach, and Manan Ajay Shah
for their helpful discussions and comments on early drafts. This research has been supported in part by NSF IIS-
1149837, DARPA SIMPLEX, Stanford Data Science Initiative, and Chan Zuckerberg Biohub. W.L.H. was also
supported by the SAP Stanford Graduate Fellowship and an NSERC PGS-D grant. The views and conclusions
expressed in this material are those of the authors and should not be interpreted as necessarily representing the
official policies or endorsements, either expressed or implied, of the above funding agencies, corporations, or
the U.S. and Canadian governments.

References
[1] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A.J. Smola. Distributed large-scale natural graph

factorization. In WWW, 2013.

[2] R. Angles and C. Gutierrez. Survey of graph database models. ACM Computing Surveys, 40(1):1, 2008.

[3] L. Backstrom and J. Leskovec. Supervised random walks: predicting and recommending links in social networks. In
WSDM, 2011.

[4] M. Belkin and P. Niyogi. Laplacian eigenmaps and spectral techniques for embedding and clustering. In NIPS, 2002.

[5] A.R. Benson, D.F. Gleich, and J. Leskovec. Higher-order organization of complex networks. Science,
353(6295):163–166, 2016.

[6] S. Bhagat, G. Cormode, and S. Muthukrishnan. Node classification in social networks. In Social Network Data
Analytics, pages 115–148. 2011.

[7] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Vandergheynst. Geometric deep learning: Going beyond
euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

[8] J. Bruna, W. Zaremba, and Y. Szlam, A.and LeCun. Spectral networks and locally connected networks on graphs. In
ICLR, 2014.

[9] S. Cao, W. Lu, and Q. Xu. Grarep: Learning graph representations with global structural information. In KDD, 2015.

[10] S. Cao, W. Lu, and Q. Xu. Deep neural networks for learning graph representations. In AAAI, 2016.

[11] B.P. Chamberlain, J. Clough, and M.P. Deisenroth. Neural embeddings of graphs in hyperbolic space. arXiv preprint
arXiv:1705.10359, 2017.

72

[12] S. Chang, W. Han, J. Tang, G. Qi, C.C. Aggarwal, and T.S. Huang. Heterogeneous network embedding via deep
architectures. In KDD, 2015.

[13] H. Chen, B. Perozzi, Y. Hu, and S. Skiena. Harp: Hierarchical representation learning for networks. arXiv preprint
arXiv:1706.07845, 2017.

[14] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase
representations using rnn encoder-decoder for statistical machine translation. In EMNLP, 2014.

[15] Fan RK Chung. Spectral Graph Theory. Number 92. American Mathematical Soc., 1997.

[16] H. Dai, B. Dai, and L. Song. Discriminative embeddings of latent variable models for structured data. In ICML,
2016.

[17] M.C.F. De Oliveira and H. Levkowitz. From visual data exploration to visual data mining: a survey. IEEE Transac-
tions on Visualization and Computer Graphics, 9(3):378–394, 2003.

[18] M. Defferrard and P. Bresson, X.and Vandergheynst. Convolutional neural networks on graphs with fast localized
spectral filtering. In NIPS, 2016.

[19] Y. Dong, N.V. Chawla, and A. Swami. metapath2vec: Scalable representation learning for heterogeneous networks.
In KDD, 2017.

[20] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec. Graph wavelets for structural role similarity in complex networks.
Under review, 2017.

[21] D. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bombarell, T. Hirzel, A. Aspuru-Guzik, and R.P. Adams. Convolu-
tional networks on graphs for learning molecular fingerprints. In NIPS, 2015.

[22] M. Ester, H. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discovering clusters in large spatial
databases with noise. In KDD, 1996.

[23] S. Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174, 2010.

[24] L. Getoor and B. Taskar. Introduction to Statistical Relational Learning. MIT press, 2007.

[25] M. Gori, G. Monfardini, and F. Scarselli. A new model for learning in graph domains. In IEEE International Joint
Conference on Neural Networks, 2005.

[26] P. Goyal and E. Ferrara. Graph embedding techniques, applications, and performance: A survey. arXiv preprint
arXiv:1605.09096, 2017.

[27] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In KDD, 2016.

[28] W.L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. arXiv preprint,
arXiv:1603.04467, 2017.

[29] K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D. Koutra, C. Faloutsos, and L. Li. Rolx:
structural role extraction & mining in large graphs. In KDD, 2012.

[30] G. Hinton and R. Salakhutdinov. Reducing the dimensionality of data with neural networks. Science, 313(5786):504–
507, 2006.

[31] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–1780, 1997.

[32] P. Hoff, A.E. Raftery, and M.S. Handcock. Latent space approaches to social network analysis. JASA, 97(460):1090–
1098, 2002.

[33] S. Kearnes, K. McCloskey, M. Berndl, V. Pande, and P. Riley. Molecular graph convolutions: moving beyond
fingerprints. Journal of Computer-Aided Molecular Design, 30(8):595–608, 2016.

[34] T.N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In ICLR, 2016.

[35] T.N. Kipf and M. Welling. Variational graph auto-encoders. In NIPS Workshop on Bayesian Deep Learning, 2016.

[36] J.B. Kruskal. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika,
29(1):1–27, 1964.

73

[37] J.A. Lee and M. Verleysen. Nonlinear dimensionality reduction. Springer Science & Business Media, 2007.

[38] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. Gated graph sequence neural networks. In ICLR, 2015.

[39] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. Journal of the Association for
Information Science and Technology, 58(7):1019–1031, 2007.

[40] Q. Lu and L. Getoor. Link-based classification. In ICML, volume 3, pages 496–503, 2003.

[41] K. Murphy, Y. Weiss, and M. Jordan. Loopy belief propagation for approximate inference: An empirical study. In
UAI, 1999.

[42] M. Nickel, K. Murphy, V. Tresp, and E. Gabrilovich. A review of relational machine learning for knowledge graphs.
Proceedings of the IEEE, 104(1):11–33, 2016.

[43] M. Niepert, M. Ahmed, and K. Kutzkov. Learning convolutional neural networks for graphs. In ICML, 2016.

[44] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu. Asymmetric transitivity preserving graph embedding. In KDD, 2016.

[45] A. Paranjape, A. R. Benson, and J. Leskovec. Motifs in temporal networks. In WSDM, 2017.

[46] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In KDD, 2014.

[47] B. Perozzi, V. Kulkarni, and S. Skiena. Walklets: Multiscale graph embeddings for interpretable network classifica-
tion. arXiv preprint arXiv:1605.02115, 2016.

[48] Bryan Perozzi. Local Modeling of Attributed Graphs: Algorithms and Applications. PhD thesis, Stony Brook
University, 2016.

[49] T. Pham, T. Tran, D.Q. Phung, and S. Venkatesh. Column networks for collective classification. In AAAI, 2017.

[50] L.F.R. Ribeiro, P.H.P. Saverese, and D.R. Figueiredo. struc2vec: Learning node representations from structural
identity. In KDD, 2017.

[51] F. Scarselli, M. Gori, A.C. Tsoi, M. Hagenbuchner, and G. Monfardini. The graph neural network model. IEEE
Transactions on Neural Networks, 20(1):61–80, 2009.

[52] M. Schlichtkrull, T.N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling. Modeling relational data with graph
convolutional networks. arXiv preprint arXiv:1703.06103, 2017.

[53] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale information network embedding. In
WWW, 2015.

[54] J. Tenenbaum, V. De Silva, and J. Langford. A global geometric framework for nonlinear dimensionality reduction.
Science, 290(5500):2319–2323, 2000.

[55] R. van den Berg, T.N. Kipf, and M. Welling. Graph convolutional matrix completion. arXiv preprint
arXiv:1706.02263, 2017.

[56] L. van der Maaten and G. Hinton. Visualizing data using t-sne. JMLR, 9:2579–2605, 2008.

[57] S.V.N. Vishwanathan, N.N. Schraudolph, R. Kondor, and K.M. Borgwardt. Graph kernels. JMLR, 11:1201–1242,
2010.

[58] D. Wang, P. Cui, and W. Zhu. Structural deep network embedding. In KDD, 2016.

[59] Z. Yang, W. Cohen, and R. Salakhutdinov. Revisiting semi-supervised learning with graph embeddings. In ICML,
2016.

[60] M. Zitnik and J. Leskovec. Predicting multicellular function through multi-layer tissue networks. Bioinformatics,
2017.

74

On Summarizing Large-Scale Dynamic Graphs

Neil Shah∗, Danai Koutra†, Lisa Jin‡, Tianmin Zou§, Brian Gallagher¶, Christos Faloutsos∗

∗ Carnegie Mellon University, † University of Michigan, ‡ University of Rochester
§ Google, ¶ Lawrence Livermore National Lab

Abstract

How can we describe a large, dynamic graph over time? Is it random? If not, what are the most
apparent deviations from randomness – a dense block of actors that persists over time, or perhaps a
star with many satellite nodes that appears with some fixed periodicity? In practice, these deviations
indicate patterns – for example, research collaborations forming and fading away over the years. Which
patterns exist in real-world dynamic graphs, and how can we find and rank their importance? These
are exactly the problems we focus on. Our main contributions are (a) formulation: we show how to
formalize this problem as minimizing an information theoretic encoding cost, (b) algorithm: we propose
TIMECRUNCH, an effective and scalable method for finding coherent, temporal patterns in dynamic
graphs and (c) practicality: we apply our method to several large, diverse real-world datasets with up
to 36 million edges and introduce our auxiliary ECOVIZ framework for visualizing and interacting with
dynamic graphs which have been summarized by TIMECRUNCH. We show that TIMECRUNCH is able
to compress these graphs by summarizing important temporal structures and finds patterns that agree
with intuition.

1 Introduction

Given a large phonecall network over time, how can we describe it to a practitioner with just a few phrases?
Other than the traditional assumptions about real-world graphs involving degree skewness, what can we say
about the connectivity? For example, is the dynamic graph characterized by many large cliques which appear
at fixed intervals of time, or perhaps by several large stars with dominant hubs that persist throughout? Our
work aims to answer these questions, and specifically, we focus on constructing concise summaries of large,
real-world dynamic graphs in order to better understand their underlying behavior.

This problem has numerous practical applications. Dynamic graphs are ubiquitously used to model the
relationships between various entities over time, which is a valuable feature in almost all applications in which
nodes represent users or people. Examples include online social networks, phone-call networks, collaboration
and coauthorship networks and other interaction networks.

Though numerous graph algorithms suitable for static contexts such as modularity, spectral and cut-based
partitioning exist, they do not offer direct dynamic counterparts. Furthermore, the traditional goals of clustering
and community detection tasks are not quite aligned with our goal. These algorithms typically produce groupings

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

75

(a) 40 users of Yahoo! Messenger forming
a constant near clique with unusually high
55% density, over 4 weeks in April 2008.

(b) 111 callers in a large phonecall net-
work, forming a periodic star, over the last
week of December 2007 – note the heavy
activity on holidays.

(c) 43 collaborating biotechnology authors
forming a ranged near clique in the DBLP
network, jointly publishing through 2005-
2012.

Figure 1: TIMECRUNCH finds coherent, interpretable temporal structures. We show the reordered sub-
graph adjacency matrices, over the timesteps of interest, each outlined in gray; edges are plotted in alternating
red and blue, for discernibility.

of nodes which satisfy or approximate some optimization function. However, they do not offer interpretation or
characterization of the outputs.

In this work, we propose TIMECRUNCH, an approach for concisely summarizing large, dynamic graphs
which extend beyond traditional dense, isolated “cavemen” communities. Our method works by leveraging
MDL (Minimum Description Length) in order to represent graphs over time using a lexicon of temporal phrases
which describe temporal connectivity behavior. Figure 1 shows several interesting results found from applying
TIMECRUNCH to real-world dynamic graphs.
• Figure 1a shows a constant near-clique of likely bots on Yahoo! Messenger.
• Figure 1b depicts a periodic star of possible telemarketers on a phonecall network.
• Lastly, Figure 1c shows a ranged near clique of many authors jointly publishing in a biology journal.
In this work, we seek to answer the following informally posed problem:

Problem 1 (Informal): Given a dynamic graph, find a set of possibly overlapping temporal subgraphs to con-
cisely describe the given dynamic graph in a scalable fashion.

Our main contributions are as follows:
1. Formulation: We define the problem of dynamic graph understanding in in a compression context.
2. Algorithm: We develop TIMECRUNCH, a fast algorithm for dynamic graph summarization.
3. Practicality: We show quantitative and qualitative results of TIMECRUNCH on several real graphs, and

also discuss ECOVIZ for interactive dynamic graph visualization.
Reproducibility: Our code for TIMECRUNCH is open-sourced at www.cs.cmu.edu/˜neilshah/code/
timecrunch.tar.

2 Related Work

The related work falls into three main categories: static graph mining, temporal graph mining, and graph com-
pression and summarization.
Static Graph Mining. Most works find specific, tightly-knit structures, such as (near-) cliques and bipartite
cores: eigendecomposition [24], cross-associations [7], modularity-based optimization methods [20, 5]. Dhillon
et al. [10] propose information theoretic co-clustering based on mutual information optimization. However, these
approaches have limited structural vocabularies. [14, 17] propose cut-based partitioning, whereas [3] suggests
spectral partitioning using multiple eigenvectors – these schemes seek hard clustering of all nodes as opposed

76

to identifying communities, and require parameters. Subdue [8] and other fast frequent-subgraph mining algo-
rithms [12] operate on labeled graphs. Our work involves unlabeled graphs and lossless compression.
Temporal Graph Mining. Most work on temporal graphs focuses on the evolution of specific properties,
change detection, or community detection. For example, [2] aims at change detection in streaming graphs us-
ing projected clustering. This approach focuses on anomaly detection rather than mining temporal patterns.
GraphScope [27] uses graph search for hard-partitioning of temporal graphs to find dense temporal cliques and
bipartite cores. Com2 [4] uses CP/PARAFAC decomposition with MDL for the same. [11] uses incremental
cross-association for change detection in dense blocks, whereas [22] proposes an algorithm for mining atem-
poral cross-graph quasi-cliques. These approaches have limited vocabularies and no temporal interpretability.
Dynamic clustering [29] finds stable clusters over time by penalizing deviations from incremental static cluster-
ing. Our work focuses on interpretable structures, which may not appear at every timestep.
Graph Compression and Summarization. Work on summarization and compression of time-evolving graphs
is quite limited [30]. Some examples for compressing static graphs include SlashBurn [13], which is a recursive
node-reordering approach to leverage run-length encoding, weighted graph compression [28] that uses structural
equivalence to collapse nodes/edges to simplify graph representation, two-part MDL representation with error
bounds [31], and domain-specific summarization using graph invariants [32]. VoG [16] uses MDL to label
subgraphs in terms of a vocabulary on static graphs, consisting of stars, (near) cliques, (near) bipartite cores and
chains. This approach only applies to static graphs and does not offer a clear extension to dynamic graphs. Our
work proposes a suitable lexicon for dynamic graphs, uses MDL to label temporally coherent subgraphs and
proposes an effective and scalable algorithm for finding them. More recent works on time-evolving networks
include graph stream summarization [34] for query efficiency, and influence-based graph summarization [35,
33], which aim to summarize network propagation processes.

3 Problem Formulation

In this section, we give the first main contribution of our work: formulation of dynamic graph summarization as
a compression problem.

The Minimum Description Length (MDL) principle aims to be a practical version of Kolmogorov Complex-
ity [19], often associated with the motto Induction by Compression. MDL states that given a model familyM,
the best model M ∈ M for some observed data D is that which minimizes L(M) + L(D|M), where L(M) is
the length in bits used to describe M and L(D|M) is the length in bits used to describe D encoded using M .
MDL enforces lossless compression for fairness in the model selection process.

We focus on analysis of undirected dynamic graphs using fixed-length, discretized time intervals. We con-
sider a dynamic graph G(V, E) with n = |V| nodes, m = |E| edges and t timesteps, without self-loops. Here,
G = ∪xGx(V, Ex), where Gx and Ex correspond to the graph and edge-set for the xth timestep.

For our summary, we consider the set of temporal phrases Φ = ∆ × Ω, where ∆ corresponds to the set of
temporal signatures, Ω corresponds to the set of static structure identifiers and × denotes Cartesian set product.
Though we can include arbitrary temporal signatures and static structure identifiers into these sets depending on
the types of temporal subgraphs we expect to find in a given dynamic graph, we choose 5 temporal signatures
which we anticipate to find in real-world dynamic graphs: oneshot (o), ranged (r), periodic (p), flickering (f)
and constant (c):
• Oneshot structures appear at only one timestep
• Ranged structures appear for a series of consecutive timesteps
• Periodic structures appear at fixed intervals of time
• Flickering structures do not have discernible periodicity, but occur multiple times
• Constant structures appear at every timestep

and 6 very common structures found in real-world static graphs [15, 24, 16] – stars (st), full and near cliques

77

(fc, nc), full and near bipartite cores (bc, nb) and chains (ch):
• Stars are characteristic of a hub node connected to 2 or more “spokes”
• (Near) Cliques are sets of nodes with very dense interconnectivity
• (Near) Bipartite Cores consist of non-intersecting node sets L and R for which there exist only edges

between L and R but not within
• Chains are a series of nodes in which each node is connected to the next
Summarily, we have the signatures ∆ = {o, r, p, f, c}, static identifiers Ω = {st, fc, nc, bc, nb, ch} and

temporal phrases Φ = ∆× Ω.
In order to use MDL for dynamic graph summarization using these temporal phrases, we next define the

model familyM, the means by which a model M ∈ M describes our dynamic graph and how to quantify the
cost of encoding in terms of bits.

3.1 Using MDL for Dynamic Graph Summarization

We consider models M ∈ M to be composed of ordered lists of temporal graph structures with node, but not
edge overlaps. Each s ∈M describes a certain region of the adjacency tensor A in terms of the interconnectivity
of its nodes – note that nonzero Ai,j,k indicates edge (i, j) exists in timestep k .

Our model familyM consists of all possible permutations of subsets of C, where C = ∪vCv and Cv denotes
the set of all possible temporal structures of phrase v ∈ Φ over all possible combinations of timesteps. That
is,M consists of all possible models M , which are ordered lists of temporal phrases v ∈ Φ such as flickering
stars (fst), periodic full cliques (pfc), etc. over all possible subsets of V and G1 · · ·Gt. Through MDL, we seek
M ∈M which best mediates between the length of M and the adjacency tensor A given M .

Our high-level approach for transmitting the adjacency tensor A via the model M is described as follows:
First, we transmit M . Next, given M , we induce the approximation of the adjacency tensor M as described by
each temporal structure s ∈ M – for each structure s, we induce the edges described by s in M accordingly.
Given that M is a summary approximation to A, M 6= A most likely. Since MDL requires lossless encoding,
we must also transmit the error E = M ⊕A, obtained by taking the exclusive OR between M and A. Given
M and E, a recipient can construct the full adjacency tensor A in a lossless fashion.

Thus, we formalize the problem we tackle as follows:

Problem 2 (Minimum Dynamic Graph Description): Given a dynamic graph G with adjacency tensor A and
temporal phrase lexicon Φ, find the smallest model M which minimizes the total encoding length

L(G,M) = L(M) + L(E)

where E is the error matrix computed by E = M⊕A and M is the approximation of A induced by M .

3.2 Encoding the Model and Errors

To fully describe a model M ∈M, we have the following:

L(M) = LN(|M |+ 1) + log2

(
|M |+ |Φ| − 1

|Φ− 1|

)
+
∑
s∈M

(−log2P (v(s)|M) + L(c(s)) + L(u(s)))

We begin by transmitting the total number of temporal structures in M using LN, Rissanen’s optimal encoding
for integers greater than or equal to 1 [23]. Next, we optimally encode the number of temporal structures for
each phrase v ∈ Φ in M . Then, for each structure s, we encode the type v(s) for each structure s ∈ M using
optimal prefix codes [9], the connectivity c(s) and the temporal presence of the s, consisting of the ordered list
of timesteps u(s) in which s appears.

78

In order to have a coherent model encoding scheme, we must define the encoding for each phrase v ∈ Φ
such that we can compute L(c(s)) and L(u(s)) for all structures in M . The connectivity c(s) corresponds to the
edges which are induced by s, whereas the temporal presence u(s) corresponds to the timesteps in which s is
present. We consider the connectivity and temporal presence separately, as the encoding for a temporal structure
s described by a phrase v is the sum of encoding costs for the connectivity of the corresponding static structure
identifier in Ω and its temporal presence as indicated by a temporal signature in ∆. Due to space constraints,
we refer the interested reader to more detailed manuscripts [16, 25] for details regarding encoding processes
and costs for the connectivity L(c(s)), temporal presence L(u(s)) and associated errors. In a nutshell, we have
different encoding costs for encoding any subgraph and temporal recurrence pattern using a particular phrase in
our lexicon Φ.

Remark: For a dynamic graph G of n nodes, the search spaceM for the best model M ∈ M is intractable,
as it consists of all permutations of all possible temporal structures over the lexicon Φ, over all possible subsets
over the node-set V and over all possible graph timesteps G1 · · ·Gt. Furthermore,M is not easily exploitable
for efficient search. As a result, we propose several practical approaches for the purpose of finding good and
interpretable temporal models/summaries for G.

4 Proposed Method: TIMECRUNCH

Thus far, we have described our strategy of formulating dynamic graph summarization as a problem in a com-
pression context for which we can leverage MDL. Specifically, we have described how to encode a model and
the associated error which can be used to losslessly reconstruct the original dynamic graph G. Our models are
characterized by ordered lists of temporal structures which are further classified as phrases from the lexicon Φ
– that is, each s ∈M is identified by a phrase p ∈ Φ – over the node connectivity c(s) (an induced set of edges
depending on the static structure identifier st, fc, etc.) and the associated temporal presence u(s) (ordered list
of timesteps captured by a temporal signature o, r, etc. and deviations) in which the temporal structure is active,
while the error consists of those edges which are not covered by M, or the approximation of A induced by M .

Next, we discuss how we find good candidate temporal structures to populate the candidate set C, as well as
how we find the best model M with which to summarize our dynamic graph. The pseudocode for our algorithm
is given in Alg. 1 and the next subsections detail each step of our approach.

4.1 Generating Candidate Static Structures

TIMECRUNCH takes an incremental approach to dynamic graph summarization. Our approach begins by con-
sidering potentially useful subgraphs over static graphs G1 · · ·Gt. Section 2 mentions several such algorithms
for community detection and clustering including EigenSpokes, METIS, SlashBurn, etc. Summarily, for each
G1 · · ·Gt, a set of subgraphs F is produced.

Algorithm 1 TIMECRUNCH

1: Generating Candidate Static Structures: Generate static subgraphs for each G1 · · ·Gt using traditional static graph decomposi-
tion approaches.

2: Labeling Candidate Static Structures: Label each static subgraph as a static structure corresponding to the identifier x ∈ Ω which
minimizes the local encoding cost.

3: Stitching Candidate Temporal Structures: Stitch static structures from G1 · · ·Gt together to form temporal structures with co-
herent connectivity and label them according to the phrase p ∈ Φ which minimizes temporal presence encoding cost. Populate the
candidate set C.

4: Composing the Summary: Compose a model M of important, non-redundant temporal structures which summarize G using the
VANILLA, TOP-10, TOP-100 and STEPWISE heuristics. Choose M associated with the heuristic that produces the smallest total
encoding cost.

79

4.2 Labeling Candidate Static Structures

Once we have the set of static subgraphs from G1 · · ·Gt, F , we next seek to label each subgraph in F according
to the static structure identifiers in Ω that best fit the connectivity for the given subgraph. That is, for each
subgraph construed as a set of nodes L ∈ V for a fixed timestep, does the adjacency matrix of L best resemble
a star, near or full clique, near or full bipartite core or a chain? To answer this question, we try encoding the
subgraph L using each of the static identifiers in Ω and label it with the identifier x ∈ Ω which minimizes the
encoding cost.

Consider the model ω which consists of only the subgraph L and a yet to be determined static identifier. In
practice, instead of computing the global encoding cost L(G,ω) when encoding L as each static identifier in Ω
to find the best fit, we compute the local encoding cost defined as L(ω) + L(E+

ω) + L(E−ω) where L(E+
ω) and

L(E−ω) indicate the encoding costs for the extraneous and unmodeled edges for the subgraphL respectively. This
is done for purpose of efficiency – intuitively, however, the static identifier that best describes L is independent
of the edges outside of L.

The challenge in this labeling step is that before we can encode L as any type of identifier, we must identify
a suitable permutation of nodes in the subgraph so that our model encodes the correct edges. For example,
if L is a star, which is the hub? Or if L is a bipartite core, how can we distinguish the parts? We resort to
heuristics, as some of these tasks are computationally difficult to perform exactly – for example, finding the
best configuration of nodes to form a bipartite core is equivalent to finding the maximum cut which is NP-hard.
Details of appropriate configurations for each static structure are given in [16] for space constraints.

4.3 Stitching Candidate Temporal Structures

Thus far, we have a set of static subgraphs F over G1 · · ·Gt labeled with the associated static identifiers which
best represent subgraph connectivity (from now on, we refer toF as a set of static structures instead of subgraphs
as they have been labeled with identifiers). From this set, our goal is to find meaningful temporal structures
– namely, we seek to find static subgraphs which have the same patterns of connectivity over one or more
timesteps and stitch them together. Thus, we formulate the problem of finding coherent temporal structures in
G as a clustering problem over F . Though there are several criteria we could use for clustering static structures
together, we employ the following based on their intuitive meaning: two structures in the same cluster should
have (a) substantial overlap in the node-sets composing their respective subgraphs, and (b) exactly the same, or
similar (full and near clique, or full and near bipartite core) static structure identifiers. These criteria, if satisfied,
allow us to find groups of nodes that share interesting connectivity patterns over time.

Conducting the clustering by naively comparing each static structure in F to the others will produce the
desired result, but is quadratic on the number of static structures and is thus undesirable from a scalability point
of view. Instead, we propose an incremental approach using repeated rank-1 Singular Value Decomposition
(SVD) for clustering the static structures, which offers linear time complexity on the number of edges m in G.

We begin by defining B as the structure-node membership matrix (SNMM) of G. B is defined to be of
dimensions |F| × |V|, where Bi,j indicates whether the ith row (structure) in F (B) contains node j in its
node-set. Thus, B is a matrix indicating the membership of nodes in V to each of the static structures in F . We
note that any two equivalent rows in B are characterized by structures that share the same node-set (but possibly
different static identifiers). As our clustering criteria mandate that we cluster only structures with the same or
similar static identifiers, in our algorithm, we construct 4 SNMMs – Bst, Bcl, Bbc and Bch corresponding to the
associated matrices for stars, near and full cliques, near and full bipartite cores and chains respectively. Now,
any two equivalent rows in Bcl are characterized by structures that share the same-node set and the same, or
similar static identifiers, and analogue for the other matrices. Next, we utilize SVD to cluster the rows in each
SNMM, effectively clustering the structures in F .

Recall that the rank-k SVD of an m × n matrix A factorizes A into 3 matrices – the m × k matrix of

80

left-singular vectors U, the k × k diagonal matrix of singular values Σ and the n × k matrix of right-singular
vectors V, such that A = UΣVT. A rank-k SVD effectively reduces the input data into the best k-dimensional
representation, each of which can be mined separately for clustering and community detection purposes. How-
ever, one major issue with using SVD in this fashion is that identifying the desired number of clusters k upfront
is a non-trivial task. To this end, [21] evidences that in cases where the input matrix is sparse, repeatedly clus-
tering using k rank-1 decompositions and adjusting the input matrix accordingly approximates the batch rank-k
decomposition. This is a valuable result in our case – as we do not initially know the number of clusters needed
to group the structures in F , we eliminate the need to define k altogether by repeatedly applying rank-1 SVD
using power iteration and removing the discovered clusters from each SNMM until all clusters have been found
(when all SNMMs are fully sparse and thus deflated). However, in practice, full deflation is unneeded for sum-
marization purposes, as most “important” clusters are found in early iterations due to the nature of SVD. For
each of the SNMMs, the matrix B used in the (i + 1)th iteration of this iterative process is computed as

Bi+1 = Bi − IGi ◦Bi

where Gi denotes the set of row ids corresponding to the structures which were clustered together in iteration
i, IGi denotes the indicator matrix with 1s in rows specified by Gi and ◦ denotes the Hadamard matrix product.
This update to B is needed between iterations, as without subtracting out the previously-found cluster, repeated
rank-1 decompositions would find the same cluster ad infinitum and the algorithm would not converge.

Although this algorithm works assuming we can remove a cluster in each iteration, the question of how we
find this cluster given a singular vector has yet to be answered. First, we sort the singular vector, permuting
the rows by magnitude of projection. The intuition is that the structure (rows) which projects most strongly to
that cluster is the best representation of the cluster, and is considered a base structure which we attempt to find
matches for. Starting from the base structure, we iterate down the sorted list and compute the Jaccard similarity,
defined as J(L1,L2) = |L1∩L2|/|L1∪L2| for node-sets L1 and L2, between each structure and the base. Other
structures which are composed of the same, or similar node-sets will also project strongly to the cluster, and be
stitched to the base. Once we encounter a series of structures which fail to match by a predefined similarity
criterion, we adjust the SNMM and continue with the next iteration.

Having stitched together the relevant static structures, we label each temporal structure using the temporal
signature in ∆ and resulting phrase in Φ which minimizes its encoding cost. We use these temporal structures
to populate the candidate set C for our model.

4.4 Composing the Summary

Given the candidate set of temporal structures C, we next seek to find the model M which best summarizes G.
However, actually finding the best model is combinatorial, as it involves considering all possible permutations
of subsets of C and choosing the one which gives the smallest encoding cost. As a result, we propose several
heuristics that give fast and approximate solutions without entertaining the entire search space. To reduce the
search space, we associate with each temporal structure a metric by which we measure quality, called the local
encoding benefit. The local encoding benefit is defined as the ratio between the cost of encoding the given
temporal structure as error and the cost of encoding it using the best phrase (local encoding cost). Large local
encoding benefits indicate high compressibility, and thus meaningful structure in the underlying data. Our
proposed heuristics are as follows:
VANILLA: This is the baseline approach, in which our summary contains all the structures from the candidate
set, or M = C.
TOP-K: In this approach, M consists of the top k structures of C, sorted by local encoding benefit.
STEPWISE: This approach involves considering each structure of C, sorted by local encoding benefit, and adding
it to M if the global encoding cost decreases. If adding the structure to M increases the global encoding cost,

81

the structure is discarded as redundant or not worthwhile for summarization purposes.
In practice, TIMECRUNCH uses each of the heuristics and identifies the best summary for G as the one that

produces the minimum encoding cost.

5 Experiments

In this section, we evaluate TIMECRUNCH and seek to answer the following questions: Are real-world dynamic
graphs well-structured, or noisy and indescribable? If they are structured, how so – what temporal structures do
we see in these graphs and what do they mean?

5.1 Datasets and Experimental Setup

For our experiments, we use 5 real dynamic graph datasets – we briefly describe them below.
Enron: The Enron e-mail dataset is publicly available [26]. It contains 20K unique links between 151 users
based on e-mail correspondence, over 163 weeks (May 1999 - June 2002).
Yahoo! IM: The Yahoo-IM dataset is publicly available [36]. It contains 2.1M sender-receiver pairs between
100K users over 5.7K zip-codes selected from the Yahoo! messenger network over 4 weeks starting from April
1st, 2008.
Honeynet: The Honeynet dataset is not publicly available. It contains information about network attacks on
honeypots (i.e., computers which are left intentionally vulnerable). It contains source and destination IPs, and
attack timestamps of 372K (attacker and honeypot) machines with 7.1M unique daily attacks over a span of 32
days starting from December 31st, 2013.
DBLP: The DBLP computer science bibliography is publicly available, and contains yearly co-authorship in-
formation [1]. We used a subset of DBLP spanning 25 years, from 1990 to 2014, with 1.3M authors and 15M
unique author-author collaborations over the years.
Phonecall: The Phonecall dataset is not publicly available. It describes the who-calls-whom activity of 6.3M
individuals from a large, anonymous Asian city and contains a total of 36.3M unique daily phonecalls. It spans
31 days, starting from December 1st, 2007.

In our experiments, we use SlashBurn [13] for generating candidate static structures, as it is scalable and
designed to extract structure from real-world, non-“cavemen” graphs. We note that including other graph de-
composition methods can be used for various applications instead of SlashBurn. Furthermore, when clustering
each sorted singular vector during the stitching process, we move on with the next iteration of matrix defla-
tion after 10 failed matches with a Jaccard similarity threshold of 0.5 – we choose 0.5 based on experimental
results which show that it gives the best encoding cost and balances between excessively terse and overlong
(error-prone) models. Lastly, we run TIMECRUNCH for a total of 5000 iterations for all graphs (each iteration
uniformly selects one SNMM to mine, resulting in 5000 total temporal structures), except for the Enron graph
which is fully deflated after 563 iterations and the Phonecall graph which we limit to 1000 iterations for
efficiency.

5.2 Quantitative Analysis

In this section, we use TIMECRUNCH to summarize each of the real-world dynamic graphs discussed above and
report the resulting encoding costs. Specifically, evaluation is done by comparing the compression ratio between
encoding costs of the resulting models to the null encoding (ORIGINAL) cost, which is obtained by encoding the
graph using an empty model.

We note that although we provide results in a compression context, compression is not our main goal for
TIMECRUNCH, but rather the means to our end for identifying suitable structures with which to summarize

82

Graph ORIGINAL
TIMECRUNCH

(bits) VANILLA TOP-10 TOP-100 STEPWISE

Enron 86, 102 89% (563) 88% 81% 78% (130)
Yahoo-IM 16, 173, 388 97% (5000) 99% 98% 93% (1523)
Honeynet 72, 081, 235 82% (5000) 96% 89% 81% (3740)
DBLP 167, 831, 004 97% (5000) 99% 99% 96% (1627)
Phonecall 478, 377, 701 100% (1000) 100% 99% 98% (370)

Table 1: TIMECRUNCH finds temporal structures that compress real graphs. ORIGINAL denotes cost in
bits for encoding each graph with an empty model. Other columns show relative costs for encoding using the
respective heuristic (size of model in parentheses). The lowest description cost is bolded.

 65000

 70000

 75000

 80000

 85000

 0 100 200 300 400 500 600

E
n
c
o
d
in

g
 C

o
s
t
(i
n
 b

it
s
)

Number of Structures in Model

Encoding Cost vs. Model Size

Vanilla encoding
Stepwise encoding

Figure 2: TIMECRUNCH-STEPWISE summarizes Enron using just 78% of ORIGINAL’s bits and 130
structures compared to 89% and 563 structures of TIMECRUNCH-VANILLA by pruning unhelpful struc-
tures from the candidate set.

dynamic graphs and route the attention of practitioners. For this reason, we do not evaluate against other,
compression-oriented methods which prioritize leveraging any correlation within the data to reduce cost and
save bits. Other temporal clustering and community detection approaches which focus only on extracting dense
blocks are also not compared to for similar reasons.

In our evaluation, we consider (a) ORIGINAL and (b) TIMECRUNCH summarization using the proposed
heuristics. In the ORIGINAL approach, the entire adjacency tensor is encoded using the empty model M = ∅.
As the empty model does not describe any part of the graph, all the edges are encoded using L(E−). We use this
as a baseline to evaluate the savings attainable using TIMECRUNCH. For summarization using TIMECRUNCH,
we apply the VANILLA, TOP-10, TOP-100 and STEPWISE model selection heuristics. We note that we ignore
small structures of < 5 nodes for Enron and < 8 nodes for the other, larger datasets.

Table 1 shows the results of our experiments in terms of encoding costs of various summarization techniques
as compared to the ORIGINAL approach. Smaller compression ratios indicate better summaries, with more
structure explained by the respective models. For example, STEPWISE was able to encode the Enron dataset
using just 78% of the bits compared to 89% using VANILLA. In our experiments, we find that the STEPWISE

heuristic produces models with considerably fewer structures than VANILLA, while giving even more concise
graph summaries (Fig. 2). This is because it is highly effective in pruning redundant, overlapping or error-prone
structures from the candidate set C, by evaluating new structures in the context of previously seen ones.

Our results indicate that real-world dynamic graphs are in fact structured, as TIMECRUNCH gives better
encoding cost than ORIGINAL.

83

(a) 8 employees of the Enron legal team
forming a flickering near clique

(b) 10 employees of the Enron legal team
forming a flickering star with the boss as
the hub

(c) 82 users in Yahoo-IM forming a con-
stant star over the observed 4 weeks

(d) 589 honeypot machines were attacked
on Honeynet over 2 weeks, forming a
ranged star

(e) 82 authors forming a ranged near
clique on DBLP, with burgeoning collab-
oration from timesteps 18-20 (2007-2009)

(f) 792 callers in Phonecall forming
a oneshot near bipartite core appearing
strongly on Dec. 31

Figure 3: TIMECRUNCH finds meaningful temporal structures in real graphs. We show the reordered
subgraph adjacency matrices over multiple timesteps. Individual timesteps are outlined in gray, and edges are
plotted with alternating red and blue color for discernibility.

st fc ch

r 9 - -
p 93 7 1
f 3 1 -
c - - -
o 15 1 -

(a) Enron

st fc nc bc nb ch

r 147 43 - 1 45 6
p 59 25 - - 42 3
f 179 55 - 1 62 3
c 185 118 - - 66 -
o 295 129 1 2 56 -

(b) Yahoo-IM

st bc

r 56 -
p 125 1
f 39 -
c - -
o 3512 7

(c) Honeynet

st fc nb ch

r 43 80 - 5
p 19 26 - -
f 1 - - -
c - - - -
o 516 840 97 -

(d) DBLP

st fc nc bc

r 15 - - -
p 68 - - 1
f 88 - - -
c 5 - - -
o 187 4 1 1

(e) Phonecall

Table 2: Frequency of each temporal structure type discovered using TIMECRUNCH-STEPWISE for each dataset.

5.3 Qualitative Analysis

In this section, we discuss qualitative results from applying TIMECRUNCH to the real-world datasets.
Enron: The Enron graph is characteristic of many periodic, ranged and oneshot stars and several periodic and
flickering cliques. Periodicity is reflective of office e-mail communications (e.g. meetings, reminders). Figure 3a
shows an excerpt from one flickering clique which corresponds to the several members of Enron’s legal team,
including Tana Jones, Susan Bailey, Marie Heard and Carol Clair – all lawyers at Enron. Figure 3b shows an
excerpt from a flickering star, corresponding to many of the same members as the flickering clique – the center
of this star was identified as the boss, Tana Jones (Enron’s Senior Legal Specialist). Note that the satellites of the
star oscillate over time. Interestingly, the flickering star and clique extend over most of the observed duration.
Furthermore, several of the oneshot stars corresponds to company-wide emails sent out by key players John
Lavorato (Enron America CEO), Sally Beck (COO) and Kenneth Lay (CEO/Chairman).
Yahoo! IM: The Yahoo-IM graph is composed of many temporal stars and cliques of all types, and several
smaller bipartite cores with just a few members on one side (indicative of friends who share mostly similar

84

friend-groups but are themselves unconnected). We observe several interesting patterns in this data – Fig. 3c
corresponds to a constant star with a hub that communicates with 70 users consistently over 4 weeks. We suspect
that these users are part of a small office network, where the boss uses group messaging to notify employees of
important updates or events – we notice that very few edges of the star are missing each week and the average
degree of the satellites is roughly 4, corresponding to possible communication between employees. Figure 1a
depicts a constant clique between 40 users, with an average density over 55% – we suspect that these may be
spam-bots messaging each other in an effort to appear normal.
Honeynet: Honeynet is a bipartite graph between attacker and honeypot (victim) machines. As such, it is
characterized by temporal stars and bipartite cores. Many of the attacks only span a single day, as indicated
by the presence of 3512 oneshot stars, and no attacks span the entire 32 day duration. Interestingly, 2502 of
these oneshot star attacks (71%) occur on the first and second observed days (Dec. 31 and Jan. 1st) indicating
intentional “new-year” attacks. Figure 3d shows a ranged star, lasting 15 consecutive days and targeting 589
machines for the entire duration of the attack.
DBLP: Agreeing with intuition, DBLP consists of a large number of oneshot temporal structures corresponding
to many single instances of joint publication. However, we also find numerous ranged/periodic stars and cliques
which indicate coauthors publishing in consecutive years or intermittently. Figure 1c shows a ranged clique
spanning from 2007-2012 between 43 coauthors who jointly published each year. The authors are mostly mem-
bers of the NIH NCBI (National Institute of Health National Center for Biotechnology Information) and have
published their work in various biotechnology journals such as Nature, Nucleic Acids Research and Genome
Research. Figure 3e shows another ranged clique from 2005 to 2011, consisting of 83 coauthors who jointly
publish each year, with an especially collaborative 3 years (timesteps 18-20) corresponding to 2007-2009 before
returning to status quo.
Phonecall: The Phonecall dataset is largely comprised of temporal stars and few dense clique and bipartite
structures. Again, we have a large proportion of oneshot stars which occur only at single timesteps. Further
analyzing these results, we find that 111 of the 187 oneshot stars (59%) are found on Dec. 24, 25 and 31st,
corresponding to Christmas Eve/Day and New Year’s Eve holiday greetings. Furthermore, we find many periodic
and flickering stars typically consisting of 50-150 nodes, which may be associated with businesses regularly
contacting their clientele, or public phones which are used consistently by the same individuals. Figure 1b
shows one such periodic star of 111 users over the last week of December, with particularly clear star structure
on Dec. 25th and 31st and other odd-numbered days, accompanied by substantially weaker star structure on
the even-numbered days. Figure 3f shows an oddly well-separated oneshot near-bipartite core which appears on
Dec. 31st, consisting of two roughly equal-sized parts of 402 and 390 callers.

6 Application: Leveraging TIMECRUNCH for Interactive Visualization

One promising application of TIMECRUNCH is for dynamic graph visualization. In this section, we overview
ECOVIZ (for Evolving COmparative network visualization), an interactive web application which enables pair-
wise comparison and temporal analysis of TIMECRUNCH’s dynamic graph summary output. ECOVIZ aims to
(i) adapt TIMECRUNCH to domain-specific requirements and (ii) provide efficient querying and visualization of
its summary structures.
Data: We illustrate ECOVIZ using a connectomics application, which we briefly introduce for context. Con-
nectomics involves the inference of functional brain networks from fMRI data [6]. Regions of the brain are
discretized into “voxels,” between which edges are inferred based on the strength of inter-voxel time series cor-
relations. To obtain sparse brain networks (instead of full cliques), a user-defined threshold is applied to keep
only the strongest correlations. Dynamic graphs of these brain networks (obtained by dividing the time series
into segments, and generating a brain network per segment) reflect how patients’ brain behavior changes over

85

Figure 4: End-to-end pipeline for our ECOVIZ visualization system. Major components include offline
preprocessing, ArangoDB & Flask API back-end, and web interface (JavaScript) front-end.

Figure 5: ECOVIZ-TIME matrix sequence of a periodic full clique (pfc). The colored resting-state modules
show temporal patterns across time steps. Colors correspond to different voxel subnetworks: dorsal attention
(DAN), default mode (DMN), sensorimotor (SMN), ventral attention (VAN), and primary visual (VN).

time. Furthermore, each voxel is associated with a subnetwork (e.g., Default Mode Network) reflecting a type
of brain behavior (e.g., language, visual,sensorimotor).
ECOVIZ Overview: The first step in the ECOVIZ pipeline is to apply summarization to the input dynamic
graph. In order to customize TIMECRUNCH for the connectomics application, we propose an application-
specific candidate subgraph extraction routine: Instead of using the original SlashBurn clustering routine de-
signed for real, large-scale graphs with power-law degree distribution, we use the set of all voxel nodes’ egonets
as candidate subgraphs. These egonets, or induced subgraphs of the central ego node and its neighbors, adjust
the focus of TIMECRUNCH from high-degree hub nodes to labeled nodes from known brain regions. Note that
ECOVIZ can just as well be used for visualization of large social graphs using the original candidate subgraph
generation process. In addition to providing more connectomics-appropriate candidate subgraphs, these egonets
also serve as natural communities suited for the small-worldness of brain networks [18].

Upon completing the TIMECRUNCH summarization process, ECOVIZ must interface the structure output
format (node and time step participation per structure) with connectivity information in the underlying network.
To do so, ECOVIZ receives a list of summary structures, and pairs each structural snapshot with connectivity data
from the original network. This aggregation occurs in real time, and is the backbone of ECOVIZ’s visualization
component. For each temporal snapshot in each summary structure, the application (i) fetches participating node
IDs from TIMECRUNCH results (stored in JSON), (ii) queries the graph database (ArangoDB) for an induced
subgraph of the edges participating the structure, and (iii) makes asynchronous JavaScript requests to visualize
each subgraph. This pipeline, as shown in Figure 4, is the source of two visualization views, ECOVIZ-PAIR and
ECOVIZ-TIME, that support separate modes of data analysis.

The ECOVIZ-PAIR view allows end-users to compare pairs of summaries differing in data source (i.e., active

86

and rest state brain behaviors) or preprocessing method (i.e., threshold value and time interval granularity used
for the dynamic network generation) for the same subject or underlying phenomenon. Meta-summary charts
are also displayed to reveal summary diversity, which may be used to indirectly evaluate graph construction
quality. ECOVIZ-TIME, as seen in Figure 5, shows temporal snapshots of a summary structures via panels
displaying visualized subgraphs or adjacency matrices over time. Nodes can optionally be colored, reflecting
group membership or targeted interest (Figure 5 shows a coloring which reflects voxels’ involvement in various
types of brain behavior), which aids in detection of inter- and intra-community patterns over time.

7 Conclusion

In this work, we tackle the problem of identifying significant and structurally interpretable temporal patterns in
large, dynamic graphs. Specifically, we formalize the problem of finding important and coherent temporal struc-
tures in a graph as minimizing the encoding cost of the graph from a compression standpoint. To this end, we
propose TIMECRUNCH, a fast and effective, incremental technique for building interpretable summaries for dy-
namic graphs which involves generating candidate subgraphs from each static graph, labeling them using static
identifiers, stitching them over multiple timesteps and composing a model using practical approaches. Finally,
we apply TIMECRUNCH on several large, dynamic graphs and find numerous patterns and anomalies which indi-
cate that real-world graphs do in fact exhibit temporal structure. We additionally demo our ECOVIZ framework
which enables interactive and domain-specific dynamic network visualization on top of TIMECRUNCH.

References
[1] DBLP network dataset. konect.uni-koblenz.de/networks/dblp_coauthor, July 2014.

[2] C. C. Aggarwal and P. S. Yu. Online analysis of community evolution in data streams. In SDM, 2005.

[3] C. J. Alpert, A. B. Kahng, and S.-Z. Yao. Spectral partitioning with multiple eigenvectors. Discrete Applied Mathe-
matics, 90(1):3–26, 1999.

[4] M. Araujo, S. Papadimitriou, S. Günnemann, C. Faloutsos, P. Basu, A. Swami, E. E. Papalexakis, and D. Koutra.
Com2: Fast automatic discovery of temporal (“comet”) communities. In PAKDD, pages 271–283. Springer, 2014.

[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of communities in large networks.
Journal of Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008.

[6] E. Bullmore and O. Sporns. Complex brain networks: Graph theoretical analysis of structural and functional systems.
Nature Reviews Neuroscience, 10(3):186–198, 2009.

[7] D. Chakrabarti, S. Papadimitriou, D. S. Modha, and C. Faloutsos. Fully automatic cross-associations. In KDD, pages
79–88. ACM, 2004.

[8] D. J. Cook and L. B. Holder. Substructure discovery using minimum description length and background knowledge.
arXiv preprint cs/9402102, 1994.

[9] T. M. Cover and J. A. Thomas. Elements of information theory. John Wiley & Sons, 2012.

[10] I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering. In Proc. 9th KDD, pages 89–98,
2003.

[11] J. Ferlez, C. Faloutsos, J. Leskovec, D. Mladenic, and M. Grobelnik. Monitoring network evolution using MDL.
ICDE, 2008.

[12] R. Jin, C. Wang, D. Polshakov, S. Parthasarathy, and G. Agrawal. Discovering frequent topological structures from
graph datasets. In KDD, pages 606–611, 2005.

[13] U. Kang and C. Faloutsos. Beyond’caveman communities’: Hubs and spokes for graph compression and mining. In
ICDM, pages 300–309. IEEE, 2011.

87

[14] G. Karypis and V. Kumar. Multilevel k-way hypergraph partitioning. VLSI design, 11(3):285–300, 2000.

[15] J. M. Kleinberg, R. Kumar, P. Raghavan, S. Rajagopalan, and A. S. Tomkins. The web as a graph: measurements,
models, and methods. In Computing and combinatorics, pages 1–17. Springer, 1999.

[16] D. Koutra, U. Kang, J. Vreeken, and C. Faloutsos. Vog: Summarizing and understanding large graphs.

[17] B. Kulis and Y. Guan. Graclus - efficient graph clustering software for normalized cut and ratio association on
undirected graphs, 2008. 2010.

[18] C.-T. Li and S.-D. Lin. Egocentric information abstraction for heterogeneous social networks. In International
Conference on Advances in Social Network Analysis and Mining. IEEE, 2009.

[19] M. Li and P. M. Vitányi. An introduction to Kolmogorov complexity and its applications. Springer Science &
Business Media, 2009.

[20] M. E. Newman and M. Girvan. Finding and evaluating community structure in networks. Physical review E,
69(2):026113, 2004.

[21] E. E. Papalexakis, N. D. Sidiropoulos, and R. Bro. From k-means to higher-way co-clustering: Multilinear decom-
position with sparse latent factors. IEEE TSP, 61(2):493–506, 2013.

[22] J. Pei, D. Jiang, and A. Zhang. On mining cross-graph quasi-cliques. In KDD, pages 228–238, 2005.

[23] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[24] N. Shah, A. Beutel, B. Gallagher, and C. Faloutsos. Spotting suspicious link behavior with fbox: An adversarial
perspective. In ICDM. 2014.

[25] N. Shah, D. Koutra, T. Zou, B. Gallagher, and C. Faloutsos. Timecrunch: Interpretable dynamic graph summariza-
tion. In KDD, pages 1055–1064. ACM, 2015.

[26] J. Shetty and J. Adibi. The enron email dataset database schema and brief statistical report. Inf. sciences inst. TR,
USC, 4, 2004.

[27] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu. Graphscope: parameter-free mining of large time-evolving
graphs. In KDD, pages 687–696. ACM, 2007.

[28] H. Toivonen, F. Zhou, A. Hartikainen, and A. Hinkka. Compression of weighted graphs. In KDD, pages 965–973.
ACM, 2011.

[29] K. S. Xu, M. Kliger, and A. O. Hero III. Tracking communities in dynamic social networks. In SBP, pages 219–226.
Springer, 2011.

[30] Yike Liu and Tara Safavi and Abhilash Dighe and Danai Koutra Graph Summarization: A Survey In CoRR,
abs/1612.04883, 2016.

[31] Saket Navlakha and Rajeev Rastogi and Nisheeth Shrivastava Graph Summarization with Bounded Error In SIG-
MOD, pages 419–432, 2008.

[32] Di Jin and Danai Koutra Exploratory Analysis of Graph Data by Leveraging Domain Knowledge In ICDM, 2017.

[33] Bijaya Adhikari and Yao Zhang and Aditya Bharadwaj and B. Aditya Prakash Condensing Temporal Networks using
Propagation In SDM, pages 417–425, 2017.

[34] Nan Tang and Qing Chen and Prasenjit Mitra Graph Stream Summarization: From Big Bang to Big Crunch In
SIGMOD, pages 1481–1496, 2016.

[35] Lei Shi and Hanghang Tong and Jie Tang and Chuang Lin VEGAS: Visual InfluEnce GrAph Summarization on
Citation Networks In TKDE, pages 3417–3431, 2015.

[36] Yahoo! Webscope. webscope.sandbox.yahoo.com.

88

Billion-Node Graph Challenges

Yanghua Xiao, Bin Shao
Fudan University, Micorosoft Research Asia

shawyh@fudan.edu.cn, binshao@microsoft.com

Abstract

Graph is a universal model in big data era and finds its wide applications in a variety of real world tasks.
The recent emergence of big graphs, especially those with billion nodes, poses great challenges for the
effective management or mining of these big graphs. In general, a distributed computing paradigm is
necessary to overcome the billion-node graph challenges. In this article, we elaborate the challenges in
the management or mining on billon-node graphs in a distributed environment. We also proposed a set
of general principles in the development of effective solutions to handle billion-node graphs according
to our previous experiences to manage billion-node graphs. The article is closed with a brief discussion
of open problems in billion-node graph management.

1 Introduction

Many large graphs have emerged in recent years. The most well known graph is the WWW, which now contains
more than 50 billion web pages and more than one trillion unique URLs [5]. A recent snapshot of the friendship
network of Facebook contains 800 million nodes and over 100 billion links [6]. LinkedData is also going through
exponential growth, and it now consists of 31 billion RDF triples and 504 million RDF links [7]. In biology, the
genome assembly problem has been converted into a problem of constructing, simplifying, and traversing the
de Brujin graph of the read sequence [8]. Each vertex in the de Brujin graph represents a k-mer, and the entire
graph in the worst case contains as many as 4k vertices, where k generally is at least 20.

We are facing challenges at all levels from system infrastructures to programming models for managing and
analyzing large graphs. We argue that a distributed memory system has the potential to meet both the memory
and computation requirements for large graph processing [4]. The reasons are as follows. One distinguishing
characteristic of graphs, as compared to other forms of data, is that data accesses on graphs have no locality: As
we explore a graph, we invoke random, instead of sequential data accesses, no matter how the graph is stored.
To address this problem, a simple solution is to put the graph in the main memory. The size of required memory
space to host the topology of a web-scale graph is usually on the terabyte scale. It is still unlikely that it can
be stored in the memory of a single machine. Thus, a distributed system is necessary. On the other hand, the
computation power required by applications on web-scale graphs are often far beyond the capacity of a single
machine. A distributed system is beneficial as graph analytics is often computation intensive. Clearly, both
memory and computation demand an efficient distributed computing platform for large graphs.

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

89

In this paper, we advocate the use of distributed memory systems as a platform for online graph query
processing and offline graph analytics. However, management of billion-node graphs in a distributed paradigm
is still very challenging. In this article, we will first elaborate the challenges to manage or mine billion-node
graphs in a distributed environment, especially for the distributed memory systems. We further propose a set of
general principle to overcome the billion-node graph challenges according to our previous experience to develop
scalable solutions on billion-node graphs.

2 Challenges

Even given an efficient distributed memory system, the management of billion-node graph is still challenging.
There are two major challenges: scalability and generality. The two challenges are even more remarkable
when the graphs are complicated. However, most real graphs are usually complicated and notoriously known as
complex networks. Next, we will first elaborate the two challenges. Then we discuss the difficulties caused by
the complicated structure of real graphs.

2.1 Billion-node Graph Challenges

Scalability Most current graph algorithms are designed for small, memory-based graphs. Most of memory
based graph algorithms rely one subtile/tricky strategies to produce an optimal or near optimal solution. Consider
the graph partitioning problem. A class of local refinement algorithms, most of which originated from the
Kerninghan-Lin (KL) algorithm [9], bisect a graph into even size partitions. The KL algorithm incrementally
swaps vertices among partitions of a bisection to reduce the edge-cut of the partitioning, until the partitioning
reaches a local minimum. The local refinement algorithms are costly, and are designed for memory-based graphs
only.

There are two general ideas to improve the scalability of the well-turned memory based algorithm for small
graphs. The first is multiple level processing following the coarsening-then-conquer idea [12]. In coarsening-
then-conquer idea, we repeatedly coarsen a graph until it is small enough then run corresponding heavyweight
well-tuned algorithms on the small coarsened graphs. The second is leveraging parallelism. That is distributing
the computation and data onto different machines and use multiple machines to achieve a speedup. However,
both of two ideas face great challenges when processing billion-node graphs.

• First, consider the coarsening-then-conquer idea. We use graph partitioning as an example problem to dis-
cuss the challenge this idea is confronted with when handling billion-node graphs. Multi-level partitioning
algorithms, such as METIS [11] coarsens a large graph by maximal match and apply algorithms such as
KL and FM on the small graph. However, the assumption that (near) optimal partitions on coarsened
graphs implies a good partitioning in the original graph may not be valid for real graphs, when maximal
match is used as the underlying coarsening mechanism. Metis actually spent grate efforts refine the parti-
tioning on coarsened graphs. In general, it is not trivial design an appropriate coarsening mechanisms to
coarsen a graph without sacrificing useful information in the network.

• Second, let’s investigate the challenge to use parallelism when processing billion-node graphs. Both data
parallelism and computation parallelism is not trivial for graph data. To partition a graph into k machines
to minimize the number of cut edges (i..e, communication cost) is a classical NP-hard problem. Thus,
data parallelism is not trivial to be used. To distribute computation over different machines is neither
easy. Because the logics of most graph operations or algorithms is inherently dependent, leading to poor
computation parallelism. Many graph problems are proved to be P-Complete (i.e. hard to parallelize)
problems, such as DFS (depth-first search).

90

Generality It is important to develop a general purpose infrastructure where graphs can be stored, served, and
analyzed, especially for web-scale graphs. Current graph solutions are not built on top of a general-purpose
graph infrastructure. Instead, they are designed exclusively and subtly for the purpose of specific tasks. Many
solutions are sufficiently tuned for the specific problem settings and specific graph data. As a result, the as-
sumptions, principles or strategies that achieve good performance on certain tasks or graphs are not necessarily
effective on other problems or graphs. For example, for the graph partitioning problem, ParMetis [13] can work
on graphs of tens of millions of nodes. However, it requires that the graph is partitioned two-dimensionally,
that is, the adjacency list of a single vertex is divided and stored in multiple machines. This helps reduce the
communication overhead when coarsening a graph. However, such a design may be disruptive to other graph
algorithms. Even if we adopt this approach, the cost of converting data back and forth is often prohibitive for
web-scale graphs.

Then, the question is, is any infrastructure currently available appropriate for web-scale graphs? MapRe-
duce is an effective paradigm for large-scale data processing. However, MapReduce is not the best choice for
graph applications [14, 22]. Besides the fact that it does not support online graph query processing, many graph
algorithms for offline analytics cannot be expressed naturally and intuitively. Instead, they need a total rethink-
ing in the “MapReduce language.” For example, graph exploration, i.e., following links from one vertex to its
neighbors, is implemented by MapReduce iterations. Each iteration requires large amount of disk space and
network I/O, which is exacerbated by the random access pattern of graph algorithms. Furthermore, the irregular
structures of the graph often lead to varying degrees of parallelism over the course of execution, and overall,
parallelism is poorly exploited [14, 22]. Only algorithms such as PageRank, shortest path discovery that can be
implemented in vertex-centric processing and run in a fixed number of iterations can achieve good efficiency.
The Pregel system [15] introduced a vertex-centric framework to support such algorithms. However, graph par-
titioning is still a big challenge. We are not aware of any effective graph partitioning algorithms in MapReduce
or even in the vertex-centric framework.

The generality issue deteriorates when the diversity of graph data and graph computations is taken into
account. There are many kinds of graphs, such as regular graph, planar graphs, ER random graphs [31], small-
world graphs, scale-free graphs [19]. Graph algorithms’ performance may vary a lot on different types of
graphs. On the other hand, there are a variety of graph computations such as path finding, subgraph matching,
community detection, and graph partitioning. Each graph computation itself even deserves dedicated research;
it is nearly impossible to design a system that can support all kinds of graph computations. There are also two
completely different scenarios for graph computations: offline analytics and online query answering. They have
different requirements on the performance and effectiveness of the graphs algorithms or solutions. All these
diversity factors interleave with each other to make the situation even worse.

2.2 Complicated Structures of Real Big Graphs

Most real graphs are notoriously known as complex networks. Complex network means that the real graphs have
a structure that is far away from the regularly simple structure that can be explained by simple network growth
dynamics or modeled by simple models such as regular graphs, or ER networks. Next, we will discuss some of
the complex structural characteristics of real graphs including scale free (power-law degree distribution) [19],
small world small-world and community structure, as well as their influence on the billion-node graph manage-
ment.

• Scale free. Most real graphs have a power law degree distribution, which is known as the scale free
property of real graphs. The power law degree distribution implies that most vertices have small degrees,
while some vertices of large degree do have a great opportunity to exist. These vertices of highest degree
are usually referred to as hubs. There are two implications of power law degree distribution on big graph
management. First, a distributed solution is easily trapped in load unbalance. If the hub vertices are not

91

carefully taken care of, the machines hosting them tend to be the bottleneck of the system since hubs have
more logical connections to other vertices and have a large probability to receive or send message from
or to neighbors. The second implication is that the graph is more heterogeneous in terms of degree when
compared to synthetic graph models such as ER model [31], where most vertices tend to have the average
degree. The heterogeneous degrees make it difficult to design a universal strategy to process vertices of
different degrees.

• Small world. Most real life networks are small-world networks, i.e., the average shortest distance is quite
small. In most social networks, any two persons can reach each other within six steps. It is also shown
that real life networks shrink when they grow in size, that is, their diameters become smaller [20]. As a
result, the graph exploration in a big graph becomes extremely challenging since exploration of six steps
or less will need to traverse almost the entire graph. The traverse of a billion-node graph usually costs
serval hours. As a result, any online query answering that needs to explore the graphs on a billion-node
graph might incur unaffordable cost.

• Community structure. Most real-life complex networks, including the Internet, social networks, and bi-
ological neural networks, contain community structures. That is, the networks can be partitioned into
groups within which connections are dense and between which connections are sparse. The community
structure makes the divide-and-conquer possible. However, partitioning a billion-node graph itself is non-
trivial. And in many cases, the communities are not necessarily of equal size, which makes the balanced
load distributions harder. On the other hand, real graphs usually tend to have an unclear community struc-
ture, that is the boundaries of communities are not clear and two communities in many real cases are hard
to be separated. As a result, although the existence of community structure provides an opportunity, it is
still challenging to leverage the community structure to develop effective solutions.

There are also many other properties of real graphs that pose great challenges to graph management, such
as dynamically evolving, containing heterogeneous information. This article is only a limited discussion of
these challenges. The complicated structures not only poses great challenge for us to manage big graph but
also provide us new opportunities to build effective solutions to manage billion-node graphs if we are well
aware of their existence and fully leverage these properties. Some recent approaches take into consideration the
power-law degree distribution and community structure exhibited by many real life networks to develop effective
distributed storage solutions [3] or reduce communication costs [2] in distributed graph processing.

3 Principles

Next, we present a set of general principles to overcome the billion-node graph challenges according to our
previous experience to manage billion-node graphs. All these principles reflect our choice of different options
in developing solutions. Most of our principles are intuitively correct. However, how to realize them in real
problems and on big graphs is non-trivial. Clearly, it is only a limited set of effective principles. More effective
principles are coming when we have more practices to process billion-node graphs. In the following text, we
use detailed examples to showcase each principle. All the principles are discussed with respect to billion-node
graph challenges.

3.1 Principle 1: Lightweight models are preferred

Billion-node scale demands lightweight models. In many real applications, the real requirement can be satisfied
by problems models of different complexity. In general, when the graph is big, the models of less complexity is
preferred. However, no free lunch in general. The lightweight models usually come with the cost of the sacrifice

92

of effectiveness, which however is usually acceptable when processing billion-node graphs. For most heavy-
weight problems on graphs, there are usually corresponding lightweight models. For example, to answer the
shortest distance query, distance oracle that uses a precomputed data structure to estimate the shortest distance
approximately is usually more lightweight compared to the exact shortest distance query. To find a community
around a vertex, the community search [1] is more lightweight than community mining. To find the landmarks
of a graph, approximate betweenness is more lightweight than the exact betweenness. Next, we use shortest
distance query as an example problem to elaborate this principle.

Distance oracle. Shortest distance queries are one of the fundamental queries on graphs. Exact shortest dis-
tance query answering on billion node graphs either by offline pre-computation or online computation are unaf-
fordable. For the online computation, it takes hours for the Dijkstra algorithm (on weighted graph) or bread-first
search (on unweighted graphs) to find the shortest distance between two nodes [25] in a billion-node graph.
Alternatively, by offline computation we can pre-compute and store the shortest distances for all pairs of nodes,
and use table lookups to answer shortest distance queries at the time of the query. Clearly, this approach requires
quadratic space, which is prohibitive on large graphs.

Our experience shows that rather than exact shortest distance query, distance oracle is a more realistic model
to answer shortest distance queries on billion node graphs. A distance oracle is a pre-computed data structure
that enables us to find the (approximate) shortest distance between any two vertices in constant time. A distance
oracle is feasible for billion node graphs if it satisfies the following criteria:

1. Its pre-computed data structure has a small space complexity. For billion-node graphs, we can only afford
linear, or sub-linear pre-computed data structures.

2. Its construction has a small time complexity. Although distance oracles are created offline, for billion-node
graphs, we cannot afford algorithms of quadratic time complexity.

3. It answers shortest distance queries in constant time.

4. It answers shortest distance queries with high accuracy.

We built a distance oracle by an embedding based approach which will be elaborated in the next principle.
The result shows that our distance oracle is a realistic solution for the online shortest distance query on billion-
node graphs. Our distance oracle takes about 20 to 70 hours to construct distance oracle on billion node graphs.
Since it is built offline, this performance is acceptable. The query response is also quite efficient. It only takes
less than 1 ms to answer the shortest distance query on a billion node graph. The accuracy results show that
for geodesic distances less than 14 (which account for the majority of the shortest paths), our distance oracles
generate distances with absolute error consistently less than 0.3 and relative error consistently less than 8%.

3.2 Principle 2: Approximate solutions are usually acceptable

For billion-node graph, we can not accept the algorithms or solutions with super-linear complexity. In general,
only linear or near-linear (such as O(N logN)) is acceptable for billion-node graphs. However, the efficiency
usually comes with the sacrifice of accuracy. For billion-node graphs, minor sacrifice of accuracy usually is
acceptable. Next, we will show how we use embedding based solution to answer shortest distance queries.

Embedding based distance oracle Graph embedding projects the elements of graphs (such as nodes or edges)
into a geometric space so that the key properties of the original graph is preserved in the geometric space. There
are a lot of graph embedding solutions due to the popularity of deep learning models which usually requires
graphs as input. In this paper, we only consider the embeddings that is critical for big graph management.

93

Specially, we will discuss how to use embedding to build an efficient-yet-effective distance oracle. By this case
study, we show that embedding is a promising transformation operation that can be used as an offline step to
derive the essential information of the graph.

To build a distance oracle, we embed a graph into a geometric space so that shortest distances in the em-
bedded geometric space preserve the shortest distances in the graph. Then, the shortest distance query can be
answered by the coordinate distance. Let c be the dimensionality of the embedded space. The space complexity
of the coordinate based solution is Θ(c · |V |). The query can be answered in Θ(c) time, independent of the graph
size.

Graph embedding is the key to the success of distance oracles of this kind. State-of-the-art approaches [26,
27] first select a set of landmark vertices using certain heuristics (for example, selecting vertices of large de-
grees). For each landmark, BFS is performed to calculate the shortest distance between each landmark and each
vertex. Then, we fix the coordinates of these landmarks using certain global optimization algorithms based on
the accurate distances between landmarks. Finally, for each non-landmark vertex, we compute its coordinates
according to its distances to the landmarks. Finding the coordinates of landmarks and non-landmark vertices is
formulated as an optimization problem with the objective of minimizing the sum of squared errors:√∑

(u,v)

(|c(u)− c(v)| − d(u, v))2 (1)

where c(u) is the coordinates of vertex u. Usually, this kind of optimization problem can be solved by the
simplex downhill method [28]. Given the coordinates of two vertices, their shortest distance can be directly
estimated by the geometric distance between them. The distance calculation can be further improved by certain
low-bound or upper-bound estimation.

Experimental results on real graphs show that embedding based distance oracle can find shortest distance for
an arbitrarily given pair of nodes with the absolute error almost consistently less than 0.5, which is significantly
better than other competitors [2].

3.3 Principle 3: Local information is usually helpful

A graph can be logically or physically organized. In either way, locality of the graph does matters in handling
billion-node graphs. The subgraphs aground a certain vertex is a logically local graph. In distributed graph
computing, the subgraphs induced by the vertices and their adjacent list in a certain machine is a physically
local graph. Fully leveraging the locality of these graphs alleviates us from the complexity of the entire graph.
By focusing on the local graphs, we can build effective and scalable solutions. To illustrate this principle, we
will showcase how to use local graphs in local machines to estimate the betweenness of vertex.

Betweenness computation by Local graph based vertex Betweenness is one of the important measures
of vertex in a graph. It is widely used as the criteria to find important nodes in a graph. Betweenness has
been empirically shown to be the best measure to select landmarks for shortest distance query or shortest path
query [29]. For a vertex v, its betweenness is the fraction of all shortest paths in the graph that pass through v.
Formally, we have:

bc(v) =
∑

s 6=t6=v∈V

σst(v)

σst
(2)

where σst is the number of shortest paths between s and t, and σst(v) is the number of shortest paths in σst that
pass through v.

It is not difficult to see that the exact calculation of betweenness requires to enumerate all pairs of shortest
path. The fastest algorithm needs O(|V ||E|) time to compute exact betweenness [30]. It is prohibitive for a

94

billion-node graph. Thus an approximate betweenness is a more appropriate choice than the exact between-
ness on big graphs. However, it is non-trivial to develop an effective-yet-efficient approximate betweenness
estimation solution in a distributed environment.

We propose an efficient and effective solution to compute approximate betweenness for large graphs dis-
tributed across many machines. A graph is usually distributed over a set of machines by hashing on the vertex
id. The hash function distribute a vertex as well as its adjacent list to a certain machine, which allows to build
a local graph consisting of vertices and their relationship that can be found from the same machine. We show
a local graph in Example 1. Instead of finding the shortest paths in the entire graph, we find the shortest paths
in each machine. Then, we use the shortest paths in each machine to compute the betweenness of vertices on
that machine. We call betweenness computed this way local betweenness. Clearly, the computation does not
incur any network communication. After we find local betweenness for all vertices, we use a single round of
communication to find the top-k vertices that have the highest local betweenness value, and we use these vertices
as landmarks.

Theoretical results show that the shortest distance estimated from local graphs has a upper bound on the
error of the exact shortest distance. This allows us to use the local shortest distance to approximate exact
betweenness. Experimental results on real graphs shows that contrary to the perception that local betweenness
is very inaccurate because each machine only contains a small portion of the entire graph, it turns out to be a
surprisingly good alternative for the exact betweenness measure. Please refer to for the detailed results.

1

5

8

2

4

6

10

3

9

7

Vi

V’i

Figure 1: The local graph, the extended local graph, and the entire graph, from the perspective of machine i.

Example 1 (Local graphs): Consider a graph with 10 vertices, as shown in Figure 1. Assume machine i con-
tains 4 vertices, that is, Vi = {1, 2, 3, 4}. The graph in the innermost circle is the local graph. Machine i also has
information about vertices 5, 6, and 7, as they are in the adjacency lists of vertex 2 and 4. The graph inside the
second circle, except for the edge (6, 7), is the extended local graph. Machine i does not realize the existence
of vertices 8, 9, and 10. Note that edge (6, 7) does not belong to the extended local graph since none of its ends
belongs to Vi.

3.4 Principle 4: Fully leverage the properties of real graphs

We have shown that real big graphs usually exhibit a lot of structural characteristics. These characteristics on
the one hand pose great challenge to build scalable solutions on graphs. On the other hand, if we are fully aware
of these characteristics, we have a great opportunity to boost the performance of the solutions. Next, we show

95

two cases in which we build effective solutions by carefully leveraging the properties of real graphs. The first
is partitioning a billion graph by employing the community structure of real big graphs. The second is reducing
the communication cost for a distributed bread-first-search by employing the power-law degree distribution of
real graphs.

3.4.1 Graph partitioning based on community structure

As we have claimed that a distributed system is necessary to manage a billion-node graph. To deploy a graph
on a distributed system, we need to first divide the graph into multiple partitions, and store each partition in
one machine. How the graph is partitioned may cause significant impact on load balancing and communication.
Graph partitioning problem thus is proposed to distribute a big graph onto different machines. Graph partitioning
problem seeks solution to divide a graph into k parts with approximately identical size so that the edge cut size
or the total communication volume is minimized in a distributed system. The problem of finding an optimal
partition is NP-Complete [21]. As a result, many approximate solutions have been proposed [9, 10], such as
KL [9] and FM [10]. However, these algorithms in general are only effective for small graphs. For a large graph,
a widely adopted approach is to “coarsen” the graph until its size is small enough for KL or FM. The idea is
known as multi-level graph partitioning, and a representative approach is METIS [11].

METIS uses maximal match to coarsen a graph. A maximal match is a maximal set of edges where no two
edges share a common vertex. After a maximal match is found, METIS collapses the two ends of each edge into
one node, and as a result, the graph is “coarsened.”. Maximal match based coarsening however is unaware of the
community structure of real graphs. Thus it is quite possible to break the community structure in the coarsened
graphs. As a result, a maximal match may fail to serve as a good coarsening scheme in graph partitioning. For
example, the coarsened graph shown in Figure 2(b) no longer contains the clear structure of the original graph
shown in Figure 2(a). Thus, partitions on the coarsened graph cannot be optimal for the original graph. METIS
use subtle refinement to compensate for the information loss due to coarsening, leading to extra cost.

a b

dc

e f

hg

i j

lk

(a) A graph

c, f

e, g h, i

b, j

k, l

a, d

(b) Coarsened by maximal
match

C
1

C
2

C
3

(c) Coarsened by LP

Figure 2: An example graph and its coarse-grained graph

A community-structure aware coarsening is proposed in the billion-graph partitioning solution MLP (multiple-
level propagation). MLP uses label propagation (LP) [23, 24] to find the community of a graph and then coarsen
a big graph. Compared to maximal match, LP is more semantic-aware and is able to find the inherent community
structure of the graph, as illustrated in Figure 2(c). Thus, the coarsened graph preserves the community structure
of the original graph. Consequently, the locally closed nodes tend to be partitioned into the same machine. MLP
thus has no necessary for extra refinement, which saves time cost and makes MLP a good choice to partition a
billion-node graph.

96

The experimental results on the synthetic graphs with embedded communities show that MLP can effectively
leverage the community structure of graphs to generate a good partitioning with less memory and time [3]. In
contrast, METIS, which is based on the maximal matching method, is not community-aware when it coarsens a
graph, thus heavily relying on costly refinement in the uncoarsening phase to ensure the solution quality. As a
result, METIS incurs more time and space costs.

3.4.2 Network IO reduction based on the power-law degree distribution

Bread-first search is one of the most important operations on graphs. Billion-node graph management calls for
distribute BFS algorithms. Level-synchronized BFS is one of typical distributed algorithm to compute shortest
distances in a distributed environment. Level-synchronized BFS proceeds level by level starting from a given
vertex. At level l, each machine i finds vertices of distance l to r. Then, we locate their neighboring vertices. If
a neighboring vertex has not been visited before, then it has distance l+ 1 to r. However, since the neighboring
vertices are distributed across all machines, only their host machines (the machines they reside on) know their
current distances to r. Thus, we ask their host machines to update the distance of these neighboring vertices.
Each remote machine i, upon receiving messages from all of other machines, updates their distances to either
l + 1 if they have not been visited before, or keeps their current distances (equal to or less than l) unchanged.
After each level, all the machines synchronize, to ensure that vertices are visited level by level.

In the above naive BFS algorithm, the cost is dominated by sending messages to remote machines to update
vertices’ distances to landmarks. We reduce the communication cost by caching a subset of vertices on each
machine. The opportunity comes when we notice that many distance update requests in level-synchronized BFS
actually are wasteful. Specifically, a distance update request for vertex u is wasteful if the shortest distance of
u to the starting node is already known. Avoiding such wasteful requests can reduce the communication cost.
A straightforward way to do this is to cache each vertex’s current distance on each machine. Then, we only
need to send messages for those vertices whose current distances to r are∞. In this manner, we can reduce the
communication cost. However, for billion node graphs, it is impossible to cache every vertex on every machine.
Then, the problem is: which vertices to cache?

Intuitively, the number of remote messages we saved by caching vertex v is closely related to the degree of
v. The larger the degree of v, the more messages can be saved. Since real networks are usually scale free, that
is, only a small fraction of vertices have large degree. This allows us to save a significant number of network
messages by caching the top-K vertices of highest degree. We use an empirical study [2] to obtain a more
intuitive understanding about the effectiveness to save network IOs by caching the hub vertices. The study uses
the scale-free graphs [32] whose degree follows the distribution as follows:

deg(v) ∝ r(v)R (3)

where r(v) is the degree rank of vertex v, i.e., v is the r(v)-th highest-degree vertex in the graph, and R < 0 is
the rank exponent.

The simulation results are given in Figure 3 with R varying from -0.6 to -0.9 (many real networks’ rank
exponent is in this range) [2]. From the simulation, we can see that by caching a small number of hub vertices,
a significant number of communications can be saved. For example, when R = −0.9, caching 20% of the
top-degree vertices can reduce communications by 80%.

4 Conclusion

In this paper, we elaborate the challenges to mange big graphs of billion nodes in the distributed memory system.
We propose a set of general principles to develop efficient algorithmic solutions to manage billion-node graphs
based on our previous experience to process billion-node graphs. Although these principles are effective, we

97

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60 70 80 90 100

R
a

ti
o
 o

f
to

ta
l
s
u

m
 o

f
d

e
g
re

e
(%

)

Ratio of cached vertices(%)

R=-0.6
R=-0.7
R=-0.8
R=-0.9

Figure 3: Benefits of caching hub vertices on scale free graphs

still have many open problems in billion-node graph management. The most challenging open problem might
be the design of a universal solution to manage big graphs. Currently, we can only develop efficient solutions
that are well tuned for specific tasks or specific graphs. In general, we still have a long way to overcome the
billion-node graph challenges.

Acknowledgement This paper was partially supported by National Key Basic Research Program of China un-
der No.2015CB358800, by the National Natural Science Foundation with No.61472085, U1509213, by Shang-
hai Municipal Science and Technology Commission foundation key project under No.15JC1400900, by Shang-
hai Municipal Science and Technology project under No.16511102102, No.16JC1420401.

References

[1] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang, “Online search of overlapping communities,” in Proceed-
ings of the 2013 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’13.
New York, NY, USA: ACM, 2013, pp. 277–288.

[2] Z. Qi, Y. Xiao, B. Shao, and H. Wang, “Toward a distance oracle for billion-node graphs,” Proc. VLDB
Endow., vol. 7, no. 1, pp. 61–72, Sep. 2013.

[3] L. Wang, Y. Xiao, B. Shao, and H. Wang, “How to partition a billion-node graph,” in IEEE 30th
International Conference on Data Engineering, Chicago, ICDE 2014, IL, USA, March 31 - April 4, 2014,
I. F. Cruz, E. Ferrari, Y. Tao, E. Bertino, and G. Trajcevski, Eds. IEEE, 2014, pp. 568–579.

[4] B. Shao, H. Wang, and Y. Li, “Trinity: A distributed graph engine on a memory cloud,” in Proceedings
of the 2013 ACM SIGMOD International Conference on Management of Data, ser. SIGMOD ’13. New
York, NY, USA: ACM, 2013, pp. 505–516.

[5] http://www.worldwidewebsize.com/.

[6] http://www.facebook.com/press/info.php?statistics.

[7] http://www.w3.org/.

[8] D. R. Zerbino et al., “Velvet: algorithms for de novo short read assembly using de bruijn graphs.” Genome
Research, vol. 18, no. 5, pp. 821–9, 2008.

98

[9] B. Kernighan et al., “An efficient heuristic procedure for partitioning graphs,” Bell Systems Journal, vol. 49,
pp. 291–307, 1972.

[10] C. M. Fiduccia et al., “A linear-time heuristic for improving network partitions,” in DAC ’82.

[11] G. Karypis et al., “Metis - unstructured graph partitioning and sparse matrix ordering system, version 2.0,”
Tech. Rep., 1995.

[12] G. Karypis et al., “Analysis of multilevel graph partitioning,” in Supercomputing ’95.

[13] G. Karypis et al., “A parallel algorithm for multilevel graph partitioning and sparse matrix ordering,” J.
Parallel Distrib. Comput., vol. 48, pp. 71–95, 1998.

[14] A. Lumsdaine et al., “Challenges in parallel graph processing,” Parallel Processing Letters, pp. 5–20, 2007.

[15] G. Malewicz et al., “Pregel: a system for large-scale graph processing,” in SIGMOD ’10.

[16] A. Abou-Rjeili et al., “Multilevel algorithms for partitioning power-law graphs,” in IPDPS ’06.

[17] B.Shao et al., ”The trinity graph engine,” Microsoft Technique Report, MSR-TR-2012-30.

[18] P. Erdős et al., “Graphs with prescribed degrees of vertices (hungarian).” Mat. Lapok, vol. 11, pp. 264–274,
1960.

[19] A.-L. Barabasi et al., “Emergence of scaling in random networks,” vol. 286, pp. 509–512, 1999.

[20] J. Leskovec et al., “Graphs over time: Densification laws, shrinking diameters and possible explanations,”
in KDD ’05.

[21] M. R. Garey et al., “Some simplified np-complete problems,” in STOC ’74.

[22] K. Munagala et al., “I/O-complexity of graph algorithms,” in SODA ’99.

[23] M. J. Barber et al., “Detecting network communities by propagating labels under constraints,” Phys.Rev.E,
vol. 80, p. 026129, 2009.

[24] X. Liu et al., “How does label propagation algorithm work in bipartite networks?” in WI-IAT ’09.

[25] A. Das Sarma, S. Gollapudi, M. Najork, and R. Panigrahy, “A sketch-based distance oracle for web-scale
graphs,” in WSDM ’10.

[26] X. Zhao, A. Sala, H. Zheng, and B. Y. Zhao, “Fast and scalable analysis of massive social graphs,” CoRR,
2011.

[27] X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y. Zhao, “Orion: shortest path estimation for large social
graphs,” in WOSN’10.

[28] J. A. Nelder and R. Mead, “A simplex method for function minimization,” Computer Journal, 1965.

[29] M. Potamias, F. Bonchi, C. Castillo, and A. Gionis, “Fast shortest path distance estimation in large net-
works,” in CIKM ’09.

[30] U. Brandes, “A faster algorithm for betweenness centrality,” Journal of Mathematical Sociology, 2001.

[31] aErdős, P. and Gallai, T., “Graphs with prescribed degrees of vertices (Hungarian).,” Mat. Lapok,1960.

[32] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of the internet topology,” SIG-
COMM Comput. Commun. Rev., 1999.

99

Mining Social Streams: Models and Applications

Karthik Subbian, Charu C. Aggarwal
University of Minnesota, IBM T. J. Watson Research Center

karthik@cs.umn.edu, charu@us.ibm.com

Abstract

Online social networks are rich in terms of structural connections between entities and the content
propagated between them. When this data is available as a continuous stream of interactions on the
social graph, it is referred to as a social stream. Social streams have several challenges: (1) size of
the underlying graph, (2) volume of the interactions, and (3) heterogeneity of the content and type of
interactions between the entities. Mining social streams incorporates discovering patterns and trends
using both structure and interaction data.

In this work, we discuss two important social stream applications: (1) event detection and (2) influ-
ence analysis. Event detection is seen as a social stream clustering problem that can be either supervised
and unsupervised, depending on the availability of labeled data. While influence analysis is an unsu-
pervised problem modeled in a query-based framework. We discuss the key characteristics of these two
problems, their computational difficulties and efficient modeling techniques to address them. Finally, we
highlight several challenges and future opportunities for research in this area.

1 Introduction

The prominence of social network and the rise of cloud- and web-based applications, in the last decade, has
enabled greater availability of streaming social data. The data available in the stream could be a continuous
stream of edges as in the case of new friendships in Facebook or streaming interactions between users such
as stream of tweets in Twitter. There are several challenges in mining and discovering patterns in streaming
social data. Some of them are (a) processing the data in single pass (i.e., one-pass constraint), (b) continuous
maintenance of the model, and (c) its efficient representation in memory through hashing, sampling, or latent
factors. Depending on the availability of supervised knowledge, the learned model can be either supervised or
unsupervised. characteristics of such social streams and their applications.

Social streams consist of content-based interactions between structurally connected entities in the data. Let
us assume that the structure of the social network is denoted by the graph G = (N,A). The node set is denoted
by N and edge set is denoted by A. The concept of a social stream is overlaid on this social network structure
G.

Definition 1 (Social Stream): A social stream is a continuous and temporal sequence of objects S1 . . . Sr . . .,
such that each object Si is a tuple of form (qi, Ri, Ti) where,

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

100

• qi ∈ N is the sender of the message Ti to other nodes.

• Ti corresponds to the content of the interaction.

• Ri ⊆ N is a set of one or more receiver nodes, which correspond to all recipients of the message Ti from node
qi. It is assumed that each edge (qi, r) belongs to the set A, for all r ∈ Ri.

One can also view a social stream as an enriched version of a graph stream, which does not have associated
content [1].

1.1 Social Stream Applications

There are numerous applications that are popular in the context of social streams. We discuss some of them
below and with their key characteristics.

• Event Detection The problem of event detection [3, 22] is to identify the most important set of keywords
that describe a trending event. Such trending events often occur in temporal bursts in specific network
localities. This problem is typically unsupervised where the new events are detected with no prior knowl-
edge. In some cyber-security applications, such as detecting terrorist attacks or civilian unrest, previous
occurrences of such instance can be used to supervise and detect their repeating occurrence.

• Influence Analysis The diffusion of information in a social network via re-sharing is referred to as cas-
cades. Identifying influential users [24] in these information cascades in social streams is a challenging
problem. The streaming nature of the data makes it harder to track the diffusion of information across
longer paths in the network when there are numerous messages propagated. Moreover, to be able to query
and understand the influential users in a time-sensitive manner requires efficient data structures and their
maintenance.

• Link Prediction Discovering links in streaming graph data can be important in a variety of applications
where the graph is changing rapidly. For instance camera-first applications, like Snapchat or Instagram,
where an user visits the application several times a day, recommending the right group or user to follow
is critical to maintain a low churn rate. In such scenarios computing centrality measures, such as Jaccard
coefficient, common neighbors, and Adar-Adamic in streaming graphs can be computationally hard. There
are some recent approaches [30] that tackle this problem using cost-effective graph sketches based on
hashing and sampling techniques.

In this paper, we will discuss the first two applications: (1) Event detection and (2) Influence Analysis. For
event detection [3], we discuss an online clustering algorithm which tracks both content and network structure
efficiently using hashing schemes. In the case of influence analysis [26], we consider a more flexible query-
ing model to query influence scores either using the set of influencers, set of users influenced, the context or
time. Event detection is discussed in both supervised and unsupervised settings. While influence analysis is an
unsupervised problem modeled in a query-based framework.

2 Event Detection

The problem of event detection is closely related to that of topic detection and tracking [5, 4, 7, 29]. This
problem is also closely related to stream clustering, and attempts to determine new topical trends in the text
stream and their significant evolution. The idea is that important and newsworthy events in real life are often
captured in the form of temporal bursts of closely related messages in a network locality. Clearly, messages
which are sent between a tightly knit group of actors may be more indicative of a particular event of social

101

interest, than a set of messages which are more diffusely related from a structural point of view. At the same
time, the content and topics of the documents should also play a strong role in the event detection process. Thus,
both network locality and content of interaction need to be leveraged in a dynamic streaming scenario for the
event detection process [3].

2.1 Social Stream Clustering

We begin with describing an unsupervised technique for event detection. This approach continuously character-
izes the incoming interactions in the form of clusters, and leverages them in order to report events in the social
stream. Formally, the problem of social stream clustering can be defined as follows:

Definition 2 (Social Stream Clustering): A social stream S1 . . . Sr . . . is continuously partitioned into k cur-
rent clusters C1 . . . Ck, such that:

• Each object Si belongs to at most one of the current clusters Cr.

• The objects are assigned to the different clusters with the use of a similarity function which captures both
the content of the interchanged messages, and the dynamic social network structure implied by the different
messages.

As the clusters are created dynamically, they may change considerably over time with the addition of new points
from an evolving stream. Furthermore, in some cases, an incoming object may be significantly different from
the current clusters. In that case, it may be put into a cluster of its own, and one of the current clusters may be
removed from the set C1 . . . Ck. Such an event may be an interesting one, especially if the newly created cluster
starts a new pattern of activity in which more stream objects are subsequently added. Therefore, there are two
kinds of events novel and evolutionary events.

The arrival of a data point Si is said to be a novel event if it is placed as a single point within a newly created
cluster Ci. It is often possible for previously existing clusters to match closely with a sudden burst of objects
related to a particular topic. This sudden burst is characterized by a change in fractional presence of data points
in clusters. Let F (t1, t2, Ci) be the fractional cluster presence of objects arrived during time period (t1, t2) which
belong to cluster Ci normalized by the total number of objects in cluster Ci.

In order to determine evolutionary events, we determine the higher rate at which data points points have
arrived to this cluster in the previous time window of length H , as compared to the event before it. A parameter
α is used in order to measure this evolution rate and t(Ci) is the creation time for cluster Ci. This condition of
evolution rate is formally defined in Eqn. 1. Here it is assumes that the value of tc − 2 · H is larger than the
cluster creation time t(Ci) in order to define the evolution rate in a stable way.

F (tc −H, tc, Ci)
F (t(Ci), tc −H, Ci)

≥ α (1)

2.2 Online Model Maintenance

The design of an effective online clustering algorithm is the key to event detection. There are two main com-
ponents that decide the efficiency of online clustering in social streams: (a) representation of clusters and (b)
efficient similarity computation using text and structural content.

In order to detect a novel or an evolutionary event it is critical to decide which cluster to assign the incoming
social stream object. Hence, the similarity score computed between the incoming object and the clusters, using
structure and content information, plays a crucial role. The structure and content of the incoming object is usually
smaller and easier to represent in-memory. However, the cluster information is extremely large to fit in-memory,
as the cluster may represent all the incoming social stream objects until that time. Hence, we need an efficient

102

summarization of clusters. A typical way to summarize the clusters is using bit vectors or normalized frequency
counters [3, 2]. However, when the size of the vectors become extremely large it needs to be compressed to fit
in-memory for tracking the social stream clusters. In the following we discuss one such efficient summarization
and hash-based similarity computation approach for online model maintenance

2.2.1 Cluster Summarization

Each of the social stream clusters for event detection must maintain both text and network information in their
summaries. The cluster-summary ψi(Ci) of cluster Ci is defined as follows:

• It contains the node-summary, which is a set of nodes Vi = {ji1, ji2 . . . jisi} together with their frequen-
cies ηi = νi1 . . . νisi . The node set Vi is assumed to contain si nodes.

• It contains the content-summary, which is a set of word identifiers Wi = {li1, li2, . . . liui} together with
their corresponding word frequencies Φi = φi1, φi2 . . . φiui . The content-summary Wi is assumed to
contain ui words.

The overall summary is ψi(Ci) = (Vi, ηi,Wi,Φi).

2.2.2 Efficient Similarity Computation

The size of word frequencies |Φi| is generally smaller compared to |ηi|. This is because the size of vocabulary
(in 100 thousands) is often much smaller than the number of users in the social network (usually in billions).
Hence, it requires efficient computation of similarity for the structural part. Note that the content-based similarity
computation SimC(Si, Cr) is straightforward, and is simply the tf-idf based [21] similarity between the content
Ti and Wr.

The structural similarity between the nodes Vr and the nodes Ri ∪ {qi} in the social stream is computed as
follows. Let B(Si) = (b1, b2, . . . bsr) be the bit-vector representation of Ri ∪ {qi}, which has a bit for each
node in Vr, and in the same order as the frequency vector η = (νr1, νr2, . . . νrsr) of Vr. The bit value is 1, if the
corresponding node is included in Ri ∪ {qi} and otherwise it is 0. The structural similarity between the object
Si and the frequency-weighted node set of cluster Cr is defined as follows:

SimS(Si, Cr) =

∑sr
t=1 bt · νrt√

||Ri ∪ {qi}|| · (
∑sr
t=1 νrt)

(2)

Note the use of L1-norm for the node-frequency vector (as opposed to L2-norm) in the denominator, in order to
to penalize the creation of clusters which are too large. This will result in more balanced clusters. Note that the
incoming node set contains both sender and the receivers.

The overall similarity Sim(Si, Cr) can be computed as a linear combination of the structural and content-
based similarity values.

Sim(Si, Cr) = λ · SimS(Si, Cr) + (1− λ) · SimC(Si, Cr) (3)

The parameter λ is the balancing parameter, and lies in the range (0, 1). This parameter is usually specified by
the user.

The numerator of Eqn. 2 is harder to compute as maintaining the vector ηr is expensive. One approach is to
compress the size of ηr and estimate the numerator using count min-hash technique [10]. Consider w pairwise
independent hash function, each of which resulting in a hash table of size 0 to h − 1. Whenever a node is
encountered in qi ∪ Ri it is hashed using all w hash functions and the corresponding counts in each of the hash
tables are incremented. Since there are collisions in hash table there may be an over-estimate of the exact count

103

of nodes in each hashtable. To upper-bound this over-estimate one can use the minimum value across w hash
tables. The numerator of Eqn. 2 can be thus obtained using the sum of minimum counts of hashed incoming
nodes in the social stream object. Let this estimated structural similarity be denoted as EstSimS(Si, Cr). In
Lemma 3 the upper bound of this estimated similarity is shown. We ask the readers to refer to [3] for details of
this upper bound proof and [10] for min-hash count technique.

Lemma 3: If a sketch-table with length h and width w is used, then for some small value ε >
√
|Ri|+ 1/h, the

estimated value of the similarity EstSimS(Si, Cr) is bounded to the following range with probability at least

1−
(√

|Ri|+1

h·ε

)w
:

SimS(Si, Cr) ≤ EstSimS(Si, Cr) ≤ SimS(Si, Cr) + ε. (4)

The similarity of the social stream object to the assigned cluster is often maintained as a distribution. If the
similarity of the newly arrived object is β standard deviations away from the mean, then the object is assigned
to its own cluster, resulting in a novel event (See Section 2.1). When β is too small it results in highly unstable
clusters and when too large it leads to stale clusters. Note that one must maintain the zeroth, first and second
order moments M0, M1 and M2 of the closest similarity values continuously to compute the mean (µ) and
standard deviation (σ). These values can be easily maintained in the streaming scenario, because they can be
additively maintained over the social stream. The mean and standard deviation can be expressed in terms of
these moments as follows:

µ = M1/M0, σ =
√
M2/M0 − (M1/M0)2.

2.3 Supervised Event Detection

In several cyber-security applications users look for suspicious events, based on historical occurrences of these
instances. This is the case of supervised event detection. Here, we assume that we have access to the past
history of the stream in which the event E has been known to have occurred. The event signature of a social
stream is a k-dimensional vector V (E) containing the (average) relative distribution of event-specific stream
objects to clusters. Here k is the number of clusters in the model. Clearly, the event signature provides a useful
characterization of the relative topical distribution during an event of significance.

During a period of mideast unrest (the event E), some clusters are likely to be much more active than others,
and this can be captured in the vector V (E), as long as ground truth is available to do so. The event signatures
can be compared to horizon signatures, which are essentially defined in the same way as the event signatures,
except that they are defined over the more recent time horizon (tc −H, tc) of length H . One can compute the
dot product similarity of the horizon signature to the event signature and raise an alarm if its value is above a
certain threshold. The tradeoff between false positives and false negatives is determined by the threshold.

3 Influence Analysis

The problem of finding influential actors is important in various domains such as viral marketing [6, 27] and
political campaigns. The problem was formally defined by Kempe et al. [16] as an optimization problem over all
possible subsets of nodes with cardinality k. Subsequently, a significant amount of work [16, 18, 9, 8, 14, 13] has
been done on this area. All these approaches are static in the sense that they work with a fixed model of network
structure and edge probabilities. In practice, however, the influence of actors are defined by how their messages
are propagated in the social network over time. Such propagation can only be observed from the underlying
social stream, such as a Twitter feed or the sequence of Facebook activities. Since the problem is dynamic in
nature, using the actual flow of information is becoming more popular [25].

104

A major disadvantage of existing influence analysis methods is that they are not able to query the influencers
in a context-specific fashion. Ideally, one would like to be able to use search terms to determine influencers
that are specific to a given context. For example, the top influencers for the search term “Egypt Unrest” would
be very different from that of the search term “PGA Golf Tour”. The inflexibility of existing methods is, in
part, because the existing methods [16, 18, 9, 8, 14] decouple the problem of influence analysis from learning
content-centric influence probabilities [12].

The influencers in a social stream are time-sensitive and may rapidly evolve [1], as different external events
may lead to changes in the influence patterns over time. For instance, a query such as “winter boots” may gen-
erally have prominent entities associated with shoe stores as the most influential entities, but an (advertisement)
statement from a popular figure in the entertainment industry, such as Justin Bieber, on a specific boot style
may change this ordering. Important events can often dynamically change the influencers, and this can only be
tracked in a time-sensitive and online fashion from the underlying activities in the social stream.

3.1 Influence Querying in Social Streams

Influence function is usually composed of four important components: (a) set of influencers, (b) set of users be-
ing influenced, (c) context of influence (or keywords), and (d) time of influence. One can compute the influence
score as a function of these parameters and use it to query influencers in context-sensitive and time-sensitive
manner using social streams.

Let the influence function I(S1, S2,Q, t) represents the aggregate influence score of actor set S1 on actor set
S2 with respect to contentQ at time t. Most of the queries are resolved by evaluating this score and then ranking
it over various possibilities in the argument. One or more of the arguments in I(S1, S2,Q, t) can be instantiated
to a “*” (don’t care) in order to enable more general queries in which all possibilities for the matching are
considered. For instance, the queries I(“David”, ∗, “Egypt unrest”, t) and I(“John”, ∗, “Egypt unrest”, t) can
be used to compare the total influence of David and John on the topic “Egypt unrest” at time t. Some examples
of useful queries that can be resolved with this approach are as follows:

• For a given query context Q, determining the top-k influencers at time t can be formulated as:

max
X:|X|=k

I(X, ∗,Q, t).

It is also possible to constrain the query to consider a specific subset Y in the second argument, corre-
sponding to the influenced actors. For example, a winter clothing merchant might decide to consider only
those actors whose location profiles correspond to colder regions.

• Determining the top-k influenced actors at time t, for a given query contextQ, can be extremely useful in
context-specific subscriptions and in recommending interesting public content to influenced users.

• Influence queries can also be useful in context-sensitive link recommendation, such as finding the top-k
influencer-influenced pairs, for a given query context Q.

3.2 Information Flow Based Querying

The context information used in the influence function for a query can be a set of hashtags, tokens or keywords.
Such keywords propagated via nodes (or actors) in a social network is considered as an information flow path.
A flow path must also satisfy a valid path in the network structure. For instance, if there is information reshared
from a1 to a2 to a3 and there is no network edge between a2 to a3. Then, the flow is only valid until a1 to a2.
Hence, the valid flow path would be P = 〈a1, a2〉 (not 〈a1, a2, a3〉).

105

100 101 102 103
10−3

10−2

10−1

100

101

102

k

P
(k

;θ
,N

)

w
12797

 (Θ=1.64, R2=0.912)

w
12803

 (Θ=1.87, R2=0.896)

w
12831

 (Θ=1.50, R2=0.956)

w
12861

 (Θ=1.72, R2=0.893)

w
12925

 (Θ=1.37, R2=0.907)

Figure 1: The decayed flow weights in the flow-path trees follow a Zipf distribution. The best-fit estimate of the
Zipf parameter θ and corresponding R2 for few flow-path trees are shown in the legend.

Time-sensitive influence can be computed using an half-life function or exponentially decaying function
exp(−λδt). Note that the decay rate (λ) is application specific as some social networks may have faster turn
around time and hence information propagates quickly. In such cases λ can be set to a higher value to reduce the
amount of influence effect. The time difference between the sender (to) and the final receiver (tc) of the message
in the flow path P is denoted by δt. Then the influence score for one flow path P for carrying a single keyword
Ki at time tc is given by exp(−λ ∗ (tc − to)) where δt = tc − to.

There can be many paths through which many keywords may propagate between a pair of actors. Hence, one
can accumulate all of that influence between actors aj and ak for keywords Ki at time tc as V(aj , ak,Ki, tc).
When there are several keywords in the queryQ, one can compute the atomic influence as the aggregate pairwise
influence across all keywords in the query Q. Formally, it is defined as follows:

Definition 4 (Influence Function): The atomic influence function I(aj , ak,Q, t) for a node aj to influence ak,
is defined as the sum of the aggregate pairwise flows over all keywords Ki ∈ Q in the data: I(aj , ak,Q, t) =∑
Ki∈Q V(aj , ak,Ki, t).

3.3 Efficient Tracking of Influencers

In order for one to compute the influence function I(ai, aj ,Ki, tc) we need to know all the information flow
paths between ai and aj , for single keyword Ki, until time tc. A simple tree based data structure is proposed
in [26] called Flow Path Tree. The notion of this tree data structure is to have one tree for each keyword and as
the social stream objects are encountered the paths are back tracked and the tree data structure is updated. The
back tracking may seem exponential in nature, particularly due to the power law degree distribution of the social
graphs. However, the keyword Ki is not propagated by all nodes and hence back tracking in practice is much
cheaper from a computational perspective.

The main disadvantage of tracking the flow paths using the tree is the size of the tree. The tree grows at an
exponentially faster rate as the volume of the stream increases. So, we need an efficient way to maintain the
in-memory representation of the flow path tree. The influence weights computed in a single flow path tree for
a single keyword Ki using exponentially decaying functions generally follows a skewed Zipf distribution [26].
This is shown in Fig. 1 using a log-log plot. This observation implies that most of the tree weight is generated
from a very few important flow paths in the tree. Using this observation, one can trim down the tree by a fraction
of 1 − α, where α is the fraction of nodes retained in the tree after trimming. Also, only leaves of the tree

106

are trimmed when the number of nodes in the tree reaches a maximum threshold, say N . Then the fraction of
weights that remain in the tree can be lower-bounded using Theorem 5. We request the readers to refer to [26]
for the proof of Theorem 5.

Theorem 5: Let the flow weights on the N nodes in the tree be distributed according to the Zipf distribution
1/iθ for θ ≥ 1. Then, the total fraction F (N,α) of the flow in the top n = α · N nodes of the tree is at least
equal to:

F (N,α) ≥ log(n)/log(N) = 1− log(1/α)/log(N). (5)

The skew helps significantly in retaining the vast majority of the heavy flows. For example, in a flow path
tree with 100, 000 total flow weight, discarding half the nodes (α = 0.5) would result in total flow weight
reduction of only 1 − log(50000)/log(100000) = 0.06. Thus, the vast majority of the heavy flows (i.e. 94%)
are retained, which are the ones most relevant for the influence analysis process. This suggests that the pruning
process can be used to significantly reduce the complexity of the flow-path tree, while retaining most of the
information needed for the influence analysis task.

3.4 Relationship with Katz Measure

The atomic influence function is closely related to the Katz measure [20]. The Katz measure is defined in
terms of the weighted sum of the number of all possible paths between a pair of nodes and the weight decays
exponentially with the length of the underlying path. Specifically, if Pij be the set of paths between nodes ai
and aj , then the Katz measure K(ai, aj) is defined as follows:

K(ai, aj) =
∑
P∈Pij

γ|P | (6)

Here γ is the discount factor on the path length, which is analogous to the flow-based temporal decay factor.
Thus, flow-based approach computes exponentially decayed flow weights across different paths, as a more
dynamic, time- and content-sensitive way of measuring the importance of nodes. In an indirect sense, this way
of computing node importance can be considered a flow-based analogue to the Katz measure in static networks.
Because the Katz measure has been shown to be effective for link recommendation in static networks [20], it
lends greater credence to its use in the flow-based streaming scenario. Of course, the Katz measure is used
rarely in static networks because of the complexity of enumerating over a large number of possible paths. The
important point to understand is that the flow-based measure significantly changes in the importance of different
paths in the update process, and can also be more efficiently computed in the streaming scenario, such as using
the pruning technique discussed in Section 3.3.

4 Future Work and Conclusions

The area of social stream research lies in the intersection of big data, graph mining, and social network analysis.
One of the important characteristics of social streams is the availability of high velocity streaming data that
includes both structural and content information. Moreover, the sheer volume and the heterogeneity of the
underlying social interactions makes the problem much more challenging. For example, a social network could
have billions of nodes, trillions of edges, trillion interactions per day and a wide variety of such interactions (e.g.
like, share, and comment).

There are numerous social network algorithms that are yet to be developed for various social streaming
applications. Community detection falls in the realm of social stream clustering. However, incorporating struc-
ture, content and time aspects simultaneously and being able to query the nearest neighbors within a cluster
or obtaining cluster assignment probabilities in near real-time is a challenging problem. This is different from

107

traditional clustering in graph streams as it encompasses content and meta information about nodes and edges.
Link prediction is similarly another interesting problem, which has been solved in static and dynamic scenarios.
However, when given content information propagated by nodes and their meta data, finding relevant links for
recommendation based on recent content interactions is quite challenging. Again this problem is very different
from link prediction in heterogeneous graphs [11] and streaming link prediction [30], as it does not take into
account the content and time of propagation simultaneously.

In several social and online applications users create several implicit signals for analysis, based on their
online interaction. For example, listening habits in Last.Fm or Pandora.com, along with the social relation-
ships, can be used to understand an users musical interests and make right recommendations. There are several
papers [28, 15, 23, 19, 17] that discuss about making recommendations incorporating the temporal dynamics.
However, their models cannot be updated in real-time particularly for such high volume and velocity social data.

The problem of mining social streams is very important to discover real-time trends, using both content and
structural information with a wide variety of practical applications. We discussed two important applications:
event detection and influence analysis. There are other interesting social network problems that are less studied
in the context of social streams, such as link prediction and recommendation. These areas will grow significantly
in the next few years with the advent of scalable and distributed infrastructure, availability of multiple social
streams, and need for real-time answers.

References

[1] C. Aggarwal and K. Subbian. Evolutionary network analysis: A survey. ACM Computing Surveys (CSUR),
47(1):10, 2014.

[2] C. C. Aggarwal. An introduction to social network data analytics. Social network data analytics, pages
1–15, 2011.

[3] C. C. Aggarwal and K. Subbian. Event detection in social streams. In SDM, pages 624–635. SIAM, 2012.

[4] J. Allan, V. Lavrenko, and H. Jin. First story detection in tdt is hard. In CIKM, pages 374–381. ACM,
2000.

[5] J. Allan, R. Papka, and V. Lavrenko. On-line new event detection and tracking. In SIGIR, pages 37–45.
ACM, 1998.

[6] S. Bhagat, A. Goyal, and L. V. Lakshmanan. Maximizing product adoption in social networks. In WSDM,
pages 603–612, 2012.

[7] T. Brants, F. Chen, and A. Farahat. A system for new event detection. In SIGIR, pages 330–337. ACM,
2003.

[8] W. Chen, C. Wang, and Y. Wang. Scalable influence maximization for prevalent viral marketing in large-
scale social networks. In KDD, pages 1029–1038. ACM, 2010.

[9] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In KDD, pages
199–208. ACM, 2009.

[10] G. Cormode and S. Muthukrishnan. An improved data stream summary: the count-min sketch and its
applications. Journal of Algorithms, 55(1):58–75, 2005.

[11] Y. Dong, J. Tang, S. Wu, J. Tian, N. V. Chawla, J. Rao, and H. Cao. Link prediction and recommendation
across heterogeneous social networks. In ICDM, pages 181–190. IEEE, 2012.

[12] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Learning influence probabilities in social networks. In WSDM,
pages 241–250. ACM, 2010.

108

[13] A. Goyal, F. Bonchi, and L. V. Lakshmanan. A data-based approach to social influence maximization. In
VLDB, pages 73–84, 2011.

[14] A. Goyal, W. Lu, and L. V. Lakshmanan. Simpath: An efficient algorithm for influence maximization
under the linear threshold model. In ICDM, pages 211–220, 2011.

[15] K. Kapoor, K. Subbian, J. Srivastava, and P. Schrater. Just in time recommendations: Modeling the dy-
namics of boredom in activity streams. In WSDM, pages 233–242. ACM, 2015.

[16] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing the spread of influence through a social network. In
KDD, pages 137–146. ACM, 2003.

[17] Y. Koren. Collaborative filtering with temporal dynamics. In Communications of the ACM, 53(4):89–97.
ACM, 2010.

[18] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak
detection in networks. In KDD, pages 420–429. ACM, 2007.

[19] X. Li, J. M. Barajas, and Y. Ding. Collaborative filtering on streaming data with interest-drifting. Intelligent
Data Analysis, 11(1):75–87, 2007.

[20] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. Journal of the Asso-
ciation for Information Science and Technology, 58(7):1019–1031, 2007.

[21] G. Salton and M. J. McGill. Introduction to modern information retrieval. 1986.

[22] H. Sayyadi, M. Hurst, and A. Maykov. Event detection and tracking in social streams. In Icwsm, 2009.

[23] K. Subbian, C. Aggarwal, and K. Hegde. Recommendations for streaming data. In CIKM, pages 2185–
2190. ACM, 2016.

[24] K. Subbian, C. Aggarwal, and J. Srivastava. Mining influencers using information flows in social streams.
TKDD, 10(3):26, ACM, 2016.

[25] K. Subbian, C. Aggarwal, and J. Srivastava. Content-centric flow mining for influence analysis in social
streams. In CIKM, pages 841–846. ACM, 2013.

[26] K. Subbian, C. C. Aggarwal, and J. Srivastava. Querying and tracking influencers in social streams. In
WSDM, pages 493–502. ACM, 2016.

[27] K. Subbian and P. Melville. Supervised rank aggregation for predicting influencers in twitter. In SocialCom,
pages 661–665. IEEE, 2011.

[28] J. Z. Sun, K. R. Varshney, and K. Subbian. Dynamic matrix factorization: A state space approach. In
ICASSP, pages 1897–1900. IEEE, 2012.

[29] Y. Yang, J. Zhang, J. Carbonell, and C. Jin. Topic-conditioned novelty detection. In KDD, pages 688–693.
ACM, 2002.

[30] P. Zhao, C. Aggarwal, and G. He. Link prediction in graph streams. In ICDE, pages 553–564. IEEE, 2016.

109

33rd IEEE International Conference on Data Engineering 2017
April 19-22, 2017, San Diego, CA

http://icde2017.sdsc.edu/
http://twitter.com/icdeconf #icde17

Call for Participation
The annual ICDE conference addresses research issues in designing, building, managing, and
evaluating advanced data systems and applications. It is a leading forum for researchers,
practitioners, developers, and users to explore cutting-edge ideas and to exchange
techniques, tools, and experiences.
Venue: ICDE 2017 will be held at the Hilton San Diego Resort and Spa
Conference Events:
• Research, industry and application papers
• ICDE and TKDE posters
• Keynote talks by Volker Markl, Laura Haas, and Pavel Pevzner
• Ph.D. Symposium with keynote speaker Magda Balazinska
• Panels on (i) Data Science Education; (ii) Small Data; and (iii) Doing a Good Ph.D.
• Tutorials on (i) Web-scale blocking, iterative, and progressive entity resolution; (ii) Bringing

semantics to spatiotemporal data mining; (iii) Community search over big graphs; (iv) The
challenges of global-scale data management; (v) Handling uncertainty in geospatial data.

• Topic-based demo sessions on (i) Cloud, stream, query processing, and provenance; (ii)
Graph analytics, social networks, and machine learning; and (iii) Applications, data
visualization, text analytics, and integration.

General Chairs:
Chaitanya Baru (UC San Diego, USA)

Bhavani Thuraisingham (UT Dallas, USA

PC Chairs:
Yannis Papakonstantinou(UC San Diego)
Yanlei Diao (Ecole Polytechnique, France)

Affiliated Workshops:
• HDM M 2017: 2nd International Workshop on Health Data Management and Mining
• DESW eb 2017: 8th International Workshop on Data Engineering Meets the Semantic Web
• RAM M M Nets 2017: Workshop on Real-time Analytics in Multi-latency, Multy-party, Metro-scale Networks
• Active'17 Workshop on Data Management on Virtualized Active Systems and Emerging Hardware
• HardDB 2017 Workshop on Big Data Management on Emerging Hardware
• W DSE: Women in Data Science & Engineering Workshop

110

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

