
Crail: A High-Performance I/O Architecture for Distributed Data Processing

Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
Radu Stoica, Bernard Metzler, Nikolas Ioannou, Ioannis Koltsidas

IBM Research Zurich

Abstract

Effectively leveraging fast networking and storage hardware for distributed data processing remains
challenging. Often the hardware integration takes place too low in the stack, and as a result performance
advantages are overshadowed by higher layer software overheads. Moreover, new opportunities for
fundamental architectural changes within the data processing layer are not being explored. Crail is a
user-level I/O architecture for the Apache data processing ecosystem, designed from the ground up for
high-performance networking and storage hardware. With Crail, hardware performance advantages
become visible at the application level and translate into workload runtime improvements. In this paper,
we discuss the basic concepts of Crail and show how Crail impacts workloads in Spark, like sorting or
SQL.

1 Introduction

In recent years, we have seen major performance improvements in both networking and storage hardware. Net-
work interconnects and fabrics have evolved from 1-10Gbps bandwidth ten years ago to 100Gbps today. Storage
hardware has undergone similar improvements while moving from spinning disks to non-volatile memories such
as flash or Phase Change Memory (PCM). These hardware changes have also brought up the need for new I/O
interfaces. Traditional operating system abstractions like sockets for networking or the block device for storage
were shown to be insufficient to make the rich semantics and high performance of the hardware available to ap-
plications. Instead, new interfaces such as RDMA1 or NVMe have emerged. These interfaces enable user-level
hardware access and asynchronous I/O and allow applications to take full advantage of the high-performance
hardware. Table 1 compares the performance of some of the new I/O technologies with the performance of
legacy software/hardware interfaces. As can be observed, the performance improvements are in the range of
100-1000x.

Meanwhile, systems for large scale data processing are confronted with increasing demands for better per-
formance while applications are becoming more complex and data sizes keep growing. Here, the new I/O
technologies present opportunities for data processing systems to further reduce the response times of analytics
queries on large data sets. In particular, performance critical I/O operations, such as data shuffling or sharing
of data between jobs or tasks, should benefit from faster I/O. Today, examples of applications that are capable

Copyright 2017 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1Commodity RDMA network interconnects have been around since early 2000 and have their roots in user-level I/O from the 90s.
Only recently they have gained acceptance in the broader data center community.

38

RTT Throughput
(us) (MBit/s)

1GbE / sockets 82 942
100GbE / verbs 2.4 92,560

Latency (us) Throughput (MB/s)
read write read write

Disk / Block device 5,978 5,442 136.8 135.3
NVMe Flash / SPDK 64.2 9.18 2,657 1,078

(a) (b)

Table 1: I/O performance legacy vs. state-of-the-art for (a) networking (b) storage.

 0

 20

 40

 60

 80

 100

1GbE 10GbE 100GbE

T
h
ro

u
g
h
p
u
t

(%
 o

f
lin

e
sp

ee
d
)

read
cached

write

 0

 20

 40

 60

 80

 100

1GbE 10GbE 100GbE

T
h
ro

u
g
h
p
u
t

(%
 o

f
lin

e
sp

ee
d
)

GroupBy

Figure 1: HDFS remote read performance (left) and Spark groupBy() performance (right). HDFS deployment
is on NVMe SSDs, Spark deployment is completely in memory.

of leveraging fast I/O hardware can be found in supercomputing, but also more recently in several academic
efforts [11, 3, 12]. These applications, however, are written from scratch to serve one particular workload.
Unfortunately, properly leveraging high-performance networking and storage hardware in general purpose data
processing frameworks, such as Spark, remains challenging for a number of reasons:

Deep Layering: Often hardware integration takes place too low in the stack, and as a result performance
advantages are overshadowed by higher layer software overheads. This problem gets amplified with today’s
prominent frameworks such as Spark, HDFS, Flink, etc., due to the heavy layering these systems employ. Be-
sides involving the host operating system for each I/O operation, data also needs to cross the JVM boundaries
and the specific I/O subsystems of the frameworks. The long code path from the application down to the hard-
ware leads to unnecessary data copies, context switches, cache pollution, etc., and prevents applications from
taking full advantage of the hardware capabilities. For instance, writing out an object to the network during a
Spark shuffle operation requires no less than 5 memory copies. The effect of those overheads at the application
level is illustrated in Figure 1, where we show examples of the I/O performance in HDFS and Spark for different
network technologies. As can be observed, while both systems make good use of the 1 and 10Gbps network, the
network is underutilized in the 100Gbps configuration as the software becomes the bottleneck. A more detailed
analysis of software related I/O bottlenecks in data processing workloads can be found in [26].

Data locality: The improved performance of modern networking and storage hardware opens the door to
rethinking the interplay of I/O and compute in a distributed data processing system. For instance, low latency
remote data access enables schedulers to relax the requirements on data locality and in turn make better use
of compute resources. At the extreme, storage resources can be completely disaggregated which is more cost
effective and simplifies maintenance. The challenge is in the first place to spot what opportunities the hardware
provides, and then to exploit the opportunities in a way that is non-intrusive and still compatible with the general
architecture of a given data processing framework.

Legacy interfaces: With modern networking and storage hardware, I/O operations are becoming more com-
plex. Not only are there more options to store data (disk, flash, memory, disaggregated storage, etc.) but also

39

Crail Store

Shuffle Broadcast /Tmp

Spark / Flink / Storm /...

zero
copy

DRAMFlash

High-Performance RDMA network

GPU

Figure 2: Crail I/O architecture overview.

it is getting increasingly important to use the storage resources efficiently. For instance, some newer technolo-
gies such as PCM permit data to be accessed at a byte granularity. Mediating storage access through a block
device interface is a bad fit in such a case. Moreover, as the traditional compute layer is extended with GPUs
and FPGAs, new interfaces to integrate accelerator memories into the distributed storage hierarchy are needed.
Integrating such a diverse set of hardware technologies in the most efficient way, while still keeping the data
processing system general enough, is challenging.

2 Crail I/O

In this paper, we present Crail, an open source user-level I/O architecture for distributed data processing. Crail
is designed from the ground up for high-performance storage and networking hardware and provides a compre-
hensive solution to the above challenges. The design of Crail was driven by five main goals:

1. Bare-metal performance: enable I/O operations in distributed systems to take full advantage of modern
networking and storage hardware.

2. Practical: integrate with popular data processing systems (e.g., Spark, Flink, etc.) in a form that is non-
intrusive and easy to consume.

3. Extensible: allow future hardware technologies to be integrated at a later point in time in a modular
fashion.

4. Storage tiering: provide efficient storage tiering that builds upon the new data localities of high-performance
clusters.

5. Disaggregation: provide explicit support for resource disaggregation.

Crail is specifically targeting I/O operations on temporary data that require the highest possible performance.
Examples of such operations in data processing systems are data shuffling, broadcasting of data within jobs, or
general data sharing across jobs. Crail is not designed to provide the high availability and fault tolerance required
by durable storage systems.

2.1 Overview

The backbone of the Crail I/O architecture is the Crail store, a high-performance multi-tiered data store for
temporary data in analytics workloads. Data processing frameworks and applications may directly interact with

40

“tmp”

file

High-Performance RDMA network

Disaggregated
Flash Flash blocks

Memory blocks

“/”

“shuffle”

Figure 3: Crail file system namespace

Crail store for fast storage of working-set data, but more commonly the interaction takes place through one of
the Crail modules (see Figure 1).

Crail modules implement high-level I/O operations, typically tailored to a particular data processing frame-
work. For instance, the Crail Spark module implements various I/O intensive Spark operations such as shuffle,
broadcast, etc. The Crail HDFS module provides a standard HDFS interface that can be used by different frame-
works or applications to store performance-critical temporary data. Both modules can be used transparently with
no need to recompile either the application or the data processing framework.

Crail modules are thin layers on top of Crail store. Consequently, the modules inherit the full benefits of
Crail in terms of user-level I/O, performance and storage tiering. Due to the modules being so lightweight,
implementing new modules for a particular data processing framework or a specific I/O operation requires only
a moderate amount of work.

2.2 Crail Store

For the rest of the paper, if the context permits and to simplify the reading, we refer to Crail store simply as Crail.
Crail implements a file system namespace across a cluster of RDMA interconnected storage resources such as
DRAM or flash. Storage resources may be co-located with the compute nodes of the cluster, or disagreggated
inside the data center, or a mix of both. Files in the Crail namespace consist of arrays of blocks distributed
across storage resources in the cluster as shown in Figure 3. Crail groups storage resources into different tiers.
A storage tier is defined by the storage media used to store the data, and the network protocol used to access the
data over the network. In the current implementation, Crail offers three storage tiers:

1. DRAM: The DRAM tier uses one-sided RDMA operations (read/write) to access remote DRAM. With
one-sided operations, the storage nodes remain completely passive and, thus, are not consuming any
CPU cycles for I/O. Using one-sided operations is also effective for reading or writing subranges of
storage blocks, as only the relevant data is shipped over the network rather than shipping the entire block.
The DRAM tier provides the lowest latency and highest throughput among all the storage tiers. It is
implemented using DiSNI 2, an open-source user-level networking and storage stack for the JVM [25].

2. Shared Volume: The shared volume tier supports flash access through block storage protocols (e.g., SCSI
RDMA protocol, iSCSI, etc.). This tier is best used to integrate disaggregated flash.

3. NVMeF: The NVMeF storage tier exports NVMe flash accessed over RDMA fabrics. This storage tier
provides ultra-low latency access to both direct attached and disaggregated flash.

2http://github.com/zrlio/disni

41

DRAM

3DXP

Flash

DRAM

3DXP

Flash

DRAM

3DXP

Flash

T
ier fill o rder

Node 1 Node 2 Node 3

Tier fill order

DRAM

3DXP

Flash

DRAM

3DXP

Flash

DRAM

3DXP

Flash

Tier fill order

Node 1 Node 2 Node 3

T
ier fill o rder

Figure 4: Vertical tiering (left) vs horizontal tiering (right).

Crail provides an extendable storage interface where new storage tiers can be plugged in transparently with-
out requiring changes to the file system core. Apart from supporting traditional storage tiers, we are working on
integrating accelerator memory into the Crail storage hierarchy. This will allow, for instance, GPU memory to
become accessible via Crail from anywhere in the cluster.

2.3 Crail Store Interface

Crail exposes a hierarchical file system API comprising functions to create, remove, read and write files and
directories. Besides those standard operations, much of the Crail API is designed to empower the higher level
Crail modules with the right semantics to best leverage the networking and storage hardware for their data
processing operations (e.g., shuffle, broadcast, etc.). We discuss a few specific examples below:

Asynchronous I/O: All file read/write APIs in Crail are fully asynchronous which facilitates interleaving
of computation and I/O during data processing. Also, the asynchronous APIs perfectly match with the asyn-
chronous hardware interfaces in RDMA or NVMeF, therefore allowing for a very efficient implementation.

Storage tiering: Crail provides fine-grained control over how storage blocks are allocated during file writ-
ing. By specifying location affinities, applications can indicate a preference as to which physical storage node or
set of nodes should be used to hold the data of a file. Similarly, by specifying storage affinities, applications can
indicate which storage tier should preferably be used for a particular file. In the absence of a dedicated storage
affinity request, Crail uses horizontal tiering where higher performing storage resources are filled up across the
cluster prior to lower performing tiers being used. Horizontal tiering stands in contrast to traditional vertical
tiering where local resources are always preferred over remote ones. With low latency RDMA networks, remote
data access has become very effective, and as a result, horizontal tiering often leads to a better usage of the
storage resources. Figure 4 illustrates both approaches in a configuration with DRAM, 3DXP and flash.

File types: Crail supports three different file types: regular data files, directories and multifiles. Regular
data files are append-and-overwrite with only a single-writer permitted per file at a given time. Append-and-
overwrite means that – aside from appending data to the file – overwriting existing content of a file is also
permitted. Directories in Crail are just regular files containing fixed length directory records. The advantage
is that directory enumeration becomes just a standard file read operation which makes enumeration fast and
scalable with regard to the number of directory entries. Multifiles are files that can be written concurrently.
Internally, a multifile very much resembles a flat directory. Multiple concurrent substreams on a multifile are
backed with separate files inside the directory. The multistream API allows applications to read the collective
data as if it were a single file. Later in the paper, we show how multistreams are used during mapreduce shuffle
operations.

I/O buffers: To allow zero-copy data placement from the network interface to the application buffer (as
implemented in RDMA), the corresponding memory has to be pinned and registered with the network interface.
Crail exports functions to allocate dedicated I/O buffers from a reusable pool – memory that is pinned and

42

MapCores Crail Reduce

Task File Directory Sorted key range

Figure 5: The Crail shuffle module.

registered with the hardware to enable bypassing of both the OS and the JVM during network transfers.

2.4 Crail Modules

Crail offers two independent modules that interface directly with the data processing layer: (a) a Spark module
that contains Spark specific implementations for shuffle and broadcast operations, and (b) an HDFS adaptor
that allows many of the prominent data processing frameworks to use Crail seamlessly for storing performance
critical temporary data. We discuss the different components briefly as follows.

Shuffle: The shuffle engine maps key ranges to directories in Crail. Each map task, while partitioning the
data, appends key/value pairs to individual files in the corresponding directories. Tasks running on the same
core within the cluster append to the same files, which reduces storage fragmentation (see Figure 5). Individual
shuffle files are served using horizontal tiering. In most cases that means the files fill up the memory tier as long
as there is some DRAM available in the cluster, after which they extend to the flash tier. The shuffle engine
ensures such a policy using the Crail location affinity API. Note that the shuffle engine is completely zero-copy,
as it transfers data directly from the I/O memory of the mappers to the I/O memory of the reducers.

Broadcast: The Crail-based broadcast plugin for Spark stores broadcast variables in Crail files. In contrast to
the shuffle engine, broadcast is implemented without location affinity, which makes sure the underlying blocks
of the Crail files are distributed across the cluster, leading to a better load balancing when reading broadcast
variables.

HDFS adaptor: The HDFS adaptor for Crail implements a straightforward mapping between the syn-
chronous HDFS function calls and the corresponding asynchronous operations in Crail. Functionality in Crail
that is not exposed in the HDFS API, such as storage affinities, can be configured through admin tools on a
per-directory basis.

3 Evaluation

A detailed evaluation of the individual components in the Crail I/O architecture (Crail store, individual modules)
is beyond the scope of this paper. Instead, we demonstrate the benefits of Crail on two specific workloads,
sorting and SQL, both evaluated using Spark. We used a cluster with the following specification: 2xPower8
10-core @2.9Ghz, 512 GB DDR4 DRAM, 4x Huawei ES3600P V3 1.2TB NVMe SSD, with 100Gbps Ethernet
Mellanox ConnectX-4 EN (RoCE). Nodes in the cluster run Ubuntu 16.04 with Linux kernel version 4.4.0-31.

43

 0

 100

 200

 300

 400

 500

 600

Spark Spark/Crail
R

u
n
ti

m
e
 (

se
cs

)

reduce
map

Figure 6: Performance comparison for Spark sorting, vanilla vs. Crail

3.1 Sorting

Sorting large data sets efficiently on a cluster is particularly interesting from a network perspective, as most
of the input data will have to cross the network at least once. Here, we explore the sorting performance of
Spark/Crail on a 128-node slice of the cluster. We compare vanilla Spark with Spark/Crail on a 12.8 TB dataset
(Spark version 2.0.2). In both cases, plain HDFS on NVMe SSDs is used for input and output, and the shuffle
engine (including networking, serialization and sorting) is exchanged in the Spark/Crail configuration.

Anatomy of Spark Sorting: A Spark sorting job consists of two phases. The first phase is a mapping or
classification phase - where individual workers read their part of the key-value (KV) input data and classify the
KV pairs based on their keys. This phase involves only very little networking as most of the workers run locally
on the nodes that host the HDFS data blocks. During the second so called reduce phase, each worker collects
all KV pairs for a particular key range from all the workers, de-serializes the data and sorts the resulting objects.
This pipeline runs on all cores in multiple waves of tasks on all the compute nodes in the cluster.

The main difference between the Crail shuffler and the Spark built-in shuffler lies in the way data from the
network is processed in a reduce task. The Spark shuffler is based on TCP sockets; thus, many CPU instructions
are necessary to bring the data from the networking interface to the buffer inside Spark. In contrast, the Crail
shuffler shares shuffle data through the Crail file system, and therefore data is transferred directly via DMA from
the network interface to the Spark shuffle buffer within the JVM.

Performance: Figure 6 shows the overall performance of Spark/Crail vs vanilla Spark. With a cluster size of
128 nodes, each node sorts 100 GB of data - if the data distribution is uniform. As can be seen, using the Crail
shuffler, the total job runtime is reduced by a factor of 6. Most of the gains come from the reduce side, which is
where the networking takes place. The Crail shuffler – due to its zero-copy data ingestion – avoids data copies,
system calls, kernel context switches and generally reduces the CPU involvement during the network phase. As
a result, data can be fetched and processed much faster using the Crail shuffler than with the built-in shuffler. In
Figure 7 we show the data rate at which the different reduce tasks fetch data from the network. Each point in the
figure corresponds to one reduce task. In our configuration, we run 3 Spark executors per node and 5 Spark cores
per executor. Thus, 1920 reduce tasks are running concurrently (out of 6400 reduce tasks in total), generating a
cluster-wide all-to-all traffic of about 70Gbps per node during that phase. In contrast, the peak network usage
we observed for vanilla Spark during the run was around 10Gbps. Also note that Spark/Crail is sorting 12.8 TB
of data in 98 seconds, which calculates to a sorting rate of 3.13 GB/min/core. This is only about 28% slower
than the current 2016 winner of the sorting benchmark – a sorting benchmark running native code optimized
specifically for sorting3.

3http://www.crail.io/blog/2017/01/sorting.html

44

 0

 20

 40

 60

 80

 100

 0 1000 2000 3000 4000 5000 6000T
h
ro

u
g
h
p
u
t

(G
b
it

/s
)

Reduce Task ID

Figure 7: Network usage in a Spark/Crail sorting benchmark.

3.2 SQL

SQL is one of the most important and popular workloads supported by Spark. In a recent development cycle
(between 1.6 and 2.0), Spark/SQL has gained significant amounts of development and optimization efforts,
most notably in the unification of DataSet and DataFrame APIs, and the whole-stage code generation logic. Put
together, Spark/SQL has evolved into a fast and powerful SQL system. In the following we show how Crail can
lift the performance of a Spark/SQL join operation through efficient network and storage I/O. The experiments
are executed on a 9-node (1 driver + 8 workers) slice of the cluster.

Anatomy of a Spark/SQL Join: A join operation in Spark can be thought of as a cartesian product of two
RDDs. The operation re-arranges the RDD partitions and executes a predicate on the desired columns. Here,
we focus on EquiJoin where the predicate for matching rows is based on the equality of two values (referred to
as a key). An EquiJoin between two tables in Spark is implemented as a map reduce job.

During the map phase, the tables are read from distributed storage and materialized as rows. The rows are
then shuffled in the cluster based on a hash computed from the key column. This ensures that (a) the work will
be equally distributed between worker nodes; and (b) all rows within a certain key range will be sent to the same
worker node. Spark schedules a stage (comprising a number of tasks) for each of the two input tables. The key
I/O operations that dictate the performance of the map phase are the reading of the input data and the writing of
the shuffle data.

In the reduce phase, each worker collects two sets of shuffled rows from two input files over the network,
sorts the rows in both sets based on the keys, and then scans both sets for matches. These steps are analogous to
a sort-merge join operation on a local dataset. Finally, the matching rows are again written out to the distributed
storage. The three key I/O operations in the reduce phase are fetching row data from the network (network
bounded), sorting (CPU bounded), and joining and writing-out of rows (mixed CPU-I/O).

Performance: Spark/SQL supports multiple data sources and formats (e.g., HDFS, Hive, Parquet, JSON,
etc). Our input tables consist of two parquet datasets each with a <int,long,float,double,String>
schema. Each table contains 128 million rows, with randomly populated column entries. The <String>
column is a 1024 character long random string. Hence, on average, each row contains a little more than 1kB of
data. The join is made on the <int> column.

We explore two configurations: in the first configuration, vanilla Spark is used and the parquet files are stored
on HDFS (v2.6.5). In the second configuration, we store the parquet files on Crail (using the HDFS adaptor)
and also enable the Crail shuffler for Spark. In both configurations, the input tables are evenly distributed over
the 8 machines with a total size of 256GB (128GBx2). The parquet files are generated using the open-sourced

45

 0

 10

 20

 30

 40

 50

 60

Spark Spark/Crail
R

u
n
ti

m
e
 (

se
cs

)

parquet-write
reduce (network + sort + join)

map (row shuffle)
parquet-read

Figure 8: Performance of a SQL join in Sprak vs Spark/Crail.

ParquetGenerator4 tool.
Figure 8 illustrates the performance of the join operation in both configurations. As can be observed, the

use of the Crail architecture results in around 24.8% performance gains for simple SQL join workloads. These
gains come from all four phases where I/O operations are involved, including parquet reading/writing and data
shuffling. For instance, it takes 1.9 µs to fetch a single row from HDFS during parquet reading, but only 1.1 µs to
fetch a row from Crail (using the HDFS adaptor). The net gains are about 33.8% (6.8 vs 4.5 seconds) for reading
the parquet data. After reading, data is classified and written out as shuffle data. Here as well, the use of the Crail
shuffler results in about 13.1% (9.9 vs 8.6 seconds) gains. The gains are limited as for both vanilla Spark and
Crail, shuffle-writeouts are local operations. The shuffle map phase is followed by the reduce phase where the
shuffle data is read over the network. Here, Crail delivers significant gains in raw networking performance. The
shuffle data (32 (16x2) GB/node) is read in about 3.2 seconds, which calculates to a bandwidth utilization of a
little more than 80Gbps. For vanilla Spark, the peak bandwidth utilization does not go above the 50Gbps mark.
These gains from the raw network performance result in a 20.9% (19.1 vs 15.1 seconds) runtime improvement in
the reduce phase. However, in comparison to sorting (Section 3.1), gains from the network do not proportionally
translate into performance improvements of the reduce phase. This is because fetching data from the network
is followed by de-serialization, sorting, and join operations, whose collective time eclipses the raw networking
time. We are exploring various serializer designs with Crail to improve this situation.

As the final step, the joined rows are written out (roughly 2 GB/node), and here as well, Crail’s simple write
path delivers significant gains over HDFS (3.2 vs 1.1 seconds). Overall, the use of the Crail architecture results
in 24.8% performance gains.

3.3 Flash Disaggregation

Traditionally, data processing platforms such as Spark or Hadoop have been designed around the concept of data
locality where computation is scheduled to execute on the node that stores the data to avoid expensive network
operations. Recently, the idea of storage disaggregation has become more popular [9, 16]. Disaggregation de-
couples storage and compute, which simplifies the deployment and management of the hardware resources, and
also drives down cost. The hope is that due to the improved network speed of high-performance interconnects
the overhead of crossing the network during I/O can be reduced to a minimum. However, as we have seen in
Figure 1, the actual overheads in Spark and Hadoop network operations are caused mainly by the software stack
despite the fast networking hardware. Consequently, running Spark or Hadoop in a disaggregated environment
is costly from a performance point of view. With Crail, the software overheads during I/O are reduced which
opens the door for storage disaggregation. This is illustrated in Figure 9 where we compare the performance
of the distributed sorting workload in two configurations. In the Crail configuration, data is read, shuffled and

4https://github.com/zrlio/parquet-generator

46

 0

 200

 400

 600

 800

HDFS/SSDs Crail/Shared Volume

R
u
n
ti

m
e
 (

se
cs

)

Direct-attached

Disaggregated

Figure 9: Using Crail for flash disaggregation in Spark.

written out using Crail’s disaggregated flash tier. We use Crail’s shared volume storage plugin in combination
with an industry-standard flash enclosure connected via SRP (SCSi over RDMA) over a 56Gbps InfiniBand link.
The second configuration is a vanilla Spark deployment, non-disaggregated, with both HDFS and Spark shuffler
configured to use local memory and SSDs. We made sure that both configurations have the same aggregated
flash bandwidth (10 GB/s) and about the same total flash capacity. As can be observed, the disaggregated Crail
configuration performs better than the non-disaggregated Spark configuration, despite all the I/O operations
being remote. This shows that with Crail, remote I/O operations can be accelerated to a level that outperforms
local I/O operations in Spark, and as a result makes disaggregation a viable solution.

4 Related Work

Lately, various efforts have focused on making better use of fast network or storage hardware for data processing.
Most of those works fall into one of two categories. The first category consists of systems developed from
scratch for the new hardware. Examples of this type are flash optimized key/value stores [6, 18], RDMA-
based key/value stores [12, 8, 22], RDMA-based distributed memory systems [3, 21], RDMA-based distributed
transaction processing systems [8, 15], distributed join engines leveraging RDMA [1, 24], or even completely
new database architectures designed for high-speed networks [4]. All these efforts manage to achieve very good
performance due to the hardware software co-design, but they are often not integrated into a publicly available
data processing platform and/or only target very specific applications. In contrast, Crail is an I/O architecture
that can be applied to different open source data processing frameworks supporting a wide range of applications
and workloads.

The second category of work aims to integrate fast I/O hardware into existing systems and frameworks. For
instance, in one body of work the network stack of the HDFS file system or the Spark shuffle manager have been
re-written for high-speed networks [11, 3, 12]. Similarly, efforts have been put in place to better integrate fast
networks into Tachyon [19], a popular distributed caching system. However, all these works are retrofitting an
InfiniBand-based messaging service in an existing message-based networking code, resulting in only marginal
improvements in performance. Crail, on the other hand, implements a tight semantic integration of fast I/O
hardware and high-level data processing operations such as shuffle, broadcast etc., and as a result manages to
improve workload performance substantially.

With the availability of high-performance networks, resource disaggregation has become a viable option for
data processing systems [10]. A recent workload-driven assessment has concluded that current high-performance
network technologies are now sufficient to maintain application performance in a disaggregated datacenter – as-
suming the necessary end-host optimizations (e.g., RDMA) are being leveraged [9]. Specifically for storage,
ReFlex – a recently proposed system for flash disaggregation – enables applications to maintain their perfor-
mance while accessing remote flash devices [17]. Erfan Zamanian et. al further propose NAM-DB, a novel

47

distributed database architecture that uses RDMA and disaggregated memory for implementing snapshot iso-
lation and scalable transactions. Crail’s disaggregated architecture builds on similar concerns of providing fast
access to remote resources. However, in contrast to those existing works, Crail provides a comprehensive solu-
tion to accessing memory and storage across a cluster, both local and disggregated. For instance, Crail naturally
exploits any mix of local and remote resources at a fine granular manner through horizontal tiering.

Finally, there has been a body of work on improving the I/O efficiency within a single machine, most
recently [23, 2, 5, 13]. These efforts are orthogonal to Crail as Crail permits different user-level I/O techniques
to be integrated into its distributed I/O architecture through the storage tier interface.

5 Conclusion

We presented Crail, an I/O architecture tailored to best integrate fast networking and storage hardware into
distributed data processing platforms. Crail is based on a distributed data store acting as a fast I/O bus for
platform specific I/O modules. Crail not only takes full advantage of the capabilities of modern hardware in
terms of zero-copy or asynchronous I/O, but it also changes the way local and remote storage resources are used
in a high-speed network deployment. Crail is a recently started open source project (www.crail.io) and
there are many opportunities to contribute.

References
[1] Claude Barthels, Simon Loesing, Gustavo Alonso, and Donald Kossmann. Rack-scale in-memory join processing

using rdma. In Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, SIGMOD
’15, pages 1463–1475, 2015.

[2] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and Edouard Bugnion. Ix: A
protected dataplane operating system for high throughput and low latency. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 49–65, Broomfield, CO, 2014.

[3] Adithya Bhat, Nusrat Islam, Xiaoyi Lu, Wasi Rahman, Dipti Shankar, and Dhabaleswar Panda. A plugin-based
approach to exploit rdma benefits for apache and enterprise hdfs. In The Sixth workshop on Big Data Benchmarks,
Performance Optimization, and Emerging Hardware, 2015.

[4] Carsten Binnig, Andrew Crotty, Alex Galakatos, Tim Kraska, and Erfan Zamanian. The end of slow networks: It’s
time for a redesign. Proc. VLDB Endow., 9(7):528–539, March 2016.

[5] Adrian M. Caulfield, Todor I. Mollov, Louis Alex Eisner, Arup De, Joel Coburn, and Steven Swanson. Providing
safe, user space access to fast, solid state disks. In Proceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS XVII, pages 387–400, 2012.

[6] Biplob Debnath, Sudipta Sengupta, and Jin Li. Flashstore: High throughput persistent key-value store. Proc. VLDB
Endow., 3(1-2):1414–1425, 2010.

[7] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and Miguel Castro. Farm: Fast remote memory. In
Proceedings of the 11th USENIX Symposium on Networked Systems Design and Implementation (NSDI 14), pages
401–414, 2014.

[8] Aleksandar Dragojević, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzelmann, Alex Shamis,
Anirudh Badam, and Miguel Castro. No compromises: Distributed transactions with consistency, availability, and
performance. In Proceedings of the 25th Symposium on Operating Systems Principles, SOSP ’15, pages 54–70,
2015.

[9] Peter X. Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira, Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy,
and Scott Shenker. Network requirements for resource disaggregation. In Proceedings of the 12th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’16, pages 249–264, 2016.

48

[10] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu Shi, and Scott Shenker. Network support for
resource disaggregation in next-generation datacenters. In Proceedings of the Twelfth ACM Workshop on Hot Topics
in Networks, HotNets-XII, pages 10:1–10:7, New York, NY, USA, 2013. ACM.

[11] Nusrat Islam, Xiaoyi Lu, and Dhabaleswar Panda. High performance design for hdfs with byte-addressability of nvm
and rdma. In 24th International Conference on Supercomputing (ICS ’16), 2016.

[12] Nusrat Islam, Wasi Rahman, and Dhabaleswar Panda. In-memory i/o and replication for hdfs with memcached:
Early experiences. In IEEE International Conference on Big Data, pages 213–218, 2014.

[13] Eun Young Jeong, Shinae Woo, Muhammad Jamshed, Haewon Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo
Park. mtcp: A highly scalable user-level tcp stack for multicore systems. In Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation, NSDI’14, pages 489–502, 2014.

[14] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using rdma efficiently for key-value services. In Proceed-
ings of the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14, pages 295–306, 2014.

[15] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Fasst: Fast, scalable and simple distributed transactions
with two-sided (rdma) datagram rpcs. In 12th USENIX Symposium on Operating Systems Design and Implementation
(OSDI 16), pages 185–201, GA, 2016.

[16] Ana Klimovic, Christos Kozyrakis, Eno Thereska, Binu John, and Sanjeev Kumar. Flash storage disaggregation. In
Proceedings of the Eleventh European Conference on Computer Systems, EuroSys ’16, pages 29:1–29:15, 2016.

[17] Ana Klimovic, Heiner Litz, and Christos Kozyrakis. Reflex: Remote flash local flash. In Proceedings of the 21st
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS),
2017.

[18] Leonardo Marmol, Swaminathan Sundararaman, Nisha Talagala, and Raju Rangaswami. Nvmkv: A scalable,
lightweight, ftl-aware key-value store. In Proceedings of the 2015 USENIX Conference on Usenix Annual Tech-
nical Conference, USENIX ATC ’15, pages 207–219, 2015.

[19] Mellanox. RDMA Improves Tachyon Remote Read Bandwidth and CPU Utilization by up to 50%,
https://community.mellanox.com/docs/DOC-2128.

[20] Christopher Mitchell, Yifeng Geng, and Jinyang Li. Using one-sided rdma reads to build a fast, cpu-efficient key-
value store. In Proceedings of the 2013 USENIX Conference on Annual Technical Conference, USENIX ATC’13,
pages 103–114, 2013.

[21] Jacob Nelson, Brandon Holt, Brandon Myers, Preston Briggs, Luis Ceze, Simon Kahan, and Mark Oskin. Latency-
tolerant software distributed shared memory. In Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC ’15, pages 291–305, 2015.

[22] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee, Behnam Montazeri, Diego Ongaro,
Seo Jin Park, Henry Qin, Mendel Rosenblum, Stephen Rumble, Ryan Stutsman, and Stephen Yang. The ramcloud
storage system. ACM Trans. Comput. Syst., 33(3):7:1–7:55, August 2015.

[23] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy, Thomas Anderson, and
Timothy Roscoe. Arrakis: The operating system is the control plane. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 1–16, Broomfield, CO, 2014.

[24] Wolf Rodiger, Sam Idicula, Alfons Kemper, and Thomas Neumann. Flow-join: Adaptive skew handling for dis-
tributed joins over high-speed networks. 2016 IEEE 32nd International Conference on Data Engineering (ICDE),
pages 1194–1205, 2016.

[25] Patrick Stuedi, Bernard Metzler, and Animesh Trivedi. jverbs: Ultra-low latency for data center applications. In The
Proceedings of the Fourth ACM Symposium on Cloud Computing, SoCC ’13, pages 10:1–10:14, 2013.

[26] Animesh Trivedi, Patrick Stuedi, Jonas Pfefferle, Radu Stoica, Bernard Metzler, Ioannis Koltsidas, and Nikolas
Ioannou. On the [ir]relevance of network performance for data processing. In 8th USENIX Workshop on Hot Topics
in Cloud Computing (HotCloud 16), Denver, CO, 2016.

49

