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Abstract

Causal consistency offers geo-distributed systems what ought to be a sweet option between the poor
performance of strong consistency and the weak guarantees of eventual consistency. Yet, despite its ap-
pealing properties, causal consistency has seen limited adoption in industry, where systems have instead
been clustering around the two extremes of eventual and strong consistency. We argue that this reluc-
tance stems primarily from how causal consistency handles writes—both in how they are propagated,
and in how conflicting writes are applied. We present our experience in designing and building two re-
cent systems, Occult [25] and TARDiS [11], that try to address or mitigate these problems, and highlight
some of the open challenges that remain in this space.

1 Introduction

Causal consistency appears to be ideally positioned to respond to the needs of geographically replicated data-
stores that support today’s large-scale web applications. It strikes a sweet point between the high latency of
stronger consistency guarantees [10], and the programming complexity of eventual consistency [4, 7, 27]. In-
deed, unlike eventual consistency, causal consistency preserves operation ordering and gives Alice assurance that
Bob, whom she has defriended before posting her Spring-break photos, will not be able to access her pictures,
even though Alice and Bob access the photo-sharing application using different replicas [5, 9, 20]. Crucially,
causal consistency provides these guarantees while continuing to provide applications the ALPS properties [20]
of availability, low latency, partition tolerance and high scalability.

These appealing properties have generated much interest in the research community. In the last few years,
we have learned that no guarantee stronger than real-time causal consistency can be provided in a replicated
datastore that combines high-availability with convergence [23], and that, conversely, it is possible to build
causally-consistent datastores that can efficiently handle a large number of shards [3,6,15,16,20,21]. Likewise,
we have established increasingly sophisticated techniques [11, 14, 20, 23, 24, 32, 34] to ensure the convergence
of objects to which conflicting updates have been applied updates.

Perhaps surprisingly, the interest has been rather more tepid in industry: to this day, causal consistency is
rarely used in production, with companies preferring either strictly weaker guarantees like those provided in
Riak [7], Redis Cluster [1], and Cassandra [4], or, at the other extreme, stronger guarantees like those offered by
Google Spanner [10], FaunaDB [17], or CockroachDB [19]. As of the time of writing, the only commercially
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available systems that report supporting causal consistency are AntidoteDB [30]1, Neo4j [28]2, MongoDB [27]3

and CosmosDB [26]. This, despite Facebook suggesting that causal consistency is a feature that they would
like to support [2, 22]! We submit that industry’s reluctance to deploy causal consistency is in part explained
by the inability of its current implementations to handle write operations efficiently, while aligning with the
semantics of the applications that run on top of these systems. Unlike reads, which can be served from any “up-
to-date” replica [20,21,33] and return a state that includes the effects of all operations that could have influenced
that state, writes come with few promises: existing causally consistent systems neither guarantee when a given
write will eventually become visible, nor how merging conflicting writes on individual objects will affect the
semantics of the global system state.

Write visibility In existing causal systems, such as COPS [20] or Eiger [21], a datacenter performs a write
operation only after applying all writes that causally precede it. This approach guarantees that reads never block,
as all replicas are always in a causally consistent state, but, in the presence of slow or failed shards, may cause
writes to be buffered for arbitrarily long periods of time. These failures, common in large-scale clusters, can lead
to the slowdown cascade phenomenon, where a single slow or failed shard negatively impacts the entire system,
delaying the visibility of updates across many shards and leading to growing queues of delayed updates [2,
25]. Slowdown cascades thus violate a basic commandment for scalability: do not let your performance be
determined by the slowest component in your system.

Merging of write-write conflicts Geographically distinct replicas can issue conflicting operations, and the
write-write conflicts that result from these operations may cause replicas’ states to diverge. To insulate appli-
cations from this complexity, systems like COPS [20] or Dynamo [14] attempt to preserve the familiar abstrac-
tion that an application evolves sequentially through a linear sequence of updates: they aggressively enforce
per-object convergence, either through simple deterministic resolution policies, or by asking the application
to resolve the state of objects with conflicting updates as soon as conflicts arise. These techniques, however,
provide no support for meaningfully resolving conflicts between concurrent sequences of updates that involve
multiple objects: in fact, they often destroy information that could have helped the application in resolving
those conflicts. For example, as we describe further in §2.2, deterministic writer-wins [35], a common tech-
nique to achieve convergence, hides write-skew from applications, preventing applications from correcting for
the anomaly. Similarly, exposing multivalued objects without context as in Dynamo [14] obscures cross-object
semantic dependencies.

In the rest of this paper, we discuss in greater detail the effect of slowdown cascades on existing causal sys-
tems (§2.1), and the semantic challenges that are left unaddressed by current techniques for merging concurrent
conflicting write operations (§2.2). We then sketch the outline of Occult (§3.1) and TARDiS (§3.2), two systems
designed to mitigate the aforementioned issues, and conclude (§4) by highlighting the challenges that arise when
attempting to combine insights from these two systems.

2 The challenges

2.1 Propagating writes

Causal consistency derives its performance advantage over stronger consistency guarantees from its ability to
asynchronously propagate and apply writes to replicas. The flip side of this flexibility is the unpredictability of
the relative timing at which causally dependent updates to different shards are ultimately applied at a remote
replica. Not only causally dependent updates may reach distinct remote shards out of order, but updates may be
arbitrarily delayed when shards experience performance anomalies (because of abnormally-high read or write

1Currently in alpha release.
2As of release 3.1.
3As of the release 3.6.
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Figure 1: Example of a slowdown cascade in traditional causal consistency. Delayed replicated write(a) delays
causally dependent replicated write(b) and write(c)

traffic, partially malfunctioning hardware, a congested top-of-rack switch, etc.) that are not only inevitable but
indeed a routine occurrence in any system of sufficient size [12, 13].

Ideally, any drawback caused by such delays would be limited to the affected shard, and not spill over to the
rest of the system. Unfortunately, to the best of our knowledge, all existing causally consistent systems [6, 16,
20,21,38] are inherently susceptible to spill overs, which ultimately can snowball into a system-wide slowdown
cascade.

This vulnerability is fundamental to the design of these systems: they delay applying a write until after all
writes that causally precede it have been applied. For example, Eiger [21] asks each replicated write w to carry
metadata that explicitly identifies all writes that happened before w and have a single-hop distance from w in
the causal dependency graph. When a replica receives w, it delays applying it until after all of w’s dependencies
have been applied; these dependencies in turn are delayed until their single-hop dependencies are applied; and
so on). The visibility of a write within a shard can then become dependent on the timeliness of other shards in
applying their own writes. Figure 1 illustrates this with an example. Shard A of DC2 lags behind in applying the
write propagating from DC1, all shards in DC2 must also wait before they make their writes visible. Shard A’s
limping inevitably affects Emilia’s query, but also unnecessarily affects Franco’s, which accesses exclusively
shards B and C.

Industry has long identified the spectre of slowdown cascades as one of the leading reasons behind its reluc-
tance to build strongly consistent systems [2, 8], pointing out how the slowdown of a single shard, compounded
by query amplification (e.g., a single user request in Facebook can generate thousands of, possibly dependent,
internal queries to many services), can quickly cascade to affect the entire system.

Figure 2 shows how a single slow shard affects the size of the queues kept by Eiger [21] to buffer replicated
writes. Our setup is geo-replicated across two datacenters in Wisconsin and Utah, each running Eiger sharded
across 10 physical machines. We run a workload consisting of 95% reads and 5% writes from 10 clients in
Wisconsin and a read-only workload from 10 clients in Utah. We measure the average length of the queues
buffering replicated writes in Utah. Larger queues mean that newer replicated writes take longer to be applied.
If all shards proceed at approximately the same speed, the average queue length remains stable. However, if any
shard cannot keep up with the arrival rate of replicated writes, then the average queue length across all shards
grows indefinitely.

2.2 Merging conflicting writes

Propagating writes is not the only challenge that causal consistency faces: in multi-master systems (like COPS [20],
Dynamo [14], Cassandra [4], Riak [7], or Voldemort [36]), conflicting writes can execute concurrently at dif-
ferent sites. The challenge is then not simply how to propagate these writes efficiently, but how to resolve
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Figure 2: Average queue length of buffered replicated writes in Eiger under normal conditions and when a single
shard is delayed by 100 ms.

the write-write conflict that arises from these operations. Though causal consistency elegantly guarantees that
Emilia will observe a consistent state, causal consistency does not specify how to handle conflicting write oper-
ations. Write-write conflicts define a class of conflicts that causal consistency cannot prevent, detect, or repair.

To illustrate, consider the process of updating a Wikipedia page consisting of multiple HTML objects (Figure
3(a)). The page in our example, about a controversial politician, Mr. Banditoni, is frequently modified, and is
thus replicated on two sites, A and B. Assume, for simplicity, that the page consists of just three objects—the
content, references, and an image. Alice and Bruno, who respectively strongly support and strongly oppose Mr.
Banditoni, concurrently modify the content section of the webpage on sites A and B to match their political
views (Figure 3(b)). Carlo reads the content section on site A, which now favors Mr. Banditoni, and updates the
reference section accordingly by adding links to articles that praise the politician. Similarly, Davide reads the
update made by Bruno on site B and chooses to strengthen the case made by the content section by updating the
image to a derogatory picture of Mr. Banditoni (Figure 3(c)). Eventually, the operations reach the other site and,
although nothing in the preceding sequence of events violates causal consistency, produce the inconsistent state
shown in Figure 3(d): a content section that exhibits a write-write conflict; a reference section in favor of Mr.
Banditoni; and an image that is against him. Worse, there is no straightforward way for the application to detect
the full extent of the inconsistency: unlike the explicit conflict in the content sections, the discrepancy between
image and references is purely semantic, and would not trigger an automatic resolution procedure. To the best of
our knowledge, this scenario presents an open challenge to current causally consistent systems. We conjecture
that these systems struggle to handle such write-write conflicts for two reasons: they choose to syntactically
resolve conflicts, and do not consider cross-object semantics.

Syntactic conflict resolution. We observe that the majority of weakly consistent systems use fixed, syntac-
tic conflict resolution policies to reconcile write-write conflicts [4, 20] to maintain the abstraction of sequential
storage. Returning to our previous example of the popular merging policy of deterministic writer-wins (DWW):
DWW resolves write-write conflicts identically at all sites and ensures that applications never see conflicting
writes, which guarantees eventual convergence. In our example, however, guaranteeing eventual convergence
would not be sufficient to restore consistency: this policy would choose Bruno’s update, and ignore the rela-
tionship between the content, references, and images of the webpage. Such greedy attempt at syntactic conflict
resolution is not only inadequate to bridge this semantic gap, but in fact can also lose valuable information for
reconciliation (here, Alice’s update).

Lack of cross-object semantics. Some systems, like Dynamo [14] or Bayou [34], allow for more expressive
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Figure 3: Weakly-consistent Wikipedia scenario - A webpage replicated on two sites with asynchronous repli-
cations. The end state is a write-write conflict on the content and an inconsistent web-page

conflict resolution policies by pushing to conflict resolution to the application [14, 34], but on a per-object basis
only. This approach allows for more flexible policies than a purely syntactic solution, but reduces conflict
resolution to the merging of explicitly conflicting writes. As a result, it is often still overly narrow. For example,
it would not detect or resolve inconsistencies that are not write-write conflicts, but instead result indirectly from
conflicts between two writes, such as the one between the references and the image. Per-object reconciliation
policies fail to consider that the effects of a write-write conflict on an object do not end with that object: Carlo
and Davide update references and images as they do because they have read the conflicting updates to the
original content section. Indeed, any operation that depends on one of two conflicting updates is potentially
incompatible with all the operations that depend on the other: the shockwaves from even a single write-write
conflict may spread to affect the state of the entire database.

To the best of our knowledge, there is currently no straightforward way for applications to resolve consis-
tently the kind of multi-object, indirect conflicts that our example illustrates. Transactions [20, 21], an obvious
candidate, are powerless when the objects that directly or indirectly reflect a write-write conflict are updated,
as in our example, by different users. After Bruno’s update, the application has no way to know that Davide’s
update is forthcoming: it must therefore commit Bruno’s transaction, forcing Bruno’s and Davide’s updates
into separate transactions. Nor would it help to change the granularity of the object that defines the write-write
conflict—in our example, by making that object be the entire page. It would be easy to correspondingly scale
up the example, using distinct pages that link each other. Short of treating the entire database as the “object”, it
is futile to try to define away these inconsistencies by redrawing the objects’ semantic boundaries.

In essence, conflicting operations fork the entire state of the system, creating distinct branches, each tracking
the linear evolution of the datastore according to a separate thread of execution or site. The Wikipedia for
example, consists of two branches, one in support of Banditoni at Site A, and one against the politician (Site B).

3 Towards a solution?

3.1 Preventing slowdown cascades through client-centric causal consistency

The example (Figure 1 in §2.1) illustrates why causal consistency can be subject to slowdown cascades despite
replicating writes asynchronously: writes share the fate of all other writes on which they causally depend. If
one write is slow to replicate, all subsequent writes will incur that delay. Though this delay may sometimes
be necessary - Emilia must wait for the delayed write to observe a causally consistent snapshot of the system -
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inheriting the delays of causally preceding writes can also introduce gratuitous blocking. Franco, for instance,
never reads Alice’s write (a): delaying writes (b) and (c) until (a) is replicated is thus unnecessary. Otherwise
said, observing writes (b) and (c) while write (a) is in flight does not lead to a consistency violation.

This observation, though seemingly fairly innocent, is in fact key to alleviating the problem of slowdown
cascades in causal consistency, as it precisely captures what causal consistency requires. Causal consistency
defines a contract between the datastore and its users that specifies, for a given set of updates, which values the
datastore is allowed to return in response to user queries. In particular, it guarantees that each client observes
a monotonically non-decreasing set of updates (including its own), in an order that respects potential causality
between operations. Causal consistency thus mandates that Franco, upon observing write (c), also observes write
(b), but remains silent on the fate of write (a). Existing causally consistent systems, however, enforce internally
a stronger invariant than what causal consistency requires: to ensure that clients observe a monotonically non-
decreasing set of updates, they evolve their data store only through monotonically non-decreasing updates. It is
this strengthening that leaves current implementations of causal consistency vulnerable to slowdown cascades.

To resolve this issue, we propose to revisit what implementing causal consistency actually requires: a system
is causally consistent from the point of view of a client if all executed queries return results that are consistent
with a causal snapshot of the system. The underlying system itself need never store a causally consistent state,
as long as it appears indistinguishable from a system that does!

To this effect, we designed a system, Occult (Observable Causal Consistency Using Lossy Timestamps)
that shifts the responsibility for the enforcement of causal consistency from the datastore to those who actually
perceive consistency anomalies—the clients. Moving the output commit to clients allows Occult to make its
updates available as soon as it receives them, without having to first apply all causally preceding writes. Causal
consistency is then enforced by clients on reads, but only for those updates that they are actually interested in
observing. In our example, Occult empowers Franco to independently determine that the result of its query is
causally consistent: in general, Occult clients can access states of replicas that may not yet reflect some of the
(unrelated) writes that were already reflected in a replica they had previously accessed.

Taking this read-centric approach to causal consistency may seem like a small step, but pays big dividends:
as Occult is no longer compelled to delay writes to enforce consistency, Occult is impervious to slowdown
cascades. This approach also conveys other benefits: Occult, for instance, no longer needs its clients to be
sticky, a flexibility that is useful in real-world systems like Facebook, where clients sometimes must bounce
between datacenters because of failures, load balancing, and/or load testing [2]).

At first blush, moving the enforcement of causal consistency to clients may appear fairly straightforward.
Each client c in Occult maintains metadata to encode the most recent state of the datastore that it has observed.
On reading an object o, c determines whether the version of o that the datastore currently holds is safe to read
(i.e., if it reflects all the updates encoded in c’s metadata). The datastore keeps, together with o, metadata of its
own to encode the most recent state known to the client that created that version of o. If the version is deemed
safe to read, then c needs to update its metadata to reflect any new dependency; if it is not, then c needs to decide
how to proceed (among its options: try again; contact a master replica guaranteed to have the latest version of o;
or trade safety for availability by accepting a stale version of o).

In reality, however, implementing client-centric causal consistency is non-trivial: the size of this metadata
can quickly grow to have prohibitive cost. Vector clocks, the traditional way of capturing causal dependencies,
require in principle an entry per each tracked object, a clearly unacceptable proposition in the large-scale systems
that Occult targets. It is to sidestep this issue that current causally consistent datastores prefer the pessimistic
approach to causal consistency: if a write can never be applied to a replica until all previous causally related
writes have been replicated, it is sufficient to track the nearest-writes on which an operation depends [5, 20].
The core logic of Occult is thus geared towards minimizing metadata size while retaining the flexibility and
resiliency to slowdown cascades that the read-centric approach conveys.

Occult makes this possible through a core technique: compressed causal timestamps. Causal timestamps
are, essentially, vector clocks that, rather than tracking dependencies at the granularity of individual objects, do
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so at the granularity of datacenter shards: each timestamp entry identifies the number of known writes from the
corresponding shard. Occult uses causal timestamps to (i) encode the most recent state of the datastore observed
by a client and (ii) capture the set of causal dependencies for write operations. Though conflating dependency
tracking for all objects stored in a shard to to a single entry reduces overhead, they are still far from practical in
large scale systems, which can have tens of thousands of shards. The challenge that Occult takes on is to devise
a way to compress causal timestamps without significantly reducing their ability to track causal dependencies
accurately.

To this end, Occult synthesizes a number of techniques that leverage structural and temporal properties to
strike a sweet spot between metadata overhead and accuracy: for instance, using real-time rather than counters
as entries in the causal timestamps allows Occult to eliminate timestamp inaccuracies that result from different
shards seeing different write throughput. Likewise, Occult observes that more recently updated entries in the
causal timestamp are more likely to generate spurious dependencies than older ones. Rather than using com-
pression techniques that apply uniformly to all entries of a causal timestamp, Occult focuses the majority of its
metadata budget to accurately resolve dependencies on the shards with the most recently updated vector entry.
Specifically, clients assign an individual entry in their causal timestamp to the n − 1 shards with the most re-
cently updated vector entry they have observed; all other shards are mapped to the vectors “catch-all” last entry.
Though very coarse, conflating to a single timestamp entry the tracking of all the shards that have not been
recently updated is likely to cause few consistency check failures: with high likelihood, that timestamp entry
naturally reflects updates that have already had enough time to be accepted by every replica. The conference
paper describing Occult [25] offers more details about these techniques and discusses the system’s transactional
capabilities.

Our experience suggests that Occult performs well: we find that our prototype of Occult, when compared
with the eventually-consistent system (Redis Cluster) it is derived from, increases the median latency by only
50µs, the 99th percentile latency by only 400µs for a read-heavy workload (4ms for a write-heavy workload),
and reduces throughput by less than 10%. More importantly, we find that a four-entry causal timestamp suffices
to achieve an accuracy of 99.6% for a cluster with over 16,000 logical shards.

3.2 Improving merging through branches

As suggested in §2.2, conflicting operations fork the entire state of the system, creating distinct branches. These
branches have traditionally been hidden or greedily merged by systems’ syntactic and per-object resolution
strategies, that try, at all cost, to maintain the abstraction of a sequential view of the world. The lack of support
for enforcing the cross-object consistency demands expressed in many application invariants thus makes conflict
resolution more difficult and error-prone, as our Wikipedia example highlights.
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Attempting to isolate applications from the reality of conflicting write operations is therefore, we believe, a
well-intentioned fallacy. Conflicting writes “contaminate” data in a way that the storage system cannot under-
stand: application logic is often indispensable to resolve those conflicts. Replicas, however, only see a sequence
of read/write operations and are unaware of the application-logic and invariants that relate these operations. We
consequently argue that the storage system should avoid deterministic quick fixes, and instead give applications
the information they need to decide what is best. The question becomes: how can one provide applications with
the best possible system support when merging conflicting states.

To answer this question, we designed TARDiS [11], an asynchronously replicated, multi-master key-value
store designed for applications built above weakly-consistent systems. TARDiS renounces the one-size-fits-
all abstraction of sequential storage and instead exposes applications, when appropriate, to concurrency and
distribution. TARDiS’ design is predicated on a simple notion: to help developers resolve the anomalies that
arise in such applications, each replica should faithfully store the full context necessary to understand how the
anomalies arose in the first place, but only expose that context to applications when needed. By default in
TARDiS, applications execute on a branch, and hence perceive storage as sequential. But when anomalies arise,
TARDiS reveals to the users the intricate details of distribution. TARDiS hence gives applications the flexibility
of deciding if, when, and how divergent branches should be merged.

TARDiS provides two novel features that simplify reconciliation. First, it exposes applications to the result-
ing independent branches, and to the states at which the branches are created (fork points) and merged (merge
points). Second, it supports atomic merging of conflicting branches and lets applications choose when and how
to reconcile them. Branches, together with their fork and merge points, naturally encapsulate the information
necessary for semantically meaningful merging: they make it easy to identify all the objects to be considered
during merging and pinpoint when and how the conflict developed. This context can reduce the complexity
and improve the efficiency of automated merging procedures, as well as help system administrators when user
involvement is required. Returning to our Wikipedia example, a Wikipedia moderator presented with the two
conflicting branches would be able to reconstruct the events that led to them and handle the conflicting sources
according to Wikipedias guidelines [37]. Note that merging need not simply involve deleting one branch. Indeed,
branching and merging states enables merging strategies with richer semantics than aborts or rollbacks [32]. It is
TARDiS’s richer interface that gives applications access to content that is essential to reasoning about concurrent
updates, reducing the complexity of programming weakly consistent applications. In many ways, TARDiS is
similar to Git [18]: users operate on their own branch and explicitly request (when convenient) to see concurrent
modifications, using the history recorded by the underlying branching storage to help them resolve conflicts.

Unlike Git, however, branching in TARDiS does not rely on specific user commands but occurs implicitly, to
preserve availability in the presence of conflicts. Two core principles underpin TARDiS: branch-on-conflict and
inter-branch isolation. Branch-on-conflict lets TARDiS logically fork its state whenever it detects conflicting
operations and store the conflicting branches explicitly. Inter-branch isolation guarantees that the storage will
appear as sequential to any thread of execution that extends a branch, keeping application logic simple. The
challenge is then to develop a datastore that can keep track of independent execution branches, record fork and
merge points, facilitate reasoning about branches and, as appropriate, atomically merge them – while keeping
performance and resource overheads comparable to those of weakly consistent systems.

TARDiS uses multi-master asynchronous replication: transactions first execute locally at a specific site, and
are then asynchronously propagated to all other replicas (§4). Each TARDiS site is divided into two components:
a consistency layer and a storage layer:

• Consistency layer The consistency layer records all branches generated during an execution with the help
of a directed acyclic graph, the state DAG. Each vertex in the graph corresponds to a logical state of the
datastore; each transaction that updates a record generates a new state.

• Storage Layer The storage layer stores records in a disk-based B-tree. TARDiS is a multiversioned system:
every update operation creates a new record version.
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Much of TARDiS logic is geared towards efficiently mapping the consistency layer to the storage layer, and
maintaining low metadata overhead. Two techniques are central to the system’s design: DAG compression and
conflict tracking:

• DAG compression TARDiS tracks the minimal information needed to support branch merges under finite
storage. It relies on a core observation: most merging policies only require the fork points and the leaf
states of a given execution. All intermediate states can be safely removed from the state DAG, along with
the corresponding records in the storage layer.

• Conflict tracking To efficiently construct and maintain branches, TARDiS introduces the notion of conflict
tracking. TARDiS summarizes branches as a set of fork points and merge points only (a fork path)
and relies on a new technique, fork point checking to determine whether two states belong to the same
branch. Fork paths capture conflicts rather than dependencies. As such, they remain of small size (conflicts
represent a small percentage of the total number of operations), and allow TARDiS to track concurrent
branches efficiently while limiting memory overhead. This is in contrast to the traditional dependency
checking approach [16,20,24], which quickly becomes a bottleneck in causally consistent systems [5,16].

We do not attempt to further discuss the details of these techniques, and defer the reader to the corresponding
SIGMOD paper [11]. Generally though, the system is promising: we find for example, that using TARDiS rather
than BerkeleyDB [29] to implement CRDTs [31] – a library of scalable, weakly-consistent datatypes – cuts code
size by half, and improves performance by four to eight times.

4 Future Work and Conclusion

This article highlighted one of the thornier aspects of causal consistency: the handling of writes. It focused
on two problems, the merging of conflicting writes, and the implications of asynchronous write-propagation in
the presence of failures. TARDiS and Occult are two systems that attempt to mitigate these issues. However,
several open challenges remain: though Occult prevents slowdown cascades, it currently adopts a single-master
architecture that prevents applications from executing writes at every datacenter, increasing latency and limiting
availability. A multi-master Occult would be faced with the same challenge of merging conflicting writes that
we previously outlined. Adding TARDiS’s branches to Occult without reintroducing the danger of slowdown
cascades is not straightforward: branching requires knowledge of a per-datacenter state DAG that is currently
centralized. Naive approaches like sharding this datastructure may reintroduce the dangers of slowdown cas-
cades. We believe that combining the approach of these systems is a promising avenue of future work.
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