Neural Enquirer: Learning to Query Tables in Natural Language

Pengcheng Yin Zhengdong Lu
Language Technologies Institute Noah’s Ark Lab, Huawei Technologies
pcyin@cs.cmu.edu Lu.Zhengdong@huawei.com
Hang Li Ben Kao
Noah’s Ark Lab, Huawei Technologies The University of Hong Kong
HangLi.HL@huawei.com kao@cs.hku.hk
Abstract

We propose NEURAL ENQUIRER — a neural network architecture for answering natural language
(NL) questions based on a knowledge base (KB) table. Unlike existing work on end-to-end training of
semantic parsers [I[3, 2], NEURAL ENQUIRER is fully “neuralized”: it finds distributed representations
of queries and KB tables, and executes queries through a series of neural network components called
“executors”. Executors model query operations and compute intermediate execution results in the form
of table annotations at different levels. NEURAL ENQUIRER can be trained with gradient descent, with
which the representations of queries and the KB table are jointly optimized with the query execution
logic. The training can be done in an end-to-end fashion, and it can also be carried out with stronger
guidance, e.g., step-by-step supervision for complex queries. NEURAL ENQUIRER is one step towards
building neural network systems that can understand natural language in real-world tasks. As a proof-
of-concept, we conduct experiments on a synthetic QA task, and demonstrate that the model can learn
to execute reasonably complex NL queries on small-scale KB tables.

1 Introduction

Natural language dialogue and question answering often involve querying a knowledge base [I4, B]. The tradi-
tional approach involves two steps: First, a given query Qis semantically parsed into an “executable” represen-
tation, which is often expressed in certain logical form Z (e. g., SQL-like queries). Second, the representation is
executed against a knowledge base from which an answer is obtained. For queries that involve complex seman-
tic constraints and logic (e.g., “Which city hosted the longest Olympic Games before the Games in Beijing?”),
semantic parsing and query execution become extremely complex. For example, carefully hand-crafted features
and rules are needed to correctly parse a complex query into its logical form (see example shown in the lower-
left corner of Figure M). This complexity often results in poor accuracy of the system. To partially overcome
this difficulty, recent works [, 10, T3] attempt to “backpropagate” query execution results to revise the semantic
representation of a query, which is an example of learning from grounding [f, 9]. This approach, however, is
greatly hindered by the fact that traditional semantic parsing mostly involves rule-based features and symbolic
manipulation, and is subject to intractable search space incurred by the great flexibility of natural language.

Copyright 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

63

Athens (probability distribution over table entries)

Executor-5 Select host_city of r2

Executor-4

A
l*
Memory Layer-3

Executor-3

Find r2 in R with max(#_duration)

Find row sets R where year < a

Executor-2 -l Memory Layer-2

Select year of r1 as a

query embedding |

Find row ri where host_city=Beijing

¥\
\\F
Executor-1 Memory Layer-1

. |) Vit | Lt] G bl [l
queryQ |) [TT 2000 | Sydney 20 2,000
i 1T 1T 2004 | Athens 35 1,500
| Which city hosted the longest Olympic Games before the Games in Beijing? | 1T TTT 2008 | Beiing = Yoo
~ T | 1| O | (111 -
logical form Z 2012 | London 40 2,300

where year < (select year, where host_city = Beijing),

table embedding
argmax(host_city, # duration) ‘

Figure 1: An overview of NEURAL ENQUIRER with five executors

Neural network-based models have enjoyed much successes in natural language processing, particularly in
machine translation and syntactic parsing. These successes are attributable to direct and strong supervision.
The recent work on learning to execute simple program codes with LSTM [I'Z] pioneers in the direction on
learning to parse structured objects through executing it in a purely neural way, while the more recent work on
Neural Turing Machines (NTMs) [B] introduces more modeling flexibility by equipping the LSTM with external
memory and various means for interacting with it.

Inspired by the above-mentioned research, we aim to design a neural network system that learns to under-
stand queries and execute them on a knowledge base table from examples of queries and answers. We propose
NEURAL ENQUIRER, a fully neuralized, end-to-end differentiable system that jointly models semantic parsing
and query execution. NEURAL ENQUIRER encodes queries and KB tables into distributed representations, and
executes compositional queries against the KB through a series of differentiable executors. The model is trained
using query-answer pairs, where the distributed representations of queries and the KB are optimized together
with the query execution logic in an end-to-end fashion. As the first step along this line of research, we eval-
uate NEURAL ENQUIRER using a synthetic question-answering task as a proof-of-concept, and demonstrate
that our proposed model is capable of learning to execute complex compositional natural language questions on
small-scale KB tables.

2 Model

Following [173], we study the problem of question answering on a single KB table. Specifically, given an NL
query @ and a KB table 7, NEURAL ENQUIRER executes () against 7 and outputs a ranked list of answers. The
execution is done by first using Encoders to encode the query and table into distributed representations, which
are then sent to a cascaded pipeline of Executors to derive the answer. Figure [gives an illustrative example
(with five executors). It consists of the following components:

Query Encoder (Section Z), which abstracts the semantics of an NL query and encodes it into a query em-
bedding.

Table Encoder (Section Z7J), which derives a table embedding by encoding entries in the table into distributed
vectors.

Executor (Section 3), which executes the query against the table and outputs annotations that encode inter-
mediate execution results. Annotations are stored in the memory of each layer to be accessed by the executor

64

of the next layer. Since complex compositional queries can be answered in multiple steps of computation, each
executor models a specific type of operation conditioned on the query. Figure [illustrates the operation each
executor is assumed to perform in answering the example query Q. Different from classical semantic parsing
approaches which require a predefined set of all possible logical operations, NEURAL ENQUIRER learns the
logic of executors via end-to-end training using query-answer pairs. By stacking several executors, our model is
able to answer complex queries that involve multiple steps of computation.

2.1 Query Encoder

Query Encoder converts an NL query @ into a query embedding q € R%e. Let {x1,%s,...,x7} be the em-
beddings of words in @, where x; € R is from an embedding matrix L. We employ a bidirectional Gated
Recurrent Unit (GRU) [2] to summarize the sequence {x1,Xa,...,x7} in forward and reverse orders. q is
formed by concatenating the last hidden states in the two directions.

It is worth noting that Query Encoder can find the representation of a rather general class of symbol se-
quences, agnostic to the actual representation of the query (e.g., natural language, SQL, etc). The model is
able to learn the semantics of input queries through end-to-end training, making it a generic model for query
understanding and query execution.

2.2 Table Encoder

Table Encoder converts a KB table 7 into a distributed representation, which is used composite embed.
as an input to executors. Suppose 7 has M rows and N columns. In our model, the
n-th column is associated with a field name (e.g., host _city). Each cell value is a
word (e.g., Beijing) in the vocabulary. We use wy,, to denote the cell value in row
m column n, and wW,,,, to denote its embedding. Let f,, be the embedding of the field
name for column n. For each entry (cell) w,,, Table Encoder computes a (field, value)
composite embedding e,,,, € R% by fusing f,, and w,,,, using a single-layer Neural
Network:

field embed. value embed.

€mn = NNo(f,,, W) = tanh(W - [fTL?Wm”] +b),

where [-; -] denotes vector concatenation. The output of Table Encoder is an M x N x dg¢ tensor that consists of
M x N embeddings, each of length dg.

We remark that our Table Encoder is different from classical knowledge embedding models (e.g., TransE [5]).
While traditional methods learn the embeddings of entities (cell values) and relations (field names) in an unsu-
pervised fashion via minimizing certain reconstruction errors, embeddings in Table Encoder are optimized via
supervised learning in end-to-end QA tasks.

2.3 Executor

NEURAL ENQUIRER executes an input query on a KB table through layers of execution. Each layer consists
of an executor that, after learning, performs certain operation (e.g., select, max) relevant to the input query.
An executor outputs intermediate execution results, referred to as annotations, which are saved in the external
memory of the executor. A query is executed sequentially through a stack of executors. Such a cascaded
architecture enables the model to answer complex, compositional queries. An example is given in Figure [in
which descriptions of the operation each executor is assumed to perform for the query Q are shown. We will
demonstrate in Section B that the model is capable of learning the operation logic of each executor via end-to-end
training.

As illustrated in Figure D, an executor at Layer-¢ (denoted as Executor-¢) consists of two major neural
network components: a Reader and an Annotator. The executor processes a table row-by-row. The Reader reads

65

query embedding Memory Layer-¢
A

1
row annotations

table embedding E i

O [T OO read vectors I% i
OO0 | (0| (O | (IO EEEEE | :
OO | s | orern | eeeem || Reader | =) OEEEA)| Annotator =) I :
OO | [0 | O | (O D el '
O[O | OO | OO | O RN ipoollng !
¥ i

Memory Layer-(£-1) i_table annotation |

Figure 2: Overview of an Executor-/¢

in data from each row m in the form of a read vector rt,, which is then sent to the Annotator to perform the actual
execution. The output of the Annotator is a row annotation afn, which captures the row-wise local computation
result. Once all row annotations are obtained, Executor-¢ generates a table annotation g’ to summarize the
global computation result on the whole table by pooling all row annotations. All the row and table annotations
are saved in the memory of Layer-¢: M¢ = {a‘i, ag, ey afw, g’}. Intuitively, row annotations handle operations
that require only row-wise, local information (e.g., select, where), while table annotations model superlative
operations (e.g., max, min) by aggregating table-wise, global execution results. A combination of row and table

annotations enables the model to perform a wide variety of query operations in real world scenarios.

2.3.1 Reader

As illustrated in Figure B, for the m-th row with N (field, value) composite embeddings R, = {€m1,€m2, - -, €nmnN},
the Reader fetches a read vector r’, from R, via an attentive reading operation:

N
rl, = fe(Rom, Froa, M) = " 6(fn, q, 8" Hemn

n=

—

where M~ denotes the content of memory Layer-(£— 1), and Fr = {f1,f5,...,fx} is the set of field name
embeddings. w(-) is the normalized attention weights given by:

exp(w(fn, q,g1))
SN exp(w(fy,q,g 1))

(fn,q,gh) = (10)

where w(+) is modeled as a Deep Neural Network (denoted as DNNge)). Since each executor models a specific
type of computation, it should only attend to a subset of entries that are pertinent to its execution. This is modeled
by the Reader. Our approach is related to the content-based addressing of Neural Turing Machines [8] and the
attention mechanism in neural machine translation models [2].

2.3.2 Annotator

The Annotator of Executor-¢ computes row and table annotations based on read vectors fetched by the Reader.
The results are stored in the /-th memory layer M accessible to Executor-(¢4-1). The last executor is the only
exception, which outputs the final answer.
[Row annotations] Capturing row-wise execution result, the annotation afn for row m in Executor-/ is given
by

ay, = f(rh,, a, M ") = DNNY (Irf,: sl 18" 1)). (11)

66

year host_city |#_duration| #_medals | read vector
OO0 | Oo | OO0 | OO 1
~ A

~~~~~~~~~~

B L S
query embedding

I IIIIIITO OO | OO | OO | oo™
year host_city | #_duration | #_medals

table annotation ; .
[ITITTT composite embeddings

Figure 3: Illustration of the Reader in Executor-¢

DNN(QZ) fuses the corresponding read vector rf;“ the results saved in the previous memory layer (row and

table annotations a’; !, g‘~1), and the query embedding q. Intuitively, row annotation a’> ! and table annotation

g/~! summarize the local and global status of execution up to Layer-(¢—1), respectively. DNNg) then performs
the actual query execution by combing these annotations with the read vector and query embedding, and outputs
a row annotation a’_ that encodes the local execution result on row m.

[Table annotations] Capturing global execution state, a table annotation summarizes all row annotations via a

global max pooling operation:

gZ = fMAXPOOL(aﬁa aé’ SRRE) agﬂ) = [glv g2,. .. agdg]T (12)
where g, = max({a{(k),ab(k),...,a%,;(k)}) is the maximum value among the k-th elements of all row anno-
tations.

2.3.3 Last Layer Executor

Instead of computing annotations based on read vectors, the last executor in NEURAL ENQUIRER directly out-
puts the probability of an entry w,,,, in table 7 being the answer a:

0 -1 -1
exp(fans(€mn, A @y, 8
o= 0nlQ.T) = oy sl Ot £

(13)
l— _
Zm’zl,n’:l eXp(fﬁNS(em/”/’ 9 am’17g£ 1))

where f£(+) is modeled as a DNN (DNNz(f)). Note that the last executor, which is devoted to returning answers,

could still carry out execution in DNNg).

3 Learning

NEURAL ENQUIRER can be trained in an end-to-end (N2N) fashion on QA tasks. During training, both the
representations of queries and tables, as well as the execution logic captured by the weights of executors are
learned. Given a set of Np query-table-answer triples D = {(Q®, T® y(®)}, we learn the model parameters
by maximizing the log-likelihood of gold-standard answers:

Np
Lron(D) = 3 log pla =y QW, 7)) (14)
=1

In end-to-end training, each executor discovers its operation logic from training data in a purely data-driven
fashion, which could be difficult for complex queries requiring four or five sequential operations.

67



year [host_city |#_participants|#_medals|#_duration|#_audience|host_country| GDP (country _size population
2008| Beijing 4,200 2,500 30 67,000 China {2,300 960 130

Figure 4: An example table in the synthetic QA task (only one row shown)

Query Type Example Queries (Q) with Annotated SQL-like Logical Forms (Z)
> Q: How many people participated in the game in Beijing?
Z: select #_participants, where host_city = Beijing
> Q: In which country was the game hosted in 2012?
Z: select host_country, where year = 2012
> QQ: When was the lastest game hosted?
Z: argmax (host_city, year)
> Q: How big is the country which hosted the shortest game?
Z:argmin (country._size, #_-duration)
> Q: How long is the game with the most medals that has fewer than 3,000 participants?
Z: where #_participants < 3,000, argmax (#.duration, #_medals)
> Q: How many medals are in the first game after 2008 ?
Z:where #_.year > 2008, argmin (#medals, #_year)
> Q: Which country hosted the longest game before the game in Athens?
Z: where year< (select year,where host_city=Athens),argmax (host_country, #_duration)
NEST > Q: How many people watched the earliest game that lasts for more days than the game in 19567
Z:where #_duration< (select #_duration,where year=1956),argmin (#_audience, #_year)

SELECT-WHERE

SUPERLATIVE

WHERE_SUPERLATIVE

Table 1: Example queries in our synthetic QA task

This can be alleviated by softly guiding the learning process via controlling the attention weights w(-) in
Eq. (). By enforcing w(-) to bias towards a field pertaining to a specific operation, we can “coerce” the
executor to figure out the logic of this operation relative to the field. For example, for Executor-1 in Figure
[, by biasing the attention weight of the host _city field towards 1.0, only the value of host _city will be
fetched and sent to the Annotator. In this way we can “force” the executor to learn the where operation to find
the row whose host _city is Beijing. This method will be referred to as step-by-step (SbS) training. Formally,
this is done by introducing additional supervision signal to Eq. (I4):

Np L-1
Lsps(D) = (10gp(a = V1Y, TW) + oy log (. ')) (15)
i=1 £=1

where « is a tuning weight, and L is the number of executors. fz?fg is the embedding of the field known a
priori to be used by Executor-/ in answering the i-th example.

4 Experiments

In this section we evaluate NEURAL ENQUIRER on synthetic QA tasks with NL queries of varying compositional
depths.

4.1 Synthetic QA Task

We present a synthetic QA task with a large number of QA examples at various levels of complexity to evaluate
the performance of NEURAL ENQUIRER. Starting with “artificial” tasks accelerates the development of novel
deep models [15], and has gained increasing popularity in recent research on modeling symbolic computation
using DNNGs [8, [I7].

Our synthetic dataset consists of query-table-answer triples {(Q(i), T, y(i))}. To generate a triple, we first
randomly sample a table 7 of size 10 x 10 from a synthetic schema of Olympic Games. The cell values of 7(?)
are drawn from a vocabulary of 120 location names and 120 numbers. Figure B gives an example table. Next, we

68



MIXED-25K MIXED-100K

SEMPRE N2N SbS N2N-OOV N2N SbS N2N-OOV
SELECT_WHERE 93.8% 96.2%  99.7% 90.3% 99.3% 100.0% 97.6%
SUPERLATIVE 97.8% 98.9%  99.5% 98.2% 99.9% 100.0% 99.7%
WHERE_SUPERLATIVE 34.8% 80.4% 94.3% 79.1% 98.5% 99.8% 98.0%
NEST 34.4% 60.5% 92.1% 57.7% 64.7% 99.7% 63.9%
Overall Accuracy 65.2% 84.0%  96.4% 81.3% 90.6% 99.9% 89.8%

Table 2: Accuracies on MIXED datasets

sample a query QW generated using NL templates, and obtain its gold-standard answer y@ on T, Our task
consists of four types of NL queries, with examples given in Table [l. We also give the logical form template for
each type of query. The templates define the semantics and compositionality of queries. We generate queries at
various compositional depths, ranging from simple SELECT_WHERE queries to more complex NEST ones. This
makes the dataset have similar complexity as a real-world one, except for the relatively small vocabulary. The
queries are flexible enough to involve complex matching between NL phrases and logical constituents, which
makes query understanding nontrivial: (1) the same field is described by different NL phrases (e.g., “How big is
the country ...” and “What is the size of the country ...” for the country_size field); (2) different fields may
be referred to by the same NL pattern (e.g, “in China” for host_country and “in Beijing” for host _city);
(3) simple NL constituents may be grounded to complex logical operations (e.g., “after the Games in Beijing”
implies comparing between the values of year fields). o

To simulate the read-world scenario where queries of various types are issued to the model, we construct two
MIXED datasets, with 25K and 100K training examples respectively, where four types of queries are sampled
with the ratio 1 : 1 : 1 : 2. Both datasets share the same testing set of 20K examples, 5K for each type of query.
We enforce that no tables and queries are shared between training/testing sets.

4.2 Setup

[Tuning] We adopt a model with five executors. The lengths of hidden states for GRU and DNNs are 150,
50. The numbers of layers for DNNge), DNNgg) and DNN:(f) are 2, 3, 3. The length of word embeddings and
annotations is 20. « is 0.2. We train the model using ADADELTA [IX] on a Tesla K40 GPU. The training
converges fast within 2 hours.

[Metric] We evaluate in terms of accuracy, defined as the fraction of correctly answered queries.

[Models] We compare the results of the following settings:

e Sempre [[3] is a state-of-the-art semantic parser and serves as the baseline;
e N2N, our model trained using end-to-end setting (Sec E3);
e SbS, our model trained using step-by-step setting (Sec E4);

e N2N-OOV, a variant of the N2N model to deal with out-of-vocabulary words (Sec E5)

4.3 End-to-End Evaluation

Table D summarizes the results of SEMPRE and NEURAL ENQUIRER under different settings. We show both the
individual performance for each query type and the overall accuracy. We evaluate SEMPRE only on MIXED-25K
because of its long training time even on this small dataset (about 3 days).

In this section we discuss the results under end-to-end (N2N) training setting. On MIXED-25K, the rela-
tively low performance of SEMPRE indicates that our QA task, although synthetic, is highly nontrivial. Surpris-
ingly, NEURAL ENQUIRER outperforms SEMPRE on all query types, with a marginal gain on simple queries

69



Q1: How long was the Games with the most medals that had fewer than 3,000 participants?

Z1: where #_participants < 3,000, argmax (#_duration, #_medals)
Executor-1 Executor-2 Executor-3 Executor-4 Executor-5

onBo®o
onbo®o

oco000or
ovbomo

coocoor
coooop

cococoopr
SR ®mo
—

. - e W I - - . . . . . . . .

S X X S L

S & @0‘6 &7\6 & o&&d ooq r,/l’z RO B &\6 & & &dg& «;\'”e & & & @00 &\6 & Q"Z(\‘d (,OQ & & S »ﬁ'@ e;‘}‘} o o&&é (,oq &9 & & ?,0‘6 g}" R (\&&d & &e o
Vil P & @ 5% & N YT I R 7 R YR N R 3o YVl P & @ 5 & Vxr/ & & S N

RIS MR 7D S PSS RS NS SR IS e 7D PR @ ) PR S S NS
SN S S S S SRS S TS & K LSS S S RS S S SO

’ 7 7 7 7 7

’a X% P & < & X% P & R & X757 $ & &£ %% $ > < L X% P S

%7 < %7 * < %7 N %7 N

Q2: Which country hosted the longest Games before the Games in Athens?
Zy: where year < (select year, where host_city = Athens), argmax (host_country, #_duration)

Executor-1 Executor-2 Executor-3 Executor-4 Executor-5

1.0 - 1.0- 1.0 1.0
0.8 H 0.8t 0.8] 0.8}
0.6 0.6 0.6] 0.6}
0.4 0.4 0.4] 0.4
0.2 0.2t 0.2 0.2
0.0 - m o o - om - oo M = m @ =« m m®mm oo . . . . . . . . . ool . . . .
F S FSEIS S P ELITESS S @ RSO FITEES £ P OEFTEES L BSOS ESS
Va7l L& @ 7 Vol L& 8 730 Varl L@ @ ¢ & 730 Vol L& @ S R Vol L& &% R
& &o & S S &SP & &C SEN S S gé* N & &o & S & (.\@\ > & &o TP O TS &S SIS

& x50 77 S N RE P SRR S g Tl S E S0 T S F S x5 2s7 S
% < 53 < ¢ 53 < ] S %3

Figure 5: Weights visualization of queries @1 and Q)2

(SELECT_-WHERE, SUPERLATIVE), and significant improvement on complex queries (WHERE_SUPERLATIVE,
NEST). We posit that the low performance of SEMPRE on complex queries is likely due to the intractable search
space incurred by the flexibility of its float parsing algorithm. On MIXED-100K, our model registers an overall
accuracy of 90.6%. These results show that in our QA task, NEURAL ENQUIRER is very effective in answering
compositional NL queries, especially those with complex semantics compared with the state-of-the-art system.

To further understand why our model is capable of answering compositional queries, we study the attention
weights of Readers (Eq. ) for intermediate executors, and the answer probability (Eq. [3) the last executor
outputs for each table entry. These statistics are obtained on MIXED-100K. We sample two queries ()1 and
()2) in the testing set that our model answers correctly and visualize their corresponding values in Figure 8. To
better understand the query execution process, we also give the logical forms (Z; and Zs) of the two queries.
Note that the logical forms are just for reference purpose and unknown by the model. We find that each executor
actually learns its execution logic in N2N training, which is in accordance with our assumption. The model
executes ()1 in three steps, with each of the last three executors performs a specific type of operation. For
each row, Executor-3 takes the value of the # participants field as input, while Executor-4 attends to the
#_medals field. Finally, Executor-5 outputs a high probability for the #_duration field in the 3-rd row. The
attention weights for Executor-1 and Executor-2 appear to be meaningless because (); requires only three steps
of execution, and the model learns to defer the meaningful execution to the last three executors. Comparing with
the logical form Z; of (Q1, we can deduce that Executor-3 “executes” the where clause in Z; to find row sets
R satisfying the condition, and Executor-4 performs the first part of argmax to find the row r € R with the
maximum value of # medals, while Executor-5 outputs the value of #_ duration inr.

Compared with the relatively simple ()1, ()2 is more complicated. According to Z3, (2 involves an addi-
tional nest sub-query to be solved by two extra executors, and requires a total of five steps of execution. The
last three executors function similarly as in answering ()1, yet the execution logic for the first two executors
(devoted to solving the sub-query) is a bit obscure, since their attention weights are scattered instead of being
perfectly centered on the ideal fields as highlighted in red dashed rectangles. We posit that this is because during
the end-to-end training, the supervision signal propagated from the top layer has decayed along the long path
down to the first two executors, which causes vanishing gradients.

70



4.4 With Additional Step-by-Step Supervision

To alleviate the vanishing gradient problem when training on complex queries like ()2, we train the model
using step-by-step (SbS) setting (Eq. [¥), where we encourage each intermediate executor to attend to the field
that is known a priori to be relevant to its execution logic. Results are shown in Table I (column SbS). With
stronger supervision signal, the model significantly outperforms the N2N setting, and achieves perfect accuracy
on MIXED-100K. This shows that NEURAL ENQUIRER is capable of leveraging the additional supervision signal
given to intermediate layers in SbS training. Let us revisit the query 2 in SbS setting. In contrast to the result in
N2N setting (Figure B) where the attention weights for the first two executors are obscure, now the weights are
perfectly skewed towards each relevant field with a value of 1.0, which corresponds with the highlighted ideal
weights.

4.5 Dealing with Out-Of-Vocabulary Words

One of the major challenges for applying neural network models to NLP applications is to deal with out-of-
vocabulary (OOV) words (e.g., new entities for QA). Surprisingly, we find that a simple variant of NEURAL
ENQUIRER is able to handle unseen entities almost without loss of accuracy.

Specifically, we divide words in the vocabulary into entity words and operation words. Embeddings of entity
words (e.g., Beijing) function like indices to facilitate the matching between the entities in queries and tables
during query execution, and therefore are not updated once randomly initialized; while those of operation words,
i.e., all non-entity words (e.g., numbers, longest, before, etc), carry semantic meanings relevant to execution and
will be optimized in training. Therefore, after randomly initializing the embedding matrix L, we only update
the embeddings of operation words in training, while keeping those of entity words unchanged. To evaluate the
model we modify the queries in the testing set to replace all entity words (i.e., all country and city names) with
those unseen in training. Results obtained using N2N training, reported in Table B (column N2N-OOV), show
that the model yields performance comparable with non-OOV settings.

Executor-3 Executor-4
1.0, 1.0,
0.8] 0.8
0.6 0.6
0.4 0.4
0.2] 0.2
0.04 ' ' ' 0.0l . .
DS SPGB N P s WP SRR F S S ESS S
R R S SR O S S G SIS & & &
57 R &L O X X7 & '2,(06\ O d/\
‘«\O:’ &O NN S & R Q ‘(\o"’ (Ja & B & 3
& T3 2 S NP & gg/%/%/ & NS
%7 A %7

Figure 6: Weights visualization of query Q3

An interesting question is how the model resolves the types of OOV entity words (i.e., cities vs. countries) in
ambiguous queries, e.g., Q3: “How many people watched the Games in Macau?”, since the random embeddings
of entity words (e.g, Macau) cannot link them to their corresponding fields. The model executes ()3 using
the last three executors, with the last executor attending to the #_audience field as expected. Interestingly,
however, the model attends to the host _city field in Executor-3, and then host _country in Executor-4
(see Figure B), indicating the model learns to scan all possible fields to figure out the correct field of an OOV
entity.

4.6 Querying Expanded Knowledge Source

We simulate a test case to evaluate the model’s ability to generalize to an expanded knowledge source. We
train a model on tables whose field sets are either F1, Fa, ..., F5, where F; is a subset of the entire field set
F7 and |F;| = 5. We then test the model on tables with all fields 7 and queries whose fields span multiple

71



Query Type \ SELECT_WHERE SUPERLATIVE WHERE_SUPERLATIVE \ Overall
Accuracy | 68.2% 84.8% 80.2% | 77.7%

Table 3: Accuracies for querying expanded knowledge source

Training Testing

#_audience | host_city #_audience | host_city | year | #_participants

75,000 Beijing 65,000 Beijing | 2008 2,000

How many audience members are in Beijing? When was the game in Beijing?

year | #_participants # _audience | host_city | year | #_participants

2008 2,500 50,000 London [ 2012 3,000

When was the game with 2,500 participants? I How many people watched the game with 3,000 participants?

Figure 7: Expanded knowledge source querying simulation

subsets F;. Figure [ illustrates the setting. All test queries exhibit field combinations unseen in training. This
simulates the difficulty the model often encounters when scaling to large knowledge sources, which usually
poses a great challenge on model’s generalization ability. We evaluate the N2N model on a dataset of the first
three types of relatively simple queries. The sizes of training/testing splits are 75,000 and 30,000, with equal
numbers for each query type. Table B lists the results. The model maintains a reasonable performance even when
the compositionality of test queries is previously unseen, showing the model’s generalization ability in tackling
unseen query patterns through the composition of familiar ones, and hence the potential to scale to larger and
unseen knowledge sources.

5 Related Work

This work is related to semantic parsing, which aims to parse NL queries into logical forms executable on
KBs [[9, M]. Recent studies take a semi-supervised learning approach, and adopt the results of query execution
as indirect supervision to train a parser [3, @, [[f, 173, [T]. Semantic parsers learned in this way can scale to large
open domain KBs, but are inadequate for understanding complex queries because of the intractable search space
incurred by the flexibility of parsing algorithms. Our work follows this approach in using query answers as
indirect supervision, but jointly performs semantic parsing and query execution in distributional spaces, where
the distributed representations of logical forms are implicitly learned in end-to-end QA tasks.

Our work is also related to the recent research of modeling symbolic computation using neural networks,
pioneered by the development of Neural Turing Machines (NTMs) [8] and the work of learning to execute (LTE)
simple Python programs using LSTM [ '7]. It is related to both lines of research in using external memories like
NTMs and learning by executing like LTE. As a highlight and difference, our work employs multiple layers of
deep memories, with the neural network operations highly customized towards querying KB tables.

Perhaps the most related work is the recently proposed NEURAL PROGRAMMER [[I7], which studies the
same task of executing queries on tables using DNNs. While in NEURAL PROGRAMMER, the query planning is
modeled using DNNs to determine which operation to execute at each step, the symbolic operations are prede-
fined by users. In contrast our model is fully neuralized: it models both the query planning and query execution
using DNNs, which are jointly optimized via end-to-end training. Our model learns symbolic operations using
a data-driven approach. We also present results on NL queries and demonstrate that a fully neural system is
capable of executing compositional logic operations up to a certain level of complexity.

72



6

Conclusion

We propose NEURAL ENQUIRER, a fully neural, end-to-end differentiable network that learns to execute com-
positional natural language queries on knowledge base tables. We present results on a set of synthetic QA tasks
to demonstrate the ability of NEURAL ENQUIRER to answer fairly complicated compositional queries across
multiple tables. In the future we plan to advance this work in the following directions. First we will apply
NEURAL ENQUIRER to natural language questions and natural language answers, where both the input query
and the output supervision are noisier and less informative. Second, we are going to scale to real world QA task
as in [3], for which we have to deal with a large vocabulary and novel predicates. Third, we are going to work
on the computational efficiency issue in query execution by heavily borrowing the symbolic operation.

References

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]
[9]

[10]

(11]

[12]

(13]
[14]

[15]

[16]

(17]
(18]
(19]

Y. Artzi, K. Lee, and L. Zettlemoyer. Broad-coverage CCG semantic parsing with AMR. In EMNLP, 1699-1710,
2015.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In /CLR,
2015.

J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase from question-answer pairs. In EMNLP,
1533-1544, 2013.

J. Berant and P. Liang. Semantic parsing via paraphrasing. In ACL (1), 1415-1425, 2014.

A. Bordes, N. Usunier, A. Garca-Durn, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-
relational data. In NIPS, 2787-2795, 2013.

D. L. Chen and R. J. Mooney. Learning to sportscast: A test of grounded language acquisition. In /ICML, 128-135,
2008.

J. Clarke, D. Goldwasser, M.-W. Chang, and D. Roth. Driving semantic parsing from the world’s response. In
CoNLL, 18-27, 2010.

A. Graves, G. Wayne, and 1. Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014.

J. Kim and R. J. Mooney. Unsupervised pcfg induction for grounded language learning with highly ambiguous
supervision. In EMNLP-CoNLL, 433-444,2012.

P. Liang, M. I. Jordan, and D. Klein. Learning dependency-based compositional semantics. In ACL (1), 590-599,
2011.

D. K. Misra, K. Tao, P. Liang, and A. Saxena. Environment-driven lexicon induction for high-level instructions. In
ACL (1),992-1002, 2015.

A. Neelakantan, Q. V. Le, and I. Sutskever. Neural programmer: Inducing latent programs with gradient descent.
CoRR, abs/1511.04834, 2015.

P. Pasupat and P. Liang. Compositional semantic parsing on semi-structured tables. In ACL (1), 1470-1480, 2015.

T.-H. Wen, M. Gasic, N. Mrksic, P. hao Su, D. Vandyke, and S. J. Young. Semantically conditioned lstm-based
natural language generation for spoken dialogue systems. In EMNLP, 1711-1721, 2015.

J. Weston, A. Bordes, S. Chopra, and T. Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks. CoRR, abs/1502.05698, 2015.

W. Yih, M. Chang, X. He, and J. Gao. Semantic parsing via staged query graph generation: Question answering with
knowledge base. In ACL (1), 1321-1331, 2015.

W. Zaremba and I. Sutskever. Learning to execute. CoRR, abs/1410.4615, 2014.
M. D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.

L. S. Zettlemoyer and M. Collins. Learning to map sentences to logical form: Structured classification with proba-
bilistic categorial grammars. In UAI, 658-666, 2005.

73



