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Abstract

For most large enterprises today, data constitutes their core asset, along with code and infrastructure.
For most enterprises, the amount of data that they produce internally has exploded in recent years. At the
same time, in many cases, engineers and data scientists do not use centralized data-management systems
and end up creating what became known as a data lake—a collection of datasets that often are not well
organized or not organized at all and where one needs to “fish” for useful datasets. In this paper, we de-
scribe our experience building and deploying GOODS, a system to manage Google’s internal data lake.
GOODS crawls Google’s infrastructure and builds a catalog of discovered datasets, including structured
files, databases, spreadsheets, and even services that provide access to the data. GOODS extracts meta-
data about datasets in a post-hoc way: engineers continue to generate and organize datasets in the same
way that they have before, and GOODS provides value without disrupting teams’ practices. The technical
challenges that we had to address resulted both from the scale and heterogeneity of Google’s data lake
and from our decision to extract metadata in a post-hoc manner. We believe that many of the lessons that
we learned are applicable to building large-scale enterprise-level data-management systems in general.

1 Introduction

Most large enterprises today witness an explosion in the amount of data that they generate internally for use
in ongoing research and development. The reason behind this explosion is simple: by allowing engineers and
data scientists to consume and generate data in an unfettered manner, enterprises promote fast development
cycles, experimentation, and, ultimately, innovation that drives their competitive edge. As a result, this internally
generated data often becomes a prime asset of the company, on par with source code and internal infrastructure.
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The flip side of this explosion is the creation of a so called data lake [1, 2, 6]: a growing volume of internal
datasets, with little codified information about their purpose, value, or origin. This scarcity of information is
problematic: data becomes siloed within the teams who carry the “tribal knowledge” of the data’s origin, which,
in turn, results in significant losses in productivity and opportunities, duplication of work, and mishandling of
data.

In this paper we describe Google Dataset Search (GOODS), a system that we built and deployed in order to
help Google’s engineers organize and manage datasets in its data lake. GOODS operates in a post-hoc manner: it
collects and aggregates metadata about datasets after the datasets were created, accessed, or updated by various
pipelines. Put differently, teams and engineers continue to generate and access datasets using the tools of their
choice, and GOODS works in the background, in a non-intrusive manner, to gather the metadata about datasets
and their usage. GOODS then uses this metadata to power services that enable Google engineers to organize
and find their datasets in a more principled manner. Hence, GOODS is very different from Enterprise Data
Management (EDM) systems, which act as gateways and require dataset owners and consumers to use specific
protocols and APIs for data access.
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Figure 1: Overview of Google Dataset Search (GOODS). GOODS collects metadata about datasets from various
storage systems. It infers metadata and relationships among datasets by processing additional sources such
as logs and information about dataset owners and their projects, by analyzing content of the datasets, and by
collecting input from the GOODS users. The collected metadata powers user-facing tools, such as search, dataset
profiles, monitoring, and a dataset-annotation service.

Figure 1 shows a schematic overview of our system. GOODS continuously crawls different storage systems
and the production infrastructure (e.g., logs from running pipelines) to discover which datasets exist and to
gather metadata about each one (e.g., owners, time of access, content features, accesses by production pipelines).
GOODS aggregates this metadata in a central catalog and correlates the metadata about a specific dataset with
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information about other datasets. GOODS then uses this catalog to provide Google engineers with services for
dataset management. These services include the following:

• A search engine over all the datasets in the company, with facets for narrowing search results, to help
engineers and analysts find the most relevant datasets.

• A per-dataset profile page that renders the metadata that GOODS has recorded about a specific dataset
and can thus help users understand the dataset and its relationships to other datasets in the company. The
profile page also integrates with other tools that can further process the dataset, thus helping users act on
the data.

• A monitoring service that allows teams to monitor features of the datasets that they own, such as size,
distribution of values in the contents, or availability. Users can configure this monitoring service to issue
alerts if the features change unexpectedly.

• A annotation service that allows dataset owners or trusted principals (e.g., data librarians, or a data-
stewardship team) to extend a dataset’s metadata with domain-specific annotations that can appear in the
profile page. As an example, a dataset owner can provide a textual description for the dataset’s contents
or attach a visualization that can inform other users.

Search is the most frequently used service in GOODS, which demonstrates the importance of dataset discovery
within a data lake. However, we have seen good adoption for the remaining services. We were also pleasantly
surprised to see that teams used GOODS for scenarios that we did not originally anticipate:

• Schema auditing A team used search to identify datasets owned by other teams that conformed to a specific
schema that this team owned. The team then audited the resulting datasets to ensure that the schema was
used according to its specifications.

• Data discovery through provenance The GOODS catalog includes provenance metadata, in the form
“dataset Y was read/written by production job X”. This information, and in particular the transitive
closure of the provenance links, can be useful in understanding the pedigree of a dataset and its down-
stream dependencies, and thus features prominently in the profile page of each dataset. A team found a
different usage for these links and relied on them for dataset discovery. Specifically, a ML team wished
to use datasets that were publicized as canonical for certain domains, but they found that these datasets
were too “groomed” for ML. To overcome this problem, the team relied on the provenance links to browse
upstream and identify the datasets that were used to derive the canonical datasets. These input datasets
contained less groomed data and were more suitable for the specific ML task.

• Content visualization A technical-infrastructure team used the annotation service to attach a visualization
to datasets that represent training data for ML pipelines. This visualization, which illustrates statistics
on the features of the training examples, is surfaced on the dataset profile page in order to help users
understand the distribution of features and also to spot anomalies that can affect the quality of machine-
learned models.

The remainder of the article describes our experience with the development of GOODS. We begin by iden-
tifying the key challenges that we had to address in building the data-lake management system at Google—a
data lake that contains more than 20 billion datasets. Many of the challenges that we addressed in GOODS were
precipitated by the scale and characteristics of the data lake at Google, but we believe that our experience and
the lessons that we learned will apply to similar systems in other enterprises. We then introduce the logical
structure that we used to organize the data lake’s metadata, using relationships among entities (datasets, teams,
projects, and so on). We argue that this organization, which is inspired by structured knowledge bases and their
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application to Web search, can help answer important questions about the contents of the data lake. We then
review briefly some of the system-related and technical issues that we solved in developing GOODS, and finally
we present a few directions for future work based on our experience with the current system deployment.

2 Challenges in Managing and Organizing an Enterprise Data Lake

We encountered many challenges as we designed and build GOODS. In this section, we highlight and elaborate
on some of the important challenges. A more detailed list of challenges can be found in our previous work [5].

2.1 Organizing the Data Lake

As we discussed, a major goal of a data-lake management system is to gather metadata for the datasets in it. We
can view the metadata for each dataset independently. However, we found that is far more powerful to consider
how to integrate this metadata in order to uncover relationships among datasets. Identifying and inferring these
relationships helped us address some of the scalability challenges that we just described. Furthermore, it helped
us organize the datasets in the data lake and thus to provide our users with a better understanding of the data
lake’s contents.

As an example, consider the following query over the data lake: “Find all datasets that are derived from a
dataset owned by project X .” This query can help assess the impact of project X or identify teams that need
to be notified if there is a plan to wipe the datasets owned by X . Answering this query requires knowledge of
the composition of various teams, dataset ownership, and provenance relationships. Another interesting query is
“Find all datasets written by a production job whose code uses a specific version of method X”, which can help
identify datasets that might have been affected by faulty code. Again, answering this query requires knowledge
of several types of relationships, including provenance, the versions of binaries in production jobs, and the
linkage of source code to binaries.

To support this type of functionality we first have to identify what types of relationships exist and which of
them we can determine efficiently. All the challenges that we have identified already still remain. The large scale
means that we cannot perform an exhaustive search to identify these relationships. For instance, while it would
be useful to know which datasets, or parts of datasets, have identical content, we cannot compare every pair of
datasets to each other. Or, because we are building GOODS in a post- hoc manner, we need to understand which
infrastructure signals can help uncover these relationships. For instance, to identify provenance relationships
between datasets we may join the dataset catalog with logs of different jobs that generate datasets. However,
because these resources come from different teams, they often use different naming schemes, different levels of
granularity for what they define as a dataset or what they include, and so on.

2.2 Scalability of Metadata Extraction

The first challenge that we had to address is the scalability of of gathering metadata for the datasets in the data
lake. Three factors contribute to this challenge: the sheer number of datasets that GOODS manages, the daily
churn of the datasets, and the cost of extracting metadata for each individual dataset. Our recent snapshot of
Google’s data lake contained 20 billion datasets, and this number has likely increased since then. Furthermore,
we observed that one billion datasets were added to or removed from the data lake each day, with a significant
fraction corresponding to transient short-lived datasets. At the same time, the cost of metadata extraction for
individual datasets is high, because this extraction typically requires an expensive operation to the source storage
system (e.g., accessing the contents of a file in a distributed filesystem). These factors lead to a prohibitive cost
to analyze each and every dataset in the data lake.

One way to address this challenge is to prioritize metadata extraction so that the catalog of the data-lake
management system covers the “important” datasets. Coming up with a good metric of dataset importance is
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difficult. For example, this metric may depend on the type of the dataset, the context in which the dataset is used
(e.g., datasets that power user-facing services may be more important), or relationships to other datasets (e.g.,
datasets may be more important if they are used to derive other datasets). Similarly, while one may argue that
transient datasets are not important given their limited lifespan, we discovered that this is not always the case: In
some cases it was necessary to analyze short-lived datasets in order to derive metadata for non-transient datasets.
For example, provenance links between non-transient datasets often go through temporary transient datasets.

2.3 Post-hoc Management of Metadata

Early on in the design of our system we decided to adopt a post-hoc approach to the process of metadata
extraction: the system would gather metadata about datasets by analyzing signals from Google’s infrastructure
(e.g., by processing logs or crawling storage-system catalogs) after these datasets have been accessed or updated.
We can contrast this approach with traditional Enterprise Data Management (EDM) systems, which prescribe
specific APIs to access datasets and thus act as gateways between teams and their data. EDM systems can gather
very precise metadata because they are in the critical path of data access, but they also require an enterprise-wide
opt in. Instead, we designed GOODS to operate from the sidelines assuming that teams were free to choose how
they access their data. Our goal was to organize the data lake and to bring value to Google’s teams without
disrupting their practices. We also believe that this post-hoc approach is in line with the nature of a data lake,
which allows engineers and analysts to experiment with data in an unfettered fashion.

The downside of this approach is that it becomes more difficult to extract and reason about dataset metadata.
First, we now have to deal with uncertainty in the metadata. As an example, consider the problem of inferring a
schema for the contents of a dataset whose storage format does not record this information (e.g., a file contain-
ing serialized protocol buffers [7]). The analysis of the contents may yield several candidates for the schema,
corresponding to different ways to parse the contents, and in the absence of other information we record all of
these candidates in the dataset’s metadata. Second, the metadata that we collect is heterogeneous because dif-
ferent types of datasets that appear in the data lake (e.g., files, spreadsheets, relational databases, or instances of
key-value stores) have different metadata and may require different tools to extract it. A data-lake management
system must be able both to extract and handle metadata across a variety of source storage systems and to record
this heterogeneous metadata in a single catalog. However, having a single catalog for diverse metadata is also
an opportunity to partially lift this heterogeneity in the data lake: the catalog can define a subset of the gathered
metadata that is often common across datasets of different types. This common metadata can provide users and
services with a unified view of the datasets in the data lake.

3 The Data Lake Relationship Graph

We view the GOODS catalog not only as a collection of metadata describing the datasets in the Google’s data
lake but also as a representation of relationships among datasets and other related entities (teams, projects, code,
and so on).

This approach is inspired by the concept of knowledge graphs [3], which are used by modern enterprises
to describe entities in the real world and to allow users to search with complex queries. Nodes in such a
knowledge graph represent entities in the world (e.g., Tom Hanks, “Forrest Gump”) and edges link these entities
to each other (e.g., Tom Hanks played a role in “Forrest Gump”). This graph enables an extensible and flexible
representation and supports queries such as “female actors who played lead roles in comedies,” which require
traversing diverse relationships. We can view the structure of a data lake in a similar way, in particular as we
link it to other components on enterprise infrastructure. First, we can have relationships between datasets (e.g.,
dataset A is a new version of dataset B). Second, we can link datasets to other entities, such as jobs that generate
the datasets, projects and users that own the datasets and these jobs, or source code that defines these jobs. As
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we list the relationships that we identified between datasets in a data lake, it is important to note that we infer all
these relationships automatically, in a post-hoc fashion, relying on a variety of information that we can gather
inside the enterprise.

The following is a list of relationships among datasets that we identify as important and that we infer as we
collect the metadata in the GOODS catalog.

Dataset containment: Some datasets may contain other datasets. For instance, bigtable column families[4]
are first-class entriies in the GOODS catalog, and so are the bigtables themselves. We link the latter to
the entries for the column families that they contain. This containment information is usually part of the
metadata that we can extract directly from specific storage systems.

Provenance: Datasets are produced and consumed by code. This code may include analysis tools such as dash-
boarding solutions or SQL-query engines, serving infrastructures that provide access to datasets through
APIs, or ETL pipelines that encode dataset transformations. For each dataset, we maintain the provenance
of how the dataset is produced, how it is consumed, what datasets this dataset depends on, and what other
datasets depend on this dataset. We identify and populate the provenance metadata through an analysis of
production logs, which provide information on which jobs read and write each dataset. We then create a
transitive closure of this graph connecting datasets and jobs, in order to determine how the datasets them-
selves are linked to one another. However, the number of data-access events in the logs can be extremely
high and so can be the size of the transitive closure. Therefore, we trade off the completeness of the
provenance associations for efficiency by processing only a sample of data-access events from the logs
and also by materializing only the downstream and upstream relations within a few hops as opposed to
computing the true transitive closure.

Logical clusters: We identify datasets that belong to the same logical cluster. While our definition of clusters is
domain-dependent, in general, we usually group the following collections of datasets into a single logical
cluster: datasets that are versions of the same logical dataset and that are being generated on a regular
basis; datasets that are replicated across different data centers; or datasets that are sharded into smaller
datasets for faster loading. Because engineers tend to use specific conventions in naming their datasets,
we can identify these logical clusters efficiently by examining the dataset paths. For example, consider a
dataset that is produced daily and let /dataset/2015-10-10/daily batch be the path for one of
its instances. We can abstract out the day portion of the date to get a generic representation of all datasets
produced in a month: /dataset /2015-10-<day>/daily batch, representing all instances from
October 2015. By abstracting out the month as well, we can go up the hierarchy to create abstract paths that
represent all datasets produced in the same year:
/dataset/2015-<month>-<day>/daily batch. By composing hierarchies along different di-
mensions, we construct a granularity semi-lattice structure where each node corresponds to a different
granularity of viewing the datasets.

Content similarity: Content similarity—both at the level of dataset as a whole and at the level of individual
columns—is another graph relationship that we extract. Given the size of Google’s data lake, it is pro-
hibitively expensive to perform pairwise comparison of all datasets. Instead, we rely on approximate
techniques to determine which datasets are replicas of each other and which have different content. We
collect fingerprints that have checksums for the individual fields and locality-sensitive hash (LSH) values
for the content. We use these fingerprints to find datasets with content that is similar or identical to the
given dataset, or columns from other datasets that are similar or identical to columns in the current dataset.

In addition to the relationships that link datasets in the GOODS catalog to each other, we also rely on the rest
of Google infrastructure to enrich this relationship graph. While this part of the system continues to grow, we
list here some of the relationships that we currently extract:
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• information on owners of the jobs that produce or read datasets;

• information on dataset owners and user groups that determine visibility permissions for datasets;

• links between schema that we infer for the datasets and its definition in the source code repository.

Using this (conceptual) graph-based organization enables us to add new relationships between different
types of entities easily. An example is the relationship between a dataset representing training data and the
visualization of the corresponding features, which we mentioned in Section 1. More important, the graph allows
users to navigate the data-lake catalog in a flexible way and to answer rich queries that require linking datasets
to other assets in the enterprise.

4 System Design

GOODS maintains a metadata catalog for the data lake (Figure 1). Our previous work [5] details the physical
organization of the catalog, the continuous processes that update it, and its usage to power the user-facing
services mentioned in Section 1. Here we highlight some of the important technical approaches we adopted in
our system to address the challenges in Section 2.

4.1 Leveraging the Data Lake Relationship Graph

The relationships that we have identified in Section 3 are critical in supporting most of the functionality in
GOODS. They enable us both to address some of the scalability challenges that we described in Section 2 and to
provide new services to the engineers who use GOODS.

First, clustering provides enormous savings in metadata extraction, albeit potentially at the cost of precision.
That is, instead of collecting expensive metadata for each individual dataset, we can collect metadata only for
a few datasets in a cluster. We can then propagate the metadata across the other datasets in the cluster. For
instance, if the same job generates versions of a dataset daily, these datasets are likely to have the same schema.
Thus, we do not need to infer the schema for each version. Similarly, if a user provides a description for a
dataset, it usually applies to all members of the cluster and not just the one version. When the clusters are large,
the computational savings that we obtain by avoiding analysis of each member of the cluster can be significant.

Second, we can use different types of graph edges to propagate metadata when it is too expensive to extract
it directly or we simply do not have this metadata. For instance, we can propagate the description of one version
of a dataset to all of its versions. Similarly, versions of the same dataset are likely to have the same schema.
Naturally, some of this propagation will introduce uncertainty into our metadata—a fact that we are already
dealing with at different levels.

Finally, the links to knowledge graphs representing other parts of Google infrastructure, make GOODS a
data-centric starting point for users exploring other resources. For instance, a user can find a definition of a
protocol buffer in source code and immediately jump to the list of all the datasets that use that protocol buffer as
their schema. A new member of a team can find datasets generated by her team. A profile page for a dataset has
links to dataset owners, profile pages for jobs that read and write the dataset, and so on.

4.2 Coordinating Modules for Post-Hoc Processing

The GOODS backend uses a large number of diverse batch-processing jobs to collect information from a variety
of systems and to add and update new information into the GOODS catalog. This diversity of jobs is a conse-
quence of our post-hoc approach: we collect information from many diverse corners of the Google’s internal
infrastructure. Each job includes one or more modules, such as crawlers or analyzers. Different GOODS mod-
ules have different characteristics that influence how modules are grouped together in jobs, and how jobs are

11



scheduled. Next we discuss some of these characteristics and a few rules of thumb that we followed to design
and optimize the GOODS backend.

First, not all GOODS modules are critical for the smooth functioning of the system. For example, modules
that identify the existence of datasets and extract metadata on who owns and who can access the datasets are
critical to ensure that the state of the system is fresh and that any changes in access control for the datasets are
reflected accurately. On the other hand, modules like schema analyzer that identifies the schema of a dataset—
while useful—are not as time sensitive. Therefore, we explicitly allocate more resources to jobs that include
critical modules, and schedule non-critical jobs using spare resources.

Second, certain modules may depend on successful run of other modules. For example, a fingerprint analyzer
uses the schema identified by the schema analyzer to compute column level fingerprints. Grouping together
dependent modules into the same job enables dependent modules to check the status of the all modules they
depend on and take an informed decision. While all GOODS modules store the status of execution for each
dataset in the catalog itself to avoid repetitive work on failure and between different instances of the same job,
grouping dependent modules reduces the overall number of bytes read from the persistent storage backend.

Third, the failure characteristics of modules vary widely. It is important to isolate some modules which are
prone to failure to ensure steady progress of other modules. For instance, several of our modules that examine
content of datasets use a variety of libraries specific to different file formats. At times, these libraries crash or
go into infinite loops. Because we cannot have long-running analysis jobs crashing or hanging, we sandbox
such potentially dangerous jobs in a separate process. We then use a watchdog thread to convert long stalls into
crashes while allowing the rest of the pipeline to proceed.

Finally, different modules have different computational complexity and therefore different resource foot-
prints. While we schedule modules that have low complexity to run over the entire catalog every day, we avoid
re-running computationally expensive modules unless there is a strong signal that a re-run will yield different
results. For example, unless a dataset is modified, the fingerprint for the contents is unlikely to change and
therefore the fingerprint analyzer can bypass such dataset.

While some of these design choices were part of our initial design of the GOODS system, we made many of
them after experiencing an issue and redesigning parts of our system to address it.

4.3 Search Ranking

As we mentioned in the introduction, dataset discovery through search is the most frequent use case for GOODS.
An important design choice for us was to build the search functionality at the level of logical clusters: We
index the metadata that describes the logical cluster corresponding to a collection of related datasets (e.g., daily
versions of the same dataset) and the user sees results corresponding to these logical datasets. This decision
allowed us to compress search results in a meaningful way, instead of overwhelming the user with many similar
datasets that match the same query (e.g., showing datasets that differ only on one component of their path
denoting their version). We also experimented with the alternative of indexing metadata at the level of each
physical dataset, but the end-user experience suffered from the sheer number of similar results.

We faced a few technical difficulties in building the search index. For example, we needed to propagate
the metadata from individual members of the cluster itself so that users can search for it. However, by far the
biggest challenge was to design a good ranking function for search results. In general, it is hard to overstate the
importance of good ranking for search. The problem has unique characteristics in the case of dataset search (and
is different than, say, web or bibliographic search) because of the domain-specific signals that can determine
the relevance of a dataset to a search query. After much experimentation (and a few false starts), we ended
up using a mix of standard IR-type signals (e.g., how well the search terms match the metadata) with domain-
specific signals derived from each dataset’s metadata. For instance, we found that provenance relationships
among datasets provide a strong relevance signal. Specifically, it is common for teams to generate denormalized
versions of some “master” dataset in order to facilitate different types of analysis of the master data. These
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denormalized datasets can match the same search keywords as the master dataset, yet it is clear that the master
dataset should be ranked higher for general-purpose queries or for metadata-extraction. Another example comes
from provenance relationships that cross team boundaries, when the dataset from one team is processed to create
a dataset in the scope of another team or project. In this case, we can boost the importance of the input dataset
as evidenced by its usage by an external team. The output dataset is also important, because we can view it as an
origin of other datasets within the external project. Dataset type is another example of a domain-specific signal:
for instance our ranking function primes datasets that correpsond to relational databases, because the latter tend
to have richer metadata and be more tailored for wide usage compared to, say, files on a distributed filesystem.

Ranking methods for dataset search remains an interesting research problem. It is particularly interesting
to consider how techniques from other domains could apply in a data-lake setting, e.g., what would be the
equivalent of personalized pagerank when searching for a dataset. However, as we discuss in the next section,
our experience with users shows that they have different needs for ranking depending on the purpose of their
search. This evidence indicates that a data-lake management system should support several ranking methods
and allow users to choose at search time which one to use.

5 Future Directions

After deploying GOODS for the initial use cases that we mentioned in Section 1, we had a chance to observe
how the system got adopted, to interact with users, and to receive feedback on feature requests. Based on this
information, we have identified a few directions that are interesting for further development on GOODS and,
more generally, for the type of functionality that a system for data-lake management can offer.

• Building a community around datasets GOODS allows users to share and exchange information about
datasets, and to augment the metadata in the catalog with domain-specific knowledge. We view this
functionality as the means to develop a community whose shared goal is the curation of the data lake. In
this spirit, we can add more community-like features including comments on datasets, reviews, or Q&A
functionality, to name a few. The goal is to foster a culture of joint data stewardship and of best practices
on adding new datasets to the data lake.

• Rich analytics over the data lake The first use case that we targeted with GOODS was dataset discovery
within the data lake, through a simple keyword-search interface with relevance ranking. Over time, we
found that users “outgrew” this modality and started asking for more flexible ways to query the catalog.
The requests ranged from different options for result ranking (e.g., rank datasets by size or by modifica-
tion timestamp) to full SQL access over the catalog. (In fact, GOODS itself has an internal monitoring
component that tracks the state of the data lake through SQL queries over the metadata.) In some cases,
users also found it convenient to explore the catalog through a graph visualization based on provenance re-
lationships, which points to the idea of exposing slices of the catalog through specialized user interfaces.
Thinking forward, we can also view the catalog as a temporal store that enables comparisons between
snapshots of the data lake and thus the discovery of trends. Another option is to view GOODS as a gener-
ator of a stream of metadata events, where each event encodes the creation of a dataset, the discovery of a
provenance edge, or any other piece of metadata that can be stored in the catalog. Under this model, users
can issue continuous queries to monitor the contents of the data lake.. For example, a team can set up a
continuous query to monitor accesses to its datasets by other teams, or a user can monitor the generation
of datasets by daily runs of some pipeline. In general, our experience with GOODS is that there is value in
enabling rich data analytics over the catalog, both to allow users to explore the data lake more effectively
but also to monitor the overall state of the data lake.

• Beyond post-hoc Our initial approach of crawling and analyzing datasets in a post-hoc manner enabled
the collection of basic metadata for datasets stored in many different systems in a minimally invasive
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manner. However, there are two main downsides to the post-hoc approach. First, the data in the catalog
has a time lag, which conflicts with user expectation of the catalog immediately reflecting the creation or
modification of any metadata. Second, the analyzers in GOODS collect only generic, and often uncertain,
metadata. As GOODS got adopted within the company, many teams expressed the desire to use GOODS

infrastructure to store, retrieve, share, and serve custom metadata for their datasets, ideally within a short
time interval of such changes taking place. In order to tackle such use cases, we envision a hybrid approach
that supports one-off deeper integration with storage infrastructures to reduce the time lag for discovery,
and APIs for teams to register datasets and to contribute custom metadata to the catalog.

• Acting on data The information in the catalog not only helps users understand the datasets that they know
about but also enables them to discover what they can do with their datasets, how they can use datasets in
other tools, or to discover new related datasets. More concretely, one of the very popular features of profile
pages in GOODS are pre-populated queries and code snippets that use the path and schema information,
which users can simply copy and paste into other tools. We can envision extensions of this feature that
are based on a deeper analysis of the dataset’s metadata and that can help the user act on the dataset with
more elaborate tools; for example, we can automatically build a dashboard for the dataset based on its
characteristics. These extensions can become more powerful if we can leverage the relationships encoded
in the catalog. For instance, if GOODS can tell us that a key column in our dataset has very similar context
to a key column in another dataset, then the two datasets might be candidates for joining and the user
may even be presented with possible actions on the join results. This specific example is intriguing, as the
data-lake management system helps the user understand what datasets could exist in the data lake instead
of merely summarizing what has already been generated.

Overall, a data-lake management system should promote the treatment of datasets as first-class objects within
the computing infrastructure of the enteprise. A big part of this goal involves services that make it easier for
engineers and analysts to integrate datasets within their workflow in an organic fashion, and this direction has
been the main focus of our work with GOODS. Furthermore, through these services the system can instill best
practices for dataset management and break team-delinated silos, thus fostering a culture of responsible data
stewardship across the enterprise.
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