
Bulletin of the Technical Committee on

Data
Engineering
September 2016 Vol. 39 No. 3 IEEE Computer Society

Letters
Letter from the Editor-in-Chief . David Lomet 1
Letter from the 2016 IEEE TCDE Impact Award Winner . Michael Carey 2
Call for Nominations for TCDE Chair . Kyu-Young Whang 3
Letter from the Special Issue Editor . Haixun Wang 4

Special Issue on Text, Knowledge, and Database
Managing Google’s data lake: an overview of the Goods system . Alon

Halevy, Flip Korn, Natalya F. Noy, Christopher Olston, Neoklis Polyzotis, Sudip Roy, Steven Euijong Whang 5
Data services leveraging Bing’s data assets .

. Kaushik Chakrabarti, Surajit Chaudhuri, Zhimin Chen, Kris Ganjam, Yeye He 15
Attributed Community Analysis: Global and Ego-centric Views Xin Huang, Hong Cheng, Jeffrey Xu Yu 29
Ten Years of Knowledge Harvesting: Lessons and Challenges .

. Gerhard Weikum, Johannes Hoffart, Fabian Suchanek 41
Towards a game-theoretic framework for text data retrieval . ChengXiang Zhai 51
Neural enquirer: learning to query tables in natural language Zhengdong Lu, Hang Li, Ben Kao 63
Multi-Dimensional, Phrase-Based Summarization in Text Cubes .

Fangbo Tao, Honglei Zhuang, Chi Wang Yu, Qi Wang, Taylor Cassidy, Lance Kaplan, Clare Voss, Jiawei Han 74
Answering End-User Questions, Queries and Searches on Wikipedia and its History .

. Maurizio Atzori, Shi Gao, Giuseppe M. Mazzeo, Carlo Zaniolo 85

Conference and Journal Notices
TCDE Membership Form .back cover

Editorial Board

Editor-in-Chief

David B. Lomet

Microsoft Research

One Microsoft Way

Redmond, WA 98052, USA

lomet@microsoft.com

Associate Editors

Tim Kraska

Department of Computer Science

Brown University

Providence, RI 02912

Tova Milo

School of Computer Science

Tel Aviv University

Tel Aviv, Israel 6997801

Christopher Ré

Stanford University

353 Serra Mall

Stanford, CA 94305

Haixun Wang

Facebook, Inc.

1 Facebook Way

Menlo Park, CA 94025

Distribution

Brookes Little

IEEE Computer Society

10662 Los Vaqueros Circle

Los Alamitos, CA 90720

eblittle@computer.org

The TC on Data Engineering
Membership in the TC on Data Engineering is open to

all current members of the IEEE Computer Society who

are interested in database systems. The TCDE web page is

http://tab.computer.org/tcde/index.html.

The Data Engineering Bulletin
The Bulletin of the Technical Committee on Data Engi-

neering is published quarterly and is distributed to all TC

members. Its scope includes the design, implementation,

modelling, theory and application of database systems and

their technology.

Letters, conference information, and news should be sent

to the Editor-in-Chief. Papers for each issue are solicited

by and should be sent to the Associate Editor responsible

for the issue.

Opinions expressed in contributions are those of the au-

thors and do not necessarily reflect the positions of the TC

on Data Engineering, the IEEE Computer Society, or the

authors’ organizations.

The Data Engineering Bulletin web site is at

http://tab.computer.org/tcde/bull_about.html.

TCDE Executive Committee

Chair
Xiaofang Zhou

The University of Queensland

Brisbane, QLD 4072, Australia

zxf@itee.uq.edu.au

Executive Vice-Chair
Masaru Kitsuregawa

The University of Tokyo

Tokyo, Japan

Secretary/Treasurer
Thomas Risse

L3S Research Center

Hanover, Germany

Committee Members
Amr El Abbadi

University of California

Santa Barbara, California 93106

Malu Castellanos

HP Labs

Palo Alto, CA 94304

Xiaoyong Du

Renmin University of China

Beijing 100872, China

Wookey Lee

Inha University

Inchon, Korea

Renée J. Miller

University of Toronto

Toronto ON M5S 2E4, Canada

Erich Neuhold

University of Vienna

A 1080 Vienna, Austria

Kyu-Young Whang

Computer Science Dept., KAIST

Daejeon 305-701, Korea

Liaisons
Anastasia Ailamaki

École Polytechnique Fédérale de Lausanne

Station 15, 1015 Lausanne, Switzerland

Paul Larson

Microsoft Research

Redmond, WA 98052

Chair, DEW: Self-Managing Database Sys.
Shivnath Babu

Duke University

Durham, NC 27708

Co-Chair, DEW: Cloud Data Management
Xiaofeng Meng

Renmin University of China

Beijing 100872, China

i

Letter from the Editor-in-Chief

The Current Issue

Many years ago, there was an IBM ad with the catch phrase ”Not just data, reality”. ADspeak is not science, so
we should not take this phrase as describing the historical situation when it was published, nor should we look
back at it with too critical an eye. (Though it is funny.) I think of it as aspirational, and in that context, it is really
right-on!

It is one thing to have petabytes of data, it is another to be able to exploit it to some purpose. Gathering data
is easy, though it can be expensive. Extracting utility from data requires more than expensive infrastructure. It
requires insights to build technology to “mine” the data. The data engineering community has been working on
this for many years for multiple and increasing purposes, from knowledge research to health care to business
opportunity, and many places in-between.

The current issue surveys the efforts by our community to put data to good use. And, perhaps unique to
the Bulletin, it spans historical to work in progress, from universities, research centers, and industry. Thus, the
issue provides a broad perspective on the purposes to which data is being put and the technology to enable this.
Haixun Wang, the issue editor, has succeeded in bringing this topic to Bulletin readers. The topic has, is, and
will continue to be timely. I want to thank Haixun for his hard work in bringing this important issue to us.

“No” on Proposed IEEE Constitutional Amendment

The Computer Society is part of the IEEE. As such it has a role to play in the governance of the IEEE, as do all
societies within the IEEE. A proposed amendment to the IEEE constitution would change the way that the IEEE
is governed. As of this moment, the Computer Society is joined with nine other societies who have had formal
votes in opposition to the amendment. And no society has voted in favor of the amendment.

The thrust of the IEEE amendment is to move governance partially out of the constitution and make it sub-
ject to the more easily changed by-laws. Prior versions of the amendment have suggested that the purpose may
be to reduce the role of societies in IEEE governance. It also removes IEEE members from some governance
votes that are currently required. The proposal in detail can be seen at
https://www.ieee.org/documents/constitution_approved_amendment_changes_election.pdf

(login is required using your IEEE account).
As a member of the Computer Society Board of Governors (BOG), I have participated in BOG discussions

on the proposed IEEE amendment, and agree with the position taken by the Computer Society in opposition. I
believe the amendment is misguided. Professional meetings can be contentious, as there are sometimes conflict-
ing interests that need to be resolved. But the change proposed seems to me to not improve the way we deal
with these conflicts but rather seeks to bury them. That is not the way democracy is supposed to work. So I urge
you to vote “no” on this amendment.

IEEE TCDE Award Winners

The Technical Committee on Data Engineering (TCDE) initiated awards for the data engineering community in
2014. This is the third year for the awards. The winners of the awards this year are listed on the TCDE web site
http://tab.computer.org/tcde/tcdeawardsrecipients.html

This year, award winners have the opportunity to publish a short communication about their thoughts as a
result of the award in the Bulletin. The current issue contains a short communication from Impact Award winner
Michael Carey. Award winners have made truly distinguished contributions. I want to congratulate them on
their awards, and I would encourage you to see what Mike has to say in the current issue.

David Lomet
Microsoft Corporation

1

https://www.ieee.org/documents/constitution_approved_amendment_changes_election.pdf
http://tab.computer.org/tcde/tcdeawardsrecipients.html

Letter from the 2016 IEEE TCDE Impact Award Winner

In March I received the following news by e-mail: “...on behalf of the IEEE TCDE I am delighted to inform you
that the TCDE Award Committee has awarded you the IEEE TCDE CSEE (Computer Science, Engineering, and
Education) and Impact Award for this year ‘for leadership and research excellence in building impactful data
management systems, engineering tools, products, and practices’.” I was very surprised, and I was extremely
honored to be chosen! Along with that news came an opportunity to write a one-pager about “anything” for the
DE Bulletin, and I’ve decided to use my DE space to offer some in-my-opinion (IMO) “stylistic suggestions”
for researchers in our community – thoughts aimed at all of us, but especially at the younger set.

1. Results, not papers, are the objective! All too often, conversations with our fellow academics (both
faculty and students alike) or research lab staffers include phrases like “I’m working on a paper about ...” or “I
want to write a paper for SIGXXX...”. The goal of our work should be to “do cool stuff” – to build cool systems
or subsystems, or to come up with cool and useful algorithms or data structures or insights – not to write papers.
Once we have something to report, it’s paper time – but the paper should never be the end goal (IMO).

2. It’s possible to over-publish – but please don’t! In the “good old days”, a fresh Ph.D. student would
have a small handful of papers on their CV – maybe one per year spent in graduate school – and that was
sufficient as long as the results were cool (see point 1). It’s really not possible for one person to come up with
a new publication-worthy result in under 6-12 months per result. Look at some of the most impactful systems
researchers in CS – e.g., let’s look at two of my heroes, Barbara Liskov (MIT) and John Ousterhout (currently
at Stanford). Both are “repeat offenders” at doing terrific and impactful work on topics like operating systems,
file systems, programming languages, CAD tools, storage systems, ... Each has built systems that have had truly
lasting impact on our field. But check out their publication records in DBLP...! During a number of their years,
each published just a small handful of papers with their students. If we just counted papers, neither would have
gotten hired or been tenured – it’s their cool stuff and their impact that have mattered over the years. We should
become suspicious and skeptical about quality and motivation when we see a CV with more than a few papers
per year – it’s pretty unlikely that those are all papers that really deserved to be written (IMO).

3. You won’t really know unless you try! Somewhat sadly, our systems conferences often include some
papers that – if you really tried to use the ideas – just wouldn’t work. If you work on a problem in isolation,
it’s dangerously easy to develop something that sounds good on paper, simulates or works well in isolation,
but would fall on its face in a real system due to incompleteness or aspects that were overlooked (possibly on
purpose, more likely by accident). Great, so you have a really cool new search structure! But can you build a
big instance of it fast enough? Can it be updated? Made multiuser and recoverable? Is the information needed
to build and maintain it available in an actual system setting? Are its APIs compatible with how real systems are
structured? Is the portion of the end-to-end path that it improves on really where the key bottlenecks are? (Being
10x faster on 2% of a query’s execution time sounds impressive if you don’t say the 2% part too loudly.) The
ideal approach (IMO) to contributing a cool new result in systems is what I like to call the “BMW” approach:
Build, Measure, Write – in that order. Come up with your idea(s), or examine ideas from others, and then
start by building them completely – preferably in some actual system setting. Then measure their behavior and
understand what you see – figure out why you’re seeing what you’re seeing. When doing experiments, first
use workloads used by others – yes, their same workloads – before you show how your ideas do on your own
favorite use cases. (That’s how it’s done in the real sciences – and CS should do this too.) Finally, once you’re
done, you’ll have a well-understood and cool new result (see point 1) – so now you should write it up.

Please give some consideration to the points above. Our field doesn’t suffer from a lack of papers, so let’s
see if we can reset our research culture a bit and move it back in the direction of the “good old days”. Thanks
for reading – and thanks to the TCDE community for somehow picking me as its 2016 CSEE Awardee! While
it wasn’t actually deserved (IMO), I’m certainly honored and appreciative.

Michael Carey
U.C. Irvine

2

Call for Nominations for TCDE Chair

The Chair of the IEEE Computer Society Technical Committee on Data Engineering (TCDE) is elected for a two-
year period. The mandate of the current Chair, Xiaofang Zhou, expires at the end of this year and the process of
electing a Chair for the period 2017-2018 has begun. A Nominating Committee chaired by Kyu-Young Whang
has been struck. The Nominating Committee invites nominations for the position of Chair from all members
of the TCDE. To submit a nomination, please contact Kyu-Young Whang (kywhang@mozart.kaist.ac.kr) before
Oct. 30th, 2016.

More information about TCDE can be found at http://tab.computer.org/tcde/.
Kyu-Young Whang

KAIST

3

http://tab.computer.org/tcde/

Letter from the Special Issue Editor

The field of data management has gone a long way since the age of relational databases where data is well
defined, managed by a centralized system, and accessed through methods based on well-founded semantics. In
today’s data management world, we are facing two major challenges: the diversity and the heterogeneity of
the data, and the ad-hoc methods for accessing and manipulating such data. Even within a single organization,
data could be so varied and applications so diverse that no centralized system is able to cover all needs of data
management. In the public domain, challenges are often more broad and complex, with data ranging from
Wikipedia to human genome and applications ranging from question answering to disease prediction.

In this issue, we survey several typical scenarios of data engineering in the post relational databases age.
The data we look into include enterprise data, social network data, Wikipeida data, etc., and the applications we
cover range from simply cataloging the data to building natural language interfaces for the data. While there
is not going to be a one-size-fits-all solution to the many challenges that come with the heterogeneity of the
data, we argue there are still several priorities to follow in the new age of data engineering. First, cataloging
heterogeneous datasets to make them readily available to the user is the first requirement of data management.
Second, data is characterised by richer and denser relationships they exhibit, and it is such relationships that
drive many applications. Third, effective retrieval is essential for data to provide value. While we may not
have a set of operators defined on well-founded semantics that can serve any need, investigating novel retrieval
methods is important. Finally, data management is no longer just a system issue. Modeling and understanding
the semantics of the data (particularly text data) holds the key to a new generation of intelligent applications.

We start with creating awareness for enterprise data. Enterprise data has seen such an explosive growth
in recent years that most enterprise users are not necessarily aware of the availability or the semantics of their
own data. Halevy et. al. discuss the situation at Google. They handle the scale and heterogeneity challenge of
Google’s internal data and introduce techniques to extract metadata from them, so as to facilitate the understand-
ing and use of such data internally at Google. Microsoft’s Kaushik et. al. focus on the massive amount of data
amassed by web search engines. They describe services (e.g., synonymy service and web table service) created
out of Bing’s search data that benefit a variety of Microsoft’s products including Office and Cortana.

Rich relationships inside graph-like data are the driving force of many applications, and such data posts
great challenges to data management. Huang et. al. cast their attention on social networks. They survey several
state-of-the-art community models based on dense subgraphs, and investigate social circles, which are a special
kind of communities formed by friends in 1-hop neighborhood network for a particular user. Another important
graph data is the knowledge graph. Weikum et. al. focus on advances the knowledge harvesting community
has made in turning internet content, with its wealth of latent-value but noisy text and data sources, into crisp
“machine knowledge” that can power intelligent applications.

New data calls for novel retrieval methods. Zhai introduces a game-theoretic formulation of the text retrieval
problem to optimize user experience in search The key idea is to model text retrieval as a process of a search
engine and a user playing a cooperative game, with a shared goal of satisfying the users information need (or
more generally helping the user complete a task) while minimizing the users effort and the operation cost of
the retrieval system. Lu et. al. propose a neural network architecture for answering natural language questions
against databases. It achieves this by finding distributed representations of queries and knowledge base tables.

As we see in both Weikum et. al.’s work on knowledge harvesting and Lu et. al.’s work on neural natural
language QA, the biggest challenge in data engineering is no longer just a system challenge, instead, how to
model and understand the data is often the key to the success of applications. Tao et. al. study the problem of
phrase-based summarization of a set of documents of interest. The authors introduce a phrase ranking measure
to leverage the relation between subsets of documents. Atzori et. al. describe a smart system that allows people
enter natural language questions and then translates them into SPARQL queries executed on DBpedia.

Haixun Wang
Facebook Inc.

4

Managing Google’s data lake: an overview of the GOODS system

Alon Halevy2
∗
, Flip Korn1, Natalya F. Noy1, Christopher Olston1, Neoklis Polyzotis1, Sudip Roy1,

Steven Euijong Whang1

1Google
Research

2Recruit Institute of
Technology

alon@recruit.ai,{flip,noy,olston,npolyzotis,sudipr,swhang}@google.
com

Abstract

For most large enterprises today, data constitutes their core asset, along with code and infrastructure.
For most enterprises, the amount of data that they produce internally has exploded in recent years. At the
same time, in many cases, engineers and data scientists do not use centralized data-management systems
and end up creating what became known as a data lake—a collection of datasets that often are not well
organized or not organized at all and where one needs to “fish” for useful datasets. In this paper, we de-
scribe our experience building and deploying GOODS, a system to manage Google’s internal data lake.
GOODS crawls Google’s infrastructure and builds a catalog of discovered datasets, including structured
files, databases, spreadsheets, and even services that provide access to the data. GOODS extracts meta-
data about datasets in a post-hoc way: engineers continue to generate and organize datasets in the same
way that they have before, and GOODS provides value without disrupting teams’ practices. The technical
challenges that we had to address resulted both from the scale and heterogeneity of Google’s data lake
and from our decision to extract metadata in a post-hoc manner. We believe that many of the lessons that
we learned are applicable to building large-scale enterprise-level data-management systems in general.

1 Introduction

Most large enterprises today witness an explosion in the amount of data that they generate internally for use
in ongoing research and development. The reason behind this explosion is simple: by allowing engineers and
data scientists to consume and generate data in an unfettered manner, enterprises promote fast development
cycles, experimentation, and, ultimately, innovation that drives their competitive edge. As a result, this internally
generated data often becomes a prime asset of the company, on par with source code and internal infrastructure.

Copyright 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

∗Work done while at Google Research.

5

 alon@recruit.ai, {flip, noy, olston, npolyzotis, sudipr, swhang}@google.com
 alon@recruit.ai, {flip, noy, olston, npolyzotis, sudipr, swhang}@google.com

The flip side of this explosion is the creation of a so called data lake [1, 2, 6]: a growing volume of internal
datasets, with little codified information about their purpose, value, or origin. This scarcity of information is
problematic: data becomes siloed within the teams who carry the “tribal knowledge” of the data’s origin, which,
in turn, results in significant losses in productivity and opportunities, duplication of work, and mishandling of
data.

In this paper we describe Google Dataset Search (GOODS), a system that we built and deployed in order to
help Google’s engineers organize and manage datasets in its data lake. GOODS operates in a post-hoc manner: it
collects and aggregates metadata about datasets after the datasets were created, accessed, or updated by various
pipelines. Put differently, teams and engineers continue to generate and access datasets using the tools of their
choice, and GOODS works in the background, in a non-intrusive manner, to gather the metadata about datasets
and their usage. GOODS then uses this metadata to power services that enable Google engineers to organize
and find their datasets in a more principled manner. Hence, GOODS is very different from Enterprise Data
Management (EDM) systems, which act as gateways and require dataset owners and consumers to use specific
protocols and APIs for data access.

Path/Identifier
Metadata

Size Provenance ... Schema

/bigtable/foo/bar 100G written_by: job_A proto:foo.Bar

/gfs/nlu/foo 10G read_by: job_B,
written_by: job_C

proto:nlu.Schema

...

Dataset Catalog

Index

Bigtables File System 1 File System 2 Spanner Data Access
Services/APIs

Search Monitoring Service Dataset Profiles

Dataset Organizing Tools

Additional Sources of Metadata
- Logs
- Source code repository
- User and group membership database
- Team and project database
- Content analysis modules
- Contributed by users/teams through

GOODS API

Annotation
Service

Figure 1: Overview of Google Dataset Search (GOODS). GOODS collects metadata about datasets from various
storage systems. It infers metadata and relationships among datasets by processing additional sources such
as logs and information about dataset owners and their projects, by analyzing content of the datasets, and by
collecting input from the GOODS users. The collected metadata powers user-facing tools, such as search, dataset
profiles, monitoring, and a dataset-annotation service.

Figure 1 shows a schematic overview of our system. GOODS continuously crawls different storage systems
and the production infrastructure (e.g., logs from running pipelines) to discover which datasets exist and to
gather metadata about each one (e.g., owners, time of access, content features, accesses by production pipelines).
GOODS aggregates this metadata in a central catalog and correlates the metadata about a specific dataset with

6

information about other datasets. GOODS then uses this catalog to provide Google engineers with services for
dataset management. These services include the following:

• A search engine over all the datasets in the company, with facets for narrowing search results, to help
engineers and analysts find the most relevant datasets.

• A per-dataset profile page that renders the metadata that GOODS has recorded about a specific dataset
and can thus help users understand the dataset and its relationships to other datasets in the company. The
profile page also integrates with other tools that can further process the dataset, thus helping users act on
the data.

• A monitoring service that allows teams to monitor features of the datasets that they own, such as size,
distribution of values in the contents, or availability. Users can configure this monitoring service to issue
alerts if the features change unexpectedly.

• A annotation service that allows dataset owners or trusted principals (e.g., data librarians, or a data-
stewardship team) to extend a dataset’s metadata with domain-specific annotations that can appear in the
profile page. As an example, a dataset owner can provide a textual description for the dataset’s contents
or attach a visualization that can inform other users.

Search is the most frequently used service in GOODS, which demonstrates the importance of dataset discovery
within a data lake. However, we have seen good adoption for the remaining services. We were also pleasantly
surprised to see that teams used GOODS for scenarios that we did not originally anticipate:

• Schema auditing A team used search to identify datasets owned by other teams that conformed to a specific
schema that this team owned. The team then audited the resulting datasets to ensure that the schema was
used according to its specifications.

• Data discovery through provenance The GOODS catalog includes provenance metadata, in the form
“dataset Y was read/written by production job X”. This information, and in particular the transitive
closure of the provenance links, can be useful in understanding the pedigree of a dataset and its down-
stream dependencies, and thus features prominently in the profile page of each dataset. A team found a
different usage for these links and relied on them for dataset discovery. Specifically, a ML team wished
to use datasets that were publicized as canonical for certain domains, but they found that these datasets
were too “groomed” for ML. To overcome this problem, the team relied on the provenance links to browse
upstream and identify the datasets that were used to derive the canonical datasets. These input datasets
contained less groomed data and were more suitable for the specific ML task.

• Content visualization A technical-infrastructure team used the annotation service to attach a visualization
to datasets that represent training data for ML pipelines. This visualization, which illustrates statistics
on the features of the training examples, is surfaced on the dataset profile page in order to help users
understand the distribution of features and also to spot anomalies that can affect the quality of machine-
learned models.

The remainder of the article describes our experience with the development of GOODS. We begin by iden-
tifying the key challenges that we had to address in building the data-lake management system at Google—a
data lake that contains more than 20 billion datasets. Many of the challenges that we addressed in GOODS were
precipitated by the scale and characteristics of the data lake at Google, but we believe that our experience and
the lessons that we learned will apply to similar systems in other enterprises. We then introduce the logical
structure that we used to organize the data lake’s metadata, using relationships among entities (datasets, teams,
projects, and so on). We argue that this organization, which is inspired by structured knowledge bases and their

7

application to Web search, can help answer important questions about the contents of the data lake. We then
review briefly some of the system-related and technical issues that we solved in developing GOODS, and finally
we present a few directions for future work based on our experience with the current system deployment.

2 Challenges in Managing and Organizing an Enterprise Data Lake

We encountered many challenges as we designed and build GOODS. In this section, we highlight and elaborate
on some of the important challenges. A more detailed list of challenges can be found in our previous work [5].

2.1 Organizing the Data Lake

As we discussed, a major goal of a data-lake management system is to gather metadata for the datasets in it. We
can view the metadata for each dataset independently. However, we found that is far more powerful to consider
how to integrate this metadata in order to uncover relationships among datasets. Identifying and inferring these
relationships helped us address some of the scalability challenges that we just described. Furthermore, it helped
us organize the datasets in the data lake and thus to provide our users with a better understanding of the data
lake’s contents.

As an example, consider the following query over the data lake: “Find all datasets that are derived from a
dataset owned by project X .” This query can help assess the impact of project X or identify teams that need
to be notified if there is a plan to wipe the datasets owned by X . Answering this query requires knowledge of
the composition of various teams, dataset ownership, and provenance relationships. Another interesting query is
“Find all datasets written by a production job whose code uses a specific version of method X”, which can help
identify datasets that might have been affected by faulty code. Again, answering this query requires knowledge
of several types of relationships, including provenance, the versions of binaries in production jobs, and the
linkage of source code to binaries.

To support this type of functionality we first have to identify what types of relationships exist and which of
them we can determine efficiently. All the challenges that we have identified already still remain. The large scale
means that we cannot perform an exhaustive search to identify these relationships. For instance, while it would
be useful to know which datasets, or parts of datasets, have identical content, we cannot compare every pair of
datasets to each other. Or, because we are building GOODS in a post- hoc manner, we need to understand which
infrastructure signals can help uncover these relationships. For instance, to identify provenance relationships
between datasets we may join the dataset catalog with logs of different jobs that generate datasets. However,
because these resources come from different teams, they often use different naming schemes, different levels of
granularity for what they define as a dataset or what they include, and so on.

2.2 Scalability of Metadata Extraction

The first challenge that we had to address is the scalability of of gathering metadata for the datasets in the data
lake. Three factors contribute to this challenge: the sheer number of datasets that GOODS manages, the daily
churn of the datasets, and the cost of extracting metadata for each individual dataset. Our recent snapshot of
Google’s data lake contained 20 billion datasets, and this number has likely increased since then. Furthermore,
we observed that one billion datasets were added to or removed from the data lake each day, with a significant
fraction corresponding to transient short-lived datasets. At the same time, the cost of metadata extraction for
individual datasets is high, because this extraction typically requires an expensive operation to the source storage
system (e.g., accessing the contents of a file in a distributed filesystem). These factors lead to a prohibitive cost
to analyze each and every dataset in the data lake.

One way to address this challenge is to prioritize metadata extraction so that the catalog of the data-lake
management system covers the “important” datasets. Coming up with a good metric of dataset importance is

8

difficult. For example, this metric may depend on the type of the dataset, the context in which the dataset is used
(e.g., datasets that power user-facing services may be more important), or relationships to other datasets (e.g.,
datasets may be more important if they are used to derive other datasets). Similarly, while one may argue that
transient datasets are not important given their limited lifespan, we discovered that this is not always the case: In
some cases it was necessary to analyze short-lived datasets in order to derive metadata for non-transient datasets.
For example, provenance links between non-transient datasets often go through temporary transient datasets.

2.3 Post-hoc Management of Metadata

Early on in the design of our system we decided to adopt a post-hoc approach to the process of metadata
extraction: the system would gather metadata about datasets by analyzing signals from Google’s infrastructure
(e.g., by processing logs or crawling storage-system catalogs) after these datasets have been accessed or updated.
We can contrast this approach with traditional Enterprise Data Management (EDM) systems, which prescribe
specific APIs to access datasets and thus act as gateways between teams and their data. EDM systems can gather
very precise metadata because they are in the critical path of data access, but they also require an enterprise-wide
opt in. Instead, we designed GOODS to operate from the sidelines assuming that teams were free to choose how
they access their data. Our goal was to organize the data lake and to bring value to Google’s teams without
disrupting their practices. We also believe that this post-hoc approach is in line with the nature of a data lake,
which allows engineers and analysts to experiment with data in an unfettered fashion.

The downside of this approach is that it becomes more difficult to extract and reason about dataset metadata.
First, we now have to deal with uncertainty in the metadata. As an example, consider the problem of inferring a
schema for the contents of a dataset whose storage format does not record this information (e.g., a file contain-
ing serialized protocol buffers [7]). The analysis of the contents may yield several candidates for the schema,
corresponding to different ways to parse the contents, and in the absence of other information we record all of
these candidates in the dataset’s metadata. Second, the metadata that we collect is heterogeneous because dif-
ferent types of datasets that appear in the data lake (e.g., files, spreadsheets, relational databases, or instances of
key-value stores) have different metadata and may require different tools to extract it. A data-lake management
system must be able both to extract and handle metadata across a variety of source storage systems and to record
this heterogeneous metadata in a single catalog. However, having a single catalog for diverse metadata is also
an opportunity to partially lift this heterogeneity in the data lake: the catalog can define a subset of the gathered
metadata that is often common across datasets of different types. This common metadata can provide users and
services with a unified view of the datasets in the data lake.

3 The Data Lake Relationship Graph

We view the GOODS catalog not only as a collection of metadata describing the datasets in the Google’s data
lake but also as a representation of relationships among datasets and other related entities (teams, projects, code,
and so on).

This approach is inspired by the concept of knowledge graphs [3], which are used by modern enterprises
to describe entities in the real world and to allow users to search with complex queries. Nodes in such a
knowledge graph represent entities in the world (e.g., Tom Hanks, “Forrest Gump”) and edges link these entities
to each other (e.g., Tom Hanks played a role in “Forrest Gump”). This graph enables an extensible and flexible
representation and supports queries such as “female actors who played lead roles in comedies,” which require
traversing diverse relationships. We can view the structure of a data lake in a similar way, in particular as we
link it to other components on enterprise infrastructure. First, we can have relationships between datasets (e.g.,
dataset A is a new version of dataset B). Second, we can link datasets to other entities, such as jobs that generate
the datasets, projects and users that own the datasets and these jobs, or source code that defines these jobs. As

9

we list the relationships that we identified between datasets in a data lake, it is important to note that we infer all
these relationships automatically, in a post-hoc fashion, relying on a variety of information that we can gather
inside the enterprise.

The following is a list of relationships among datasets that we identify as important and that we infer as we
collect the metadata in the GOODS catalog.

Dataset containment: Some datasets may contain other datasets. For instance, bigtable column families[4]
are first-class entriies in the GOODS catalog, and so are the bigtables themselves. We link the latter to
the entries for the column families that they contain. This containment information is usually part of the
metadata that we can extract directly from specific storage systems.

Provenance: Datasets are produced and consumed by code. This code may include analysis tools such as dash-
boarding solutions or SQL-query engines, serving infrastructures that provide access to datasets through
APIs, or ETL pipelines that encode dataset transformations. For each dataset, we maintain the provenance
of how the dataset is produced, how it is consumed, what datasets this dataset depends on, and what other
datasets depend on this dataset. We identify and populate the provenance metadata through an analysis of
production logs, which provide information on which jobs read and write each dataset. We then create a
transitive closure of this graph connecting datasets and jobs, in order to determine how the datasets them-
selves are linked to one another. However, the number of data-access events in the logs can be extremely
high and so can be the size of the transitive closure. Therefore, we trade off the completeness of the
provenance associations for efficiency by processing only a sample of data-access events from the logs
and also by materializing only the downstream and upstream relations within a few hops as opposed to
computing the true transitive closure.

Logical clusters: We identify datasets that belong to the same logical cluster. While our definition of clusters is
domain-dependent, in general, we usually group the following collections of datasets into a single logical
cluster: datasets that are versions of the same logical dataset and that are being generated on a regular
basis; datasets that are replicated across different data centers; or datasets that are sharded into smaller
datasets for faster loading. Because engineers tend to use specific conventions in naming their datasets,
we can identify these logical clusters efficiently by examining the dataset paths. For example, consider a
dataset that is produced daily and let /dataset/2015-10-10/daily batch be the path for one of
its instances. We can abstract out the day portion of the date to get a generic representation of all datasets
produced in a month: /dataset /2015-10-<day>/daily batch, representing all instances from
October 2015. By abstracting out the month as well, we can go up the hierarchy to create abstract paths that
represent all datasets produced in the same year:
/dataset/2015-<month>-<day>/daily batch. By composing hierarchies along different di-
mensions, we construct a granularity semi-lattice structure where each node corresponds to a different
granularity of viewing the datasets.

Content similarity: Content similarity—both at the level of dataset as a whole and at the level of individual
columns—is another graph relationship that we extract. Given the size of Google’s data lake, it is pro-
hibitively expensive to perform pairwise comparison of all datasets. Instead, we rely on approximate
techniques to determine which datasets are replicas of each other and which have different content. We
collect fingerprints that have checksums for the individual fields and locality-sensitive hash (LSH) values
for the content. We use these fingerprints to find datasets with content that is similar or identical to the
given dataset, or columns from other datasets that are similar or identical to columns in the current dataset.

In addition to the relationships that link datasets in the GOODS catalog to each other, we also rely on the rest
of Google infrastructure to enrich this relationship graph. While this part of the system continues to grow, we
list here some of the relationships that we currently extract:

10

• information on owners of the jobs that produce or read datasets;

• information on dataset owners and user groups that determine visibility permissions for datasets;

• links between schema that we infer for the datasets and its definition in the source code repository.

Using this (conceptual) graph-based organization enables us to add new relationships between different
types of entities easily. An example is the relationship between a dataset representing training data and the
visualization of the corresponding features, which we mentioned in Section 1. More important, the graph allows
users to navigate the data-lake catalog in a flexible way and to answer rich queries that require linking datasets
to other assets in the enterprise.

4 System Design

GOODS maintains a metadata catalog for the data lake (Figure 1). Our previous work [5] details the physical
organization of the catalog, the continuous processes that update it, and its usage to power the user-facing
services mentioned in Section 1. Here we highlight some of the important technical approaches we adopted in
our system to address the challenges in Section 2.

4.1 Leveraging the Data Lake Relationship Graph

The relationships that we have identified in Section 3 are critical in supporting most of the functionality in
GOODS. They enable us both to address some of the scalability challenges that we described in Section 2 and to
provide new services to the engineers who use GOODS.

First, clustering provides enormous savings in metadata extraction, albeit potentially at the cost of precision.
That is, instead of collecting expensive metadata for each individual dataset, we can collect metadata only for
a few datasets in a cluster. We can then propagate the metadata across the other datasets in the cluster. For
instance, if the same job generates versions of a dataset daily, these datasets are likely to have the same schema.
Thus, we do not need to infer the schema for each version. Similarly, if a user provides a description for a
dataset, it usually applies to all members of the cluster and not just the one version. When the clusters are large,
the computational savings that we obtain by avoiding analysis of each member of the cluster can be significant.

Second, we can use different types of graph edges to propagate metadata when it is too expensive to extract
it directly or we simply do not have this metadata. For instance, we can propagate the description of one version
of a dataset to all of its versions. Similarly, versions of the same dataset are likely to have the same schema.
Naturally, some of this propagation will introduce uncertainty into our metadata—a fact that we are already
dealing with at different levels.

Finally, the links to knowledge graphs representing other parts of Google infrastructure, make GOODS a
data-centric starting point for users exploring other resources. For instance, a user can find a definition of a
protocol buffer in source code and immediately jump to the list of all the datasets that use that protocol buffer as
their schema. A new member of a team can find datasets generated by her team. A profile page for a dataset has
links to dataset owners, profile pages for jobs that read and write the dataset, and so on.

4.2 Coordinating Modules for Post-Hoc Processing

The GOODS backend uses a large number of diverse batch-processing jobs to collect information from a variety
of systems and to add and update new information into the GOODS catalog. This diversity of jobs is a conse-
quence of our post-hoc approach: we collect information from many diverse corners of the Google’s internal
infrastructure. Each job includes one or more modules, such as crawlers or analyzers. Different GOODS mod-
ules have different characteristics that influence how modules are grouped together in jobs, and how jobs are

11

scheduled. Next we discuss some of these characteristics and a few rules of thumb that we followed to design
and optimize the GOODS backend.

First, not all GOODS modules are critical for the smooth functioning of the system. For example, modules
that identify the existence of datasets and extract metadata on who owns and who can access the datasets are
critical to ensure that the state of the system is fresh and that any changes in access control for the datasets are
reflected accurately. On the other hand, modules like schema analyzer that identifies the schema of a dataset—
while useful—are not as time sensitive. Therefore, we explicitly allocate more resources to jobs that include
critical modules, and schedule non-critical jobs using spare resources.

Second, certain modules may depend on successful run of other modules. For example, a fingerprint analyzer
uses the schema identified by the schema analyzer to compute column level fingerprints. Grouping together
dependent modules into the same job enables dependent modules to check the status of the all modules they
depend on and take an informed decision. While all GOODS modules store the status of execution for each
dataset in the catalog itself to avoid repetitive work on failure and between different instances of the same job,
grouping dependent modules reduces the overall number of bytes read from the persistent storage backend.

Third, the failure characteristics of modules vary widely. It is important to isolate some modules which are
prone to failure to ensure steady progress of other modules. For instance, several of our modules that examine
content of datasets use a variety of libraries specific to different file formats. At times, these libraries crash or
go into infinite loops. Because we cannot have long-running analysis jobs crashing or hanging, we sandbox
such potentially dangerous jobs in a separate process. We then use a watchdog thread to convert long stalls into
crashes while allowing the rest of the pipeline to proceed.

Finally, different modules have different computational complexity and therefore different resource foot-
prints. While we schedule modules that have low complexity to run over the entire catalog every day, we avoid
re-running computationally expensive modules unless there is a strong signal that a re-run will yield different
results. For example, unless a dataset is modified, the fingerprint for the contents is unlikely to change and
therefore the fingerprint analyzer can bypass such dataset.

While some of these design choices were part of our initial design of the GOODS system, we made many of
them after experiencing an issue and redesigning parts of our system to address it.

4.3 Search Ranking

As we mentioned in the introduction, dataset discovery through search is the most frequent use case for GOODS.
An important design choice for us was to build the search functionality at the level of logical clusters: We
index the metadata that describes the logical cluster corresponding to a collection of related datasets (e.g., daily
versions of the same dataset) and the user sees results corresponding to these logical datasets. This decision
allowed us to compress search results in a meaningful way, instead of overwhelming the user with many similar
datasets that match the same query (e.g., showing datasets that differ only on one component of their path
denoting their version). We also experimented with the alternative of indexing metadata at the level of each
physical dataset, but the end-user experience suffered from the sheer number of similar results.

We faced a few technical difficulties in building the search index. For example, we needed to propagate
the metadata from individual members of the cluster itself so that users can search for it. However, by far the
biggest challenge was to design a good ranking function for search results. In general, it is hard to overstate the
importance of good ranking for search. The problem has unique characteristics in the case of dataset search (and
is different than, say, web or bibliographic search) because of the domain-specific signals that can determine
the relevance of a dataset to a search query. After much experimentation (and a few false starts), we ended
up using a mix of standard IR-type signals (e.g., how well the search terms match the metadata) with domain-
specific signals derived from each dataset’s metadata. For instance, we found that provenance relationships
among datasets provide a strong relevance signal. Specifically, it is common for teams to generate denormalized
versions of some “master” dataset in order to facilitate different types of analysis of the master data. These

12

denormalized datasets can match the same search keywords as the master dataset, yet it is clear that the master
dataset should be ranked higher for general-purpose queries or for metadata-extraction. Another example comes
from provenance relationships that cross team boundaries, when the dataset from one team is processed to create
a dataset in the scope of another team or project. In this case, we can boost the importance of the input dataset
as evidenced by its usage by an external team. The output dataset is also important, because we can view it as an
origin of other datasets within the external project. Dataset type is another example of a domain-specific signal:
for instance our ranking function primes datasets that correpsond to relational databases, because the latter tend
to have richer metadata and be more tailored for wide usage compared to, say, files on a distributed filesystem.

Ranking methods for dataset search remains an interesting research problem. It is particularly interesting
to consider how techniques from other domains could apply in a data-lake setting, e.g., what would be the
equivalent of personalized pagerank when searching for a dataset. However, as we discuss in the next section,
our experience with users shows that they have different needs for ranking depending on the purpose of their
search. This evidence indicates that a data-lake management system should support several ranking methods
and allow users to choose at search time which one to use.

5 Future Directions

After deploying GOODS for the initial use cases that we mentioned in Section 1, we had a chance to observe
how the system got adopted, to interact with users, and to receive feedback on feature requests. Based on this
information, we have identified a few directions that are interesting for further development on GOODS and,
more generally, for the type of functionality that a system for data-lake management can offer.

• Building a community around datasets GOODS allows users to share and exchange information about
datasets, and to augment the metadata in the catalog with domain-specific knowledge. We view this
functionality as the means to develop a community whose shared goal is the curation of the data lake. In
this spirit, we can add more community-like features including comments on datasets, reviews, or Q&A
functionality, to name a few. The goal is to foster a culture of joint data stewardship and of best practices
on adding new datasets to the data lake.

• Rich analytics over the data lake The first use case that we targeted with GOODS was dataset discovery
within the data lake, through a simple keyword-search interface with relevance ranking. Over time, we
found that users “outgrew” this modality and started asking for more flexible ways to query the catalog.
The requests ranged from different options for result ranking (e.g., rank datasets by size or by modifica-
tion timestamp) to full SQL access over the catalog. (In fact, GOODS itself has an internal monitoring
component that tracks the state of the data lake through SQL queries over the metadata.) In some cases,
users also found it convenient to explore the catalog through a graph visualization based on provenance re-
lationships, which points to the idea of exposing slices of the catalog through specialized user interfaces.
Thinking forward, we can also view the catalog as a temporal store that enables comparisons between
snapshots of the data lake and thus the discovery of trends. Another option is to view GOODS as a gener-
ator of a stream of metadata events, where each event encodes the creation of a dataset, the discovery of a
provenance edge, or any other piece of metadata that can be stored in the catalog. Under this model, users
can issue continuous queries to monitor the contents of the data lake.. For example, a team can set up a
continuous query to monitor accesses to its datasets by other teams, or a user can monitor the generation
of datasets by daily runs of some pipeline. In general, our experience with GOODS is that there is value in
enabling rich data analytics over the catalog, both to allow users to explore the data lake more effectively
but also to monitor the overall state of the data lake.

• Beyond post-hoc Our initial approach of crawling and analyzing datasets in a post-hoc manner enabled
the collection of basic metadata for datasets stored in many different systems in a minimally invasive

13

manner. However, there are two main downsides to the post-hoc approach. First, the data in the catalog
has a time lag, which conflicts with user expectation of the catalog immediately reflecting the creation or
modification of any metadata. Second, the analyzers in GOODS collect only generic, and often uncertain,
metadata. As GOODS got adopted within the company, many teams expressed the desire to use GOODS

infrastructure to store, retrieve, share, and serve custom metadata for their datasets, ideally within a short
time interval of such changes taking place. In order to tackle such use cases, we envision a hybrid approach
that supports one-off deeper integration with storage infrastructures to reduce the time lag for discovery,
and APIs for teams to register datasets and to contribute custom metadata to the catalog.

• Acting on data The information in the catalog not only helps users understand the datasets that they know
about but also enables them to discover what they can do with their datasets, how they can use datasets in
other tools, or to discover new related datasets. More concretely, one of the very popular features of profile
pages in GOODS are pre-populated queries and code snippets that use the path and schema information,
which users can simply copy and paste into other tools. We can envision extensions of this feature that
are based on a deeper analysis of the dataset’s metadata and that can help the user act on the dataset with
more elaborate tools; for example, we can automatically build a dashboard for the dataset based on its
characteristics. These extensions can become more powerful if we can leverage the relationships encoded
in the catalog. For instance, if GOODS can tell us that a key column in our dataset has very similar context
to a key column in another dataset, then the two datasets might be candidates for joining and the user
may even be presented with possible actions on the join results. This specific example is intriguing, as the
data-lake management system helps the user understand what datasets could exist in the data lake instead
of merely summarizing what has already been generated.

Overall, a data-lake management system should promote the treatment of datasets as first-class objects within
the computing infrastructure of the enteprise. A big part of this goal involves services that make it easier for
engineers and analysts to integrate datasets within their workflow in an organic fashion, and this direction has
been the main focus of our work with GOODS. Furthermore, through these services the system can instill best
practices for dataset management and break team-delinated silos, thus fostering a culture of responsible data
stewardship across the enterprise.

References
[1] Azure data lake. https://azure.microsoft.com/en-us/solutions/data-lake/.

[2] Data lakes and the promise of unsiloed data. http://www.pwc.com/us/en/technology-forecast/
2014/cloud-computing/features/data-lakes.html.

[3] A. Brown. Get smarter answers from the knowledge graph. http://insidesearch.blogspot.com/2012/
12/get-smarter-answers-from-knowledge_4.html, 2012.

[4] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[5] A. Halevy, F. Korn, N. F. Noy, C. Olston, N. Polyzotis, S. Roy, and S. E. Whang. Goods: Organizing google’s datasets.
In Proceedings of the 2016 International Conference on Management of Data, SIGMOD ’16, pages 795–806, New
York, NY, USA, 2016. ACM.

[6] I. Terrizzano, P. M. Schwarz, M. Roth, and J. E. Colino. Data wrangling: The challenging journey from the wild to the
lake. In CIDR 2015, Seventh Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA, 2015.

[7] K. Varda. Protocol buffers: Google’s data interchange format. Google Open Source Blog, Accessed July, 2008.

14

https://azure.microsoft.com/en-us/solutions/data-lake/
http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/features/data-lakes.html
http://www.pwc.com/us/en/technology-forecast/2014/cloud-computing/features/data-lakes.html
http://insidesearch.blogspot.com/2012/12/get-smarter-answers-from-knowledge_4.html
http://insidesearch.blogspot.com/2012/12/get-smarter-answers-from-knowledge_4.html

Data Services Leveraging Bing’s Data Assets

Kaushik Chakrabarti, Surajit Chaudhuri, Zhimin Chen, Kris Ganjam, Yeye He
Microsoft Research
Redmond, WA

{kaushik, surajitc, zmchen, krisgan, yeyehe}@microsoft.com

Abstract

Web search engines like Bing and Google have amassed a tremendous amount of data assets. These
include query-click logs, web crawl corpus, an entity knowledge graph and geographic/maps data. In
the Data Management, Exploration and Mining (DMX) group at Microsoft Research, we investigate
ways to mine the above data assets to derive new data that can provide new value to a wide variety of
applications. We expose the new data as cloud data services that can be consumed by Microsoft products
and services as well as third party applications. We describe two such data services we have built over
the past few years: synonym service and web table service. These two data services have shipped in
several Microsoft products and services including Bing, Office 365, Cortana, Bing synonyms API and
Bing Knowledge API.

1 Introduction

Web search engines like Bing and Google have amassed a “treasure trove” of data assets. One of the most
important assets is the query-click log which contains every search query submitted by a user, the urls and other
information (e.g., answers) returned by the search engine, and the items clicked on by the user. Other important
assets include the web crawl corpus, an entity knowledge graph (that contains information about named entities
like people, places and products) and geographic/maps data.

The above data assets are leveraged by the web search engine to deliver a high quality search experience.
For example, query-click log is used to improve the quality of web result ranking. The entity knowledge graph is
used not only to improve web result ranking but also to compose the “entity information card” for entity queries.
In the Data Management, Exploration and Mining (DMX) group at Microsoft Research, we explore ways to
mine the above data assets to derive new data that can provide new value to a wide variety of applications. We
expose the new data as cloud data services that can be consumed by Microsoft products and services as well as
third party products and services. The main idea is depicted in Figure 1.
Synonym service: Let us start with an example of such a data service called synonym service. People often refer
to a named entity like a product or a person or a place in many different ways. For example, the camera ‘Canon
600d’ is also referred to as ‘canon rebel t3i’, the film ‘Indiana Jones and the Kingdom of the Crystal Skull’
also as ‘indiana jones 4’ the person ‘Jennifer Lopez’ also as ‘jlo’ and the place ‘Seattle Tacoma International
Airport’ also as ‘sea tac’. We refer to them as entity synonyms or simply synonyms (in contrast to other types

Copyright 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

15

Bing Data
Assets

Cloud Data
Services

Office 365

Azure Search

E-tailer Product
Search

Digital
Marketing/SEO

Cortana

Bing

Microsoft Products
& Services

Third Party
Applications

Figure 1: Data services leveraging Bing’s data assets

of synonyms such as attribute synonyms [15]). Consider the product search functionality on an e-tailer site like
bestbuy.com. Without the knowledge of synonyms, it often fails to return relevant results. For example, when
the user searches for ‘indiana jones and kingdom of crystal skull’ on bestbuy.com, it returns the DVD for that
movie (the desired result). However, if she chooses to search using the query ‘indiana jones 4’, it fails to return
the desired result. This is because bestbuy.com does not have the knowledge that the above film is also referred
to as ‘indiana jones 4’. If we can create a data service that computes the synonyms for any entity by leveraging
the rich data assets of a search engine, it will bring tremendous benefit to such e-tailers [9]. It will also be
valuable to specialized entity portals/apps like movie portals (Fandango, Moviefone), music portals (Pandora,
Spotify), sports portals (ESPN, NFL) and local portals (Yelp, Tripadvisor). Hence, we built such a data service
called the synonym service [7, 18].
Challenges in synonym service: The main challenge is to mine synonyms in a domain independent way with
high precision and good recall. While there is significant work on finding similar/related queries [3, 4, 12],
there is little work on mining synonyms with the above precise definition of synonymity (i.e., alternate ways of
referring to the exact same entity). Furthermore, existing synonym mining works rely mostly on query co-clicks
[10], which we find in practice to be insufficient to ensure very high precision (e.g., over 95%) that is required
for scenarios described above. In our work, we develop a variety of novel features to complement query log
features that achieve high precision and recall. We describe those techniques in detail in Section 2.
Impact of synonym service: The synonym service is being used extensively by Microsoft products and services
as well as by external customers. Many Bing verticals like sports and movies use the synonym data to improve
their respective vertical search qualities. In Bing Sports for example, when a user asks the query ‘tampabaybucs’,
entity synonyms will help to trigger the entity card for “Tampa Bay Buccaneers”. Our synonyms are also used
inside Bing’s entity-linking technology which in turn is used in several applications like Bing Snapp 1, Ask
Cortana 2, and Bing Knowledge API 3. For external customers (e.g., e-tailers), synonym technologies can be
accessed from the Bing developer center as a web service called Bing synonym API [1]. An entity name can
be submitted as input, and all synonyms of that entity will be returned by the service. This is used in customer
scenarios such as query enrichment and catalog enrichment. Thousands of customers subscribe to this API.
Web table services: A second data service 4 we have built is the web table service. Although the web crawl
corpus mostly consists of unstructured data like textual documents, images and videos, there is also a vast amount
of structured data embedded inside the html documents. For example, there are more than a billion html tables,

1https://www.microsoft.com/en-us/store/p/snapp/9nblggh09m4d
2https://www.microsoft.com/en-us/mobile/experiences/cortana/
3https://www.bing.com/widget/knowledge
4Actually two closely related services

16

(a) (b)

Figure 2: (a) Web table search service in action in Excel PowerQuery (b) Web table answer service in action on
Bing.

html lists and spreadsheets on the web. Each such table/list/spreadsheet contains a set/list of named entities and
various attributes about those entities. For example, the html table embedded inside en.wikipedia.org/
wiki/List_of_U.S._states_by_income contains the median household income for all the U.S. states.
These tables are often very valuable to information workers. For example, a business data analyst often needs to
“join” business data with public data. Consider a data analyst analyzing sales numbers from various U.S. states
(say, in Excel) and wants to find how strongly they are correlated with the median household income. She needs
to join the former with the table in en.wikipedia.org/wiki/List_of_U.S._states_by_income.
It is hard for the analyst to discover the above table and also to import it into Excel in order to do the join. It
would be very valuable if we can index such tables and allow Excel users to easily search for them (e.g., using
keyword search) as shown in Figure 2(a). We built a data service called web table search service for the above
purpose.

A substantial fraction of queries on Bing and Google can be best answered using a table. For example, for
the query ‘largest software companies in usa’, it is much better to show the table from Wikipedia containing the
largest software companies (en.wikipedia.org/wiki/List_of_the_largest_software_companies)
than just the blue links as shown in Figure 2(b). We refer to the above class of queries as list-intent queries as
the user is looking for a list of entities. We built a data service called web table answer service for the above
purpose. We explore other classes of queries as well for table answers. Although both web table search and web
table answer services take a keyword query as input and returns web tables, they are quite different. The former
always returns a ranked list of tables relevant to the query. On the other hand, since the latter is invoked by a
web search engine where the top result spot is reserved for the best possible answer (among all possible types
of answers as well as top algorithmic search result), the desired output for the latter is a single table if is the best
possible answer, otherwise it should return nothing.
Challenges in web table services: Most of raw HTML tables (i.e., elements enclosed by the <table></table>
tags) do not contain valuable data but are used for layout purposes. We need to identify and discard those
tables. Furthermore, among the valuable tables, there are multiple different types. We need to distinguish
among them in order to understand their semantics which in turn is necessary to provide high quality table
search and table answer services. These are challenging problems as they cannot be accomplished via simple
rules [5]. Furthermore, providing a high quality table ranking as well as providing table answers with high
precision and good coverage are hard problems as well. While there is extensive prior work on table extraction
[6, 5, 21, 20, 14, 11], there is limited work on the latter two challenges: table ranking and providing table answers
with high precision. In Section 3, we present our table extraction techniques and highlight their differences

17

en.wikipedia.org/wiki/List_of_U.S._states_by_income
en.wikipedia.org/wiki/List_of_U.S._states_by_income
en.wikipedia.org/wiki/List_of_U.S._states_by_income
en.wikipedia.org/wiki/List_of_the_largest_software_companies

with prior table extraction work. We also present the novel approaches we have developed for the latter two
challenges.
Impact of web table services: The web table search service was released in Excel PowerQuery in 2013 [2]. It
allows Excel users to search and consume public tables directly from Excel. A screenshot is shown in Figure
2(a). The web table answer service has been shipping in Bing since early 2015. It shows table answers for
list-intent and other types of queries with 98% precision and with a current coverage of 2%. A screenshot is
shown in Figure 2(b).

2 Synonym Service

Given an entity name, the synonym service returns all the synonyms of the entity. We mine all possible synonym
pairs in an offline process (200 million pairs in our latest version); the service simply performs a lookup into
that data. Currently the service is hosted as a public Bing service in Bing Developer Center [1]. We focus on the
key technologies used in offline mining process in the rest of this section.

2.1 Synonym Mining Requirements

Based on the intended use cases, we summarize key requirements of synonym mining as follows.
Domain independence. Entity synonyms are ubiquitous in almost all entity domains. A natural approach

is to leverage authoritative data sources specific to each entity domain to generate synonyms. For example,
one may use extraction patterns specific to IMDB for movie synonyms. However, techniques so developed are
specific to one domain that cannot easily generalize to different domains. Given the scale and the variety of the
synonyms we are interested in, developing and maintaining specific techniques for each domain is unlikely to
scale. Our goal is to develop domain-independent methods to systematically harvest synonyms for all domains.

High precision. Since the output of our service is used by an array of Microsoft products and third party
retailers, who would for example use synonyms to enrich their product catalogs, the precision of our synonyms
needs to be very high (e.g., above 95%). Entities that are only related but not equivalent (e.g., “Microsoft office
2015” and “Microsoft office 2013”) should not be considered as synonyms, for otherwise they will adversely
affect downstream applications like product search.

Good recall. In addition to high precision, we want to discover as many synonyms as possible. The types
of synonyms we are interested in ranges from simple syntactic name variations and misspellings (e.g., “Cannon
600d” for the entity “Canon 600d”), to subset/superset variations (e.g., “Canon EOS 600d” for the entity “Canon
600d”), to more semantic synonyms (e.g., “Canon rebel t3i” or “t3i slr” for the entity “Canon 600d”). The
synonyms we produce should ideally cover all these types.

Freshness. Since new entities (movies, products, etc.) are constantly being created, and new names coined
for existing entities, we want the synonym data to be up-to-date. The mining process thus needs to be refreshed
regularly to reflect recent updates, and hence needs to be easily maintainable with minimal human intervention.

2.2 Prior Work on Synonym Mining

Prior work on discovering entity synonyms relies on query co-clicks [10]. Our experience suggests that this
alone often leads to many false positives. For example, name pairs like “iphone 6” and “iphone 6s”, or “Mi-
crosoft office 2015” and “Microsoft office 2013” share significant co-clicks and are almost always predicted as
synonyms. We find synonyms so generated to have considerably lower precision than the 95% requirement, and
incorrect synonyms like the ones above are particularly damaging to application scenarios such as product cata-
log enrichment. In this work we develop novel features utilizing a variety of orthogonal data assets to overcome
the limitations of query logs.

The problem of finding semantically similar/related queries is related to synonym-finding, and is extensively
studied in the literature [3, 4, 12]. The fuzzy notion of semantic relatedness used in this body of work, however,

18

Documents clicked
Candidate Names

http://blogs.office.com/b/microsoft-excel

http://office.microsoft.com/en-us/excel/

http://en.wikipedia.org/wiki/Microsoft_Excel

Entity

microsoft excel

ms spreadsheet

ms excel tutorial

microsoft spreadsheet

office ios…

Figure 3: Example query log click graphs

does not match our precise requirement of entity-equivalence for synonyms, and is thus insufficient for high
precision entity synonyms that we intend to produce.

2.3 Exploiting Bing Data Assets for Synonym Mining

At a high level, our synonym mining has three main steps: (1) generate billions of candidate name pairs that may
be synonyms; (2) for each candidate pair, compute rich features derived from data assets such as Bing query
logs, web tables, and web documents; (3) utilize manually labeled training data and machine learning classifiers
to make synonym predictions for each candidate pair.

We start by generating pairs of candidate names for synonyms. In order to be inclusive and not to miss
potential synonyms in this step, we include all pairs of queries from the query logs that clicked on the same
document for at least 2 times. This produces around 3 billion candidate synonym pairs.

For each candidate pair, we then compute a rich set of features derived from various data sources. Given
the feature vectors, we use training data and boosted regression tree [13] to train a binary classifier to predict
synonyms. Since boosted regression tree is a standard machine learning model, we will focus our discussions
on the design of features using various data sets.

Query log based features. Query logs are one of the most important data assets for synonym mining. The
key idea here is the so-called “query co-clicks” [7, 10]. Namely, if search engine users frequently click on the
same set of documents for both query-A and query-B, then these two query strings are likely to be synonyms.
The rationale here is that search engines clicks form implicit feedback of query-document relevance, which when
aggregated over millions of users and a long period of time, provide robust statistical evidence of synonymity
between two query strings.

In the example of Figure 3, suppose “microsoft excel” is the entity of interest. For this query users click
on three documents in the middle as represented by their urls. If we look at other queries whose clicks share
at least one document, we can see that “ms spreadsheet” clicks on the exact same set of documents (a true
synonym of “microsoft excel”). Both “microsoft spreadsheet” and “ms excel tutorial” share two co-clicks with
“microsoft excel”. While the first query is a true synonym, the second is only a related entity (tutorial) and thus
not a synonym. Lastly, query “office ios” shares only one clicked document with “microsoft excel”, indicating
a lower degree of semantic relationship.

Intuitively, the higher the overlap between the clicks shared by two query strings, the more likely they are
actual synonyms. We use a number of metrics to quantify relationships between two queries – Jaccard similarity
and Jaccard containment when representing their clicked documents as sets, and Jenson-Shannon divergence
when representing click frequencies on documents as distributions.

We further encode, for each query, frequency-based features such as the number of clicks, the number of

19

microsoft excel

ms spreadsheet

ms excel tutorial

Other Queries

microsoft excel download

microsoft excel help

microsoft excel review

ms spreadsheet download

ms spreadsheet help

ms excel tutorial class

ms excel tutorial ppt

Queries Contexts

microsoft excel download

microsoft excel help

microsoft excel review

ms spreadsheet download

ms spreadsheet help

ms excel tutorial class

ms excel tutorial ppt

Queries

Figure 4: Example query contexts

distinct documents clicked and domains clicked, etc. as additional features, which allow machine learning
models to differentiate popular queries from less popular ones for example.

One problem we encounter in using query logs is that click-edges in the query-document bipartite graph
are sometimes too sparse. To overcome sparsity, we enhance the co-click graph by introducing artificial edges
using pseudo-documents [7]. Specifically, we construct a pseudo-document p(d) for each clicked document d
as the union of the tokens in queries that click on d. Based on this definition, in Figure 3 for example, let d1
be the first document, then p(d1) = {microsoft, excel, ms, spreadsheet}. We can then add an artificial edge
between query q and document d if the tokens of q are contained by the pseudo-document p(d). In Figure 3,
because the tokens of query “microsoft spreadsheet” is contained by p(d1), we add an edge between the two
(shown by dotted edge) as if there exists such a click in the original click graph. Using this enhanced bipartite
graph, we can define set-based similarity and distribution-based similarity like before. These form a group of
pseudo-document-based features.

Notice that in the example of Figure 3, “ms excel tutorial” and “microsoft excel” are related entities with
relatively high co-clicks, which however should not be recognized as synonyms because they are of different
entity-types (e.g., one is software whereas the other is a tutorial). Similarity based features alone may mis-
takenly predict them as synonyms. In order to penalize pairs of candidates with different types, we introduce
query-context based features. Figure 4 gives an example of query-contexts. For each target query (e.g., “mi-
crosoft excel”, “ms spreadsheet”, etc.), we find from the query logs additional queries that have the target query
as a prefix or suffix. For “microsoft excel”, we find queries like “microsoft excel download” and “microsoft
excel help”. From these, we compute the suffix-context of query “microsoft excel” as “download”, “help” and
“review” (and their respective frequencies). These are indicative of query types, because queries of the same en-
tity type tend to share similar contexts. In this example the context of “microsoft excel” is very similar to that of
“microsoft spreadsheet”, showing that they are likely of the same entity type. However the context of “microsoft
excel” is quite different from “ms excel tutorial”, which we use as evidence that the pair may be of different
types. We compute distributional similarity between two candidates’ query contexts such as Jensen-Shannon
divergence [16] as features for type similarity.

Web table based features. While query logs based features are powerful positive signals for semantic
similarity, in many cases they are insufficient to differentiate between true synonyms, and pairs of highly related
names that are non-synonyms. For example, the pair “Harry Potter and the Deathly Hallows: Part 1” and “Harry
Potter and the Deathly Hallows: Part 2” share substantial co-clicks in the query logs. It is thus difficult to know
from the query logs alone that they should not be synonyms.

For this we leverage another set of signals from HTML tables extracted from web pages indexed by Bing.
Specifically, we observe that if two entities occur more frequently (than pure coincidence) in the same table
columns, they are likely to be different entities and thus not synonyms. The reasoning is that humans are
unlikely to put two synonymous mentions of the same entity in the same table column. In a real web table
example shown in Figure 5(a), the fact that “Harry Potter and the Deathly Hallows: Part 1” and “Harry Potter

20

(a) Value co-occurrence in tables as negative features (b) AKA text patterns

Figure 5: Web tables and document features

and the Deathly Hallows: Part 2” are co-occurring in the same table column indicates that they are likely to be
distinct entities instead of synonyms.

We aggregate such statistical information from over 100 million tables extracted from the web, and use the
point-wise mutual information of two candidate names occurring in the same table columns as an additional
feature.

Another way in which we can leverage web tables is to directly utilize synonymous column pairs often
seen in tables. Figure 6 gives a few example tables in different domains where two values from the same row
are synonyms. We use an initial version of synonym scores to discover such pairs of synonymous columns
from the web tables corpus, and then compute the number of times name-A and name-B occur in same rows
of synonymous columns as additional features. We find this feature to be helpful in improving coverage of tail
entities.

Web document based features. Web documents indexed by Bing provide an orthogonal source of signals.
In particular, we consider two main groups of signals: text patterns, and anchor texts.

For text patterns, we scan all documents in Bing’s crawl for patterns such as “name-A, also known as name-
B”, “name-A, aka name-B”, “name-A, otherwise known as name-B”, etc. Given the huge variety and extensive
coverage of the Web documents, this helps us to capture a wide range of synonymous names. Figure 5(b) shows
an example to illustrate this idea. The names “beyonce giselle knowles carter” and “beyonce” frequently co-
occur in these AKA text patterns, and they are indeed synonyms. We simply count the number of times name-A
and name-B occur in such patterns in all Bing documents as a feature for these two names. We note that the
idea of using text patterns is well-studied especially in the literature of information extraction (e.g., [8, 17]). We
leverage such patterns in the context of synonym mining for complementary signals derived from an orthogonal
data source to achieve improved result quality.

For anchor texts, we utilize the observation that anchor texts describing the same hyper-links are often
interchangeable in meanings. So for each hyperlink in Wikipedia, we extract all anchor texts associated with
that link, and count the number of times name-A and name-B are used as anchor texts pointing to the same
link. For instance, both “Jennifer Lopez” and “JLO” are used as anchor texts describing the link pointing to her
Wikipedia page, and we use their respective frequencies pointing to the same page as features. This is another
beneficial feature derived from distant supervision.

Wikipedia and Wiktionary. Wikipedia has rich redirect information. For example, “J.Lo” and “JLO”
are redirected to the “Jennifer Lopez” page on Wikipedia. We extract such information from a dump of the
Wikipedia pages as features. Synonyms as defined by traditional thesaurus are also useful. We parse such
information from Wiktionary as additional features.

21

(a) (b) (c)

Figure 6: Example tables with synonymous columns

Other syntactic features. As additional negative signals, we describe the syntactic difference between two
names using character types and lengths, to leverage observations such as if two names only differ by a number,
they are unlikely to be synonyms (e.g., “ford mustang” and “ford mustang 2015”).

Quality evaluation. After producing feature vectors for all pairs of candidate names, we train a boosted
regression tree model [13] to predict synonymity for each name pair. Based on our calibration of classification
scores using a holdout set of labeled data, we threshold to produce over 200 million synonym pairs with very
high precision.

We take a sample from the produced name pairs and perform manual labeling to assess result quality. The
result is shown in Table 1. Recall here is defined as simply the number of synonyms produced for each sampled
name, where tier-1 recall only counts miss-spellings and name variations (“Canon 600d” and “Cannon 600d”),
tier-2 only counts subset/superset synonyms (“Canon 600d” and “Canon EOS 600d”), and tier-3 counts semantic
synonyms that do not belong to the two previous categories (“Canon 600d” and “EOS rebel t3i”).

Precision Tier-1 recall Tier-2 recall Tier-3 recall
0.973 1.43 2.12 1.12

Table 1: Quality evaluation of synonyms. Recall is defined as the avg. number of synonyms produced per entity.

3 Web Table Services

We describe the key techniques that enable the web table search and web table answer services. Both services
rely on the web table extraction and understanding component which we describe first. The web table search
service takes a keyword query as input and returns a ranked list of web tables relevant to the query. Since the
tables are already extracted, the key remaining challenge is to provide high quality ranking over those tables.
Ranking features used in web page ranking or prior work on web table search are not adequate for our purpose
[19]. We develop novel ranking features to address this challenge. We describe them in the second subsection.
The web table answer service also takes a keyword query (a general web search query) but returns a single table
if it is the best possible answer (among all possible types of answers as well as top algorithmic search result),
otherwise it returns nothing. The main challenge here is to provide table answers with a high precision and good
coverage. We develop a novel approaches to address this challenge which we describe in the last subsection.

22

(a)

(b) (c)

Figure 7: Different types of HTML tables. (a) is a layout table, (b) is an attribute-value table, (c) is a relational
table.

3.1 Prior Work on Web Tables

Web table extraction: There is significant work on web table extraction in the literature [6, 5, 21, 20, 14, 11].
One of the key challenges is to distinguish between the different types of tables, viz. layout, relational and
attribute-value tables. Most of the above works formulate the problem as a machine learning classification task
and design features for the task. Examples of features that distinguish relational tables from other ones are cell
value consistency along columns and the number of empty cells [6, 5, 21]. We adopt a similar approach in our
paper. While there is overlap between our features and those proposed in earlier work, we also employ novel
features like header features to improve accuracy.
Web table search: Venetis et. al. developed a seminal system for keyword search on web tables [19]. They
annotate each table with column labels that describe the class of entities that appear in that column (using a isA
database). Then they look for matches between the query keywords and the annotations as well as the column
names. This results in much better quality than simply piggybacking on Google’s ranking of web pages. Their
approach is not adequate for our services for multiple reasons. For the web table search service, some classes
of queries require us to find matches inside the data cells (e.g., row-subset queries, entity-attribute queries).
The above work does not consider such matches. Second, for the web table answer service, there is a hard
requirement of 98% precision while maintaining good coverage. The above approach is not optimized for this
requirement.

3.2 Web Table Extraction and Understanding Component

The goal of this component is to extract tables from Bing’s web crawl corpus and perform table understanding
and annotation. These tables are subsequently used in web table search and web table answer services. We first
obtain the raw HTML tables (i.e., elements enclosed by the <table></table> tags) by parsing each document
in the crawl corpus into a DOM tree. The main challenge is that not all the raw HTML tables contain valuable
data; a majority of them are used for layout purposes (e.g., page layout, form layout). Figure 7(a) shows an
example of a layout table. We need to identify and discard these tables. Among the valuable tables, there are
two main types of tables, namely relational and attribute-value tables. A relational table is one where each row
corresponds to a named entity and the columns correspond to different attributes of the entities [5, 6]. Figure 7(c)
shows an example of a relational table where each row corresponds to a city (in Washington) and the columns
correspond to different attributes like the county the city belongs to, the city’s population and the city’s land
area. On the other hand, an attribute-value table contains different attributes and its values of a single entity
[11]. Figure 7(b) shows an attribute-value table for the entity ‘Leica Q’. We need to distinguish between the two

23

types of tables in order to understand their semantics which in turn is necessary to provide high quality table
search and table answer services. These are challenging problems as they cannot be accomplished via simple
rules [5].

We first present our approach to distinguish between the different types of tables. Like prior work, we
formulate the problem as a machine learning classification task and propose features for the task [6, 5, 21, 20].
We improve upon those works by proposing novel features like header features. We describe all the features
below for the sake of completeness.
Distinguishing among different types of tables We identify several features to distinguish the different types
of tables. We categorize the features as follows:
• Column-wise homogeneity: One of the main features that distinguishes relational tables from attribute-value
tables is column-wise homogeneity. The values in a column of a relational table are typically homogeneous as
it contains values of different entities on the same attribute. For a string-valued attribute, all cells have string
values and their string lengths are similar to each other (e.g., three leftmost columns in table in Figure 7(c)).
Similarly, for a numeric attribute, all cells have numeric values (e.g., four rightmost columns in table in Figure
7(c)). A column in a relational table typically does not contain a mix of string and numeric values. On the
other hand, the second (counting from left) column of an attribute-value table typically contains a mix of string
and numeric values as it contains values on different attributes. For example, the second column in the table
in Figure 7(b) contains such a mix. We capture the above observations by proposing the following features:
(i) fraction of string-valued cells in first and second columns (ii) fraction of numeric-valued cells in first and
second columns (iii) mean and standard deviation of string lengths of cells in first and second columns (iv) mean
and standard deviation of string lengths of cells averaged across all columns. A high value on either (i) or (ii)
represents homogeneity; we capture that by computing a derived feature that computes the max between (i) and
(ii).
• Row-wise homogeneity: Layout tables are also often column-wise homogeneous, so column-wise homogeneity
alone cannot distinguish between relational and layout tables. We use row-wise homogeneity for that purpose.
All rows in a relational table typically have the same number of cells and they are typically non-empty. On the
other hand, rows in a layout table might have different number of non-empty cells. For example, in the layout
table in Figure 7(a), the first, second and third rows have 2, 3 and 1 non-empty cells respectively. We compute
the standard deviation of the number of cells (and non-empty cells) in different rows as features.
• Row and column counts: Row and column counts also help distinguish between the different types of tables.
Layout tables often have a very small number of rows and/or a very small number of columns (e.g., the layout
table in Figure 7(a) in Figure has only 3 rows). Attribute-value tables typically have 2 columns and a small
number of rows. On the other hand, relational table often have much larger number of rows and more than 2
columns. We compute number of number of rows and number of columns as features.
• Presence of header: If a table contains a header row that is explicitly marked by <th> or <thead> tags and
it “aligns” with the rest of the table (i.e., has the same number of columns as other rows), it is most likely a
relational table. This is especially true if there is a column where all the cell values are numeric except the cell
value in the <th> or <thead> row (which has a string value). We compute boolean features to capture the
above insights.

We manually labeled about 5000 tables as relational, layout and attribute-value and trained a decision forest
model on those labeled examples. We tuned our model for high precision. Our relation classifier has a precision
of 96%. We focus on relational tables in our project as we believe that these tables are most useful for joining
with business data tables in spreadsheet scenarios; we plan to include attribute-value tables in the future. The
rest of discussion focuses on relational tables.

This component also tries to “understand” the relational tables. Each relational table typically has one
column that contains the names of the entities that correspond to the rows of the table [19, 20]. We refer to it
as the entity column of the table. For example, in the table in Figure 7(c)), the leftmost column is the entity
column. It is important to pinpoint the entity column for high-quality search. Consider two entity-attribute

24

Web

snapshot

Focused crawls

(e.g., data.gov,

census)

Relational Table Extraction

Index building

Keyword

index and

feature

indexes

Table

Content

Indexes

String

mapping

and IDF

indexes

Table Understanding (Column

name extraction, Entity column

identification, etc.)

Global

Aggregator

Service

Query

Expansion

Service

(synonym,

misspelling)

Front end

Local

Aggregator

Service

String

Mapping

& IDF

Service

(a) (b)

Table

Content

Service

String

Mapping

& IDF

Service

Table

Content

Service

Local

Aggregator

Service

Figure 8: System architectures for (a) Table extraction and understanding and (b) Table search service.

queries: {aberdeen population 2014} and {grays harbor population 2014}. Both queries
“match” the first data row in the table. However, it is a correct match for the first query (as it contains the
2014 population of Aberdeen) but not for the second query (as it does not contain the 2014 population of Grays
Harbor). This can be ascertained only if we know the entity column. We identify the entity column using
machine learning techniques. Another example of table understanding is column name extraction, especially
when the column names are not marked explicitly via <th> or <thead> tags. Figure 8(a) shows the various
subcomponents of this component.

3.3 Web Table Search Service

The web table search service takes a keyword query as input and returns a ranked list of web tables relevant to
the query. The architecture as well as the query processing of the web table search service are similar to that
of a general web search engine. The architecture is shown in Figure 8(b). The indexed items are web tables
instead of web pages. The inverted index over web tables as well indexes containing features about web tables
(e.g., number of rows, PageRank) are distributed over many computers, each corresponding to a subset of the
web table corpus. Each of those computers runs a local aggregator service that traverses the inverted index and
performs top-k ranking among the table subset in that computer. When a query arrives, the global aggregator
service distributes the query to the local aggregator services to search simultaneously. It then consolidates all
the local top-k results and computes the global top-k. Finally, it invokes the table content services (which stores
the full content of each table) to generate query-dependent snippets for the top-k tables.

The key challenge here is to provide a ranking of high quality. Ranking features used in web page ranking
or prior work on web table search are not adequate for our purpose [19]. The above features are adequate when
the user searches based on the description of the tables; here, we only need to look for keyword matches in
the description fields (e.g., page title, table caption) and column names. However, there are some classes of
queries which require us to find matches inside the data cells as well as the alignment of those matches (e.g.,
in the same column). One such class is row-subset queries where the ideal answer is a subset of rows in a
bigger table and that subset can be obtained by filtering on the value of an attribute. Consider the query ‘largest
software companies in usa’. The table in Figure 2(b) contains the largest software companies from all over the
world (including several from USA) and is hence relevant. However, ‘usa’ is not mentioned anywhere in the

25

page except in the cells of the ‘Headquarters’ column. To identify the above table as a relevant one, we need
to compute a table alignment feature that indicates ’usa’ occurs multiple times in different rows of the same
(non-entity) column of the table. Prior works do not compute such features and hence fail to return such a table.
We incorporate such features in our table search engine.

Another such class is entity-attribute queries. Consider a query ‘aberdeen population’ where the user is
looking for a table containing population of Aberdeen. The ideal table should contain ‘aberdeen’ in a cell in the
entity column and ‘population’ as a column name of a non-entity column. Once again, the above approaches
fail to return the relevant table. We incorporate such table alignment features in our service. To compute these
features, we need to know the row and column indexes of keyword hits in data cells and column indexes of
keyword hits in column names. A document search engine does not store such fine grained information; we
design our inverted index to store such information.

3.4 Web Table Answer Service

The web table answer service takes a keyword query (a general web search query) and returns a single table
if it the best possible answer (among all possible types of answers as well as top algorithmic search result).
Otherwise, it does not return any answer. The main challenge is to have high precision and still having significant
coverage.

One of the main challenges is that a perfect match of the query with a table does not guarantee that the table is
the best possible answer. Table answer may not be the best type of answer at all; the top algorithmic search result
or some other type of answer (e.g., an entity information card or a passage answer) might be better. Consider the
query ‘washington state climate’. The table with caption “Climate data for Washington State (1895-2015)” in
en.wikipedia.org/wiki/Climate_of_Washington is a perfect match as Bing returns that page at
second position and both the table caption and page title perfectly matches with the query. But a passage answer
is a better and more compact answer; both Bing and Google returns a passage answer for this query. We address
this challenge by following a two-step approach. In the first step, we determine whether table answer is the best
type of answer; this is irrespective of whether such a table answer exists or not. If yes, we try to find such a table
in the second step. We briefly describe the two steps.
Determine whether table answer is best answer type: We identify several classes of queries for which table
answer is the best type of answer. One such class is list-intent queries. Such a query seeks for two or more
entities. An example is ‘largest software companies in usa’ as shown in Figure 2(b). Typically a table containing
all the desired entities and their important attributes is the best possible answer. Such queries contain the desired
entity type in plural; we obtain the list of possible desired entity types from Bing’s knowledge graph. For
example, the desired entity type in the above query is ‘company’. However, this is not a sufficient condition.
For example, ‘us companies outsourcing’ is not a list-intent query although it contains an entity type in plural.
We observe that for list-intent queries, the rest of the query, specifically the pre-modifier (the part preceding
the desired entity type) and post-modifier (the part following it), either specifies constraints on the entities (to
narrow down the desired entities) or a ranking criterion. For example, ’software’ and ’in usa’ are constraints and
’largest’ in the ranking criterion. The constraint can be either an adjective or an entity that is “compatible” with
the desired entity type. For example, ‘software’ is an adjective which is compatible with company while ’usa’ is
a entity compatible with company. ’Usa’ is compatible with company as it is a location entity and companies are
often constrained by location. On the other hand, a film or album entity will not be compatible with company as
companies are typically not constrained by films or albums. The challenge is to check whether the pre-modifier
and post-modifier satisfy the above criteria. We address this challenge in two steps. We first create a dictionary
of all adjectives compatible with any entity type; we obtain this from Probase [22]. We also create a dictionary of
all entities compatible with any entity type; we first manually curate constraining entity types that are compatible
with any query entity type (e.g., location entity type is compatible with company) and then obtain the entities
of the former types from Bing’s knowledge graph. We also curate a list of ranking keywords. In the first step,

26

en.wikipedia.org/wiki/Climate_of_Washington

we identify matches of compatible adjectives, compatible entities and ranking keywords in the premodifier and
postmodifier. Subsequently, we use a probabilistic graphical model to discover the holistic set of matches that
best “covers” the query. If the coverage exceed a certain threshold, we classify the query as list-intent query.

Another class of queries for which table answer is the best type of answer is superlative queries (e.g.,
‘largest software company in usa’). This class is closely related to the class of list-intent queries; we use similar
techniques to identify these queries. Under certain conditions, table answer is the best type of answer for entity-
attribute queries as well; we identify this class of queries as well. The output of this step is a decision whether
the query belongs to one of the above classes and, if yes, the parsed query.
Finding table answer: Given a parsed query belonging to one of the above classes, this step tries to find a table
answer. We first obtain a set of candidate tables among which we try to find the table answer: these are the
tables extracted from the top k (k ≤ 10) pages returned by Bing for the query. Finding a table answer within
the candidate set is challenging. One challenge is that there are multiple tables within the page, and often many
of them are similar from the perspective of keyword match. Consider the query ”tom cruise movies”. There are
two tables from www.movies.com/actors/tom-cruise/tom-cruise-movies/p284917 in the
candidate set: one containing the movies that Tom Cruise acted in and the other containing the actors that Tom
Cruise has worked with. Both tables have hits for all the keywords. But only the first table is the right answer
since the desired entity type is movie. We address this challenge by leveraging the fine-grained understanding
of roles of keywords in query such as desired entity type, constraining entity, constraining concept and ranking
keyword. In this example, the desired entity type matches with the column name of the entity column of the first
table but there is no match with the entity column of the second one. We enrich our ranking features with above
roles to make such distinctions.

Another challenge is that the table answer not only needs to be the best table among the candidate tables
but also better than the top algorithm result in Bing. For example, for college ranking queries, the top Bing
answer is usually the right page from US News. However, sometimes the ranking list in the US News page is
not formatted as a table or the table extractor fails to extract the table from the page. We might be able to find
a table among the other candidate tables that perfectly matches user’s intent but it is from a less well-known
source. We do not want to show such a table answer above the proven top result.. We identify such cases by
using the click features (click count, click through rate) of both the page containing the candidate table and the
most clicked Bing search result for that query.

4 Conclusion

In this paper, we provide a brief overview of the data services we have been developing by leveraging Bing’s
data assets. Specifically, we described two data services: synonym service and web table service. Both services
have been successfully integrated into various Microsoft products and services. One of the key learnings is that
commercial applications require data services with very high precision (high nineties), otherwise it would result
in user dissatisfaction. While it is usually straightforward to obtain about 80% precision (for both synonym
and web table services), it is hard to obtain 95+% precision (while still having good coverage). We need novel
approaches to accomplish that level of precision as we described in the paper.

Acknowledgements

We thank Tao Cheng, Dong Xin and Venkatesh Ganti for their core research contributions to the Synonym
project. We thank David Simpson, Guihong Cao, Han Wang, Yi Li and Jiang Wu from Bing who collaborated
closely with us to ship the web table answers in Bing. We thank Minghui (Jason) Xia from Bing whose team
integrated our synonyms data into Bing’s entity linking technology. We thank James Finnigan, Konstantin
Zoryn, Jean-Sebastien Brunner and Dennis Churin from SQL Server Information Services team who shipped

27

www.movies.com/actors/tom-cruise/tom-cruise-movies/p284917

web table search service in Excel PowerQuery. Finally, we thank Arnd Christian Konig and Vivek Narasayya
for their feedback on the initial draft of the paper.

References
[1] Bing Synonyms API. http://datamarket.azure.com/dataset/bing/synonyms, 2012.

[2] Search public data (Power Query) - Excel. https://support.office.com/en-us/article/
Search-public-data-Power-Query-12e0d27e-2e91-4471-b422-c20e75c008cd?ui=
en-US&rs=en-US&ad=US, 2013.

[3] Ricardo Baeza-Yates, Carlos Hurtado, and Marcelo Mendoza. Query recommendation using query logs in search
engines. In Proceedings of the 2004 international conference on Current Trends in Database Technology, 2004.

[4] Ricardo Baeza-Yates and Alessandro Tiberi. Extracting semantic relations from query logs. In Proceedings of KDD,
2007.

[5] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and Yang Zhang. Webtables: exploring the
power of tables on the web. PVLDB, 1(1):538–549, 2008.

[6] Michael J. Cafarella, Alon Y. Halevy, Yang Zhang, Daisy Zhe Wang, and Eugene Wu. Uncovering the relational
web. WebDB, 2008.

[7] Kaushik Chakrabarti, Surajit Chaudhuri, Tao Cheng, and Dong Xin. A framework for robust discovery of entity
synonyms. In SIGKDD, 2012.

[8] Chia-Hui Chang, Mohammed Kayed, Moheb Ramzy Girgis, and Khaled Shaalan. A survey of web information
extraction systems. Transactions on Knowledge and Data Engineering, 2006.

[9] Surajit Chaudhuri, Manoj Syamala, Tao Cheng, Vivek Narasayya, and Kaushik Chakrabarti. Data services for e-
tailers leveraging web search engine assets. In ICDE, 2013.

[10] Tao Cheng, Hady W. Lauw, and Stelios Paparizos. Entity synonyms for structured web search. Transactions on
Knowledge and Data Engineering, 2011.

[11] Eric Crestan and Patrick Pantel. Web-scale knowledge extraction from semi-structured tables. In WWW, 2010.

[12] Hang Cui, Ji-Rong Wen, Jian-Yun Nie, and Wei-Ying Ma. Probabilistic query expansion using query logs. In
Proceedings of WWW, 2002.

[13] J. Friedman. Greedy function approximation: a gradient boosting machine. Annals of Statistics, 2001.

[14] Wolfgang Gatterbauer, Paul Bohunsky, Marcus Herzog, Bernhard Krüpl, and Bernhard Pollak. Towards domain-
independent information extraction from web tables. In WWW, 2007.

[15] Yeye He, Kaushik Chakrabarti, Tao Cheng, and Tomasz Tylenda. Automatic discovery of attribute synonyms using
query logs and table corpora. In Proceedings of WWW, 2016.

[16] Jianhua Lin. Divergence measures based on the shannon entropy. Transactions on Information Theory, 1991.

[17] Sunita Sarawagi. Information extraction. Foundations and Trends in Databases, 2008.

[18] Bilyana Taneva, Tao Cheng, Kaushik Chakrabarti, and Yeye He. Mining acronym expansions and their meanings
using query click log. In WWW, 2013.

[19] Petros Venetis, Alon Y. Halevy, Jayant Madhavan, Marius Pasca, Warren Shen, Fei Wu, Gengxin Miao, and Chung
Wu. Recovering semantics of tables on the web. PVLDB, 4(9):528–538, 2011.

[20] Jingjing Wang, Haixun Wang, Zhongyuan Wang, and Kenny Q. Zhu. Understanding tables on the web. In ER, 2012.

[21] Yalin Wang and Jianying Hu. A machine learning based approach for table detection on the web. In WWW, 2002.

[22] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q. Zhu. Probase: A probabilistic taxonomy for text under-
standing. In SIGMOD, 2012.

28

http://datamarket.azure.com/dataset/bing/synonyms
https://support.office.com/en-us/article/Search-public-data-Power-Query-12e0d27e-2e91-4471-b422-c20e75c008cd?ui=en-US&rs=en-US&ad=US
https://support.office.com/en-us/article/Search-public-data-Power-Query-12e0d27e-2e91-4471-b422-c20e75c008cd?ui=en-US&rs=en-US&ad=US
https://support.office.com/en-us/article/Search-public-data-Power-Query-12e0d27e-2e91-4471-b422-c20e75c008cd?ui=en-US&rs=en-US&ad=US

Attributed Community Analysis: Global and Ego-centric Views

Xin Huang†, Hong Cheng‡, Jeffrey Xu Yu‡

† University of British Columbia, ‡The Chinese University of Hong Kong
xin0@cs.ubc.ca, {hcheng,yu}@se.cuhk.edu.hk

Abstract

The proliferation of rich information available for real world entities and their relationships gives rise
to a type of graph, namely attributed graph, where graph vertices are associated with a number of
attributes. The set of an attribute can be formed by a series of keywords. In attributed graphs, it
is practically useful to discover communities of densely connected components with homogeneous at-
tribute values. In terms of different aspects, the community analysis tasks can be categorized into global
network-wide and ego-centric personalized. The global network-wide community analysis considers the
entire network, such that community detection, which is to find all communities in a network. On the
other hand, the ego-centric personalized community analysis focuses on the local neighborhood sub-
graph of given query nodes, such that community search. Given a set of query nodes and attributes,
community search in attributed graphs is to locally detect meaningful community containing query-
related nodes in the online manner. In this work, we briefly survey several state-of-the-art community
models based on various dense subgraphs, meanwhile also investigate social circles, that one special
kind of communities are formed by friends in 1-hop neighborhood network for a particular user.

1 Introduction

Nowadays with rich information available for real world entities and their relationships, graphs can be built in
which vertices are associated with a set of attributes describing the properties of the vertices. The attributed
graphs exist in many application domains such as web, social networks, collaboration networks, biological
networks and communication networks and so on. Community(cluster), as a group of densely inter-connected
nodes sharing similar properties, naturally exists in real-world networks [24]. In this work, we investigate
communities in two aspects of global network-wide and ego-centric personalized. From the global network-wide
analysis, we study the task of community detection that is to identify all communities in a network [13, 17, 23].
On the other hand, in the ego-centric personalized community analysis, we studied the problem of community
search that is to find meaningful communities containing query-related nodes in local subgraph. Since the
communities defined by different nodes in a network may be quite different, community search with query
nodes opens up the prospects of user-centered and personalized search, with the potential of the answers being
more meaningful to a user[9]. Recently, several papers [19, 9, 11, 22, 15, 5, 4, 1] have studied community search
on graph structure for ego-centric personalized community analysis.

Copyright 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

29

In Section 2, we focus on community detection in attributed graphs. For discovering all communities in
attributed graph, [24, 25, 2] model the problem as graph clustering, which aims to partition the graph into sev-
eral densely connected components with homogeneous attribute values. We proposed a novel graph clustering
algorithm, SA-Cluster, which combines structural and attribute similarities through a unified distance measure.
SA-Cluster finds all clusters by considering the full attribute space. However, in high-dimensional attributed
graphs[10], the high-dimensional clusters are hard to interpret, or there is even no significant cluster with ho-
mogeneous attribute values in the full attribute space. If an attributed graph is projected to different attribute
subspaces, various interesting clusters embedded in subspaces can be discovered. Therefore, based on the uni-
fied distance measure, we extend the method of SA-Cluster to propose a novel cell-based algorithm SCMAG to
discover clusters embedded in subspaces, with similar attribute values and cohesive structure[10].

In Section 3, we focus on community search in attributed graphs. Unlike community detection, community
search focus on the local neighborhood of given query-related nodes. Given a set of query nodes and attributes,
community search on attribute graph is to detect a densely inter-connected communities containing all required
query nodes and attributes in the online manner. First, we introduce one of best known query applications on
attribute graph as team formation [12, 14, 6]. Team formation is to find a group of individuals satisfying all
skilled required in a task with low communication cost. Then we show how to generalize the problem of team
formation into community search. Next, we briefly summarize several community models based on various
dense subgraphs, such as quasi-clique[4], densest subgraph[22], k-core[19, 15, 5, 1] and k-truss[9, 11]. Finally,
we investigate social circles, and analyze its power in social contagion. In social network, for a particular user,
social circles are defined as communities in her 1-hop neighborhood network, a network of connections between
her friends. The structure of social circles can be modeled as connected component, k-core and k-truss. [20]
shows the probability of contagion in social contagion process is tightly controlled by the number of social
circles.

2 Community Detection on Attributed Graphs

In this section, we study the community detection on attributed graphs, under the semantics of both full attribute
space and attribute subspace. We first formulate the problem of graph clustering on attributed graphs by con-
sidering both structural connectivity and attribute similarities. Then, we design a unified distance measure to
combine structural and attribute similarities. Finally, we briefly review the key ideas of community detection
algorithms, as SA-Cluster for graph clustering on full space attributes [24] and SCMAG for graph subspace
clustering[10].

2.1 Attributed Graphs

An undirected, unweighted simple graph is represented as G = (V, E) with |V | vertices and |E| edges. When
the vertices are associated with attributes, the network structure can be modeled as a new type of attributed graph
as follow.

Definition 1 (Attributed Graph): An attributed graph is denoted as G = (V,E,Λ), where V is the set of
vertices, E is the set of edges, and Λ = {a1, . . . , am} is the set of attributes associated with vertices in V for
describing vertex properties. A vertex v ∈ V is associated with an attribute vector [a1(v), . . . , am(v)] where
aj(v) is a set of attribute values of vertex v on attribute aj .

Figure 1 shows an example of a coauthor graph where a vertex represents an author and an edge represents
the coauthor relationship between two authors. In addition, there are an author ID, research topic and age range
associated with each author, which are considered as attributes to describe the vertex properties. For example,
the author r8 works on two topics of XML and Skyline. The problem of community detection is to find all

30

���������	
��

�	��������
�
��������� ����������
��

����������
�

��������
��

����������
��

���������	
��
 ���������
��

�������������
��

��
�����������	
��
 ���������������
�

(a) Attributed Graph

���������	
��

�	��������
�
��������� ����������
��

����������
�

��������
��

����������
��

���������	
��
 ���������
��

�������������
��

��
�����������	
��
 ���������������
�

��������

��	���������

(b) Attribute Augmented Graph

Figure 1: A Coauthor Network with Two Attributes “Research Topic” and “Age Range”

communities on the attributed graph, such as the example in Figure 1(a), based on both structural and attribute
similarities. Therefore, we formulate the problem as the graph clustering on attributed graph in the following.
Attributed graph clustering is to partition an attributed graph G into k disjoint subgraphs {Gi = (Vi, Ei,Λ)}ki=1,
where V =

∪k
i=1 Vi and Vi

∩
Vj = ∅ for any i ̸= j. A desired clustering of an attributed graph should achieve

a good balance between the following two objectives: (1) vertices within one cluster are close to each other in
terms of structure, while vertices between clusters are distant from each other; and (2) vertices within one cluster
have similar attribute values, while vertices between clusters could have quite different attribute values.

2.2 Attribute Augmented Graph

In the following, we used an attribute augmented graph to represent attributes explicitly as attribute vertices
and edges proposed by [24].

Definition 2 (Attribute Augmented Graph): Given an attributed graph G = (V,E,Λ) with a set of attributes
Λ = {a1, . . . , am}. The domain of attribute ai is Dom(ai) = {ai1, . . . , aini} with a size of |Dom(ai)| = ni.
An attribute augmented graph is denoted as Ga = (V ∪ Va, E ∪ Ea) where Va = {vij}m, ni

i=1,j=1 is the set of
attribute vertices and Ea ⊆ V × Va is the set of attribute edges. An attribute vertex vij ∈ Va represents that
attribute ai takes the jth value. An attribute edge (vi, vjk) ∈ Ea iff ajk ∈ aj(vi), i.e., vertex vi takes the value
of ajk on attribute aj . Accordingly, a vertex v ∈ V is called a structure vertex and an edge (vi, vj) ∈ E is called
a structure edge.

Figure 1(b) is an attribute augmented graph on the coauthor network example. Two attribute vertices v11 and
v12 representing the topics “XML” and “Skyline” are added. Authors with corresponding topics are connected
to the two vertices respectively in dashed lines. We omit the attribute vertices and edges corresponding to the
age attribute, for the sake of clear presentation. In the attributed graph clustering problem, we need to discuss
two main issues: (1) a distance measure, and (2) a clustering algorithm below.

2.3 A Unified Random Walk Distance

We use the neighborhood random walk model on the attribute augmented graph Ga to compute a unified distance
between vertices in V . The random walk distance between two vertices vi, vj ∈ V is based on the paths con-
sisting of both structure and attribute edges. Thus it effectively combines the structural proximity and attribute
similarity of two vertices into one unified measure. The transition probability matrix PA on Ga is defined as
follows.

31

A structure edge (vi, vj) ∈ E is of a different type from an attribute edge (vi, vjk) ∈ Ea. The m attributes
in Λ may also have different importance. Therefore, they may have different degree of contributions in random
walk distance. Without loss of generality, we assume that a structure edge has a weight of ω0, attribute edges
corresponding to a1, a2, . . ., am have an edge weight of ω1, ω2, . . ., ωm, respectively. In the following, we
will define the transition probabilities between two structure vertices, between a structure vertex and an attribute
vertex, and between two attribute vertices. First, the transition probability from a structure vertex vi to another
structure vertex vj through a structure edge is

pvi,vj =

ω0

|N(vi)| ∗ ω0 + ω1 + . . .+ ωm
, if(vi, vj) ∈ E

0, otherwise
(1)

where N(vi) represents the set of structure vertices connected to vi.
The transition probability from a structure vertex vi to an attribute vertex vjk through an attribute edge is

pvi,vjk =

ωj

|N(vi)| ∗ ω0 + ω1 + . . .+ ωm
, if(vi, vjk) ∈ Ea

0, otherwise
(2)

The transition probability from an attribute vertex vik to a structure vertex vj through an attribute edge is

pvik,vj =

1

|N(vik)|
, if(vik, vj) ∈ Ea

0, otherwise

(3)

The transition probability between two attribute vertices vip and vjq is 0 as there is no edge between attribute
vertices.

pvip,vjq = 0, ∀vip, vjq ∈ Va (4)

The transition probability matrix PA is a |V ∪ Va| × |V ∪ Va| matrix, where the first |V | rows and columns
correspond to the structure vertices and the rest |Va| rows and columns correspond to the attribute vertices. For
the ease of presentation, PA is represented as

PA =

[
PV1 A1

B1 O

]
(5)

where PV1 is a |V |×|V | matrix representing the transition probabilities defined by Equation (1); A1 is a |V |×|Va|
matrix representing the transition probabilities defined by Equation (2); B1 is a |Va| × |V | matrix representing
the transition probabilities defined by Equation (3); and O is a |Va| × |Va| zero matrix.

Definition 3 (Random Walk Distance Matrix): Let PA be the transition probability matrix of an attribute aug-
mented graph Ga. Given L as the length that a random walk can go, c ∈ (0, 1) as the random walk restart
probability, the unified neighborhood random walk distance matrix RA is

RA =

L∑
l=1

c(1− c)lP l
A (6)

32

2.4 SA-Cluster Algorithm

SA-Cluster adopts the K-Medoids clustering framework. After initializing the cluster centroids and calculating
the random walk distance at the beginning of the clustering process, it repeats the following four steps until
convergence.

1. Assign vertices to their closest centroids;

2. Update cluster centroids;

3. Adjust attribute edge weights {ω1, . . . , ωm};

4. Re-calculate the random walk distance matrix RA.

Different from traditional K-Medoids, SA-Cluster has two additional steps (i.e., steps 3-4): in each itera-
tion, the attribute edge weights {ω1, . . . , ωm} are automatically adjusted to reflect the clustering tendencies of
different attributes. Interested readers can refer to [24] for the proposed mechanism for weight adjustment.

The time complexity of SA-Cluster is O(t ·L · |V ∪Va|3), where t is the number of iterations in the clustering
process, and O(L · |V ∪Va|3) is the cost of computing the random walk distance matrix RA. In order to improve
the efficiency and scalability of SA-Cluster, [25] proposes an efficient algorithm Inc-Cluster to incrementally
update the random walk distances given the edge weight increments. Complexity analysis shows that Inc-Cluster
can improve SA-Cluster by approximately t times. For further speed up Inc-Cluster, [2] designs parallel matrix
computation techniques on a multicore architecture.

2.5 Subspace Clustering in High-dimensional Attributed Graphs

Although SA-Cluster can differentiates the importance of attributes with an attribute weighting strategy, it can-
not get rid of irrelevant attributes completely, especially when the dimension of attribute is high, i.e., |Λ| = m
is large. The high-dimensional clusters are hard to interpret, or there is even no significant cluster with homoge-
neous attribute values in the full attribute space. If an attributed graph is projected to different attribute subspaces,
various interesting clusters embedded in subspaces can be discovered which, however, may not exhibit in the
full attribute space. In the following, we will study the problem of subspace clustering in high-dimensional
attributed graphs. We first define the subspace criterion of good subspace clusters in terms of homogeneous
properties and cohesive structure. Then, we propose a novel cell-based subspace clustering algorithm SCMAG.

2.5.1 Criterion of Subspace Clusters

For the discovered clusters embedded in subspaces, should not only have homogeneous attribute values, but also
have dense connections, i.e., correspond to communities with homogeneous properties and cohesive structure.
Attribute Criterion. Given a attribute subspace S ⊆ Λ, the subspace entropy and interest are defined as follows.

Definition 4 (Subspace Entropy): Given a set of attributes S = {a1, . . . , ak} ⊆ Λ, the subspace entropy of S
is defined as

H(a1, . . . , ak) = −
∑

A1∈Dom(a1)

· · ·
∑

Ak∈Dom(ak)

p(A1, . . . , Ak) log p(A1, . . . , Ak) (7)

where p(A1, . . . , Ak) is the percentage of graph vertices whose attribute value vector is [A1, . . . , Ak].

33

In addition, we want the attributes of a subspace to be correlated. If the attributes are independent of each
other, the subspace does not give more information than looking at each attribute independently. We measure
the correlation of a subspace S using mutual information between all individual dimensions of the subspace as
below.

I({a1, . . . , ak}) =
k∑

i=1

H(ai)−H(a1, . . . , ak)

We consider a subspace S = {a1, . . . , ak} as an interesting subspace, if S is more strongly correlated than any
of its subsets S ′ ⊆ S . To measure the increase in correlation of a subspace, we define the interest of a subspace.

Definition 5 (Subspace Interest): Given a set of attributes S = {a1, . . . , ak} ⊆ Λ, the subspace interest of S
is defined as the minimum increase in correlation of S over its (k − 1)-dimensional subsets.

interest(a1, . . . , ak) = I({a1, . . . , ak})−max
i

I({a1, . . . , ak} − {ai})

Therefore, a good subspace for clustering should have low subspace entropy and high subspace interest.
Structural Criterion. Given a subspace S = {a1, . . . , ak} and each attribute ai has ni values, the k-dimensional
space is partitioned to form a grid. The vertices with same attribute vector fall into the same cell of grid, under
this k-dimensional space. Thus, for a good space for clustering, we identify the cells with high coverage and
connectivity, according to the following definition.

Definition 6 (Coverage and Connectivity): Given a cell u in a subspace, the coverage of u is measured by the
number of vertices in u, i.e., V (u) = |u|. The connectivity of u is measured by the sum of random walk scores
of all pairs of vertices, divided by the cell size

D(u) =

∑
vi,vj∈u Q̃V V (vi, vj)

|u|
,

where Q̃V V (vi, vj) is the normalized structural similarity between vi and vj .

2.5.2 A review of SCMAG

Based on the criteria for interesting subspace with good clustering tendency and coverage subspace with dense
connectivity, the cell-based algorithmic framework of SCMAG is described as follow. We will first find the
subspaces with good clustering tendency, and then identify cells in the subspace with high coverage and high
connectivity. Adjacent qualified cells will be merged to form a maximal cluster in the subspace.

Follow by the framework of SA-Cluster, we first construct the attribute augmented graph by Definition 2.
Then, we use the random walk with restart to unify the structural closeness and attribute similarity into a single
measure. Based on the random walk score, we design a novel cell combining strategy on dimensions of at-
tributes. Moreover, to distinguish the multi-values in an attribute, we choose one attribute value with the largest
attribute similarity between the value and vertex as the unique one. Thus, each vertex is associated with an at-
tribute vector containing a single value in each attribute. Finally, we iteratively find subspace with low subspace
entropy and high subspace interest, and detect clusters by merging adjacent dense cells to satisfy high coverage
and dense connectivity. The entire procedure is shown as follow.

1. Construct the attribute augmented graph, and calculate the random walk distance;

2. Identify similar attribute values to be adjacent;

34

Table 1: Clusters in attribute subspace {Citation, H-index, G-index, Venue} on bibliographic graph, where each
vertex represents an author and an edge represents the author collaboration. Each author has 12 attributes, such
as Topic, Citation, H-index, Sociability and so on[10].

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Database Software Engineering & Hardware & Algorithms &

Scientific Computing Architecture Theory
Rakesh Agrawal C.A.R. Hoare A. L. Sangiovanni-Vincentelli Rajeev Motwani

Hector Garcia-Molina Leslie Lamport Sharad Malik Robert E. Tarjan
Jeffrey D. Ullman Thomas A. Henzinger Sartaj K. Sahni Christos Papadimitriou
Jennifer Widom Rajeev Alur Lothar Thiele Prabhakar Raghavan

Christos Faloutsos David Harel Sudhakar M. Reddy David R. Karger
Jim Gray Joseph Halpern Jason Cong Richard M. Karp

David J. DeWitt Amir Pnueli Robert Brayton Jon M. Kleinberg
Michael Stonebraker Moshe Vardi Miodrag Potkonjak Leslie Valiant

Ramakrishnan Srikant Edmund Clarke Massoud Pedram Oded Goldreich
Serge Abiteboul Robin Milner Janak H. Patel Moni Naor

3. Assign vertices into cells of the grid by handling multi-valued attributes;

4. Find good subspaces with low subspace entropy and high subspace interest;

5. Find clusters in the identified subspace by merging adjacent dense cells to satisfy high coverage and dense
connectivity;

Case study. Table 1 shows that SCMAG discovers 4 clusters from different research fields on bibliographic
graph in the subspace {Citation, H-index, G-index, Venue}, and list 10 representative authors in each cluster.
The subspace combination of Citation, H-index and G-index is interesting, as these three attributes are positively
correlated – H-index and G-index are computed from citations.

3 Community Search on Attributed Graphs

Given a set of query nodes and attributes, community search on attributed graphs is to detect meaningful com-
munity containing query nodes and satisfying attribute constraints in the online manner. As an ego-centric
personalized analysis, community search is different from community detection, which focuses on the local
neighborhood subgraph of query-related nodes. In the following, we first introduce one of best known query
application on attributed graphs as team formation, and show how to generalize it into community search on
attributed graphs. Then, we will discuss several state-of-the-art community models based on various dense
subgraphs, including special community models of social circles.

3.1 Team Formation

Task-driven Team formation [14]. Assume that in attributed graph G(V,E,Λ), each vertex is associated with
different skill attributes. Given a task T that requires a set of skills, the problem of team formation is to find a
group of individuals X ⊆ V who can function as a team to accomplish task T , such that every required skill in
T is exhibited by at least one individual in X . Additionally, the members of team X should define a subgraph or
a tree in G with low communication cost. The communication cost measures how effectively the team members
can collaborate: the lower the communication cost, the better the quality of the team. [14] measures team

35

communication cost in terms of diameter or spanning tree. We formulate the problem of diameter based team
formation as below.

Definition 7 (Graph Diameter): The diameter of a graph G is defined as the maximum length of a shortest
path in G, i.e., diam(G) = maxu,v∈G{distG(u, v)}, where distG(u, v) is the length of a shortest path between
u and v in G.

Definition 8 (Diameter based Team Formation): Given an attributed graph G(V,E,Λ) and a task T = {w1,
..., wk} ⊆

∪
a∈ΛDom(a), find a subgraph H ⊆ G such that satisfies

1. ∀w ∈ T , ∃v ∈ H and a ∈ Λ, s.t, w ∈ a(v);

2. diam(H) is minimized.

This problem has been shown to be NP-complete. However, there exists a 2-approximation algorithm, which
can find a subgraph H that satisfies all required skills and has the diameter no greater than 2 times of the optimal
one.

3.2 A Formulation of Community Search

In the diameter based team formation, the diameter metric may not measure the communication cost well,
because this simple function is instability: a slight change in the graph may result in a radical change in the
solution, due to the weak connectivity[6]. Therefore, to enforce the dense connectivity constraints on the formed
team is necessary. On the other hand, in some application scenarios, we may need to specify leaders in a team,
since leaders need to iteratively communicate with each team member to monitor and coordinate the project[12].
Thus, the given leaders(vertices) must be contained in the reported team. As a result, we can generalize team
formation with leader constraints into the problem of diverse attributed community search on attributed graph
as follow.

Definition 9 (Diverse Attributed Community Search): Given an attributed graph G(V,E,Λ), a set of attribute
values T = {w1, ..., wk} ⊆

∪
a∈ΛDom(a) and a set of query nodes Q ⊆ V (G), find a connected subgraph

H ⊆ G such that satisfies

1. Q ⊆ V (H);

2. ∀w ∈ T , ∃v ∈ H and a ∈ Λ, s.t, w ∈ a(v);

3. H is densely connected, and the communication cost is minimum.

As we can see, the problem of diverse attributed community search tends to find a densely connected sub-
graph containing all query nodes and achieving the coverage of diverse attributes, with the minimum commu-
nication cost. In Definition 9, either a set of attributes T or a set of query nodes Q can be empty. If the set of
attributes are empty as T = ∅, the problem of community search on attributed graph is equivalent to the problem
of find densely connected community in a simple graph G(V,E). If the set of query nodes are empty as Q = ∅,
the problem of community search on attributed graph is equivalent to the problem of team formation without
leader constraints in Definition 8.

36

3.3 Dense Subgraph based Community Models

In this section, we will introduce several novel community models in a simple graph G(V,E) without at-
tributes. These state-of-the-art community models are based on different dense subgraph definitions, such as
quasi-clique[4], densest subgraph[22], k-core[19, 15, 5, 1] and k-truss[9, 11]. These community models can be
further developed and extended for applying on attributed graph G(V,E,Λ).
Quasi-Clique Community. Cui et. al[4] propose a α-adjacency-γ-quasi-k-clique community model. A γ-
quasi-k-clique of a simple graph G is defined as a k-node subgraph of G with at least ⌊γ k(k−1)

2 ⌋ edges, where
0 ≤ γ ≤ 1. A γ-quasi-k-clique is a relaxation of a k-clique. Two γ-quasi-k-cliques are α-adjacent and can
be union if they share at least α common vertices. Given a query node, the community search problem is to
find all α-adjacency-γ-quasi-k-cliques containing it. Several heuristic approaches are proposed for speed up the
NP-hard query processing.
Query-biased Densest Subgraph Community. Wu et al. [22] studied the query biased densest connected
subgraph (QDC) problem for avoiding subgraphs irrelevant to query nodes in the discovered community. The
community is defined based on a connected graph containing given query nodes, and it optimizes a fundamen-
tally different function called query biased edge density, which is calculated as the overall edge weight averaged
over the weight of nodes in a community.
K-core Community. Several community models build up on the structure of k-core [19, 15, 5, 1]. A k-core
is a subgraph of G that requires each node has at least k neighbors within this subgraph [18]. Sozio et al.
[19] proposed a k-core based community model, called Cocktail Party, with the distance and size constraints.
Cocktail Party community model finds the k-core with largest k as the density optimization, and uses the furthest
query distance as the communication cost function. Cui et al. [5] find a k-core community for a query node using
local search. In addition, Li et al. [15] propose influential community model that finds top-r communities with
the highest influence scores over the entire graph, without considering query nodes.
K-truss Community. A k-truss is a subgraph of G that requires each edge be contained at least (k-2) triangles
within this subgraph [3]. In a social network, a triangle indicates two friends have a common friend, which
shows a strong relationship among three friends. Intuitively, the more common friends two people have, the
stronger their relationship. In a k-truss, each pair of friends is “endorsed” by at least (k-2) common friends[11].
Thus, a k-truss with a large value of k signifies strong inner-connections between members of the subgraph. The
community proposed by [9] and [11] both are build upon the connected k-truss. [9] proposes a k-truss com-
munity model based on triangle adjacency, to find all overlapping communities of one query node. The closest
truss community [11] aims to find a connected k-truss subgraph with the largest k that contains Q, and has the
minimum diameter among such subgraphs. Here, the minimum graph diameter is used as the communication
cost constraint. In comparison of the k-core community and the k-truss community, conceptually, k-truss is
a more cohesive definition than k-core, as k-truss is based on triangles whereas k-core simply considers node
degree.
Case study. Figure 2(b) shows a closest truss community [11] detected on DBLP network using the query
Q = {“Alon Y. Halevy”, “Michael J. Franklin”, “Jeffrey D. Ullman”, “Jennifer Widom”} and T = ∅. It has 14
authors, 81 edges and the edge density of 0.89. The community does not include any authors in a 9-truss [3]
that are far away from and loosely connected with queried authors in Figure 2(a), which shows the superiority
of closest truss community.

3.4 Social Circles and Social Contagion

In this section, we will study one special kind of community in social networks as social circles. For one query
user, social circles are communities in query users 1-hop neighborhood network, a network of connections
between her friends. Simply, in terms of graph structure, for a user with a small number of friends, a connected
component is strongly enough to represent a social circle; Whereas, for a user with a large number of friends,

37

(a) 9-truss [3] (b) closest truss community [11]

Figure 2: Community search on DBLP network without attributes using query Q ={“Alon Y. Halevy”, “Michael
J. Franklin”, “Jeffrey D. Ullman”, “Jennifer Widom”} and T = ∅

since the structure of her neighborhood network becomes complex, a connected k-core and a connected k-truss
as cohesive structure are much better social circle models. Interested readers can refer to more community
models on attribute graphs [16, 21].

In the following, we will show how these social circles affects the process of information diffusion on social
contagion. Ugander et al. [20] study two social contagion processes in Facebook: the process that a user joins
Facebook in response to an invitation email from an existing Facebook user, and the process that a user becomes
an engaged user after joining. They find that the probability of contagion is tightly controlled by the number
of social circles in a users neighborhood, rather than by the number of friends in the neighborhood. A social
circle represents a distinct social context of a user, and the multiplicity of social contexts is termed structural
diversity [20]. A user is much more likely to join Facebook and become engaged if he or she has a larger
structural diversity, i.e., a larger number of distinct social contexts. [7, 8] studied the problem of find k users
with the highest structural diversity in graphs, which can be beneficial to a wide range of application domains,
for example, political campaign, the promotion of health practices, marketing, and so on.

(a) Word (b) Christmas

Figure 3: Top-2 structural diversity based on connected 2-core in word association network. Here “word” and
“Christmas” respectively has the top-2 highest structural diversity score as 4 and 3.

38

Case study. Figure 3 shows that top-2 results in the word association network using connected 2-core as the
structural bone of social circles. Two words “word” and “Christmas” have the highest two structural diversity
scores of 4 and 3. As we can see, in Figure 3, each vertex in the 2-core component has at least two neighbor
words. Specifically, the word “word” in Figure 3 (a) has 4 distinct contexts of associated words with different
meanings. For example, {“swear”, “oath”, “promise”} represent the synonym of “words” as “promise”, and
{“verb”, “noun”, “pronoun”} are different types of “word”. The word “Christmas” has three distinct contexts
of associated words, as shown in Figure 3 (b), {“reindeer”, “sleigh”, “Santa”} describe the “Santa”, {“present”,
“gift”, “package”} represent the “Christmas gifts” and {“tree”, “ornament”, “decoration”} are related to the
“Christmas tree”.

4 Future Work and Conclusion

In this paper, we study two problems of community detection and community search in attributed networks, re-
spectively in terms of global network-wide analysis and ego-centric personalized analysis aspects. For commu-
nity detection, we design a unified distance measure to combine structural and attribute similarities on attribute
graphs. Based on that, we propose two community detection algorithms SA-Cluster and SCMAG for respec-
tively considering the full space and subspace of attributes. For community search, we give a formal problem
definition of community search on attributed graphs by generalizing from the problem of team formation. Sev-
eral dense subgraph based community model are surveyed here for a comparison. Since all these dense subgraph
based community models only consider structures in simple graphs without attributes, it would be interesting to
extend the models and algorithms to attributed graphs for community search. Given the recent surge of interest
k-core and k-truss in probabilistic graphs, an exciting question is how k-core and k-truss models generalizes to
probabilistic graphs. The challenge is to develop extensions that are widely useful and tractable.

References
[1] N. Barbieri, F. Bonchi, E. Galimberti, and F. Gullo. Efficient and effective community search. Data Mining and

Knowledge Discovery, 29(5):1406–1433, 2015.

[2] H. Cheng, Y. Zhou, X. Huang, and J. X. Yu. Clustering large attributed information networks: an efficient incremental
computing approach. Data Mining and Knowledge Discovery, 25(3):450–477, 2012.

[3] J. Cohen. Trusses: Cohesive subgraphs for social network analysis. Technical report, National Security Agency,
2008.

[4] W. Cui, Y. Xiao, H. Wang, Y. Lu, and W. Wang. Online search of overlapping communities. In SIGMOD, pages
277–288, 2013.

[5] W. Cui, Y. Xiao, H. Wang, and W. Wang. Local search of communities in large graphs. In SIGMOD, pages 991–1002,
2014.

[6] A. Gajewar and A. D. Sarma. Multi-skill collaborative teams based on densest subgraphs. In SDM, pages 165–176.
SIAM, 2012.

[7] X. Huang, H. Cheng, R.-H. Li, L. Qin, and J. X. Yu. Top-k structural diversity search in large networks. PVLDB,
6(13):1618–1629, 2013.

[8] X. Huang, H. Cheng, R.-H. Li, L. Qin, and J. X. Yu. Top-k structural diversity search in large networks. The VLDB
Journal, 24(3):319–343, 2015.

[9] X. Huang, H. Cheng, L. Qin, W. Tian, and J. X. Yu. Querying k-truss community in large and dynamic graphs. In
SIGMOD, pages 1311–1322, 2014.

[10] X. Huang, H. Cheng, and J. X. Yu. Dense community detection in multi-valued attributed networks. Information
Sciences, 314:77–99, 2015.

39

[11] X. Huang, L. V. Lakshmanan, J. X. Yu, and H. Cheng. Approximate closest community search in networks. PVLDB,
9(4):276–287, 2015.

[12] M. Kargar and A. An. Discovering top-k teams of experts with/without a leader in social networks. In Proceedings
of the 20th ACM international conference on Information and knowledge management, pages 985–994. ACM, 2011.

[13] A. Lancichinetti and S. Fortunato. Community detection algorithms: a comparative analysis. Physical review E,
80(5):056117, 2009.

[14] T. Lappas, K. Liu, and E. Terzi. Finding a team of experts in social networks. In KDD, pages 467–476. ACM, 2009.

[15] R.-H. Li, L. Qin, J. X. Yu, and R. Mao. Influential community search in large networks. PVLDB, 8(5), 2015.

[16] J. J. McAuley and J. Leskovec. Learning to discover social circles in ego networks. In NIPS, pages 548–556, 2012.

[17] M. E. Newman. Fast algorithm for detecting community structure in networks. Physical review E, 69(6):066133,
2004.

[18] S. B. Seidman. Network structure and minimum degree. Social networks, 5(3):269–287, 1983.

[19] M. Sozio and A. Gionis. The community-search problem and how to plan a successful cocktail party. In KDD, pages
939–948, 2010.

[20] J. Ugander, L. Backstrom, C. Marlow, and J. Kleinberg. Structural diversity in social contagion. Proceedings of the
National Academy of Sciences, 109(16):5962–5966, 2012.

[21] Y. Wang and L. Gao. An edge-based clustering algorithm to detect social circles in ego networks. Journal of
computers, 8(10):2575–2582, 2013.

[22] Y. Wu, R. Jin, J. Li, and X. Zhang. Robust local community detection: On free rider effect and its elimination.
PVLDB, 8(7), 2015.

[23] J. Yang and J. Leskovec. Overlapping community detection at scale: a nonnegative matrix factorization approach. In
WSDM, pages 587–596, 2013.

[24] Y. Zhou, H. Cheng, and J. X. Yu. Graph clustering based on structural/attribute similarities. PVLDB, 2(1):718–729,
2009.

[25] Y. Zhou, H. Cheng, and J. X. Yu. Clustering large attributed graphs: An efficient incremental approach. In ICDM,
pages 689–698, 2010.

40

Ten Years of Knowledge Harvesting: Lessons and Challenges

Gerhard Weikum1, Johannes Hoffart2, Fabian Suchanek3

1 Max Planck Institute for Informatics 2 Ambiverse GmbH 3 Télécom ParisTech University
Saarbrücken, Germany Saarbrücken, Germany Paris, France

E-mail: weikum@mpi-inf.mpg.de, johannes@ambiverse.com, suchanek@telecom-paristech.fr

Abstract

This article is a retrospective on the theme of knowledge harvesting: automatically constructing large high-
quality knowledge bases from Internet sources. We draw on our experience in the Yago-Naga project over the
last decade, but consider other projects as well. The article discusses lessons learned on the architecture of a
knowledge harvesting system, and points out open challenges and research opportunities.

1 Large High-Quality Knowledge Bases

Turning Internet content, with its wealth of latent-value but noisy text and data sources, into crisp “machine
knowledge” that can power intelligent applications is a long-standing goal of computer science. Over the last
ten years, knowledge harvesting has made tremendous progress, leveraging advances in scalable information
extraction and the availability of curated knowledge-sharing sources such as Wikipedia. Unlike the seminal
projects on manually crafted knowledge bases and ontologies, like Cyc [28] and WordNet [15], knowledge
harvesting is automated and operates at Web scale.

Automatically constructed knowledge bases – KB’s for short – have become a powerful asset for search,
analytics, recommendations, and data integration, with intensive use at big industrial stakeholders. Prominent
examples are the Google Knowledge Graph, Facebook’s Graph Search, Microsoft Satori as well as domain-
specific knowledge bases in business, finance, life sciences, and more.

These achievements are rooted in academic research and community projects starting ten years ago, most
notably, DBpedia [2], Freebase [6], KnowItAll [14], WikiTaxonomy [35] and Yago [42]. More recent major
projects along these lines include BabelNet [32] ConceptNet [41], DeepDive [40], EntityCube (aka. Renlifang)
[34], KnowledgeVault [10], Nell [7] Probase [51], Wikidata [48], XLore [49].

The largest of the KB’s from these projects contain many millions of entities (i.e., people, places, products
etc.) and billions of facts about them (i.e., attribute values and relationships with other entities). Moreover,
entities are organized into a taxonomy of semantic classes, sometimes with hundred thousands of fine-grained
types. All this is often represented in the form of subject-predicate-object (SPO) triples, following the RDF data
model, and some of the KB’s – most notably DBpedia – are central to the Web of Linked Open Data [19].

For illustration, here are some examples of SPO triples about Steve Jobs:

Copyright 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

41

Steve Jobs type entrepreneur entrepreneur subtypeOf businessperson
Steve Jobs coFounded Apple Steve Jobs hasFriend Steve Wozniak
Steve Jobs hasDaughter Lisa Brennan Apple Lisa namedAfter Lisa Brennan
Steve Jobs diedOf Pancreatic Cancer Steve Jobs fanOf Bob Dylan

The most obvious use case for this kind of encyclopedic knowledge is to support search engines (for both
Internet and enterprise search) on queries about entities. For example, when receiving the query “jobs apple”,
the system can identify “jobs” as a possible target entity and use the KB to improve its answers (transparently
to the user, and in addition to pursuing other interpretations of the user’s intent, e.g., looking for job offers at
Apple). Other benefits arise from aggregating observations (on queries, clicks, posts, etc.) on a per-entity basis
and combining them with semantic types or entity facts for analytics and recommendations.

Once computers have background knowledge on the real world, they have better ways of tapping into vague
and noisy contents like natural language texts, social media and Internet data. This is an asset for language
understanding, data cleaning and more. Moreover, we can think of this duality of knowledge acquistion and
content understanding as a virtuous cycle: it enables the computer to obtain more knowledge, better knowledge,
deeper knowledge. Figure 1 illustrates this point.

Internet

Contents

content
understanding

Machine

Knowledge

more knowledge,
analytics, insightknowledge

acquisition1

2

3

Figure 1: Knowledge Acquision and Content Understanding.

Our own endeavor on knowledge harvesting has its roots in research on semantic search starting in 2004.
Later it became the Yago-Naga project, and led to the first release of the Yago KB (yago-knowledge.org)
in February 2007. The salient strength of Yago is its rich type system with hundred thousands of fine-grained
classes. When IBM Watson won the Jeopardy quiz show, it harnessed Yago’s taxonomy for semantic type
checking [26]. Later Yago releases added temporal and spatial knowledge [22], multilingual dimensions [38]
and commonsense properties [17, 45]. Yago is now a joint project of the Max Planck Institute for Informatics
and the Télécom ParisTech University. It is the only publicly available KB with statistical quality assurance: at
least 95% accuracy (i.e., correct triples) based on sampling and Wilson confidence intervals.

This article intends to review the knowledge harvesting work of the past decade, pointing out lessons learned
as well as open challenges and research opportunities. We draw on our Yago-Naga project as a primary source
of experience, but aim to reflect the general research avenue.

2 Lessons Learned

2.1 Extraction Sources and Methods: Low-Hanging Fruit First

There is a wide spectrum of information extraction (IE) methods that knowledge harvesting can be based on,
including regular expression matching, probabilistic graphical models, constraint reasoning and more. These can
be applied to a wide spectrum of potential input sources, ranging from specialized databases (e.g., on movies
or music) and web tables all the way to news articles and social media. From a purely scientific perspective, it
may seem desirable to tap into every possible source with a single unified method and as little supervision as
possible. Our experience is that this does not work - not if the goal is to build a high-quality knowledge base,
with precision close to what a team of human curators would achieve.

42

Choice of Sources: We have followed – and strongly advocate – a layered approach where we pick low-
hanging fruit first: high-quality input sources with limited noise in content structure, and robust methods for
high-quality output. Specifically, we first tapped into semi-structured elements of Wikipedia: category names,
infoboxes, lists, headings, etc. For specific kinds of knowledge, we integrated the best available curated sources:
WordNet for taxonomic relations among semantic classes, and GeoNames for spatial entities. If we had been
keen to increase Yago’s coverage of movies and songs, we would have tapped into sources like IMDB (or
LinkedMDB), Musicbrainz, etc. Generally, entities of specific types can often be harvested from dedicated
sources or via specific identifier systems [44].

Once we obtained a KB core, we were able to harness this to distantly supervise extractions from other
sources. In doing so, we could still “cherrypick” the more suitable sources: there is no point in obtaining poor
extractions from super-noisy inputs like social media if the same knowledge can be distilled from easier inputs
such as biographies. Also, we can leverage redundancy and statistics: seeing the same facts many times in
different sources. This is why we called our approach knowledge harvesting, as opposed to running IE on each
and every, arbitrarily difficult, input.

Extraction Methods: Similar engineering principles apply to the extraction methods. We started with
simple, robust methods like regular expression matching (applied to token sequences in Wikipedia) combined
with simple linguistic analysis, most notably, noun phrase parsing. Then we leveraged semantic type checking,
building on the rich taxonomic knowledge distilled from Wikipedia categories and WordNet classes. This way
we could keep precision at near-human quality, and were able to feed the obtained knowledge as seeds into
more advanced distantly supervised methods: reasoning with consistency constraints over evidence-weighted
candidate assertions [31, 43].

Our constraint reasoning is based on approximately solving Weighted MaxSat problems, which is equivalent
to MAP inference for probabilistic graphical models. We believe that explicit constraint reasoning can be tuned
more easily, though. A key aspect is the manual crafting of consistency constraints: functional dependencies,
inclusion dependencies, temporal constraints, and more. For example, we can specify that a person (such as
Lisa Brennan) can have only one father, and that a person can found a company or compose a song only while
being alive (i.e., between birth and death dates). Although this approach requires a modest amount of human
supervision, we never encountered this to be a bottleneck.

Other papers with similar lessons include [8, 9, 30, 54].

2.2 Data Representation: Triples, Triploids, Quads, and Beyond

Like other KB projects, we decided to represent facts in the form of SPO triples, following the RDF data model.
Canonicalization: An important design decision, not shared by all of the major KB’s, is to aim for database-

style rigor in capturing the S, P and O roles of triples. We wanted S to be only canonicalized entities (or classes
when P is subtypeOf), P to be only explicitly specified relations (with type signatures), and O to be only
entities or literals such as dates or numbers (or classes for type or subtypeOf). Here, canonicalization means
that we can uniquely identify each entity, and that all facts that refer to the same entity are attached to the same
S value, regardless of the surface names under which the entity is discovered. For example, we insist that the
two sentences “Jobs is one of the co-founders of Apple.” and “Steve founded Apple, together with his friend Woz.” result
in the same fact Steve Jobs coFounded Apple. Conversely, we have to carefully distinguish occurrences
of “Woz” meaning Steve Wozniak against occurrences that abbreviate the game “Wizard of Oz”. This issue
calls for named entity disambiguation (aka. entity linking) [39], which we initially integrated into constraint
reasoning [43] while later developing a general-purpose stand-alone solution [21]. Occurrences of “Steve” that
our methods cannot map to a unique entity with high confidence would be disregarded.

Triples vs. Triploids: Our design emphasizes precision at the expense of recall. Several other KB’s show
facts with different S values even if they refer to the same entity, such as Jobs founded Apple, Steve
coFounded Apple, SteveJobs coFounded Apple, Woz coFounderOf Apple, and so on. Here, the P

43

values are not properly canonicalized either. Unlike some KB projects that see this as an advantage, resulting
in a larger KB, we believe that noisy redundancy and ambiguity is the recipe for inconsistency and degraded
quality in downstream applications.

In retrospect, we still stand by this design choice, but we would be open to additionally harvesting non-
canonicalized assertions, using so-called Open IE methods [29]. We would then treat S, P and O as textual
phrases, to explicitly distinguish them from canonicalized triples. As this is no longer within the RDF standard,
we refer to this case as triploids. Here are some examples, including mixed cases with partial canonicalization:

"Steve" "revolutionized" "music industry" "Steve" invented iPod
Steve Jobs "dated" Joan Baez Steve Jobs "admired" "Dylan"

The rationale for tolerating the co-existence of triples and triploids is to increase the coverage of the KB and
support more use cases. Search applications could work well even with triploids, whereas other cases require
rigorous reasoning and could thus be restricted to proper triples. We call the hybrid representation an Extended
Knowledge Graph (XKG) [53], essentially a richly labeled graph with canonicalized or textual labels for nodes
and edges. An XKG could be incrementally turned into a KG in a pay-as-you-go manner, using methods for
post-hoc canonicalization of entity names and predicate phrases [16].

Beyond Triples: It is good practice to associate data with its provenance. To this end, we attached to each
SPO triple metadata about the extraction source, method and confidence. As there could be multiple sources, we
refer to this aspect as “knowledge witnesses”. How do we represent this? The Semantic Web community advo-
cates so-called quads for this purpose: adding a fourth dimension to each triple which encodes its provenance.
However, this is insufficient as we need to capture multiple witnesses, extraction dates, confidence scores, etc.
So we used a technique akin to reification: each SPO triple is given an identifier, and these identifiers can in turn
be used as S values in additional (metadata) triples.

Following the idea of the virtuous cycle in Figure 1, we also harvested spatial and temporal knowledge about
(certain kinds of) SPO triples [22]. For example, for a triple like Steve Jobs isCEOof Apple, we distill the
respective time intervals for the validity of this fact from additional sources [18, 50]. Likewise, events can be
positioned in space and time, e.g., by capturing that Steve Jobs announced iPhone happened on January
9, 2007 in San Francisco. This is represented in the KB as follows (with identifiers prefixing the triples):

id1: (Steve Jobs isCEOof Apple)
id2: (id1 validDuring [1997-07-09, 2011-08-24])
id3: (Steve Jobs announced iPhone)
id4: (id3 happenedOn 2007-01-09) id5: (id3 happenedIn San Francisco)

While this representation may appear elegant, it is unwieldy for querying. Simple queries such as asking for
iPhone-related events in 2007 become fairly complex. We even invented extensions to the RDF query language
Sparql to express search conditions with fact identifiers:

Select ?x, ?y Where {
?id: ?x ?y iPhone . ?id happendOn 2007-##-## . }

SPOTLX Tuples: These considerations made us rethink our choice for RDF, and eventually led to the model
of SPOTLX tuples for the Yago2 release in 2011 [22]. Each fact was expressed as a six-tuple with Subject,
Predicate, Object, Time, Location and teXt (or conteXt), plus additional metadata attributes. The X component
allows textual witnesses for facts, which could be queried jointly with the facts in the KB. For example, to find
iPhone-related events in 2007 in the Bay Area which involved “standing ovations”, we could use SQL over
SPOTLX tuples, including abstract data types for time, space and text. The RDF representation has still been
kept in parallel, for easy data exchange and interoperability in the Linked Open Data world.

44

2.3 Data Storage and Query Processing: Join, Relax, Rank and Scale

Since we initially focused on SPO triples, we desired efficient support for the Sparql query language. Because
of the fine-grained nature of RDF data, this calls for extensive join processing, a typical example being:

Select ?x Where {
?x bornIn ?t . ?t inCountry ?c . ?c locatedIn Europe .

?x performed ?s . ?s type song . ?s composedBy Bob Dylan . }
This query finds European artists who covered Bob Dylan. It consists of 6 triple patterns: a 6-way self-join

over the schema-free SPO table. As there was no high-performance RDF engine at that time, we built our own:
the RDF-3X system with emphasis on join optimization [33].

This served us well for some time, but the transition from triples to quads and SPOTLX tuples (see above) led
us to move to a standard relational engine, namely, PostgreSQL. However, as our KB grows and we pursue new
KB-driven applications, we reconsider this decision. Our recent endeavor to support entity-centric large-scale
text analytics [24], employs a cloud-based platform using Spark with Cassandra for storing the KB. This key-
value storage solution gives full flexibility to represent knowledge tuples, decent query processing performance,
and an easy way to scale out. However, this platform is far from ideal for the performance of many-way joins
and SPOTLX queries. So we may have to keep revisiting this design choice.

Ranking of Query Answers: In addition to query performance, an important concern for us has been the
need to rank query answers and to support query relaxation. These requirements arise as users who explore
the KB are not familiar with its structure, terminology and content. Broad queries return many answers; so we
need ranking to identify the most informative ones. An example is the query about iPhone-related events given
above. With KB’s being part of the highly heterogeneous Linked-Data ecosystem, this issue becomes even more
demanding. Therefore, we developed IR-style statistical ranking models for query answers from triple patterns
and complex Sparql queries [12, 27].

Query Relaxation: Even with perfect answer ranking, querying a KB still poses a high burden even for
skilled users like analysts or journalists, due to the potential mismatch between the user’s and the KB’s vo-
cabulary and structure. Reconsider the query about European artists covering Bob Dylan. Albeit perfectly
formulated, it may still return very few answers or none at all, simply because the predicates in the query –
inCountry, performed, composedBy – could be sparsely populated. Perhaps, cities are more often in the
locatedIn relation which should better be transitively applied. Songs may better be found by using two
predicates hasAlbum between artists and albums, and hasTracks between albums and songs. Instead of the
composedBy predicate, the inverse relation composed between artists and songs may be the preferred way
when populating the KB. Or perhaps neither of the two predicates is much in use; the KB could instead have
triploids with P phrases like “composer of”, “created”, “his masterpiece”.

This suggests alternative query formulations, which we call query relaxations. A good search interface
should automatically generate one or more relaxations as needed. However, as we deviate from the user’s
original formulation, answers may be treated with lower confidence, and we have to merge results from multiple
relaxations – another case for answer ranking.

Over the last ten years, our understanding for these issues in KB search and exploration has gradually
improved. The form-based interface of our recent Trinity system [53] supports such relaxations and rankings.
[4] gives a comprehensive survey on semantic search.

2.4 Data Evolution: The Knowledge Awakens

Hardly anything lasts forever. In a KB, attribute values (e.g., city populations) and relationships of entities (e.g.,
the CEO of a company or the spouse of a person) change over time. Even the set of entities under consideration
is not fixed: new entities are being created all the time (e.g., new songs, sports matches, newborn children of
celebrities) and need to be added to the KB. Also, existing entities could be irrelevant for a KB, but become

45

prominent at a certain point. Examples are when an unknown “garage band” or “garage company” starts having
success. If Wikipedia had existed in April 1976, it would probably not have included Apple for insufficient
notability.

So a KB should be continuously updated, for example, by subscribing to change feeds from Wikipedia and
other data streams. DBpedia tried this [20], but abandoned it for its complexity. Yago instead used an approach
with periodic rebuilding of the entire KB. Freebase and Wikidata have update processes in place, but seem to
critically rely on human curation.

One difficulty that prevents a straightforward solution is that sometimes new facts can be simply added to
the KB whereas others need to invalidate and overwrite previously included facts. Comprehensive versioning of
all triples or tuples would alleviate this issue, but comes at the cost of making querying and exploration more
complex. The general data evolution problem for KB’s still appears to be widely open.

Active Knowledge: For highly dynamic and specialized knowledge, the Yago-Naga project explored an
approach for linking KB items with external databases and web services. For example, the chart positions of
a song and the box office counts of a movie change so rapidly that it is hardly meaningful to materialize these
values in the KB. Instead, one should have automatic linking across knowledge repositories and to web service
calls that return up-to-date values on demand. We developed techniques towards this form of active knowledge
[36]; more work is needed along these lines.

Emerging Entities: One aspect of knowledge evolution for which we have a reasonable success story is
emerging entities [23]. When identifying entity names in input sources (text, web tables, etc.), we attempt to
disambiguate them onto the already known entities in the KB. However, we always consider an additional virtual
candidate: none of the known entities. When the evidence and our methods suggest that we observe an out-of-
KB entity, we capture it under its surface name along with its context. After some time, we obtain a repository
of such emerging entities. Then we run clustering techniques to group them, and involve users to confirm this
canonicalization. Finally, the emerging entities with sufficient support and confirmation can be added to the KB
as first-class citizens. To alleviate humans from labor-intensive curation, it is important to present new entity
candidates with informative context [25].

A specific case for out-of-KB entities is constructing ad-hoc KB’s on the fly. Consider a new corpus of doc-
uments becoming available, for example, the Panama Papers or a batch of articles on specific health issues such
as Zika infections. The goal is to automatically build a domain-specific KB that helps journalists and analysts
to obtain an overview and drill down into finer issues. Our startup ambiverse.com pursues applications along
these lines [13, 1].

3 Challenges and Opportunities

3.1 Knowledge Base Coverage

Some of the existing KB’s are huge, but no KB will ever be complete. In fact, one can observe all kinds of
knowledge gaps.

Locally incomplete knowledge is when certain O values are missing for a given S and P value – for example,
when we know some movies of a director but not all of them. A variant of this is when for a given P value, we
have O values for some S but not all of them – for example, knowing spouses of some people but missing out on
many other married people. The difficulty here is not just to fill these gaps, but to realize when and where gaps
exist. In other words, when can we assume a locally closed world, and how can we find evidence for an open
world that can provide additional facts? [37] offers further discussion along these lines.

A second challenge arises from long-tail entities and long-tail classes. There are many lesser known musi-
cians, regional politicians and good but not exactly famous scientists. How can we identify these in the Internet,
and harvest facts about them? Long-tail classes pose a similar problem: despite some KB’s having hundred
thousands of classes, one could always add more interesting ones. For example, what if we got interested in

46

a class of GratefulDeadFans (i.e., fans of the rock band, which would have Steve Jobs as a member) or
HippieRetroConcerts? Where in the class taxonomy do we fit these in, and how can we find their members
(which is difficult even among the entities in the KB)? [11] offers further discussion along these lines.

Third and last, there is a big deficit in terms of missing salient facts about entities. KB’s have been built in
an opportunistic manner, mostly relying on Wikipedia. If Wikipedia does not have the information or if a fact is
stated only in sophisticated form in the article’s text, all the KB’s miss out on it. For example, what is notable
about Johnny Cash, the late singer? One key fact is that he recorded a live album on a free concert in a US
state prison – in 1968 when this was a sensation if not a scandal. KB’s contain the name of the album, but not
the special circumstances. What is notable about the Nick Cave album “Abbatoir Blues”? Many KB’s contain
this album, listing its individual songs. No KB points out, though, that the song “Let the Bells Ring” is about
Johnny Cash and that the song “O Children” is used in one of the Harry Potter movies. Part of the problem is
the poor coverage of predicate types: KB’s are missing predicates like songIsAbout. But this alone cannot fix
the issue with the Folsom Prison concert. There is a great research opportunity here. Similar points can be made
for spatial knowledge and temporal knowledge.

One may argue that Open IE could fill these gaps, and one should add more textual descriptions to an
Extended Knowledge Graph. This would be a remedy, but only in a superficial sense as humans would then
have to read and interpret a large amount of noisy text to look up facts. The fundamental trade-off between
precision and recall cannot be eliminated this way.

3.2 Commonsense, Rules and Socio-Cultural Knowledge

Automatically constructed KB’s have largely focused on harvesting encyclopedic fact knowledge. However,
to power semantic search and other intelligent applications (e.g., smart conversational bots in social media),
computers need a much broader understanding of the world: properties of everyday objects, human activities,
plausibility invariants and more. This ambitious goal suggests several research directions.

We need to distill commonsense from Internet sources. This is about properties of objects like size, color,
shape, parts or substance of which an object is made of, etc., and knowledge on which objects are used for which
activities as well as when and where certain activities typically happen. For example, a rock concert involves
musicians, instruments – almost always including drums and guitars, speakers, a microphone for the singer; the
typical location is a stage – often but not necessarily in a large hall, and so on. This background knowledge
could improve the interpretation of (spoken) user questions, and also image and video search when user queries
include abstractions or emotions that cannot be directly matched by captions, tags or other text. Today’s search
engines return poor results on queries such as “exhausted band at hippie concert” (where the user hopes to find
footage of performances by the Grateful Dead or the Doors). Prior work on acquiring commonsense includes
ConceptNet [41] and our recent project WebChild [45, 46]. However, there is still a long way to go for computers
to learn what every child knows.

Rules that capture invariants over certain kinds of facts is another key element for advancing the intelligent
behavior of computer systems. For example, a rule about scientists and their advisors could be that the advisor
is a professor at the scientist’s alma mater – as of the time when the scientist graduated. Such rules may have
exceptions, but could be a great asset to answer more queries and to infer additional facts for “KB completion”.
Even soft rules can be useful: an example could be that folk guitarists are usually also singers. To acquire this
intensional knowledge, rule mining methods have been developed and applied to large KB’s – one notable work
being our AMIE project [17]. However, the state of the art exhibits major limitations. Rules are restricted in
their logical form to Horn clauses or at least clauses. This does not allow rules with existential quantifiers or with
disjunctions in the rule head, for example, stating that every human person has a mother and that every human
is male or female. The seminal Cyc project [28] had its focus on commonsense rules, even including higher-
order logics, but exclusively relied on human experts to manually specify them. Another major challenge with
automatic rule mining arises from the open world assumption that underlies KB’s and the bias in observations

47

from Internet sources. For example, if the KB has no entrepreneur who founded more than 3 companies, this
should not imply a cardinality constraint. Likewise, if the facts in the KB suggest a rule that every founder of an
IT company has become a billionair, this may be caused by the bias in the KB construction (e.g., by harvesting
only successful entrepreneurs from Wikipedia) and does not entail that the rule is valid in the open world.

Yet another dimension where today’s KB’s fall short is the socio-cultural context of facts or rules. Even
seemingly objective statements on discoveries and inventions often depend on the background and viewpoint of
a certain group of people. For example, in the US most people would state that the computer was invented by
Eckert and Mauchley, whereas a German would give the credit to Konrad Zuse and a British would insist on Alan
Turing (or perhaps Charles Babbage). This is not just geographical context; teenagers, for example, may largely
think of Steve Jobs as the (re-) inventor of the (mobile) computer. For commonsense knowledge, it is even
more critical to capture socio-cultural contexts. This also requires more thought on appropriate representations
(certainly beyond SPO triples).

3.3 Interactive Search and Exploration

KB’s have become so large and heterogeneous, in terms of structure and terminology, that users struggle with
formulating queries – even when supported by a form-based or faceted UI (e.g., [3]). Even worse, a major use
case of KB’s is to serve as background reference when data scientists or business analysts combine and explore
other datasets or online media. For example, a life scientist or political scientist may rapidly collect tens of
interesting datasets for a specific study, but would then drastically lose her productivity when trying to join
different data items and search for patterns, trends and insight.

This calls for new modes of interactive search and exploration of KB’s and associated datasets. We believe
the most effective way of relieving the user from the necessity to cope with the complex structure of the data, is
by means of natural language for question answering and other interactions. User inputs such as “Which Euro-
pean singers covered Bob Dylan?” can be translated into structured Sparql queries. There has been substantial
work on this task recently (e.g., [5, 47, 52]). However, this is still restricted to simple questions that return a
single fact or a list of entities. Questions with multi-relation hops (i.e., chain joins in DB jargon) or asking for
composite answers is beyond scope. Even more demanding is coping with colloquial inputs, where the user first
describes her information need and context and then poses an underspecified question. An example would be:
“Steve was a big fan of Bob Dylan. Didn’t he date a folk singer to get closer to him? Who was that?”

Even if these issues were solved, merely translating each question into a single one-shot query would not
be sufficient. The generated query may not capture the user intent, it may return unexpected, unwanted or just
too few answers, and users may be utterly puzzled on how to formulate the very first question in order to start
their knowledge exploration. So we need to extend question answering to interactive dialogs, with the system
explaining answers and guiding the user towards better questions.

3.4 Knowledge Base Life-Cycle

It has been a major endeavor to build a comprehensive KB. However, it is an even more daunting task to
maintain, grow and improve it over a long time horizon. Discovering and adding emerging entities is just
the tip of the iceberg. Especially in combination with expanding the scope towards commonsense, rules and
socio-cultural context, coping with new knowledge, obsolete knowledge and context-specific knowledge poses
enormous challenges. The crux will be to minimize the cost of human curation, while keeping quality assurance
a key priority.

48

References
[1] Ambiverse: Text to Knowledge. https://www.ambiverse.com
[2] S. Auer et al.: DBpedia: A Nucleus for a Web of Open Data. ISWC 2007
[3] H. Bast, F. Bäurle, B. Buchhold, E. Haussmann: Semantic full-text search with Broccoli. SIGIR 2014
[4] H. Bast, B. Buchhold, E. Haussmann: Semantic Search on Text and Knowledge Bases. Foundations and Trends in

Information Retrieval 10(2-3):119-271
[5] J. Berant, A. Chou, R. Frostig, P. Liang: Semantic Parsing on Freebase from Question-Answer Pairs. EMNLP 2013
[6] K.D. Bollacker et al.: Freebase: a Collaboratively Created Graph Database for Structuring Human Knowledge.

SIGMOD 2008
[7] A.J. Carlson et al.: Toward an Architecture for Never-Ending Language Learning. AAAI 2010
[8] L. Chiticariu, Y. Li, F.R. Reiss: Rule-Based Information Extraction is Dead! Long Live Rule-Based Information

Extraction Systems! EMNLP 2013
[9] O. Deshpande et al.: Building, Maintaining, and Using Knowledge Bases: a Report from the Trenches. SIGMOD

2013
[10] X. Dong et al.: Knowledge vault: A web-scale approach to probabilistic knowledge fusion. KDD 2014
[11] X. Dong: How Far Are We From Collecting the Knowledge of the World. Keynote at WebDB 2016,

http://lunadong.com/talks/tailKnowledge.pdf

[12] S. Elbassuoni, M. Ramanath, R. Schenkel, G. Weikum: Searching RDF Graphs with SPARQL and Keywords. IEEE
Data Eng. Bull. 33(1): 16-24 (2010)

[13] P. Ernst et al.: DeepLife: An Entity-Aware Search, Analytics and Exploration Platform for Health and Life Sciences.
ACL 2016

[14] O. Etzioni et al.: Unsupervised Named-Entity Extraction from the Web: an Experimental Study. Artificial Intelli-
gence 165(1): 91-134

[15] C. Fellbaum, G. Miller (Editors): WordNet: An Electronic Lexical Database. MIT Press, 1998
[16] L. Galárraga, G. Heitz, K. Murphy, F.M. Suchanek: Canonicalizing Open Knowledge Bases. CIKM 2014
[17] L. Galárraga, C. Teflioudi, K. Hose, F.M. Suchanek: Fast rule mining in ontological knowledge bases with AMIE+.

VLDB J. 24(6): 707-730 (2015)
[18] T. Ge, Y. Wang, G. de Melo, H. Li, B. Chen: Visualizing and Curating Knowledge Graphs over Time and Space.

ACL 2016
[19] T. Heath, C. Bizer: Linked Data: Evolving the Web into a Global Data Space. Morgan & Claypool, 2011
[20] S. Hellmann, C. Stadler, J. Lehmann, S. Auer: DBpedia Live Extraction. OTM Conferences 2009
[21] J. Hoffart et al.: Robust Disambiguation of Named Entities in Text. EMNLP 2011
[22] J. Hoffart, F.M. Suchanek, K. Berberich, G. Weikum (2013): YAGO2: A Spatially and Temporally Enhanced Knowl-

edge Base from Wikipedia. Artificial Intelligence 194: 28-61
[23] J. Hoffart, Y. Altun, G. Weikum: Discovering emerging entities with ambiguous names. WWW 2014
[24] J. Hoffart, D. Milchevski, G. Weikum: STICS: searching with strings, things, and cats. SIGIR 2014
[25] J. Hoffart et al.: The Knowledge Awakens: Keeping Knowledge Bases Fresh with Emerging Entities. WWW 2016
[26] IBM Journal of Research and Development 56(3/4), Special Issue on “This is Watson” (2012)
[27] G. Kasneci et al.: NAGA: Searching and Ranking Knowledge. ICDE 2008
[28] D.B. Lenat: CYC: A Large-Scale Investment in Knowledge Infrastructure. Comm. ACM 38(11): 32-38
[29] Mausam et al.: Open Language Learning for Information Extraction. EMNLP-CoNLL 2012
[30] T. Mitchell et al.: Never-Ending Learning. AAAI 2015
[31] N. Nakashole, M. Theobald, G. Weikum: Scalable knowledge harvesting with high precision and high recall. WSDM

2011
[32] R. Navigli, S.P. Ponzetto: BabelNet: The automatic construction, evaluation and application of a wide-coverage

multilingual semantic network. Artif. Intell. 193: 217-250 (2012)
[33] T. Neumann, G. Weikum: RDF-3X: a RISC-style engine for RDF. PVLDB 1(1): 647-659 (2008)

49

[34] Z. Nie, J.-R. Wen, W.-Y. Ma: Statistical Entity Extraction From the Web. Proceedings of the IEEE 100(9): 2675-2687
(2012)

[35] S.P. Ponzetto, M. Strube: Deriving a Large-Scale Taxonomy from Wikipedia. AAAI 2007
[36] N. Preda et al.: Active knowledge: dynamically enriching RDF knowledge bases by web services. SIGMOD 2010
[37] S. Razniewski, F.M. Suchanek, W. Nutt: But Do We Actually Know? AKBC 2016
[38] T. Rebele et al.: YAGO: a multilingual knowledge base from Wikipedia, Wordnet, and Geonames. ISWC 2016
[39] W. Shen, J. Wang, J. Han: Entity Linking with a Knowledge Base: Issues, Techniques, and Solutions. IEEE Trans.

Knowl. Data Eng. 27(2): 443-460 (2015)
[40] J. Shin et al.: Incremental Knowledge Base Construction Using DeepDive. PVLDB 8(11): 1310-1321 (2015)
[41] R. Speer, C. Havasi: Representing General Relational Knowledge in ConceptNet 5. LREC 2012
[42] F.M. Suchanek, G. Kasneci, G. Weikum: YAGO: a Core of Semantic Knowledge. WWW 2007
[43] F.M. Suchanek, M. Sozio, G. Weikum: SOFIE: a self-organizing framework for information extraction. WWW 2009
[44] A. Talaika, J. Biega, A. Amarilli, F.M. Suchanek: IBEX: Harvesting Entities from the Web Using Unique Identifiers.

WebDB 2015
[45] N. Tandon, G. de Melo, F.M. Suchanek, G. Weikum: WebChild: harvesting and organizing commonsense knowledge

from the web. WSDM 2014
[46] N. Tandon, G. de Melo, A. De, G. Weikum: Knowlywood: Mining Activity Knowledge From Hollywood Narratives.

CIKM 2015
[47] C. Unger, A. Freitas, P. Cimiano: An Introduction to Question Answering over Linked Data. Reasoning Web 2014
[48] D. Vrandecic, M. Krötzsch: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10): 78-85 (2014)
[49] Z. Wang et al.: Xlore: A large-scale english-chinese bilingual knowledge graph. ISWC 2013
[50] Y. Wang, M. Dylla, M. Spaniol, G. Weikum: Coupling Label Propagation and Constraints for Temporal Fact Extrac-

tion. ACL 2012
[51] W. Wu, H. Li, H. Wang, K.Q. Zhu: Probase: a Probabilistic Taxonomy for Text Understanding. SIGMOD 2012
[52] M. Yahya et al.: Natural Language Questions for the Web of Data. EMNLP-CoNLL 2012
[53] M. Yahya, D. Barbosa, K. Berberich, Q. Wang, G. Weikum: Relationship Queries on Extended Knowledge Graphs.

WSDM 2016
[54] C. Zhang, J. Shin, C. Ré, M.J. Cafarella, F. Niu: Extracting Databases from Dark Data with DeepDive. SIGMOD

2016

50

Towards a Game-Theoretic Framework for Text Data Retrieval

ChengXiang Zhai
Department of Computer Science, University of Illinois at Urbana-Champaign

Email: czhai@illinois.edu

Abstract

The task of text data retrieval has traditionally been defined as to rank a collection of text documents
in response to a query. While this definition has enabled most research progress so far, it does not model
accurately the actual retrieval task in a real search engine application, where users tend to be engaged in
an interactive process with multipe queries, and optimizing the overall performance of a search engine
system on an entire search session is far more important than its performance on an individual query.
This paper presents a new game-theoretic formulation of the text data retrieval problem where the key
idea is to model text retrieval as a process of a search engine and a user playing a cooperative game,
with a shared goal of satisfying the user’s information need (or more generally helping the user complete
a task) while minimizing the user’s effort and the operation cost of the retrieval system. Such a game-
theoretic framework naturally optimizes the overall utility of an interactive retrieval system over a whole
search session, thus breaking the limitation of the traditional formulation that optimizes ranking of
documents for a single query and can optimize the collaboration of a search engine and its users, thus
maximizing the “combined intelligence” of a system and users. Although the framework was motivated
by text data retrieval, it is actually quite general and potentially applicable to all kinds of information
service systems.

1 Introduction

Text data are those data that are encoded in human natural languages such as English and Chinese. They are
unique in that they are generated by humans and also meant to be consumed by humans. As a result, they play
a very important role in our life. For example, most human knowledge is encoded in the form of text data;
scientific knowledge almost exclusively exists in scientific literature. Because natural languages are the tools
of communication by humans, we can usually describe other media such as video or images using text data,
facilitating understanding of videos and images. From data mining perspective, because of the rich semantic
content in text data, we can expect to discovery all kinds of knowledge from text data, especially knowledge
about people’s preferences and opinions, which are often best reflected in the text data produced by them and
may be hard to obtain from other kinds of machine-generated data.

The amount of text has recently grown dramatically due to the digitalization of information and the widespread
deployment of tools for people to easily produce and consume text online. This creates a significant challenge
for humans to consume and make use of all the text data in a timely manner Logically, in order to make use of

Copyright 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

51

“big text data,” we would first need to select the most relevant text data from a large collection of text documents
and filter out many non-relevant text data; this not only helps filter out noise, but also significantly reduces the
size of the data that we actually have to digest [26]. The most useful tool for supporting this first step in text data
applications is a text data retrieval system, or a search engine. Indeed, Web search engines are now essential
tools in our daily life, and they help us find relevant documents from the Web quickly, effectively addressing
the problem of information overload. There are also many other examples of search engine applications such as
product search, social media search, and scientific literature search. In general, wherever we have text data, we
would need a search engine.

Since the accuracy of a search engine directly affects our productivity, it is very important to study how
to improve the accuracy of all search engines so that we can save people’s time. It is especially beneficial to
develop general techniques that can improve all search engines since such techniques can be immediately used
in all kinds of search engine applications to generate benefit in all application domains. For this reason, the
optimization of general text retrieval models has been a long-standing important fundamental reseach question
in the information retrieval community (see, e.g., [23, 16, 20]), and many general informtion retrieval models
have been proposed and tested (see [25] for a detailed review of all these models).

So far, the task of text data retrieval has been mostly defined as to generate an optimal ranking of documents
in response to a user’s query. The ranking is usually based on a scoring function defined on a query-document
pair to generate a relevance score. The theoretical justification for such a ranking formulation is the Probability
Ranking Principle (PRP) [15], which states that returning a ranked list of documents in descending order of
probability that a document is relevant to the query is the optimal strategy under two assumptions: (1) The
utility of a document (to a user) is independent of the utility of any other document. (2) A user would browse
the results sequentially. The intuition captured by PRP is the following: if a user sequentially examines one doc
at each time, wed like the user to see the very best ones first, which makes much sense.

While the PRP has enabled most research progress in text retrieval so far, it does not model accurately the
actual retrieval task in a real text retrieval application since neither assumption actually holds in practice; even
the extended PRP for interactive retrieval [8] is still limited due to the assumption of sequential browsing. More-
over, retrieval is in general an interactive process often with multipe queries formulated, and thus optimizing the
overall performance of a text retrieval system on an entire search session is far more important than its perfor-
mance on an individual query. Unfortunately, the current formulation of the retrieval task makes it impossible
to optimize over an entire session.

To address these limitations, we present a novel game-theoretic formulation of the text data retrieval problem
where the key idea is to model text retrieval as a process of a search engine and a user playing a cooperative
game, with a shared goal of satisfying the user’s information need (or more generally helping the user complete
a task) while minimizing the user’s overall effort and the operation cost of the retrieval system. Such a game-
theoretic framework offers two important benefits. First, it naturally suggests optimization of the overall utility
of an interactive retrieval system over a whole search session, thus breaking the limitation of the traditional
formulation of optimizing the ranking of documents for a single query. Second, it models the interactions
between users and a search engine, and thus can optimize the collaboration of a search engine and its users,
maximizing the “combined intelligence” of a system and users [4].

2 Text Retrieval as Cooperative Game Playing: Basic Idea

How can we optimize all search engines in a general way? This question is not well defined until we clearly
define what a search engine is, and what is an optimal search engine. The previous section has made it clear that
defining a retrieval task as optimizing a ranked list in response to a query has many limitations. However, what
is the most general way to define the task of text retrieval that would address all the limitations then? We argue
that the most general way to define a retrieval task is to define it as a search engine system playing a sequential

52

cooperative game with the user with a shared goal of helping the user finish the information seeking task with
minimum overall user effort and minimum operation cost of the system.

In the simplest setting, we will consider just one user, though the idea can be easily generalized to include
multiple users. In such a case, the game has two players: player 1 is the search engine, while player 2 is the user.
The rules of the game are as follows:

1. Players take turns to make “moves” (just as in a board game like chess). A move is an action taken by
user/system.

2. The first move is usually made by the user in the case of search, i.e., the entering of a query by the user
(though in a recommender system, the system can also make the first move).

3. For each move of the user, the system makes a response move, i.e., shows an interactive interface; for each
move of the system (i.e., each interactive interface), the user makes a response move (i.e., takes an action
on the interface).

4. The game is over when the user has finished the information seeking task or decided to abandon the search
(failed to find the needed information).

The objective of the game is to help the user complete the (information seeking) task with minimum overall
effort and minimum operating cost for the search engine.

Such a game-theoretic view of the retrieval problem can be easily understood by analyzing the interaction
process of the current search engine with a user as shown in Figure 1. In general, we may assume that the user

Figure 1: Retrieval process as a sequential game.

has the goal of finding useful information with minimum effort, while the system has the goal of helping user
find useful information with minimum effort as well as minimum system cost. The user’s query is the very first
move of the game, made by the user (denoted as Action A1). In response to this move, the system now has to
make a decision over what action/move to take. The decision can be “which information items to present” and
“how to present these items” in response to the user’s query. Now suppose the system has decided to show a
certain search result denoted by R1 in an interface. The user would look at the interface and decide his/her next
move. That is, the user would decide which items to view. The user then chooses an item to view (action A2). In
response to this move, the system would then further decide which move to make in response to the new action
taken by the user. The decision questions here can include which aspects/parts of the selected information item

53

by the user should be shown to the user, and how to show them? In a regular retrieval system, such decisions are
often ignored as the engine often just returns the document to the user, and the user would browse the document.
However, if we are to optimize the response from the engine, we could imgine to display only the most relevant
part of a long document with possibility to navigate into other parts, or show a summary that can further support
navigation into the original content. Furthermore, if the system shows only the most relevant part of a document,
the system can also adaptively optimize the presentation of the remaining part if the user chooses to scroll up
or down (e.g., if the user has spent a lot of time reading the displayed relevant part, the system can infer the
displayed content is interesting to the user, whereas if the use didn’t really spend time to read it and directly
chose to scroll up/down, the system would know to avoid displaying similar content). When viewed as a game,
such opportunities for optimization would be obvious. After the user finishes examining a result, the user would
again face a decision: should the user view more? If the user decides to view more, the user may decide to click
on a “Next” button, which we again would view as a new move by the user. From a system’s perspective, it
could do exactly the same as what it did when it responded to the original qeury, i.e., the system would again
decide which items to show and how to show them. This means after the user clicks on the “Next” button, the
results shown to the user can be very different from the original next page since by this time, the system would
have known much more about the user’s need (based on analyzing the user’s behavior on the first page). The
process can go on and on until the user decides that he/she has viewed sufficient items and decides to stop.

There are many benefits of formulating the retrieval problem (i.e., the task of a search engine) as playing
such a cooperative game (and thus also defining an optimal search engine as one that plays such a game with an
optimal strategy). First, this gives us a formal framework to naturally integrate research in user studies, evalu-
ation, retrieval models, and efficient implementation of retrieval systems since the optimization of the objective
of such a game involves research in all these areas. Second, it provides a unified roadmap for identifying unex-
plored important retrieval research topics. Third, it emphasizes on optimization of an entire session instead of
that on a single query (i.e., optimizing the chance of winning the entire game). Finally, it enables optimization
of the collaboration of machines and users, i.e., maximizing collective intelligence [4].

The new formulation also raises many interesting new questions which we will discuss later in this paper.
First, how should we design a text retrieval game? Specifically, how should we design moves for the user and
the system, how should we design the objective of the game, and how can we go beyond search to support access
and task completion? Second, how can we formally define the optimization problem and compute the optimal
strategy for the IR system? Specifically, how do we characterize a text retrieval game, which category of games
does a text retrieval game fit, to what extent can we directly apply existing game theory, and what new challenges
must be solved? Finally, how should we evaluate such a system? In the rest of the paper, we will briefly address
some of these questions with a focus on presenting a formal framework for optimizing the retrieval decisions in
such a game.

3 Text Retrieval as Cooperative Game Playing: Formal Framework

It is important to point out that the game of retrieval is not a zero-sum game, thus it is different from a game
such as chess in this sense. However, it shares similarity with chess in that they both involve optimization of
sequential decisions over a horizon of multiple moves. Indeed, just as in chess where it sometimes makes sense
to sacrifice a piece in order to win a game, it also makes sense for a search engine to sometimes take a “local
loss” in order to gain more in the overall session. An example is when the query is ambiguous, a search engine
can ask the user to clarify whether the word “Jaguar” in the query means a car or an animal. This move is not
optimal because it is not as useful to the user as if the system simply takes a guess of the sense of “jaguar” and
provides some search results, but it helps to optimize the results in all future moves once the system knows the
intended sense of “jaguar.”

The challenge is, however, how do we mathematically optimize such sequential decisions? How do we know

54

when the search engine should ask a question and when it shouldn’t? To address these questions, we must first
formalize our decision problem by introducing notations to denote all the important variables. This is illustrated
in Figure 2.

Figure 2: Formalization of the retrieval decision in a retrieval game.

We use Ai to denote an action taken by the user U , and Ri the corresponding response (system action) by
the system. At time t, the system needs to choose a response Rt in response to the current user action At. For
convenience, we would use H = {(Ai, Ri)} to denote all the history information we can observe about the
user-system interactions. We denote the collection of information items to be searched by C and further use a
generic variable S to denote the current search scenario which can also be interpreted as representing the general
context of the search (e.g., time and location of the search), which may also be a factor affecting the system’s
decision. For example, there may be some general preferences in the Holiday shopping season in a year or when
an important international event has just happened.

With these variables, the retrieval decision problem can now be framed as: Given situation S, user U ,
collection C, history H , and the current action At, choose the best response Rt from all the possible responses
to action At, which we denote by r(At).

Note that such a formulation is much more general than the current formulation of the retrieval problem
(which is to optimize ranking of documents for a query) since a user’s action can be, theoretically speaking, any
action that a user can take, including not just entering a query, viewing a document, or clicking on the “Next”
button, but also any keystroke, any cursor movement, and many others. Also, the system’s response to a user
action can also easily go beyond the normal responses such as showing a ranked list of documents to potentially
include any interaction interface that the system can show to the user, which further opens up many possibilities
of actions that a user can take for further interaction with the system. Naturally, the traditional formulation of
the retrieval problem can be easily seen as a special case where the user’s current action At would be the query
entered by the user, the response of the system Rt is a ranked list of documents in collection C, and the set r(At)
consists of all possible rankings of these documents.

With the introduced notations, we can now use Bayesian decision theory to formally frame the problem as a
statistical decision problem, which we illustrate in Figure 3. The formulation can be regarded as a generalization
of the risk minimization framework for retrieval [24]. In this figure, we see that our observed variables include
S, U , H , C, and At, and the space of actions to choose is given by r(At) = {r1, ..., rn}, where ri is a potential

55

action that the system can take. In order to assess which action is a good action to take, we introduce a loss
function L(ri,M, S) which depends on the candidate action ri, the situation S, and also a new variable M ,
which is a user model variable that encodes “everything” that we need to know about the user at the point for
deciding which action to take. Intuitively, the system should choose a response that would minimize the value
of the loss function. That is, we want to choose an ri that has the smallest L(ri,M, S) (as compared with other
possible responses).

Figure 3: Bayesian decision theory applied to optimization of retrieval decisions.

However, we have note yet said what is exactly the user model variable M . Theoretically speaking, M can
potentially encode all the detailed information that we might know directly or indirectly about the user. As a
minimum, though, M would contain information about the user’s information need, which initially can only
be inferred based on the user’s query, but can be updated if we know more information about the user. This
was denoted by θU in the figure. M may also contain information about the user’s knowledge status (which
is denoted by K and can contain the items already viewed by the user, i.e., “known information” to the user),
the user’s reading level (which can be inferred based on the documents that the user has read/skipped), a user’s
browsing behavior, and any information about the user’s task.

If M is clearly specified, our decision problem would be relatively easy as we just need to compute L(ri,M, S)
for every ri and choose the one minimizing our loss function. However, in general, we cannot clearly specify
M , and thus the best we can do is to infer M based on all the observed variables using the posterior distribution
p(M |U,H,At, C, S), which captures our belief about M after we observe all the observables. Considering this
uncertainty, the solution to our problem can be defined as the response that minimizes the expected loss (also
called expected risk, or Bayes risk) as shown in the figure.

The computation of the Bayes risk involves the computation of an integral over the space of all possible
user models, which is clearly intractable. It is thus interesting to look at an approximation of this integral by
considering the mode (highest value) of the posterior distribution of the user model M , which we denote by M∗.
Since M∗ = argmaxM p(M |U,H,At, C, S), with this approximation, we have

Rt ≈ arg min
r∈r(At)

L(r,M∗, S)p(M∗|U,H,At, C, S) (8)

= arg min
r∈r(At)

L(r,M∗, S) (9)

This suggests the following two-step procedure for computing the optimal response: 1) Compute an updated user
model M∗ based on all the currently available information, i.e., compute M∗ = argmaxM p(M |U,H,At, C, S).

56

2) Given M∗, choose an optimal response to minimize the loss, i.e., compute Rt = argminr∈r(At) L(r,M
∗, S).

We illustrate the game-playing process when the system is taking such a simplified strategy in Figure 4 where
the system maintains a user model variable M as an internal state and dynamically updates it in each iteration
and then chooses an optimal response to minimize the loss function.

Figure 4: Optimal interactive retrieval based on dynamic updating of user model.

This process suggests that the sequential decision problem here can be naturally modeled with Partially
Observable Markov Decision Process (POMDP) by treating M as the state and the update of M as transitions
between the states. Indeed, Markov Decision Process (MDP), particularly POMDP, has been recently explored
for information retrieval with encouraging results (see e.g., [12, 13]), but the modeling of M in the existing work
is still quite limited. When POMDP is used to model interactive retrieval, we would be able to naturally use
Reinforcement Learning to enable a retrieval system to learn an optimal decision strategy from its interactions
with many users. The idea of search engine as a learning agent was also suggested in the work [9]. We anticipate
to see more progress in applying POMDP and reinforcement learning to optimize interactive retrieval in the near
future.

An especially interesting direction may be to introduce more detailed user behavior modeling into a retrieval
decision framework so that M can be enriched with specific models capturing a user behavior when interacting
with the retrieval system. From game-theoretic perspective, it is essential to model the user’s decision process.
In this direction, the recent work on economics in interactive IR (e.g., [1]) is very promising and can shed light
on how we can refine M to model user behavior and further connect the behavior with the loss function to
influence the choice of system response.

As often happens in sequential decision making, there is a tradeoff between exploration and exploitation.
For example, it may be beneficial to diversify the retrieval results initially in hope of learning more completely
about a user’s information need, but over-diversification would incur cost because it may decrease the relevance
of the current results (as we also include results that may be only marginally relevant). Recent work has explored
this problem by using multi-armed Bandit for optimizing online learning to rank (e.g., [10]) and content display
and aggregation (e.g., [7]). The game-theoretic framework can capture the exploration and exploitation tradeoff
by defining the loss function with consideration of the expected future actions taken by the user.

The evaluation of a system designed based on the game-theoretic framework is challenging. While it is
always possible to use A/B test in a real operational system to evaluate different decision strategies of the system
based on user responses, it is unclear how we can create a reusable test collection that can be repeatedly used

57

to compare different game-playing algorithms (especially new algorithms yet to be developed) in a controlled
manner. One possibility is to create many simulators of different kinds of users based on assumed user behavior
and information needs, which can then be combined with a standard retrieval test collection to enable simulation-
based evaluation.

4 Instantion of the Game-Theoretic Retrieval Framework

The framework presented in the previous section is very general, but it is mostly a conceptual framework.
Thus in order to derive specific models and algorithms that can be implemented in a search engine, we must
instantiate all the components in the framework, including (1) actions (i.e., “moves”) that can be taken by a
user and a system (Ai and r(Ai)), (2) user model M , (3) conditional distribution of M given all the observables,
p(M |U,H,At, C, S), and (4) the loss function L(r,M, S). Clearly, there are many different ways to define these
variables; each would lead to a potentially different specific strategy for a retrieval system to use for playing such
a cooperative game (i.e., a strategy for optimizing the sequential retrieval decisions in a whole interaction session
with a user). A thorough discussion of all these possibilities is beyond the scope of this paper, but we will briefly
discuss some possibilities, mostly to suggest even more possibilities are possible.

4.1 Instantiation of “moves” in the game

We first look at the question how to define the moves in such a cooperative game, i.e., the actions that the user
and the system can take respectively. It is easy to see that when viewed with this new framework, a current search
engine can only play a very simple game with its users with extremely limited moves. Indeed, a user’s actions
are mostly restricted to entering a query, clicking on a result, scrolling up and down on a page, and clicking other
buttons to navigate into additional results. The system’s response is also mostly restricted to either produce a
ranked list or passively show the requested results in the ranked list already pre-computed by the search engine
based on the user’s query. This is indeed a very simple game with very limited moves! The new framework
suggests that the game can be much more sophisticated with many more possible moves. It is especially useful to
include those moves that do not require much effort from the user, but woud help clarify the user’s information
need since this would help optimize human-computer collaboration by more actively engaging the user in a
“dialogue” where the user and system help each other to help the user finish the information seeking task with
minimum user effort and minimum system operation cost.

To see some specific moves that can be added to such a game, let us first consider the restrictive set of
user actions the current search engine supports. A careful analysis would reveal that even for these actions, the
system could have had many more “moves” to make than what is supported by the current search engine. For
example, when a user requests the next page, the results on the next page can be completely reranked based
on what the system has learned from the user’s actions on the current page as done in some systems such as
UCAIR [17] and SurfCanyon (http://www.surfcanyon.com/). The system can even go further to summarize the
next page by using what the user has seen on the first page as the context. Similarly, when the user scrolls down
on a page, the system would also have an opportunity to adaptively customize how to present the rest of the
page; for example, the system can have likely non-relevant parts collapsed to save screen space or “decorate”
the page with additional navigation buttons as appropriate, which would enable the user to make more moves
(each navigation can be viewed as one possible move by the user). Of course, when we offer a user more actions
to take, it would further provide more opportunities for the system to respond in different ways.

The framework also enables us to model user actions at different levels and thus allow a system to play the
game at different levels. For example, the low level actions of users can include key strokes, mouse clicking
and movement, or even eye tracking. When viewing a user’s action at this level, we could identify opportunities
for responding to a key stroke when the user enters a query with suggestions for query autocompletion. In this

58

sense, query autocompletion or query spelling correction is a natural strategy that can be derived from the game-
theoretic framework of text retrieval. If we view query input as a medium-level user action, then we may also
view an entire query session with multiple queries entered by the user (e.g., searching for hotels) as one “high-
level” action by the user, enabling the system to make a “high-level” response by recommending information
relevant to the user’s task behind the search session (e.g., the task can be travel), such as recommeding attractions
in the city of the hotel. Such a flexibility in modeling user-system interactions makes the framework very general
and allows us to selectively model those actions that are most useful for a particular application scenario.

Another interesting example of a response to a user’s action of entering query is to ask the user a clarification
question such as “did you mean jaguar as a car or animal?” When looking at the optimization at the level of an
individual query, such a response is clearly non-optimal as it does not provide any useful information to the user
and is thus worse than presenting a ranked list of pages using any standard retrieval function. However, when
viewed globally from the perspective of optimizing the entire session, it is possible that the local loss can easily
be balanced by the gain in the future interactions due to the clear understanding of the intended sense of “jaguar.”
In some sense, this is similar to sacrificing a piece in chess to win the game where the loss of a piece would incur
an immediate (short-term) loss, but it helps win the game (gains in the long run), and the game-theoretic view of
the retrieval problem would allow us to use an algorithm to decide when the system may consider asking such
a clarification question (e.g., when the current results are poor and the user has already reformulated the query
multiple times).

How to improve search accuracy for long-tail queries is one of the most important and challenging questions
faced today in optimizing a search engine. This is because the system does not see many instances of a query,
making the machine learning approach ineffective. (In contrast, the popular queries benefit significantly from
the many clickthroughs from the users that the system can collect.) To address this problem, we may introduce
new moves to allow a user to provide “explanatory feedback” when the search results are poor and the user can’t
easily reformulate the query either. An example of such a move can be to allow a user to click on a button to
select from a menu with choices such as 1) I want documents similar to this one except for not matching “X”
where the user would type in “X,” or 2) I want documents similar to this one, but also further matching “Y”
where the user would type in “Y.” Such a move is very natural for a user and does not require much effort from
the user, but can be very effective for helping the system accurately learn the user’s information need.

4.2 Instantiation of user model M

As already discussed, formally modeling a user’s state through the variable M is a very important component
in the proposed framework, and a major novelty of the framework over existing ways to model the retrieval
process. In general, the formal user model M is intended to capture all the essential knowledge about a user’s
status for the purpose of optimizing the system’s response especially for personalization [21]. We can thus
imagine many components that can be included in M . The most important component is the model of the
current information need of the user. This component is usually implemented as a term vector [18] or a word
distribution in the language model [14] in a current search engine, allowing for matching with a document vector
or document word distribution to generate a score of relevance. However, more sophisticated representation
is clearly possible, including, e.g., tracking multiple subtopics of interest to the user or negative models for
information not interesting to the user.

Another component that is very easy to maintain is a model of the information items that have already been
seen or viewed by the user. This component is important for assessing the novelty of any information item that
may be displayed to the user in the future. One can also model the reading level of a user, which can be important
if the user is an elementary school student since it helps the system avoid presenting topically relevant materials
that are beyond the reading level of the user.

The user model M can further include information about the user’s browsing behavior. For example, does
the user tend to view many results on a page or even go to the next page, or the user often just views the top

59

three to five results? Having this knowledge clearly helps optimizing the design of the interface shown to the
user when responding to the user’s query. Of course, M can also include many other aspects about the user such
as the user’s task (which can often be inferred based on the multiple queries entered by the user; for example
finding flight tickets and booking hotel can suggest a task of travel). The model can even include an estimate of
the patience level of the user, which can also affect the optimization of the system’s response.

It is easy to see that M can potentially include all kinds of findings about user preferences and behaviors
from user studies that may be relevant to optimizing a search task. This user model thus provides a formal and
principled way to integrate relevant findings by human-computer interaction researchers into a search engine to
optimize its utility. The user modeling component of the framework can also be regarded as a way to formalize
some existing theories about user modeling in information retrieval, notably the Anomalous State of Knowledge
(ASK) theory [3] and the Cognitive Information Retrieval Theory [11].

4.3 Inference of user model

The inference of user model M is based on the posterior distribution p(M |U,H,At, C, S), which enables in-
ference of M based on everything the system has available so far about the user and his/her interactions. The
instantiation of this distribution can be based on findings from user studies or machine learning using user
interaction log data for training. The current search engines mostly focused on estimating and updating the
information need model, which is only part of the general user model M . Future search engines must also
infer and update many other variables about the user such as the inference about the user’s task, exploratory vs.
fixed item search, reading level, and browsing behavior. Some existing work can be leveraged for making such
inferences (e.g., reading level [5], modeling decision point [22]).

4.4 Instantiation of loss function

In general, the loss function L(r,M, S) should combine measures of 1) Utility of response r for a user modeled
as M to finish the user’s task in situation S; 2) Effort of a user modeled as M in situation S; and 3) Cost of
system performing r. The tradeoff between these three aspects would inevitably vary across users and situations.
The utility of response r can be defined as a sum of the immediate utility of r to the user and the future utility
derived from future interactions of the user enabled by response r, which depends on the user’s interaction
behavior.

Formalization of the utility function requires research on evaluation, task modeling, and user behavior mod-
eling. The traditional evaluation measures, such as Mean Average Precision (MAP) and Normalized Discounted
Cumulative Gain (NDCG), tend to use very simple user behavior model (i.e., sequential browsing) and use a
straightforward combination of effort and utility. They would need to be extended to incorporate more sophis-
ticated user behavior models (e.g., in the line of [6, 19, 2]) to more accurately model the utility and user effort
and enable more flexible tradeoff.

The system operation cost can be modeled based on the expected consumption of computing resources such
as CPU time, memory, and disk space by computing the response r. In a more general sense, the cost may even
include the cost on hiring humans to help answer a query (crowdsourcing), which may then justify a response r
that is based on human computation, rather than a retrieval algorithm.

4.5 The Interface card model

The interface card model [27] is a general instantiation of the game-theoretic framework where a system response
is defined very generally as any interaction interface, and the retrieval decision is thus reduced to the decision on
which interface to choose. The objective function to be optimized reflects the expected surplus of presenting a
particular interaction interface which is calculated based on the reward (gain) of relevant information obtained by

60

the user adjusted by the cost due to the effort that the user has to make in order to gain the relevant information.
The expectation is taken with respect to a distribution of all possible actions that a user can take. With further
assumptions, the model is shown to be able to generalize PRP by relaxing both assumptions made in PRP
(i.e., sequential browsing and independent utility of documents). Moreover, the model is shown to be able to
automatically determine the optimal layout of a navigation interface in adaptation to the system’s confidence in
inference about the user’s information need and the screen size of the display. This is a very promising model
because it opens up a new direction of computationally optimizing the layout of an interface, which can have
broad impact beyond a retrieval system and may be especially useful for optimizing the interface design for
mobile phone users where the screen size is very small, thus requiring efficient use of the limited space.

5 Conclusions

In this paper, we addressed some fundamental questions about how to optimize text data retrieval systems in
a general way and proposed to define the retrieval task as having the system to play a cooperative retrieval
game with the user with a shared objective to complete the user’s task with minimum overall user effort and
minimum system operation cost. We used Bayesian decision theory to formally frame the problem as a statistical
decision problem with a formal model of users as a key component for optimizing retrieval decisions. The game-
theoretic framework can potentially integrate research in user studies, evaluation, retrieval models, and efficient
implementation of text retrieval systems in a single unified principled framework and also serves as a roadmap
for identifying unexplored important IR research topics. The two important benefits of the framework are 1)
natural optimization of the utility over an entire session instead of that on a single query and 2) optimization
of the collaboration of machines and users (thus maximizing collective intelligence). We also briefly discussed
how to instantiate all the major components of the framework so as to derive more specific models that can
be implemented in a search engine and introduced the Interface Card Model as a specific example which can
optimize the interface design for navigation into relevant items. We show that the game-theoretic framework
can model user actions in a very general way and at different levels of granularity.

To fully implement a system based on such a new framework, there are obviously many challenges to solve,
and we would need to integrate research in multiple areas including 1) formal modeling of users and tasks, 2)
modeling and measuring system cost, 3) machine learning, particularly reinforcement learning to enable the
system to effectively update user model, 4) efficient algorithms to enable fast response by the system, and 5)
evaluation methodology for evaluating such an interactive system. While the framework was proposed for the
problem of text data retrieval where involvement of users in the loop is especially important, we believe that the
general idea of the framework and many components may also be broadly applicable to other interactive systems
where optimization of human-machine collaboration is important.

References
[1] L. Azzopardi. Modelling interaction with economic models of search. In Proceedings of ACM SIGIR 2014, pages

3–12, New York, NY, USA, 2014. ACM.

[2] F. Baskaya, H. Keskustalo, and K. Järvelin. Modeling behavioral factors ininteractive information retrieval. In
Proceedings of ACM CIKM 2013, CIKM ’13, pages 2297–2302, New York, NY, USA, 2013. ACM.

[3] N. J. Belkin. Anomalous states of knowledge as a basis for information retrieval. The Canadian Journal of Informa-
tion Science, (5):133–143, 1980.

[4] N. J. Belkin. Intelligent information retrieval: Whose intelligence? In Proceedings of the Fifth International
Symposium for Information Science, 1996.

[5] K. Collins-Thompson, P. N. Bennett, R. W. White, S. de la Chica, and D. Sontag. Personalizing web search results
by reading level. In Proceedings of ACM CIKM 2011, pages 403–412, 2011.

61

[6] A. P. de Vries, G. Kazai, and M. Lalmas. Tolerance to irrelevance: A user-effort evaluation of retrieval systems
without predefined retrieval unit. In Coupling Approaches, Coupling Media and Coupling Languages for Information
Retrieval - RIAO 2004, pages 463–473, 2004.

[7] F. Diaz. Integration of news content into web results. In Proceedings of the Second ACM International Conference
on Web Search and Data Mining, WSDM ’09, pages 182–191, New York, NY, USA, 2009. ACM.

[8] N. Fuhr. A probability ranking principle for interactive information retrieval. Inf. Retr., 11(3):251–265, June 2008.

[9] K. Hofmann. Fast and reliable online learning to rank for information retrieval, 2013. Doctoral Dissertation.

[10] K. Hofmann, S. Whiteson, and M. de Rijke. Balancing exploration and exploitation in learning to rank online. In
Proceedings of ECIR 2011, pages 251–263, 2011.

[11] P. Ingwersen. Cognitive perspectives of information retrieval interaction: elements of a cognitive ir theory. Journal
of Documentation, 52:3–50, 1996.

[12] X. Jin, M. Sloan, and J. Wang. Interactive exploratory search for multi page search results. In Proceedings of the
22Nd International Conference on World Wide Web, WWW ’13, pages 655–666, New York, NY, USA, 2013. ACM.

[13] J. Luo, S. Zhang, and H. Yang. Win-win search: Dual-agent stochastic game in session search. In Proceedings of
ACM SIGIR 2014, pages 587–596, New York, NY, USA, 2014. ACM.

[14] J. Ponte and W. B. Croft. A language modeling approach to information retrieval. In Proceedings of the ACM
SIGIR’98, pages 275–281, 1998.

[15] S. E. Robertson. The probability ranking principle in ı.̊ Journal of Documentation, 33(4):294–304, Dec. 1977.

[16] G. Salton and M. McGill. Introduction to Modern Information Retrieval, McGraw-Hill, New York, 1983

[17] X. Shen, B. Tan, and C. Zhai. Implicit user modeling for personalized search. In Proceedings of CIKM 2005, 2005.

[18] A. Singhal and C. Buckley and M. Mitra. Pivoted document length normalization, In Proceedings of ACM SIGIR
1996, pages 21–29, 1996.

[19] M. D. Smucker and C. L. Clarke. Time-based calibration of effectiveness measures. In Proceedings of ACM SIGIR
2012, pages 95–104, New York, NY, USA, 2012. ACM.

[20] K. Sparck Jones and P. Willett, editors. Readings in Information Retrieval. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

[21] J. Teevan, S. T. Dumais, and E. Horvitz. Potential for personalization. ACM Trans. Comput.-Hum. Interact.,
17(1):4:1–4:31, Apr. 2010.

[22] P. Thomas, A. Moffat, P. Bailey, and F. Scholer. Modeling decision points in user search behavior. In Proceedings of
the 5th Information Interaction in Context Symposium, IIiX ’14, pages 239–242, New York, NY, USA, 2014. ACM.

[23] C. J. van Rijsbergen. Information Retrieval, Butterworths, London, 1979.

[24] C. Zhai and J. Lafferty. A risk minimization framework for information retrieval. Information Processing and
Management, 42(1), pages 31-55, 2006.

[25] C. Zhai. Statistical Language Models for Information Retrieval. Synthesis Lectures on Human Language Technolo-
gies. Morgan & Claypool Publishers, 2008.

[26] C. Zhai and S. Massung. Text Data Management and Analysis: A Practical Introduction to Information Retrieval
and Text Mining. ACM and Morgan & Claypool Publishers, 2016.

[27] Y. Zhang and C. Zhai. Information retrieval as card playing: A formal model for optimizing interactive retrieval
interface. In Proceedings of ACM SIGIR 2015, pages 685–694, New York, NY, USA, 2015. ACM.

62

Neural Enquirer: Learning to Query Tables in Natural Language

Pengcheng Yin
Language Technologies Institute

pcyin@cs.cmu.edu

Zhengdong Lu
Noah’s Ark Lab, Huawei Technologies
Lu.Zhengdong@huawei.com

Hang Li
Noah’s Ark Lab, Huawei Technologies

HangLi.HL@huawei.com

Ben Kao
The University of Hong Kong

kao@cs.hku.hk

Abstract

We propose NEURAL ENQUIRER — a neural network architecture for answering natural language
(NL) questions based on a knowledge base (KB) table. Unlike existing work on end-to-end training of
semantic parsers [13, 12], NEURAL ENQUIRER is fully “neuralized”: it finds distributed representations
of queries and KB tables, and executes queries through a series of neural network components called
“executors”. Executors model query operations and compute intermediate execution results in the form
of table annotations at different levels. NEURAL ENQUIRER can be trained with gradient descent, with
which the representations of queries and the KB table are jointly optimized with the query execution
logic. The training can be done in an end-to-end fashion, and it can also be carried out with stronger
guidance, e.g., step-by-step supervision for complex queries. NEURAL ENQUIRER is one step towards
building neural network systems that can understand natural language in real-world tasks. As a proof-
of-concept, we conduct experiments on a synthetic QA task, and demonstrate that the model can learn
to execute reasonably complex NL queries on small-scale KB tables.

1 Introduction

Natural language dialogue and question answering often involve querying a knowledge base [14, 3]. The tradi-
tional approach involves two steps: First, a given query Q̃ is semantically parsed into an “executable” represen-
tation, which is often expressed in certain logical form Z̃ (e.g., SQL-like queries). Second, the representation is
executed against a knowledge base from which an answer is obtained. For queries that involve complex seman-
tic constraints and logic (e.g., “Which city hosted the longest Olympic Games before the Games in Beijing?”),
semantic parsing and query execution become extremely complex. For example, carefully hand-crafted features
and rules are needed to correctly parse a complex query into its logical form (see example shown in the lower-
left corner of Figure 1). This complexity often results in poor accuracy of the system. To partially overcome
this difficulty, recent works [7, 10, 13] attempt to “backpropagate” query execution results to revise the semantic
representation of a query, which is an example of learning from grounding [6, 9]. This approach, however, is
greatly hindered by the fact that traditional semantic parsing mostly involves rule-based features and symbolic
manipulation, and is subject to intractable search space incurred by the great flexibility of natural language.

Copyright 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

63

Which city hosted the longest Olympic Games before the Games in Beijing?

query ෨𝑄 Query Encoder

Executor-1 Memory Layer-1

Executor-2 Memory Layer-2

Executor-3 Memory Layer-3

Executor-4 Memory Layer-4

Executor-5

Athens (probability distribution over table entries)

year host_city #_duration #_medals

2000 Sydney 20 2,000

2004 Athens 35 1,500

2008 Beijing 30 2,500

2012 London 40 2,300

query embedding

table embedding

Tab
le En

co
d

er

where year < (select year, where host_city = Beijing),
argmax(host_city, #_duration)

Find row r1 where host_city=Beijing

Select year of r1 as a

Find row sets R where year < a

Find r2 in R with max(#_duration)

Select host_city of r2

logical form ෨𝑍

Figure 1: An overview of NEURAL ENQUIRER with five executors

Neural network-based models have enjoyed much successes in natural language processing, particularly in
machine translation and syntactic parsing. These successes are attributable to direct and strong supervision.
The recent work on learning to execute simple program codes with LSTM [17] pioneers in the direction on
learning to parse structured objects through executing it in a purely neural way, while the more recent work on
Neural Turing Machines (NTMs) [8] introduces more modeling flexibility by equipping the LSTM with external
memory and various means for interacting with it.

Inspired by the above-mentioned research, we aim to design a neural network system that learns to under-
stand queries and execute them on a knowledge base table from examples of queries and answers. We propose
NEURAL ENQUIRER, a fully neuralized, end-to-end differentiable system that jointly models semantic parsing
and query execution. NEURAL ENQUIRER encodes queries and KB tables into distributed representations, and
executes compositional queries against the KB through a series of differentiable executors. The model is trained
using query-answer pairs, where the distributed representations of queries and the KB are optimized together
with the query execution logic in an end-to-end fashion. As the first step along this line of research, we eval-
uate NEURAL ENQUIRER using a synthetic question-answering task as a proof-of-concept, and demonstrate
that our proposed model is capable of learning to execute complex compositional natural language questions on
small-scale KB tables.

2 Model

Following [13], we study the problem of question answering on a single KB table. Specifically, given an NL
query Q and a KB table T , NEURAL ENQUIRER executes Q against T and outputs a ranked list of answers. The
execution is done by first using Encoders to encode the query and table into distributed representations, which
are then sent to a cascaded pipeline of Executors to derive the answer. Figure 1 gives an illustrative example
(with five executors). It consists of the following components:
Query Encoder (Section 2.1), which abstracts the semantics of an NL query and encodes it into a query em-
bedding.
Table Encoder (Section 2.2), which derives a table embedding by encoding entries in the table into distributed
vectors.
Executor (Section 2.3), which executes the query against the table and outputs annotations that encode inter-
mediate execution results. Annotations are stored in the memory of each layer to be accessed by the executor

64

of the next layer. Since complex compositional queries can be answered in multiple steps of computation, each
executor models a specific type of operation conditioned on the query. Figure 1 illustrates the operation each
executor is assumed to perform in answering the example query Q̃. Different from classical semantic parsing
approaches which require a predefined set of all possible logical operations, NEURAL ENQUIRER learns the
logic of executors via end-to-end training using query-answer pairs. By stacking several executors, our model is
able to answer complex queries that involve multiple steps of computation.

2.1 Query Encoder

Query Encoder converts an NL query Q into a query embedding q ∈ RdQ . Let {x1,x2, . . . ,xT } be the em-
beddings of words in Q, where xt ∈ RdW is from an embedding matrix L. We employ a bidirectional Gated
Recurrent Unit (GRU) [2] to summarize the sequence {x1,x2, . . . ,xT } in forward and reverse orders. q is
formed by concatenating the last hidden states in the two directions.

It is worth noting that Query Encoder can find the representation of a rather general class of symbol se-
quences, agnostic to the actual representation of the query (e.g., natural language, SQL, etc). The model is
able to learn the semantics of input queries through end-to-end training, making it a generic model for query
understanding and query execution.

2.2 Table Encoder

NN0

field embed. value embed.

composite embed.Table Encoder converts a KB table T into a distributed representation, which is used
as an input to executors. Suppose T has M rows and N columns. In our model, the
n-th column is associated with a field name (e.g., host city). Each cell value is a
word (e.g., Beijing) in the vocabulary. We use wmn to denote the cell value in row
m column n, and wmn to denote its embedding. Let fn be the embedding of the field
name for column n. For each entry (cell) wmn, Table Encoder computes a ⟨field, value⟩
composite embedding emn ∈ RdE by fusing fn and wmn using a single-layer Neural
Network:

emn = NN0(fn,wmn) = tanh(W · [fn;wmn] + b),

where [·; ·] denotes vector concatenation. The output of Table Encoder is an M ×N × dE tensor that consists of
M ×N embeddings, each of length dE .

We remark that our Table Encoder is different from classical knowledge embedding models (e.g., TransE [5]).
While traditional methods learn the embeddings of entities (cell values) and relations (field names) in an unsu-
pervised fashion via minimizing certain reconstruction errors, embeddings in Table Encoder are optimized via
supervised learning in end-to-end QA tasks.

2.3 Executor

NEURAL ENQUIRER executes an input query on a KB table through layers of execution. Each layer consists
of an executor that, after learning, performs certain operation (e.g., select, max) relevant to the input query.
An executor outputs intermediate execution results, referred to as annotations, which are saved in the external
memory of the executor. A query is executed sequentially through a stack of executors. Such a cascaded
architecture enables the model to answer complex, compositional queries. An example is given in Figure 1 in
which descriptions of the operation each executor is assumed to perform for the query Q̃ are shown. We will
demonstrate in Section 4 that the model is capable of learning the operation logic of each executor via end-to-end
training.

As illustrated in Figure 2, an executor at Layer-ℓ (denoted as Executor-ℓ) consists of two major neural
network components: a Reader and an Annotator. The executor processes a table row-by-row. The Reader reads

65

Reader

table embedding
read vectors

pooling

Annotator

row annotations

table annotationMemory Layer-(ℓ-1)

query embedding Memory Layer-ℓ

Figure 2: Overview of an Executor-ℓ

in data from each row m in the form of a read vector rℓm, which is then sent to the Annotator to perform the actual
execution. The output of the Annotator is a row annotation aℓm, which captures the row-wise local computation
result. Once all row annotations are obtained, Executor-ℓ generates a table annotation gℓ to summarize the
global computation result on the whole table by pooling all row annotations. All the row and table annotations
are saved in the memory of Layer-ℓ: Mℓ = {aℓ1,aℓ2, . . . ,aℓM ,gℓ}. Intuitively, row annotations handle operations
that require only row-wise, local information (e.g., select, where), while table annotations model superlative
operations (e.g., max, min) by aggregating table-wise, global execution results. A combination of row and table
annotations enables the model to perform a wide variety of query operations in real world scenarios.

2.3.1 Reader

As illustrated in Figure 3, for the m-th row with N ⟨field, value⟩ composite embeddings Rm = {em1, em2, . . . , emN},
the Reader fetches a read vector rℓm from Rm via an attentive reading operation:

rℓm = f ℓ
R(Rm,FT ,q,Mℓ−1) =

N∑
n=1

ω̃(fn,q,g
ℓ−1)emn

where Mℓ−1 denotes the content of memory Layer-(ℓ−1), and FT = {f1, f2, . . . , fN} is the set of field name
embeddings. ω̃(·) is the normalized attention weights given by:

ω̃(fn,q,g
ℓ−1) =

exp(ω(fn,q,g
ℓ−1))∑N

n′=1 exp(ω(fn′ ,q,gℓ−1))
(10)

where ω(·) is modeled as a Deep Neural Network (denoted as DNN(ℓ)
1). Since each executor models a specific

type of computation, it should only attend to a subset of entries that are pertinent to its execution. This is modeled
by the Reader. Our approach is related to the content-based addressing of Neural Turing Machines [8] and the
attention mechanism in neural machine translation models [2].

2.3.2 Annotator

The Annotator of Executor-ℓ computes row and table annotations based on read vectors fetched by the Reader.
The results are stored in the ℓ-th memory layer Mℓ accessible to Executor-(ℓ+1). The last executor is the only
exception, which outputs the final answer.
[Row annotations] Capturing row-wise execution result, the annotation aℓm for row m in Executor-ℓ is given
by

aℓm = f ℓ
A(r

ℓ
m,q,Mℓ−1) = DNN(ℓ)

2 ([rℓm;q;aℓ−1
m ;gℓ−1]). (11)

66

DNN1
+

query embedding

table annotation

read vector

year host_city #_duration #_medalsrow m

year host_city #_duration #_medals

(ℓ)

composite embeddings

Figure 3: Illustration of the Reader in Executor-ℓ

DNN(ℓ)
2 fuses the corresponding read vector rℓm, the results saved in the previous memory layer (row and

table annotations aℓ−1
m , gℓ−1), and the query embedding q. Intuitively, row annotation aℓ−1

m and table annotation
gℓ−1 summarize the local and global status of execution up to Layer-(ℓ−1), respectively. DNN(ℓ)

2 then performs
the actual query execution by combing these annotations with the read vector and query embedding, and outputs
a row annotation aℓm that encodes the local execution result on row m.
[Table annotations] Capturing global execution state, a table annotation summarizes all row annotations via a
global max pooling operation:

gℓ = fMAXPOOL(a
ℓ
1,a

ℓ
2, . . . , a

ℓ
M) = [g1, g2, . . . , gdG]

⊤ (12)

where gk = max({aℓ1(k),aℓ2(k), . . . ,aℓM (k)}) is the maximum value among the k-th elements of all row anno-
tations.

2.3.3 Last Layer Executor

Instead of computing annotations based on read vectors, the last executor in NEURAL ENQUIRER directly out-
puts the probability of an entry wmn in table T being the answer a:

p(a = wmn|Q, T) =
exp(f ℓ

ANS(emn,q,a
ℓ−1
m ,gℓ−1))∑M,N

m′=1,n′=1 exp(f
ℓ
ANS(em′n′ ,q,aℓ−1

m′ ,gℓ−1))
(13)

where f ℓ
ANS(·) is modeled as a DNN (DNN(ℓ)

3). Note that the last executor, which is devoted to returning answers,
could still carry out execution in DNN(ℓ)

3 .

3 Learning

NEURAL ENQUIRER can be trained in an end-to-end (N2N) fashion on QA tasks. During training, both the
representations of queries and tables, as well as the execution logic captured by the weights of executors are
learned. Given a set of ND query-table-answer triples D = {(Q(i), T (i), y(i))}, we learn the model parameters
by maximizing the log-likelihood of gold-standard answers:

LN2N(D) =

ND∑
i=1

log p(a = y(i)|Q(i), T (i)) (14)

In end-to-end training, each executor discovers its operation logic from training data in a purely data-driven
fashion, which could be difficult for complex queries requiring four or five sequential operations.

67

year host city # participants # medals # duration # audience host country GDP country size population
2008 Beijing 4,200 2,500 30 67,000 China 2,300 960 130

Figure 4: An example table in the synthetic QA task (only one row shown)

Query Type Example Queries (Q) with Annotated SQL-like Logical Forms (Z)

SELECT WHERE

◃ Q: How many people participated in the game in Beijing?
Z: select # participants, where host city = Beijing

◃ Q: In which country was the game hosted in 2012?
Z: select host country, where year = 2012

SUPERLATIVE

◃ Q: When was the lastest game hosted?
Z: argmax(host city, year)

◃ Q: How big is the country which hosted the shortest game?
Z: argmin(country size, # duration)

WHERE SUPERLATIVE

◃ Q: How long is the game with the most medals that has fewer than 3,000 participants?
Z: where # participants < 3,000, argmax(# duration, # medals)

◃ Q: How many medals are in the first game after 2008?
Z: where # year > 2008, argmin(# medals, # year)

NEST

◃ Q: Which country hosted the longest game before the game in Athens?
Z: where year<(select year,where host city=Athens),argmax(host country,# duration)

◃ Q: How many people watched the earliest game that lasts for more days than the game in 1956?
Z: where # duration<(select # duration,where year=1956),argmin(# audience,# year)

Table 1: Example queries in our synthetic QA task

This can be alleviated by softly guiding the learning process via controlling the attention weights w̃(·) in
Eq. (10). By enforcing w̃(·) to bias towards a field pertaining to a specific operation, we can “coerce” the
executor to figure out the logic of this operation relative to the field. For example, for Executor-1 in Figure
1, by biasing the attention weight of the host city field towards 1.0, only the value of host city will be
fetched and sent to the Annotator. In this way we can “force” the executor to learn the where operation to find
the row whose host city is Beijing. This method will be referred to as step-by-step (SbS) training. Formally,
this is done by introducing additional supervision signal to Eq. (14):

LSbS(D) =

ND∑
i=1

(
log p(a = y(i)|Q(i), T (i)) + α

L−1∑
ℓ=1

log w̃(f⋆i,ℓ, ·, ·)
)

(15)

where α is a tuning weight, and L is the number of executors. f⋆i,ℓ is the embedding of the field known a
priori to be used by Executor-ℓ in answering the i-th example.

4 Experiments

In this section we evaluate NEURAL ENQUIRER on synthetic QA tasks with NL queries of varying compositional
depths.

4.1 Synthetic QA Task

We present a synthetic QA task with a large number of QA examples at various levels of complexity to evaluate
the performance of NEURAL ENQUIRER. Starting with “artificial” tasks accelerates the development of novel
deep models [15], and has gained increasing popularity in recent research on modeling symbolic computation
using DNNs [8, 17].

Our synthetic dataset consists of query-table-answer triples {(Q(i), T (i), y(i))}. To generate a triple, we first
randomly sample a table T (i) of size 10×10 from a synthetic schema of Olympic Games. The cell values of T (i)

are drawn from a vocabulary of 120 location names and 120 numbers. Figure 4 gives an example table. Next, we

68

MIXED-25K MIXED-100K
SEMPRE N2N SbS N2N-OOV N2N SbS N2N-OOV

SELECT WHERE 93.8% 96.2% 99.7% 90.3% 99.3% 100.0% 97.6%
SUPERLATIVE 97.8% 98.9% 99.5% 98.2% 99.9% 100.0% 99.7%
WHERE SUPERLATIVE 34.8% 80.4% 94.3% 79.1% 98.5% 99.8% 98.0%
NEST 34.4% 60.5% 92.1% 57.7% 64.7% 99.7% 63.9%
Overall Accuracy 65.2% 84.0% 96.4% 81.3% 90.6% 99.9% 89.8%

Table 2: Accuracies on MIXED datasets

sample a query Q(i) generated using NL templates, and obtain its gold-standard answer y(i) on T (i). Our task
consists of four types of NL queries, with examples given in Table 1. We also give the logical form template for
each type of query. The templates define the semantics and compositionality of queries. We generate queries at
various compositional depths, ranging from simple SELECT WHERE queries to more complex NEST ones. This
makes the dataset have similar complexity as a real-world one, except for the relatively small vocabulary. The
queries are flexible enough to involve complex matching between NL phrases and logical constituents, which
makes query understanding nontrivial: (1) the same field is described by different NL phrases (e.g., “How big is
the country ...” and “What is the size of the country ...” for the country size field); (2) different fields may
be referred to by the same NL pattern (e.g, “in China” for host country and “in Beijing” for host city);
(3) simple NL constituents may be grounded to complex logical operations (e.g., “after the Games in Beijing”
implies comparing between the values of year fields).

To simulate the read-world scenario where queries of various types are issued to the model, we construct two
MIXED datasets, with 25K and 100K training examples respectively, where four types of queries are sampled
with the ratio 1 : 1 : 1 : 2. Both datasets share the same testing set of 20K examples, 5K for each type of query.
We enforce that no tables and queries are shared between training/testing sets.

4.2 Setup

[Tuning] We adopt a model with five executors. The lengths of hidden states for GRU and DNNs are 150,
50. The numbers of layers for DNN(ℓ)

1 , DNN(ℓ)
2 and DNN

(ℓ)
3 are 2, 3, 3. The length of word embeddings and

annotations is 20. α is 0.2. We train the model using ADADELTA [18] on a Tesla K40 GPU. The training
converges fast within 2 hours.
[Metric] We evaluate in terms of accuracy, defined as the fraction of correctly answered queries.
[Models] We compare the results of the following settings:

• Sempre [13] is a state-of-the-art semantic parser and serves as the baseline;

• N2N, our model trained using end-to-end setting (Sec 4.3);

• SbS, our model trained using step-by-step setting (Sec 4.4);

• N2N-OOV, a variant of the N2N model to deal with out-of-vocabulary words (Sec 4.5)

4.3 End-to-End Evaluation

Table 2 summarizes the results of SEMPRE and NEURAL ENQUIRER under different settings. We show both the
individual performance for each query type and the overall accuracy. We evaluate SEMPRE only on MIXED-25K
because of its long training time even on this small dataset (about 3 days).

In this section we discuss the results under end-to-end (N2N) training setting. On MIXED-25K, the rela-
tively low performance of SEMPRE indicates that our QA task, although synthetic, is highly nontrivial. Surpris-
ingly, NEURAL ENQUIRER outperforms SEMPRE on all query types, with a marginal gain on simple queries

69

Q1: How long was the Games with the most medals that had fewer than 3,000 participants?
Z1: where # participants < 3,000, argmax(# duration, # medals)

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-1

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-2

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-3

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-4

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n

Executor-5

Q2: Which country hosted the longest Games before the Games in Athens?
Z2: where year < (select year, where host city = Athens), argmax(host country, # duration)

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-1

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-2

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-3

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-4

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n

Executor-5

Figure 5: Weights visualization of queries Q1 and Q2

(SELECT WHERE, SUPERLATIVE), and significant improvement on complex queries (WHERE SUPERLATIVE,
NEST). We posit that the low performance of SEMPRE on complex queries is likely due to the intractable search
space incurred by the flexibility of its float parsing algorithm. On MIXED-100K, our model registers an overall
accuracy of 90.6%. These results show that in our QA task, NEURAL ENQUIRER is very effective in answering
compositional NL queries, especially those with complex semantics compared with the state-of-the-art system.

To further understand why our model is capable of answering compositional queries, we study the attention
weights of Readers (Eq. 10) for intermediate executors, and the answer probability (Eq. 13) the last executor
outputs for each table entry. These statistics are obtained on MIXED-100K. We sample two queries (Q1 and
Q2) in the testing set that our model answers correctly and visualize their corresponding values in Figure 5. To
better understand the query execution process, we also give the logical forms (Z1 and Z2) of the two queries.
Note that the logical forms are just for reference purpose and unknown by the model. We find that each executor
actually learns its execution logic in N2N training, which is in accordance with our assumption. The model
executes Q1 in three steps, with each of the last three executors performs a specific type of operation. For
each row, Executor-3 takes the value of the # participants field as input, while Executor-4 attends to the
medals field. Finally, Executor-5 outputs a high probability for the # duration field in the 3-rd row. The
attention weights for Executor-1 and Executor-2 appear to be meaningless because Q1 requires only three steps
of execution, and the model learns to defer the meaningful execution to the last three executors. Comparing with
the logical form Z1 of Q1, we can deduce that Executor-3 “executes” the where clause in Z1 to find row sets
R satisfying the condition, and Executor-4 performs the first part of argmax to find the row r ∈ R with the
maximum value of # medals, while Executor-5 outputs the value of # duration in r.

Compared with the relatively simple Q1, Q2 is more complicated. According to Z2, Q2 involves an addi-
tional nest sub-query to be solved by two extra executors, and requires a total of five steps of execution. The
last three executors function similarly as in answering Q1, yet the execution logic for the first two executors
(devoted to solving the sub-query) is a bit obscure, since their attention weights are scattered instead of being
perfectly centered on the ideal fields as highlighted in red dashed rectangles. We posit that this is because during
the end-to-end training, the supervision signal propagated from the top layer has decayed along the long path
down to the first two executors, which causes vanishing gradients.

70

4.4 With Additional Step-by-Step Supervision

To alleviate the vanishing gradient problem when training on complex queries like Q2, we train the model
using step-by-step (SbS) setting (Eq. 15), where we encourage each intermediate executor to attend to the field
that is known a priori to be relevant to its execution logic. Results are shown in Table 2 (column SbS). With
stronger supervision signal, the model significantly outperforms the N2N setting, and achieves perfect accuracy
on MIXED-100K. This shows that NEURAL ENQUIRER is capable of leveraging the additional supervision signal
given to intermediate layers in SbS training. Let us revisit the query Q2 in SbS setting. In contrast to the result in
N2N setting (Figure 5) where the attention weights for the first two executors are obscure, now the weights are
perfectly skewed towards each relevant field with a value of 1.0, which corresponds with the highlighted ideal
weights.

4.5 Dealing with Out-Of-Vocabulary Words

One of the major challenges for applying neural network models to NLP applications is to deal with out-of-
vocabulary (OOV) words (e.g., new entities for QA). Surprisingly, we find that a simple variant of NEURAL

ENQUIRER is able to handle unseen entities almost without loss of accuracy.
Specifically, we divide words in the vocabulary into entity words and operation words. Embeddings of entity

words (e.g., Beijing) function like indices to facilitate the matching between the entities in queries and tables
during query execution, and therefore are not updated once randomly initialized; while those of operation words,
i.e., all non-entity words (e.g., numbers, longest, before, etc), carry semantic meanings relevant to execution and
will be optimized in training. Therefore, after randomly initializing the embedding matrix L, we only update
the embeddings of operation words in training, while keeping those of entity words unchanged. To evaluate the
model we modify the queries in the testing set to replace all entity words (i.e., all country and city names) with
those unseen in training. Results obtained using N2N training, reported in Table 2 (column N2N-OOV), show
that the model yields performance comparable with non-OOV settings.

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-3

ye
ar

ho
st

_c
ity

#
_p

ar
tic

ip
an

ts

#
_m

ed
al
s

#
_d

ur
at

io
n

#
_a

ud
ie
nc

e

ho
st

_c
ou

nt
ry

GDP

co
un

try
_s

ize

po
pu

la
tio

n
0.0
0.2
0.4
0.6
0.8
1.0

Executor-4

Figure 6: Weights visualization of query Q3

An interesting question is how the model resolves the types of OOV entity words (i.e., cities vs. countries) in
ambiguous queries, e.g., Q3: “How many people watched the Games in Macau?”, since the random embeddings
of entity words (e.g, Macau) cannot link them to their corresponding fields. The model executes Q3 using
the last three executors, with the last executor attending to the # audience field as expected. Interestingly,
however, the model attends to the host city field in Executor-3, and then host country in Executor-4
(see Figure 6), indicating the model learns to scan all possible fields to figure out the correct field of an OOV
entity.

4.6 Querying Expanded Knowledge Source

We simulate a test case to evaluate the model’s ability to generalize to an expanded knowledge source. We
train a model on tables whose field sets are either F1,F2, . . . ,F5, where Fi is a subset of the entire field set
FT and |Fi| = 5. We then test the model on tables with all fields FT and queries whose fields span multiple

71

Query Type SELECT WHERE SUPERLATIVE WHERE SUPERLATIVE Overall
Accuracy 68.2% 84.8% 80.2% 77.7%

Table 3: Accuracies for querying expanded knowledge source

#_audience host_city

75,000 Beijing

year #_participants

2008 2,500

How many audience members are in Beijing?

When was the game with 2,500 participants?

#_audience host_city year #_participants

65,000 Beijing 2008 2,000

… When was the game in Beijing?

Training Testing

#_audience host_city year #_participants

50,000 London 2012 3,000

How many people watched the game with 3,000 participants?
…

Figure 7: Expanded knowledge source querying simulation

subsets Fi. Figure 7 illustrates the setting. All test queries exhibit field combinations unseen in training. This
simulates the difficulty the model often encounters when scaling to large knowledge sources, which usually
poses a great challenge on model’s generalization ability. We evaluate the N2N model on a dataset of the first
three types of relatively simple queries. The sizes of training/testing splits are 75,000 and 30,000, with equal
numbers for each query type. Table 3 lists the results. The model maintains a reasonable performance even when
the compositionality of test queries is previously unseen, showing the model’s generalization ability in tackling
unseen query patterns through the composition of familiar ones, and hence the potential to scale to larger and
unseen knowledge sources.

5 Related Work

This work is related to semantic parsing, which aims to parse NL queries into logical forms executable on
KBs [19, 1]. Recent studies take a semi-supervised learning approach, and adopt the results of query execution
as indirect supervision to train a parser [3, 4, 16, 13, 11]. Semantic parsers learned in this way can scale to large
open domain KBs, but are inadequate for understanding complex queries because of the intractable search space
incurred by the flexibility of parsing algorithms. Our work follows this approach in using query answers as
indirect supervision, but jointly performs semantic parsing and query execution in distributional spaces, where
the distributed representations of logical forms are implicitly learned in end-to-end QA tasks.

Our work is also related to the recent research of modeling symbolic computation using neural networks,
pioneered by the development of Neural Turing Machines (NTMs) [8] and the work of learning to execute (LTE)
simple Python programs using LSTM [17]. It is related to both lines of research in using external memories like
NTMs and learning by executing like LTE. As a highlight and difference, our work employs multiple layers of
deep memories, with the neural network operations highly customized towards querying KB tables.

Perhaps the most related work is the recently proposed NEURAL PROGRAMMER [12], which studies the
same task of executing queries on tables using DNNs. While in NEURAL PROGRAMMER, the query planning is
modeled using DNNs to determine which operation to execute at each step, the symbolic operations are prede-
fined by users. In contrast our model is fully neuralized: it models both the query planning and query execution
using DNNs, which are jointly optimized via end-to-end training. Our model learns symbolic operations using
a data-driven approach. We also present results on NL queries and demonstrate that a fully neural system is
capable of executing compositional logic operations up to a certain level of complexity.

72

6 Conclusion

We propose NEURAL ENQUIRER, a fully neural, end-to-end differentiable network that learns to execute com-
positional natural language queries on knowledge base tables. We present results on a set of synthetic QA tasks
to demonstrate the ability of NEURAL ENQUIRER to answer fairly complicated compositional queries across
multiple tables. In the future we plan to advance this work in the following directions. First we will apply
NEURAL ENQUIRER to natural language questions and natural language answers, where both the input query
and the output supervision are noisier and less informative. Second, we are going to scale to real world QA task
as in [13], for which we have to deal with a large vocabulary and novel predicates. Third, we are going to work
on the computational efficiency issue in query execution by heavily borrowing the symbolic operation.

References
[1] Y. Artzi, K. Lee, and L. Zettlemoyer. Broad-coverage CCG semantic parsing with AMR. In EMNLP, 1699–1710,

2015.

[2] D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. In ICLR,
2015.

[3] J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase from question-answer pairs. In EMNLP,
1533–1544, 2013.

[4] J. Berant and P. Liang. Semantic parsing via paraphrasing. In ACL (1), 1415–1425, 2014.

[5] A. Bordes, N. Usunier, A. Garca-Durn, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-
relational data. In NIPS, 2787–2795, 2013.

[6] D. L. Chen and R. J. Mooney. Learning to sportscast: A test of grounded language acquisition. In ICML, 128–135,
2008.

[7] J. Clarke, D. Goldwasser, M.-W. Chang, and D. Roth. Driving semantic parsing from the world’s response. In
CoNLL, 18–27, 2010.

[8] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014.

[9] J. Kim and R. J. Mooney. Unsupervised pcfg induction for grounded language learning with highly ambiguous
supervision. In EMNLP-CoNLL, 433–444, 2012.

[10] P. Liang, M. I. Jordan, and D. Klein. Learning dependency-based compositional semantics. In ACL (1), 590–599,
2011.

[11] D. K. Misra, K. Tao, P. Liang, and A. Saxena. Environment-driven lexicon induction for high-level instructions. In
ACL (1), 992–1002, 2015.

[12] A. Neelakantan, Q. V. Le, and I. Sutskever. Neural programmer: Inducing latent programs with gradient descent.
CoRR, abs/1511.04834, 2015.

[13] P. Pasupat and P. Liang. Compositional semantic parsing on semi-structured tables. In ACL (1), 1470–1480, 2015.

[14] T.-H. Wen, M. Gasic, N. Mrksic, P. hao Su, D. Vandyke, and S. J. Young. Semantically conditioned lstm-based
natural language generation for spoken dialogue systems. In EMNLP, 1711–1721, 2015.

[15] J. Weston, A. Bordes, S. Chopra, and T. Mikolov. Towards ai-complete question answering: A set of prerequisite toy
tasks. CoRR, abs/1502.05698, 2015.

[16] W. Yih, M. Chang, X. He, and J. Gao. Semantic parsing via staged query graph generation: Question answering with
knowledge base. In ACL (1), 1321–1331, 2015.

[17] W. Zaremba and I. Sutskever. Learning to execute. CoRR, abs/1410.4615, 2014.

[18] M. D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.

[19] L. S. Zettlemoyer and M. Collins. Learning to map sentences to logical form: Structured classification with proba-
bilistic categorial grammars. In UAI, 658–666, 2005.

73

Multi-Dimensional, Phrase-Based Summarization in Text Cubes

Fangbo Tao†, Honglei Zhuang†, Chi Wang Yu‡, Qi Wang†, Taylor Cassidy§,
Lance Kaplan§, Clare Voss§, Jiawei Han†

† Department of Computer Science, UIUC
‡Microsoft Research

§ US Army Research Laboratory

Abstract

To systematically analyze large numbers of textual documents, it is often desirable to manage documents
(and their metadata) in a multi-dimensional text database (Text Cube). Such structure provides flexibility
of understanding local information with different granularities. Moreover, the contextualized analysis
derived from cube structure often yields comparative insights. To quickly digest the content of subsets of
documents in the multi-dimensional context, we study the problem of phrase-based summarization of a
subset of documents of interest. We propose a new phrase ranking measure to leverage the relation be-
tween document subsets induced by multi-dimensional context and identify phrases that truly distinguish
the queried subset of documents from neighboring subsets (i.e., background). Our quality evaluation
suggests the new measure involving dynamic, query-dependent background generation is more effective
than previous measures using the whole corpus as a static background for finding representative phrases.
Computing this measure is more expensive due to the need of access to many subsets of documents to
answer one query. We develop a cube-based analytical platform that implements an efficient solution by
materializing a deliberately selected part of statistics, and using these statistics to perform online query
processing within a constant latency constraint. Our experiments in a large news dataset demonstrate
the efficiency in both query processing time and storage cost.

1 Introduction

With ever more massive datasets accumulating in text repositories (e.g., news articles, business reports, customer
reviews, etc.), it is highly desirable to conduct multi-dimensional analysis on text data, where the dimensions
correspond to multiple meta attributes (e.g., category, date/time, location, author, etc.) associated with the docu-
ments. The dimensions provide rich context to partition the documents and relate them, and users can use these
dimensions to navigate to a subset of documents of interest from a huge corpus. Typically, structured/relational
data has been handled by relational database systems, and such systems also provide some text indexing and
search capabilities to assist text data stored in such (extended) relational database systems. However, such kind
of systems often suffer from the following limitations.

• It can hardly support systematic analysis of large collections of free text in multi-dimensional way, although
such text data is ubiquitous in real-world;

Copyright 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

74

Figure 1: Illustration of phrase-based summarization in text cubes

• It usually does not support data cube technologies on text data and multidimensional text mining, although it
is obvious that text mining and data cube technologies can mutually enhance each other; and

• There is a lack of a general platform that can support integrated multi-dimensional analysis of structured
and text data, on top of which many powerful analysis methods and tools can be developed, experimented
and refined, such as viewing such data sets as interconnected information networks and further applying
information network analysis technology.

In this paper, we propose a multi-dimensional perspective of large-scale text corpora. In particular, we intro-
duce the framework of Text Cube [8] and its analytical platform [14]. To help users efficiently explore the text
cubes, we study the problem of phrase-based summarization in multi-dimensional context: given user-specified
dimensions and their values, return top-k phrases that characterize the corresponding set of documents. The re-
sulting phrases carry rich semantics and may benefit various downstream applications, e.g., text summarization.

Example 1. Suppose a multi-dimensional text database is constructed from New York Times news repository
with three meta attributes: Location, Topic, and Time, as shown in Figure 1. An analyst may pose multi-
dimensional queries such as: (q1): ⟨China, Economy⟩ and (q2): ⟨US, Gun Control⟩. Each query asks for
summary of a cell defined by two dimensions Location and Topic. What kind of cell summary does she like
to see? Frequent unigrams such as debt or senate are not as informative as multi-word phrases, such as local
government debt and senate armed service committee. The phrases preserve better semantics as integral units
rather than as separate words.

Generally, three criteria should be considered when ranking representative phrases in a selected multi-
dimensional cell: (i) integrity: a phrase that provides integral semantic unit should be preferable over non-
integral unigrams, (ii) popularity: popular in the selected cell (i.e., selected subset of documents), and (iii)
distinctiveness: distinguish the selected cell from other cells.

The remainder of the paper proceeds as follows. Section 2 introduces the framework of Text Cube and ex-
plains the power of converting text corpora to text cubes. The phrase-based summarization is proposed within
the framework. Its effectiveness is evaluated by various experiments. Section 3 introduces the computational

75

platform for multi-dimensional text analysis, including the computational optimization for phrase-based sum-
marization. Section 4 concludes the paper.

2 Multi-dimensional Text Analysis

In this section, we formally define the concept of Text Cube, the Phrase-based Summarization problem, the three
phrase ranking criteria, and multiple experimental results to elaborate the effectiveness of phrase summarization.

Several pieces of related work have been proposed along this research line. Text Cube [8] takes a multi-
dimensional view of textual collections and proposed OLAP-style tf and idf measures. Besides that, [7, 11]
also proposed OLAP-style measures on term level using only local frequency, which cannot serve as effective
semantic representations. [16, 4] focused on interactive exploration framework in text cubes given keyword
queries, without considering the semantics in raw text. Similarly, R-Cube [10] is proposed where user specify
an analysis portion by supplying some keywords and a set of cells are extracted based on relevance. Another
related topic is Faceted Search [6, 15, 2, 3], which dynamically aggregates information for an ad-hoc set of
documents. the aggregation is usually conducted on meta data (called facets), not document content.

2.1 Text Cube

Similar to traditional multi-dimensional data cubes, a text cube [8] is a data model but over text collection DOC
that has metadata for documents. The metadata can be either extrinsic attributes of the documents, such as clas-
sification taxonomy, or intrinsic information extracted from the documents, such as named entities mentioned
in them. In this paper, we focus on single-valued categorical metadata, and leave other types of metadata to
future work. We assume there are n categorical attributes (i.e., dimensions) associated with each document in
DOC. For example, a news article in NYT corpus is represented as (Jan 2012, China, Economy, ‘After a sharp
economic slowdown through much of last year...’). It denotes that the ‘Time’ of the article is Jan 2012, ‘Location’
is China and ‘Topic’ is Economy.

The dimensions provide valuable context for each document. Like a traditional data cube, all distinct values
of one dimension are organized in a dimension hierarchy. For i-th dimension, the dimension hierarchy Ai is
a tree where the root is denoted as ‘∗’. Each non-root node is a value in that dimension. The parent node of
a dimension value ai is denoted as par(ai), and the set of direct descendants of ai is denoted as des(ai). For
example, Figure 3 illustrates a partial dimension hierarchy about ‘topics’ in NYT corpus. It is a tree of height 4,
with a root node ‘∗’. par(Gun Control) = Domestic Issues and des(‘*′) = {Economy, Sports,Politics}.

Formally, we have the following definition.

Definition 1 (Multi-dimensional Text Cube): A
text cube is defined as T C = (A1,A2, . . . ,An,DOC), where Ai is a dimension hierarchy. Each document is in
the form of (a1, a2, . . . , an, d), where ai ∈ Ai\{∗} is a dimension value for Ai and d is a string of the content. A
cell c in the cube is represented as (a1, . . . , an,Dc), where ai ∈ Ai, and Dc ⊆ DOC is the subset of documents
contained in cell c. For notation simplicity, we use ⟨at1 , . . . , atk⟩ to refer to a cell with non-∗ dimension values
{at1 , . . . , atk}.

Example 3. Figure 2 illustrates a mini example of news article text cube, with 3 dimensions (Time, Location and
Topic) and 9 documents d1–d9. The Time dimension is derived from extrinsic attribute but Location and Topic
are extracted by information extraction as in [13]. We pick 7 non-empty cells, where the top four are leaf cells
without ‘∗’ dimensions, e.g., (Jan 2012, China, Economy, {d1, d2}). The root cell (entire corpus) is represented
as (∗, ∗, ∗, {d1–d9}).

Text cube provides a framework for organizing text documents using meta-information. In particular, the cell
space defined above embeds the inter-connection between different subsets of text. To capture those semantically
close cells, we define context of a cell c as a composition of three parts.

76

Dimensions Text Data
Year Location Topic DOC
2011 China Economy {d1, d2}
2012 China Economy {d3, d4, d5}
2012 US Gun Control {d6, d7}
2013 US Economy {d8, d9}
∗ China Economy {d1, . . . , d5}

2012 ∗ ∗ {d3, . . . , d7}
∗ ∗ ∗ {d1, . . . , d9}

Figure 2: Mini Example of NYT Corpus

Figure 3: Hierarchy of Topic

Figure 4: Context of cell ⟨China, Economy⟩

Definition 2 (Cell Context): The context of cell c = ⟨at1 , . . . , atk⟩ is defined as P(c)
∪

S(c)
∪

C(c), where:

• Parent set is defined as P(c) = {⟨at1 , . . . , par(ai), . . . , atk⟩|
i ∈ t1, . . . , tk}. Each parent cell is found by changing exactly one non-∗ dimension value in cell c into its
parent value;

• Children set is defined as C(c) = {c′|c ∈ P(c′)}. Each child cell is found by either changing one ∗ value into
non-∗ or by replacing it by one of the child values; and

• Sibling set is defined as S(c) = {c′|P(c)
∩

P(c′) ̸= ∅}. Each sibling cell must share one parent with cell c.

Example 4. Figure 4 illustrates the partial context of cell c = ⟨China, Economy⟩. The parent set P(c) con-
tains ⟨China⟩ and ⟨Economy⟩, sibling set S(c) has ⟨China, Politics⟩ and ⟨US, Economy⟩ and children C(c)
contains ⟨Shanghai, Economy⟩ and ⟨China, Stocks & Bonds⟩.

2.2 Cube Perspective of Text Corpora

Organizing a text corpus into a text cube provides various possibilities to substantial improve user experience in
browsing, retrieving, and analyzing large scale textual data.

• Enriched horizon. Multi-dimensional structure grants analysts with an enriched mine of knowledge to be
discovered. For example, without a multi-dimensional structure, an analyst can either perform statistics on the
entire corpus, or simply perform statistics on a single documents. However, when the corpus is organized as

77

a text cube, the analyst is able to study the connection between various statistics of documents and different
categories. For example, one may check whether there is a correlation between the frequency of different
words and the publishing time in a news corpus, to understand how the usage of a word varies. Similarly, one
can also examine the key phrases of a certain category of documents (e.g. news articles about “Brazil”) to
obtain a better picture of the subset of interest. The additional meta-information not only allows analysts to
deepen their understanding on different facets of the document data sets, but also provides them with better
insights of the dimensions per se.

• Contextualized analysis. Multi-dimensional structure also enables the analysts to conduct analysis with a
certain context. A analyst may be interested on a specific subset of documents, for example, news articles
about “China Economy”. However, documents from other relevant subsets may also be useful in better under-
standing this concept, like “Japan Economy” or “US Economy”. Generally, they help analysts in comparative
studies, to better understand the features the document subset shares with other subsets, and the features
unique to the subset. As a more specific example, suppose an analyst is interested in summarizing key phrases
of “China Economy”, it is helpful to remove phrases overlapping with “Japan Economy” or “US Economy”,
such as “banking” or “currency”, as they do not distinguish the subset of interest from others.

2.3 Phrase-based Summarization

This paper deals with the problem of mining representative phrases to serve as summary, in particular within
multi-dimensional text cubes. A phrase is a multi-word sequence served as an integral semantic unit. The
representative phrases for a cell, are the phrases that characterize the semantics of the selected documents.
There is no universally accepted standard of being representative. Here we operationalize a definition in terms
of three criteria.

• Integrity: An integral phrase must satisfy two conditions: (i) the multiple words in a phrase collocate together
much more frequently than expected from random chance, and (ii) the phrase is a complete semantic unit,
rather than a subsequence of another equally-frequent phrase.

• Popularity: A phrase is popular if it has a large number of occurrences. Representative phrases for a cell, in
particular, should appear with some frequency within the documents of that cell. Very low frequency phrases
within a cell do not contribute substantially to its semantics and so are not considered representative.

• Distinctiveness: High-popularity phrases that appear in many different cells constitute background noise, e.g.,
‘earlier this month’ and ‘focus on’. Representative phrases should distinguish the target cell from its context,
therefore provide more salient information to help users filter the noise. Distinctiveness is particularly critical
in text cube scenarios, since analysts often navigate through the whole collection to find subsets of interest.
Non-distinctive phrases will appear in many cells and offer redundant information.

However, none of the previous work has followed all three criteria. MCX [12, 1] follows distinctiveness
(in a rough sense that only compare to the entire corpus) and ignores popularity and integrity. SegPhrase [5]
addresses integrity in global quality phrase mining, but the notion of popularity and distinctiveness with respect
to a target cell is not applicable to that problem setting. This paper proposes a new measure to evaluate all three
criteria.

Within the whole ranked phrase list, top-k representative phrases normally have higher value for users in text
analysis. As a further matter, the top-k query also enjoys computational superiority, so that users can conduct
fast analysis. For these reasons, we define the problem as follows.

Definition 3 (Multi-Dimensional, Phrase-Based Summarization in Text Cube): Given a multi-dimensional
text cube T C = (A1,A2, . . . ,An,DOC), it takes c = (a1, . . . , an,Dc) as a query, and outputs top-k represen-
tative phrases based on the integrity, popularity and distinctiveness criteria.

78

Table 1: Top-10 representative phrases for NYT queries
⟨US, Gun Control⟩ ⟨US, Immigration⟩ ⟨US, Domestic Politics⟩ ⟨US, Law and Crime⟩ ⟨US, Military⟩

gun laws immigration debate gun laws district attorney sexual assault in the military
the national rifle association border security insurance plans shot and killed military prosecutors

gun rights guest worker program background check federal court armed services committee
background check immigration legislation health coverage life in prison armed forces

gun owners undocumented immigrants tax increases death row defense secretary

assault weapons ban
overhaul of the

nation’s immigration laws
the national

rifle association
grand jury military personnel

mass shootings legal status assault weapons ban department of justice sexually assaulted
high capacity magazines path to citizenship immigration debate child abuse fort meade

gun legislation immigration status the federal exchange plea deal private manning
gun control advocates immigration reform medicaid program second degree murder pentagon officials

First, we acknowledge that these three criteria can all be subjective and relative, and it is difficult to find a
clear binary judgment whether each phrase satisfies all the criteria. Therefore, we decide to use a score between
0 and 1 to characterize the degree of each phrase in satisfying these criteria. For phrase p in cell c, we use
int(p, c) ∈ [0, 1], pop(p, c) ∈ [0, 1], and disti(p, c) ∈ [0, 1] to denote the three criteria, and r(p, c) to denote the
overall ranking score that combines these criteria.

To combine the above criteria, we first notice that they reflect conjunctive conditions that should be satisfied,
and one cannot replace the other. For example, popular word sequences may have quite low distinctiveness and
sometimes ill-formed surface (i.e., low integrity). Rare phrases that only occur once can be well distinctive.
Since every criterion is indispensable, any low score (i.e., near 0) in int(p, c), pop(p, c) or disti(p, c) should
result in a low rank for phrase p. Therefore, we design r(p, c) as the geometric mean of those three scores.

The three criteria are equally positioned, though one can assign different weights according to user’s re-
quirement in different applications. If one of the factors is close to 0, the geometric mean will be close to 0 as
well. Alternatively, one can use harmonic mean to have the same property, but the score will then be strongly
dominated by the weakest factor, which may be unfavorable because the role of the other two factors will be
neglected.

When we design the concrete measures for each criterion, we are aware that the input documents can be
any textual word sequences with arbitrary lengths, such as articles, titles, queries, tags, memos, messages and
records. A good design of the measures should generalize well to a variety of text data. Therefore, we tend to
use more statistical features and fewer linguistic features.

Now we discuss design principles that are more specific to the three criteria.

• Popularity and distinctiveness of a phrase are dependent of the target cell, while integrity is not. Hence,
int(p, c) can be simplified as int(p).

• Popularity and distinctiveness can be measured from frequency statistics of a phrase in each cell, while in-
tegrity cannot. To measure integrity, one needs to investigate each occurrence of the phrase and other phrases
to determine whether that phrase is indeed an integral semantic unit. We leverage SegPhrase [9] to compute
integrity.

• Popularity relies on statistics from documents only within the cell Dc, while distinctiveness relies on docu-
ments both in and out of the cell. We define the documents involved for distinctiveness measure calculation
as contrastive document set. More precise distinctiveness measure requires appropriate choice of contrastive
document set. In our particular algorithm design, sibling set S(c) is used as contrastive document set.

With the phrase ranking algorithm designed based on the aforementioned principles, it is applied on NYT
2013-2016 dataset and PubMed Cardiac data for quality evaluation. Our algorithm is referred as RepPhrase
and multiple baselines are referred as MCX [12], SegPhrase [9] and their combinations.
Case study on NYT. We show 5 real queries in NYT dataset and their representative phrase list in Table 1. Query
⟨US, Gun Control⟩ and ⟨US, Immigration⟩ are siblings, ⟨US, Domestic Politics⟩ is their parent cell. ⟨US,

79

Table 2: Top representative phrases for 5 cardiac diseases
⟨Cerebrovascular Accident⟩ ⟨Ischemic Heart Disease⟩ ⟨Cardiomyopathy⟩ ⟨Arrhythmia⟩ ⟨Valve Dysfunction⟩

alpha-galactosidase a Cholesteryl ester transfer protein Interferon gamma Methionine synthase Mineralocorticoid receptor
brain neurotrophic factor apolipoprotein a-I interleukin-4 ryanodine receptor 2 tropomyosin alpha-1 chain

tissue-type activator integrin alpha-iib interleukin-17a potassium v.g. h member 2 elastin
apolipoprotein e adiponectin titin inward rectifier channel 2 beta-2-glycoprotein 1

neurogenic l.n.h.p. 3 p2y purinoceptor 12 tumor necrosis factor beta-2-glycoprotein 1 myosin-binding protein c

Domestic Issues⟩, ⟨US, Law and Crime⟩ and ⟨US, Military⟩ are also siblings. For the first two queries, the
discovered phrases are specific to gun control and immigration. There are both entity names like the national
rifle association and guest worker program and event-like phrases like assault weapons ban and overhaul of
the nation’s immigration laws. In their parent cell ⟨US, Domestic Politics⟩, the top phrases cover various
children cell topics, including gun control, immigration, insurance act and federal budget. This list provides very
informative phrases that describe the major content. For the two siblings of ⟨US, Domestic Politics⟩ (last two
columns), the lists also cover the main entities involved and the major topics, e.g., second order murder, sexual
assault in the military, etc.. Also notice that, these top lists of representative phrases keep good balance between
short phrases and long phrases. That is mainly credited the consideration of both popularity and distinctiveness
without introducing bias to phrase length.
Case study on PubMed Cardiac data. In collaboration with UCLA BD2K team, we apply the phrase-based
summarization on PubMed cardiac publications. They provide 5 categories of cardiac diseases and a set of 300+
protein candidates. The goal of our summarization is to discover top contributing proteins for these disease cate-
gories. The results are shown in Table 2. These top proteins help medical scientists find more concrete direction
to look into and largely reduce the time spent on reading irrelevant publications. Since the distinctiveness is a
major criterion in our ranking, we note that non-informative proteins that are related to all diseases, like amy-
loid beta a4 protein, are not included in the top list. Another exciting discovery is that protein titin, a newly
discovered protein, is also listed as top protein for Cardiomyopathy.

(a) comparison to baselines (b) comparison to ablations

Figure 5: Phrase assignment accuracy

Phrase-to-cell assignment accuracy. The idea of this experiment is to quantify how many phrases among top-
k results of a cell indeed represent the semantics of that cell. We test eight queries. Four of them are 1-Dim
Queries, and the other four are 2-Dim Queries. To generate non-trivial test queries, we first randomly pick two
1-Dim Queries and two 2-Dim Queries; then for each picked query, we add the most similar sibling in terms

80

of both size and content as a paired query. To ease the labeling, for each pair of test queries, we first collect
all top-50 phrases generated by all the measures for both queries. For each phrase in the pool, we label it with
either one of the two cells which it best represents, or a ‘None’ label in three circumstances: 1) it is not a valid
phrase, 2) it is not relevant to either cell and 3) it is a background phrase that are shared by both cells. We then
measure the accuracy of phrase assignment by the average precision from top-5 to top-50 phrases. We show the
result in Figure 5(a) for baselines and Figure 5(b) for ablations.

In general, as k grows, the precisions of those measures go down. In Figure 5(a), RepPhrase has the
best precision and SegPhrase has the worst. Also, the difference of precision between RepPhrase and others
decreases as k grows. That is attributed to the limited number of true representative phrases. RepPhrase
successfully ranks these good phrases high, others gradually include them as k grows. Amongst all the baselines,
TF-IDF+Seg outperforms others since it is the only baseline that captures all three criteria. However, it still
loses to RepPhrase. Both use sibling cells as contrastive group, using classification probability (RepPhrase) as
distinctiveness performs better than using IDF (TF-IDF+Seg).

In Figure 5(b), we show the performance drop by removing one of the three criteria respectively. We notice
that RP (NO INT) has the best precision amongst all ablations and RP (NO DIS) has the worst, which indicates
the relative importance of the criteria: distinctiveness > popularity > integrity. One interesting comparison is
between MCX+Seg and RP (NO POP). These two can be viewed as two versions of standalone distinctiveness
measure with different contrastive document groups. Using dynamic sibling cells as contrastive group (RP (NO
POP)) performs better than using the static entire collection (MCX+Seg), especially on the top phrases. It
further justifies the choice of using dynamic background over static background.

3 Platform for multi-dimensional text analysis

As discussed above, converting text corpora into multi-dimensional text cubes provides various benefits, in-
cluding i) flexibility of user queries that captures insights with different granularities and ii) contextualized
analysis that is able to discover comparative insights. To support such general cube-based analytical tasks,
we proposed and implemented the generalized infrastructure. Like the phrase-based summarization task, other
multi-dimensional analytical tasks share similar computational and operational characteristics.
Computational Characteristic: given a pre-defined dimension structure, similar to traditional OLAP-
operations, proper pre-computation (called materialization) helps to speedup online user queries and therefore
supports real-time query responses. Number of possible multi-dimensional queries are often exponential, thus
it is necessary to intelligently select partial cells to materialize. Since these text analytical measures are more
complicated than traditional distributive and algebraic measures, we normally need to materialize intermediate
result and require reasonable amount of online computation after query is issued. Such hybrid computational
scheme is normally shared by various analytical tasks.
Operational Characteristic: different analytical tasks share the same input/output format. Normally, the
system takes a multi-dimensional user query as input, i.e., ⟨China, Economy⟩, and returns structured textual
result, i.e., top-k phrases in phrase-based summarization and k-topics in cube-based topic modeling. Therefore,
many operations including indexing, retrieval and etc. can also be shared by different tasks.

Therefore, we created a platform for general multi-dimensional text analysis. It provides a generalized
platform that can easily import any collection of free text and structured data, such as news data, aviation reports
or academic papers, extract entities, construct the text-rich data cube and support powerful search and mining
functions. For structured data, multidimensional data cube can be constructed easily. For text-intensive data
with minimally predefined structured information (e.g., news data), natural language and information extraction
tools can be used to extract entities of multiple types such as person, location, organization, time, and event.
This platform provides a tremendous opportunity to conduct multi-dimensional analysis on text and structured
data in powerful and flexible ways.

81

Figure 6: System Architecture of the Platform

System Architecture. The platform is designed as shown in Figure 6. It consists of the following modules: (1)
Data Uploading and Preparation, which pre-processes the free text corpus from user’s uploading and converts
it into a text-rich data cube with term network and topic hierarchy extracted; (2) Indexing and Materialization,
which builds indexing and partial materialization results for keyword search, top cell finding, single dimension
distribution and hierarchical topic modeling; (3) Query-Based Search and Mining Module, which processes
user-queries (both search and analysis queries) by parsing the query, selecting and executing appropriate search
or mining module (which searches or mines on the constructed text-rich data cube to derive results); and (4)
result presentation by Visualization and Interpretation of the search/mining processes and results.

The platform reveals another advantage of converting text corpora into multi-dimensional text cubes, that is
the power of real-time text analysis. The rich structure embedded in text cubes empowers smart indexing and ma-
terialization that enables real-time processing of any multi-dimensional query. Without such multi-dimensional
structure, it is challenging to support real-time text analysis on arbitrary portion of large text corpora.

3.1 Real-time Phrase-based Summary Generation

In this section, we use phrase-based summarization as example task to introduce how the offline/online compu-
tation scheme is implemented.
Utility-Guided Materialization. In offline computation, we extend the GreedySelect algorithm [8] to our task
and develop the utility-guided partial materialization. The algorithm first conducts a topological sorting by
the parent-descendant relationship in the cube space. Then it traverses the cells in the bottom-up order. This
order ensures that all cells used for aggregating the current cell must have been examined, so the dynamic
programming of cost estimation can proceed. For each cell, we do not simply materializing all the required cells
(all siblings). Instead, it repeatedly attempts materialization of one sibling, and reevaluates the cost of querying
the target cell, until it falls below threshold. The order of choosing siblings affects how many siblings will be
materialized and how much storage cost is needed to meet the constraint. We use a utility function for each
sibling cell c′ to guide this process.
Optimized Online Processing. The vanilla online processing needs to compute the ranking measure for all
phrase candidates in a cell in order to sort them. The computation of the distinctiveness score can be expensive,

82

if the cell is not materialized. We propose an early termination and skipping technique to prune phrase candidates
that are impossible to be among top-k.

We evaluate the computational performance using the full NYT dataset 4-Dim Cube and 6-Dim Cube (both
have 4.7 million articles, 17.04 GB raw size, but different dimension numbers). For the offline computation, we
compare the following algorithms for materializing phrase-level statistics: 1) FULL (full materialization), 2)
LEAF (leaf materialization), 3) GREEDY (in [8]) and UTILITY 1-5 (with 5 different utility functions).

Table 3: Space-time trade-off of LEAF and FULL
4-Dim Cube 6-Dim Cube

Space (GB) Time (s) Space (GB) Time (s)
LEAF 0.68 73.2 26.76 3407.5

FULL 20.17 0.86 706.0 0.89

(a) 4-Dim Cube (b) 6-Dim Cube

Figure 7: Time-space balance

Figure 7(a) and 7(b) shows the space-time trade-off on 4-Dim Cube and 6-Dim Cube. Since LEAF and
FULL strategies have quite exceptional worst query time or materialization space, the result is separately shown
in Table 3. We first notice that the space cost of LEAF is as low as 26.76 GB in 6-Dim Cube, but the worst query
time is more than 3,400 seconds. If we materialize every cell as in FULL, it has the minimized worst query time
but consumes about 706 GB to materialize. The other 6 strategies make trade-offs between time and space by
setting different latency constraint. We notice that all five utility-guided strategies outperform GREEDY, i.e.,
their curves are closer to the origin point. In particular, picking any of UTILITY 1-3 yields the best trade-off
that can take less than 10% of the storage compared to FULL and less than 50% of the GREEDY strategy with
same worst query time.

4 Conclusion

This paper proposes multi-dimensional text analysis in text cubes and an interesting application: multi-
dimensional phrase-based summarization. It mines top-k representative phrases based on three criteria: integrity,
popularity and distinctiveness. We propose a fine-grained distinctiveness assessment that considers phrase dis-
tributions across sibling cells. This is shown to be more effective than previous measures. Given computational

83

challenges imposed by these textual measures, we develop a generalized platform to support efficient online and
offline computational optimization. These can be generally applied to any measure in text cubes.

There are several possible extensions of the current problem to explore in future work. (1) Instead of out-
putting top-k phrases, one can design measures for generating top-k semantic clusters, which improve coverage
of the content and reduce semantic redundancy. (2) Users may make a sequence of OLAP queries before navigat-
ing to the target cell. One can study the patterns of such query sequence and develop semantic representations
accordingly. (3) One can further investigate the context-aware materialization problem. It will be useful to
develop algorithms with stronger theoretical guarantee in optimizing the time-space trade-off.

Beside phrase-based summarization, other useful text analytical problems can be studied within data cube
scenarios, including outlier detection, sentence-based summarization, and sentiment analysis. We believe the
multi-dimensional framework can help us achieve real-time, flexible and contextualized analysis for such tasks.

References
[1] S. Bedathur, K. Berberich, J. Dittrich, N. Mamoulis, and G. Weikum. Interesting-phrase mining for ad-hoc text

analytics. PVLDB, 2010.

[2] O. Ben-Yitzhak, N. Golbandi, N. Har’El, R. Lempel, A. Neumann, S. Ofek-Koifman, D. Sheinwald, E. Shekita,
B. Sznajder, and S. Yogev. Beyond basic faceted search. In WSDM, 2008.

[3] D. Dash, J. Rao, N. Megiddo, A. Ailamaki, and G. Lohman. Dynamic faceted search for discovery-driven analysis.
In CIKM, 2008.

[4] B. Ding, B. Zhao, C. X. Lin, J. Han, and C. X. Zhai. Topcells: Keyword-based search of top-k aggregated documents
in text cube. In ICDE, 2010.

[5] A. El-Kishky, Y. Song, C. Wang, C. R. Voss, and J. Han. Scalable topical phrase mining from text corpora. PVLDB,
(3), 2014.

[6] M. A. Hearst. Clustering versus faceted categories for information exploration. CACM, (4), 2006.

[7] A. Inokuchi and K. Takeda. A method for online analytical processing of text data. In CIKM, 2007.

[8] C. X. Lin and e. a. Ding, Bolin. Text cube: Computing ir measures for multidimensional text database analysis. In
ICDM, 2008.

[9] J. Liu, J. Shang, C. Wang, X. Ren, and J. Han. Mining quality phrases from massive text corpora. In SIGMOD, 2015.

[10] J. M. Pérez-Martı́nez, R. Berlanga-Llavori, M. J. Aramburu-Cabo, and T. B. Pedersen. Contextualizing data ware-
houses with documents. Decision Support Systems, 45(1):77–94, 2008.

[11] F. Ravat, O. Teste, R. Tournier, and G. Zurfluh. Top keyword: an aggregation function for textual document olap. In
Data Warehousing and Knowledge Discovery. Springer, 2008.

[12] A. Simitsis, A. Baid, Y. Sismanis, and B. Reinwald. Multidimensional content exploration. PVLDB, (1), 2008.

[13] F. Tao, G. Brova, J. Han, H. Ji, C. Wang, B. Norick, A. El-Kishky, J. Liu, X. Ren, and Y. Sun. Newsnetexplorer:
automatic construction and exploration of news information networks. In SIGMOD, 2014.

[14] F. Tao, J. Han, et al. Eventcube: multi-dimensional search and mining of structured and text data. In KDD, 2013.

[15] D. Tunkelang. Faceted search. Synthesis lectures on information concepts, retrieval, and services, (1), 2009.

[16] B. Zhao, X. Lin, et al. Texplorer: keyword-based object search and exploration in multidimensional text databases.
In CIKM, 2011.

84

Answering End-User Questions, Queries and Searches on
Wikipedia and its History

Maurizio Atzori
University of Cagliari
atzori@unica.it

Shi Gao
UCLA

gaoshi@cs.ucla.edu

Giuseppe M. Mazzeo
UCLA

mazzeo@cs.ucla.edu

Carlo Zaniolo
UCLA

zaniolo@cs.ucla.edu

Abstract

Knowledge bases (KBs) encoded using RDF triples deliver many benefits to applications and program-
mers that access the KBs on the web via SPARQL endpoints. In this paper, we describe and compare
two user-friendly systems that seek to make the universal knowledge of Web KBs available to users
who neither know SPARQL, nor the internals of the KBs. We first describe CANaLI, that lets people
enter Natural Language (NL) questions and translates them into SPARQL queries executed on DBpe-
dia. CANaLI removes the ambiguities that are often present in NL communication by requiring the use
of a Controlled NL and providing on-line knowledge-driven question-completion that shows alternate
correct interpretations. While CANaLI is a very powerful NL system, which placed first in the 2016 com-
petition on Question Answering over Linked Data QALD-6, even more powerful user-friendly interfaces
are available to users who enter questions and queries on web-browsers. In particular, the SWiPE sys-
tem provides a wysiwyg interface that lets users specify powerful queries on the Infoboxes of Wikipedia
pages in a query-by-example fashion. Thus, in addition to those supported in CANaLI, we now have
queries with (i) complex aggregates, (ii) structured conditions combined with keyword-based searches,
and (iii) temporal conditions on Cliopedia, a historical knowledge base that captures the evolution of
Wikipedia entities and properties. These systems demonstrate that semi-curated web document corpora
and their KBs are making possible the seamless integration through user-friendly interfaces of (i) NL
question answering, (ii) structured DB queries, and (iii) information retrieval. These were once viewed
as distinct functions supported by different enabling technologies.

1 Introduction

Knowledge bases (KBs) are playing a crucial role in many applications, such as text summarization and clas-
sification, opinion mining, semantic search, and question answering systems. In recent years, several projects
have been devoted to creating such KBs of general nature or specialized focus: [23, 34, 35, 36, 37, 39, 41, 42].
Of particular interest are KBs that are closely connected with curated or semicurated document corpora, such
as Wikipedia. In fact, most of Wikipedia pages use an Infobox to summarize key properties and values of
the entities (subjects) described in the pages. Now, DBpedia [43] has harvested and organized the information
contained in those Infoboxes into a KB using RDF [22] and provides a SPARQL endpoint for accessing the infor-
mation. The success of the encyclopedic Wikipedia and its associates KBs have motivated the start of thousands

Copyright 2016 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

85

of related projects that cover more specialized domains [38], and provide RDF KBs accessible via SPARQL or
other structured query languages.

However, the great majority of web users are neither familiar with SPARQL nor with the internals of the KBs
and are thus denied access to these KBs and the many benefits they offer. Therefore, the design of user-friendly
interfaces to deliver the riches of web KBs to all users has emerged as a challenging research priority of great
technical interest and practical significance. The importance of the topic has inspired a large body of previous
research and the launching of an annual competitions on Question Answering over Linked Data (QALD). In this
paper, we describe the Natural Language (NL) QA system CANaLI [25], that placed first in the 2016 competition
and also supports a KB-driven query completion function that assists users in formulating their questions.

While NL QA interfaces often provide the most comfortable communication medium for casual users, other
friendly interfaces are available through web browsers. In particular, the SWiPE system provides a wysiwyg
interface [2] where by-example structured queries (BEStQ) are entered as follows: (i) the user selects an example
page activating its Infobox, (ii) the user can now insert conditions into the relevant fields of the Infobox, and
(iii) these conditions are translated into a SPARQL query that is executed on the DBpedia KB. We will discuss
this system in some depth since it allows users to ask powerful queries and questions that are currently not
available in NL QA systems, including (a) queries requiring complex conditions and aggregates, (b) questions
combining structured queries with keyword searches, and (c) questions and queries on the history of the KB. We
will underscore the significance of these new types of questions and queries which suggest important new goals
for research and CANaLI’s extensions.

2 The Design of CANaLI

The importance and the difficulty of NL QA is witnessed by the large amount of research efforts devoted to this
problem [12, 13, 28]. Answering questions posed in NL requires to tackle several non-trivial sub-problems, such
as deriving the syntactic structure of the question, associating the phrases of the question with the resources of
the KB, and resolving the ambiguities that are quite common in these two tasks (inasmuch as different concepts
can be represented using the same phrase and several syntactical relationships are possible between the con-
stituents of the sentence). Ambiguity resolution is indeed a very hard problem, sometimes even for humans1,
and the domain knowledge, usually available to the speakers but not to the system, is fundamental in order to
disambiguate the query intention.

We designed our NL system, CANaLI [25], with the objective of avoiding ambiguities. This goal was
achieved by combining the use of a controlled natural language (CNL) interface with an interactive autocom-
pleter that guides the user in typing questions that are consistent with the underlying KB.

The use of a CNL [20] reduces the possibility of ambiguities in interpreting the syntactical relationships be-
tween the constituents of the sentence, by limiting the syntactical forms that can be accepted. The key challenge
of these systems is to be able to accept a language that is formal enough to be interpreted by machines with high
accuracy, and, at the same time, natural enough to be readily acquired by people as an idiomatic version of their
NL. The CNL used by CANaLI, besides being flexible enough to support the typical questions that users may
want to pose over a KB, enables a very desirable question autocompletion function: although it is very popular in
Web search engines, autocompletion is a novelty for CNL systems. Moreover, while autocompletion in search
engines is based on the popularity of searches, the CANaLI autocompletion strategy is based on the underlying
KB. This feature allows people to feel more comfortable while entering the questions, since they are (i) guided
in following the grammar accepted by CANaLI whereby users will only need minimal knowledge of the CNL
accepted by the system before they can start using it, and (ii) made aware that alternative interpretations are
possible for a question. Thus, while the main benefit of (i) is improving interaction with the CNL interface, (ii)
would be desirable in any NL system to forewarn the users of potential ambiguities in their questions.

1This problem can be exemplified by the sentence: “I saw the man on the hill with a telescope”.

86

Figure 1: The main states and transitions of the finite-state automaton used by CANaLI

2.1 Answering Simple Questions

Figure 1 depicts the main states and transitions of the finite-state automaton used by CANaLI2. We provide an
intuition of the operation of CANaLI by means of some simple examples. Let us consider the question: “Who
is the spouse of Barack Obama?”. The automaton is initially in the state S0, ready to accept tokens representing
the question start. The token “Who is the” represents a valid way to start a question; thus the automaton accepts
it, and moves to the state S1, where it is ready to accept a token representing either a property, or an entity, or
a class. In our example, the user enters “spouse”, that is a property recognized by CANaLI. Thus, the system
loops back to S1, ready to accept another property, entity, or class. In our example, the user enters “Barack
Obama” that, being an entity with the property “spouse,” is accepted by the system. In general, in order to be
consistent with the underlying KB (DBpedia, in our example), the user must enter entities that have a spouse,
otherwise the system will stop the user from progressing any further. However, to reach this ‘no progress’ point
the user must have ignored the set of previously generated suggestions, shown as valid completions of the user’s
input just under the input window: if the user selects and clicks on any such completion its text is added to the
input window. Going back to our example, the input of the token “Barack Obama” triggers the transition to S2,
where a range of new input tokens can be accepted, including the question mark, which marks the end of the
question, and launches the translation of the sequence of accepted tokens to a SPARQL query followed by its
execution.

Let us now consider another example: “What is the alma mater of the spouse of Barack Obama?”. In this
case, at S1, the user would input the property “alma mater”, whereby the system loops back to S1, where it
accepts the second property: “spouse”. CANaLI accepts this ‘chain’ of properties because it is consistent with
the underlying KB, which contains cases of “spouses” with an “alma mater”. Now, the system is still in S1,
where the question is completed like in the previous example. These two simple examples show how the four
basic states S0, S1, S2, and SF , support a large set of very common ‘factual’ questions asked by everyday users3.

More complicated but nevertheless common questions are those adding constraints, i.e., query conditions.
For instance, assume that the user wants to ask4: “Who are the spouses of politicians having birthplace equal
to United States?”. After the input of the fragment “Who are the spouses of” has taken the automaton to S1,
the token “politicians” is accepted as a class with “spouse” as a valid property, and this moves the automaton to
S2. In S2, CANaLI can accept “having”, and other uninterpreted connectives used as syntactic sugar, to move
to S3, where it will accept only a property related to a previously accepted token. In this case, “birthplace”
can be accepted since “spouses” have this property. This example illustrates the ambiguities that beset all NL
interfaces, no matter how sophisticated their parser is. In fact, also “politicians” have “birthplace” as a valid
property. CANaLI tackles this problem by means of its interactive autocompletion system, that displays in real
time all alternative interpretations that are compatible with the underlying KB. For instance, in the case at hand,
CANaLI will display the two alternatives shown in Figure 2.

2The system response, indeed, is based on the context provided by the question typed so far and the underlying ontology, rather than
just the current state and last token as a finite-state automaton would.

3Indeed, the factual questions asked most frequently on the web are definition questions (e.g., What is the EU?), that are even simpler.
4This provides a good example of the broken but effective English now supported by CANaLI.

87

Figure 2: The autocompleter of CANaLI suggesting properties that can be related to spouses/politicians and having thelast
word typed by the user, i.e., “birthplace”, in their label

Once the user has explicitly made a choice by clicking on the result corresponding to her intention, the
automaton moves to the state S4, that expects an operator of some kind. Thus, the user can input “equal to”, and
the automaton moves to state S5, that accepts the right-hand side of the constraint. In general, the right hand side
of a constraint can be an element of the KB or a literal, as long as it is a valid value for the previously accepted
property. In our example, the entity “United States” can be accepted, since it is a valid value for the property
“birthplace”. Now that the automaton is in S2 again, the user can specify more constraints, or input the question
mark, ending the question.

2.2 Experimental evaluation

A popular set of QA benchmarks has evolved as result of the annual QALD (Question Answering over Linked
Data) challenge [40]. The benchmarks consist of sets of NL questions, each associated with its gold standard
formulation in SPARQL, that produces answers against which the accuracy of the answers returned by the system
under test are evaluated. The evaluation uses precision, recall and the F-measure that combines the two as:
F = (2×Precision×Recall)÷ (Precision+Recall). CANaLI entered the 2016 contest, QALD-6. On DB-
pedia questions CANaLI ranked first with an F-measure of 88%—i.e., 13% above the second-placed system, and
with wider difference over the other competitors, including those that will be discussed in Section 5. CANaLI
also performed well on previous QALD testbeds, including those based on MusicBrainz [39] KB and the three
biomedical KBs: DrugBank [35], Diseasome [42], and SIDER [41]. In fact on these testbeds CANaLI performed
as well or better than other systems in terms of precision, recall and F-measure.

2.3 Interacting Using a Controlled Natural Language

Given that CANaLI proved so accurate, it is natural that one should wonder about the extent in which restrictions
imposed by the CNL makes it less user friendly than a full natural language interface. To answer this question,
we show in Table 1 a sample of questions taken from previous QALD challenges, and their rephrased forms that
were accepted by CANaLI.

Clearly, in all these questions, a reasonable rephrasing effort is demanded to the user. However, we found
that such a rephrasing becomes quite natural once users understands that CANaLI expect questions on concepts
or properties of concepts, expressed as nouns—plus optional specifications on properties that the concepts have.
For instance, “Who is the creator of Captain America” is a question about a noun and thus accepted by CANaLI,
whereas “who created Captain America” is not (see Q1). Likewise, “What is the height of Michael Jordan” is
proper rephrasing for “how tall is Michael Jordan” (Q2), and “What is the date of Halloween” is the one for
“when is Halloween” (Q3); likewise “What is the number of students of a University” is the rephrasing needed
for “how many students does a University have” (Q4). Q4 presents an apparent difficulty, given by the actual
name (used in DBpedia) of the Free University of Amsterdam. The autocompleter, in this case, helps the user
by suggesting the correct denomination of the university. Q5 shows how constraints must be specified by using
the properties. In this case, the “German lakes” are those lakes “having country Germany”. The same limitation
holds on questions that require counting. Thus, in Q6, in order to know “how often Nicole Kidman married”, we
need to count the number of values taken by this talented actress’ property “spouse”. Q7 shows an example of
questions with two constraints. The preposition “by”, quite common in natural language, is indeed ambiguous,

88

Original question Question rephrased for CANaLI
Q1 Who created the comic Captain America? Who is the creator of Captain America?
Q2 How tall is Michael Jordan? What is the height of Michael Jordan?
Q3 When is Halloween? What is the date of Halloween?
Q4 How many students does the Free University in Ams-

terdam have?
What is the number of students of VU University Am-
sterdam?

Q5 Which rivers flow into a German lake? What are the rivers flowing into lakes having country
Germany?

Q6 How often did Nicole Kidman marry? What is the count of spouse of Nicole Kidman?
Q7 Give me all books by William Goldman with more

than 300 pages.
Give me the books having author William Goldman
and number of pages greater than 300.

Q8 Does Abraham Lincoln’s death place have a website? Is there a website of death place of Abraham Lincoln?
Q9 Who is the youngest Darts player? Who is the darts player with the greatest birth date?
Q10 Give me all actors who were born in Paris after 1950. Give me the actors born in Paris having birth date

greater than 1950-12-31.

Table 1: Questions taken from QALD-3 and QALD-4 challenges and their rephrasing for CANaLI

and only the background knowledge of the fact that “William Goldman” is an author (and not and editor, for
instance) can disambiguate its corresponding meaning. The same principle holds for Yes/No questions, like Q8.
The user must ask if a concept there exists, in this case the property “website” of the property “death place” of
“Abraham Lincoln”. Q9 gives an idea of how superlatives must be rephrased. In this case, the “youngest” player
is a player with the “greatest birth date”. Q10, instead, shows how constraints on dates must be rephrased (the
autocompleter guides in typing dates in the standard format yyyy-MM-dd).

This analysis allows us to conclude that most questions require some reformulation in order to be accepted
by CANaLI. However, we observe that (i) users quickly gain the needed skills once they start working with
the system, and (ii) the introduction synonyms for concepts in the KB, and the addition of few simple rules to
extend the grammar recognized by the system can go a long way toward making the interface of the system
more natural, while still avoiding ambiguities. While these improvements are likely to confirm CANaLI as a
leading CNL for DBpedia and, RDF KBs in general, the SWiPE system discussed next, can supports advanced
queries requiring (i) complex aggregates, (ii) a mixture of structured and keyword conditions, and (iii) historical
queries, i.e., queries that pose difficult research challenges for NL systems.

3 SWiPE: Query by Example on Wikipedia

The very Infoboxes that have been the source of the knowledge stored in DBpedia can be turned into active
forms on which powerful queries can be specified using the By-Example Structured Query (BEStQ) approach
of SWiPE [2, 3].

As a running example, let us suppose a user from Minneapolis is looking for a Law School with some de-
sired requirements. She can start her search from the Wikipedia page of any Law school containing the Infobox:
for instance the University of Minnesota Law School page. Then, by clicking on the SWiPE bookmarklet5 the
original Wikipedia page will be refreshed, showing the same page with the Infobox turned into an active form
that allows the user to enter the desired conditions (as shown in Fig. 3(a)), plus a personalized toolbar showing
at the bottom of the page (called SWiPE bottom bar) with additional features. In our case, the user wants to
find Law schools located in New York with a high bar pass rate. She will then enter >85% as a first constraint
for the Bar pass rate and New York in the Location field (replacing the original values in the Infobox). It is

5A special browser bookmark that actively interacts with the current web page

89

(a)

(c)
(b)

Figure 3: A QBE query on a university Infobox (a), its results (b) and a SPARQL query generated by SWiPE (c)

worth noting that the Location field in Wikipedia is recognized to correspond to the state property in DBpe-
dia, as shown in the popup tooltip in Fig. 3(a) just before overwriting the original value “Minnesota” with the
user constraint “New York”. SWiPE also features an autocompletion-like functionality to help the user with the
proper spelling for values6. The user may also choose to sort results based on some fields, for instance the US-
NWR ranking. Upon clicking on the green lens button available in each field and also in the Bottom Bar, SWiPE
converts this two-line BEStQ specification into the equivalent (22-line long) SPARQL query. This is made pos-
sible by our on-the-fly algorithm that matches Infobox labels and values to the appropriate DBpedia RDF prop-
erties (http://dbpedia.org/property/state and http//dbpedia.org/ontology/barPassRate in
the case at hand), greatly simplifying the user search experience by removing the burden of manually finding
the correct properties and property names in the underlying KB. Finally, the SPARQL query is executed against
our instance of DBpedia, on a Virtuoso server; results are then reformatted by SWiPE in a Wikipedia-like layout
and presented to the user as shown in Fig. 3(b).

Since the original SWiPE prototype presented in [2], a number of improvements and new features have been
added, including joins, aggregates, and the keyword-based retrieval capabilities of free-text search engines. Joins
allow to input constraints on a different page w.r.t. the example pages used to start the search. For instance, in
the previous example, the user may want to find only Law Schools belonging to universities established before
1900 and with a faculty size above 2000. These constraints will be entered on another example page, related to
a University, and results will be filtered accordingly. The first page of the returned results also shows an Infobox
that summarizes the query, and provides links to meta-information, such as the SPARQL query used, which for
the example at hand is shown in Fig. 3(c).

Another example that we have frequently used [5] is that of finding cities with certain properties. A mobile
6This is an important feature to avoid unexpected empty results for constraints such as “USA” not matching DBpedia values stored

as “United States”

90

version has been also developed [5], simplifying geolocation searches by featuring a touch interface for with
location-based ranges queries. For that, our user only needs to find in Wikipedia the page of a familiar city,
and then replace in its Infobox the existing values of the desired properties with conditions that specify the
query. This is the well-known Query-By-Example (QBE) approach that is credited with bringing ease-of-use
to relational databases and is even more desirable here, since it shields the users from having to discover the
internal names and organization of DBpedia. It is also quite powerful, since it supports the specification of
queries involving joins and aggregates.

Moreover, the user can still enter text conditions in the standard search box of Wikipedia to find the pages that
satisfy both the structured query and the standard keyword-based retrieval made popular by web search engines.
Our experiments show that this combination yields very powerful queries producing selective high-precision
answers [3]. In order to detail the combination of keyword-based and structure, in addition to the two conditions
previously entered in the Infobox, our prospective law student may also enter the words “ivy league” in the
search box shown in the SWiPE bottom bar. As a result, SWiPE will provide the list of all Wikipedia pages
satisfying both the structured conditions in the Infobox and those in the search box. Therefore, the last two
entries in Figure 3(b) will no longer be in the answer, since ‘New York University’ and ‘Pace University’ are not
in the Ivy League. This simple example clarifies the dramatic improvements in precision and recall delivered
by BEStQ searches with respect to traditional keyword-only searches. In fact we claim that the combination of
structured queries and keyword based searches routinely delivers accuracy levels (i.e., F-measure values) that
are very hard to achieve with keywords alone, even when long-tail keywords and related optimization techniques
are used. For instance, by using the following keyword combination “Ivy League Law Schools New York bar
pass rate,” major search engines return hundreds of thousands of results, while Wikipedia gets a total of 53
answers, including some very surprising ones such as ‘Christmas’, ‘List of the Cosby Show episodes’ and ‘List
of Batman: The Brave and the Bold Character’, each of which contains all the specified keywords but is totally
unrelated to the topic of interest.

In addition to supporting structured and keyword searches combined, the BEStQ approach supports well
sorting, aggregate queries and historical queries that are not easily supported in CANaLI. While aggregate
queries are simply implemented using an approach similar to that used in QBE, support for historical queries
required nontrivial temporal extensions, that are described in [27] and summarized in the next section.

4 Cliopedia and SPARQLT: Managing the History of KBs

As the real world evolves and the KBs are updated, the history of entities and their properties becomes of great
interest. Table 2 shows the edit history of some attributes in Wikipedia Infoboxes. Such updates are quite
common in many properties: e.g., on the average each value in the population property of the city pages is
updated more than 7 times. This is not specific to Wikipedia, but also happens in other knowledge repositories
such as Yago [23] and GovTrack [37]. Thus, users need query tools of comparable power and usability to explore
such histories and flash-back to the past.

There is in fact a growing recognition of the importance of managing and querying the evolution history
of knowledge bases in the technical literature, and several approaches [14, 21, 29, 30] have been proposed to
support the queries on temporal RDF datasets.

In [8, 9] we proposed a vertically integrated system, RDF-TX (RDF Temporal eXpress), that efficiently sup-
ports the data management and query evaluation of large temporal RDF datasets while simplifying the temporal
queries for SPARQL programmers and consequently, for end-user interfaces facilitating the expression of the
same queries. To support the queries over the evolution history of KBs, we proposed efficient storage and index
schemes for temporal RDF triples using multiversion B+ tree [4] and implemented a query engine which achieves
fast query evaluation by taking advantage of comprehensive indices. We also built a query optimizer that gener-
ates efficient join orders using a cost-based model that exploit statistics collected on temporal RDF graphs. Thus,

91

Category Property Average Number of Updates
Software Release 7.27

Player Club 5.85
Country GDP(PPP) 11.78

City Population 7.16

Table 2: Statistics of Wikipedia Infobox Edit History

in RDF-TX, we provide a general and scalable solution for the problem of managing and querying massive
temporal RDF by providing:

• A user-friendly BEStQ interface to view and query the history of knowledge base. Users can specify
queries by entering simple conditions using a point-based temporal model. The system then translates
these queries into equivalent SPARQLT queries described next.

• SPARQLT, a temporal extension of the structured query language SPARQL which simplifies the expression
of temporal joins and eliminates the need for temporal coalescing.

• An efficient main memory system RDF-TX for managing temporal RDF data and evaluating SPARQLT

queries using a multiversion B+ tree (MVBT). This stores indexed temporal RDF triples in combination
with an effective delta encoding scheme to reduce the storage overhead. RDF-TX also features a query
optimizer that generates efficient join orders using the statistics of temporal RDF graphs.

4.1 Temporal RDF and By-Example Temporal Queries

Temporal RDF Model. RDF KBs can be presented as (subject, predicate, object) triples, which work well for
static information, but not for the evolution history. For that we instead use the Temporal RDF model [14] that
extends the RDF Graph with temporal elements. In the temporal RDF model, each (s, p, o) triple is annotated
with a time element, producing the quadruplet (s, p, o, t). Table 3 shows the temporal RDF triples for Wikipedia
Infobox of San Diego.

Consider the fact that Bob Filner served as the mayor of San Diego from December 4, 2012 to August
30, 2013. This fact can be represented as: ⟨San Diego, mayor, Bob Filner⟩:[12/04/2012 . . . 08/30/2013], while
[12/04/2012 . . . 08/30/2013] represents all the days between 12/04/2012 and 08/30/2013. DAY provides the
basic granularity in out temporal model.

Note that we adopt the point-based temporal model that dovetails with our BEStQ interface and simplifies
the expression of temporal queries at the logical level; however at the physical level we retain the interval
representation for efficiency reasons. Queries on the point-based model can be easily mapped into equivalent
ones on the interval-based model for execution.
By-Example Temporal Queries. The Wikipedia Infobox of San Diego, clearly shows the current mayor, but
not the past mayors, nor it allows us to find who was the mayor at certain date, nor to find the total population
of the city when Bob Filner was mayor. To provide answers to these and similar questions, we have developed
a system that extends Wikipedia Infobox with historical information and extend SPARQL and SWiPE with the
ability of asking such temporal queries.

Our system support historical Infoboxes, where once a field is selected a pull down menu opens showing the
history of that field. Thus, by selecting the mayor field in the Infobox the user actually sees its history with the
last four mayors of San Diego. But in addition to viewing former values in the history of the entity properties,
our user might enter query conditions in the fields of the Infobox that are identified as active fields by their
highlighted backgrounds. Then, say that our user who saw the previous mayor in the pull-down menu of San
Diego, now wants to find its population at the time when Bob Filner served as the mayor. For that, the user

92

Predicate Object Timestamp

Mayor
Bob Filner 12/04/2012 . . . 08/30/2013

Todd Gloria 08/31/2013 . . . 03/02/2014
Kevin Faulconer 03/03/2014 . . . now

Population
1322553 12/19/2012 . . . 10/01/2013
1307402 10/02/2013 . . . 04/29/2014
1345895 04/30/2014 . . . 05/21/2015
1381069 05/22/2015 . . . now

Table 3: Temporal RDF Triples for San Diego

Figure 4: What was the population of San Diego when Bob Filner was the mayor?

can use the page of any city, including San Diego which is shown in Figure 4. Since all the fields are editable,
the user enters “Bob Filner” in the Government Mayor and variable “?pop” in City Population and these two
Infoboxes are set with the same temporal variable “?t” to indicate the temporal join.

Then our system generates and executes a SPARQLT query, as discussed later. Again, it is important to
remember that this query could have been entered in the Infobox of any city, and indeed since in our query
conditions “San Diego” is not specified, our query will return the population of every city where Bib Filner
served as the mayor.

4.2 SPARQLT Query Language

To query the temporal RDF graphs, we propose a temporal extension of SPARQL called SPARQLT. A SPARQL

query consists of triple query patterns {s p o}, which corresponds to the RDF model {subject predicate ob-
ject}. Similarly, SPARQLT query is a set of SPARQLT query patterns {s p o t} where t refers to the temporal
element in temporal RDF model. SPARQLT supports all kinds of temporal queries and Allens operations [1].
Temporal selection queries that retrieve information about a previous snapshot of the KB can be easily expressed
in SPARQLT using one query pattern, as shown in Example 1.

EXAMPLE 1. When did Bob Filner served as the mayor of San Diego.
SELECT [?t]

{San Diego mayor Bob Filner ?t}

93

More complex queries often use temporal joins; in SPARQLT joins are expressed by query patterns that share the
same temporal element. For finding the population of San Diego when Bob Filner was mayor we write:

EXAMPLE 2. Find the population of San Diego when Bob Filner served as the mayor of San Diego.
SELECT ?pop [?t]
{San Diego mayor Bob Filner ?t .
San Diego population ?pop ?t . }

SPARQLT also introduces a set of built-in functions to faciliate the expression of complex temporal condi-
tions, such as TSTART and TEND. Because of lack of space, we refer our reader to [9] for more query examples
and complete semantics.

4.3 RDF-TX Query Engine

Previous works [14, 21, 29, 30] rely on relational databases/RDF engines to store and query temporal RDF triples,
which results in complex and inefficient evaluation for temporal queries. Moreover, the indices for accelerating
the processing of temporal queries proposed in the past only support a limited set of temporal queries. These
limitations have been overcome by RDF-TX, which integrates indexing and query evaluation as follows:

Storage and Index. We choose in-memory MVBT indices to store temporal RDF and support fast SPARQLT

query evaluation. MVBT is a general temporal index that supports fast data update and range search. However,
it comes with the large storage overhead, which is resolved in RDF-TX by applying delta compression between
index entries.

Query Evaluation. Given a SPARQLT query, we first parse the query and generate an execution plan in
which every SPARQLTquery pattern is converted into a query pattern (k, i) on MVBT to retrieve all the temporal
RDF triples with keys in range k and intervals overlapping interval i.

Optimization. In complex queries with multiple query patterns, inefficient execution plans may lead to
large intermediate results and significantly slow down execution. Thus we introduce a query optimizer which
use statistical estimations to find efficient join orders for complex queries. We introduced a temporal aggregate
index, CMVSBT, which provides fast statistics estimation with a small storage overhead. Then, using CMVSBT,
the optimizer employs the bottom-up dynamic programming strategy [26] to find the cost-optimal query plans.

5 Related Work

The problem of supporting user-friendly interfaces to DBpedia and other KBs has been widely recognized as
important and attracted many research approaches, which because of space limitations we can only mention in
a very succinct and incomplete fashion.

Approaches such as exploratory browsing [17] and faceted search [15, 16] allow users to formulate complex
selection conditions, whereas SWiPE can also support joins and aggregates [2]. The NL approach is the one that,
so far, has received most attention [12, 13, 20, 28]. These systems are remarkable, not only because of their num-
ber, but also because they use techniques that are quite diverse and tested at very different levels of F-measure on
QALD testbeds. Among such systems we find Xser [32], gAnswer [33], CASIA [19], Aqqu [18], Intui3 [6],
RTV [10], besides Squall2sparql [7] where the sentences must be annotated by users, and GFMed [24] which
is a CNL system specialized for the biomedical domain.

There has also been a significant amount of previous work on historical KBs. For instance, Gutierrez et
al. [14] extended the RDF model with time elements and several approaches [11, 21, 29, 30] have been proposed
to support the queries on temporal RDF datasets. Most previous works employ relational databases and RDF en-
gines to store temporal RDF triples and rewrite temporal queries into SQL/SPARQL for evaluation. The languages
proposed in those works use an interval-based temporal model which leads to complex expressions for temporal

94

queries, e.g., those requiring joins and coalescing [31]. At the physical level, previous approaches exploit in-
dexes such as tGrin [29] to accelerate the processing of simple temporal queries, but they do not explore the use
of general temporal indices and query optimization techniques.

6 Conclusions and Further Work

In this paper, we have described systems that let non-programmers access RDF KBs using either NL or friendly
by-example interfaces. These systems integrates into simple and powerful framework the functions of question
answering, query computation, and keyword-based document searching, which were traditionally viewed as
separate functions supported by different technologies. Our current work focuses on improving the naturalness
of CANaLI by careful addition of synonyms, while making sure that no ambiguity is introduced. Extensions to
include keywords in NL questions, and to support historical questions are also under investigation. Combining
structured Infobox conditions with CNL queries represents a topic for longer term research.

7 Acknowledgements

This research was supported in part by a 2015 Google Faculty Research Award.

References
[1] J. F. Allen. Maintaining Knowledge About Temporal Intervals. Commun. ACM, Vol. 26(11):832–843, 1983

[2] M. Atzori and C. Zaniolo. SWiPE: Searching WikiPedia by Example. WWW (Companion Volume), 309–312, 2012.

[3] M. Atzori and C. Zaniolo. Expressivity and Accuracy of By-Example Structured Queries on Wikipedia. WETICE,
239–244, 2015.

[4] B. Becker, S. Gschwind, T. Ohler, B. Seeger, and P. Widmayer. An Asymptotically Optimal Multiversion B-tree
VLDB, 264–275, 1996

[5] A. Dessi, A. Maxia, M. Atzori and C. Zaniolo. Supporting semantic web search and structured queries on mobile
devices. Semantic Search over the Web (SSW 2013), VLDB 2013 Workshops, 5:1–5:4, 2013.

[6] C. Dima. Answering Natural Language Questions with Intui3. Working Notes for CLEF 2014 Conference, 1201–
1211, 2014

[7] S. Ferré. SQUALL: The expressiveness of SPARQL 1.1 made available as a controlled natural language. Data
Knowledge Engineering, Vol. 94(B): 163–188, 2014

[8] S. Gao, M. Chen, M. Atzori, J. Gu, and C. Zaniolo. SPARQLT and its User-Friendly Interface for Managing and
Querying the history of RDF knowledge base. ISWC, 2015

[9] S. Gao, J. Gu, and C. Zaniolo. RDF-TX: A Fast, User-Friendly System for Querying the History of RDF Knowledge
Bases. EDBT, 269–280, 2016

[10] C. Giannone, V. Bellomaria, and R. Basili. A HMM-based Approach to Question Answering against Linked Data.
Working Notes for CLEF 2013 Conference, 2013

[11] F. Grandi. T-SPARQL: a TSQL2-like Temporal Query Language for RDF. GraphQ, 21–30, 2010

[12] B. F. Green Jr., A. K. Wolf, C. Chomsky, and K. Laughery. Baseball: An Automatic Question-answerer. Western
Joint IRE-AIEE-ACM Computer Conference, 1961.

[13] P. Gupta and V. Gupta. A Survey of Text Question Answering Techniques. International Journal of Computer
Applications, Vol. 53(4):1–8, 2012

[14] C. Gutierrez, C. A. Hurtado, and A. A. Vaisman. Introducing Time into RDF. TKDE, Vol 19(2):207–218, 2007

95

[15] J. Guyonvarch and S. Ferré. Scalewelis: a Scalable Query-based Faceted Search System on Top of SPARQL End-
points. Working Notes for CLEF Conference , 2013

[16] R. Hahn, C. Bizer, C. Sahnwaldt, C. Herta, S. Robinson, M. Bürgle, H. Düwiger, and U. Scheel. Faceted Wikipedia
Search. Int. Conf. on Business Information Systems, 2010

[17] L. Han, T. Finin, and A. Joshi. Schema-free structured querying of DBpedia data. CIKM, 2012

[18] B. Hannah and H. Elmar. More Accurate Question Answering on Freebase. CIKM, 1431–1440, 2015

[19] S. He, Y. Zhang, K. Liu, and J. Zhao. CASIA@V2: A MLN-based Question Answering System over Linked Data.
Working Notes for CLEF 2014 Conference, 1249–1259, 2014.

[20] T. Kuhn. A Survey and Classification of Controlled Natural Languages. CoRR, abs/1507.01701, 2015

[21] E. Kuzey and G. Weikum. Extraction of Temporal Facts and Events from Wikipedia. TempWeb, 25–32, 2012

[22] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S. Hellmann, M. Morsey, P. van Kleef,
S. Auer, and C. Bizer. DBpedia - A Large-scale, Multilingual Knowledge Base Extracted from Wikipedia. Semantic
Web Journal, Vol. 6(2):167–195, 2015

[23] J .Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum. YAGO2: A Spatially and Temporally Enhanced Knowl-
edge Base from Wikipedia Artif. Intell., 28–61, 2013

[24] A. Marginean. GFMed: Question Answering over BioMedical Linked Data with Grammatical Framework. Working
Notes for CLEF 2014 Conference, 1224–1235, 2014

[25] G. M. Mazzeo and C. Zaniolo. Answering Controlled Natural Language Questions on RDF Knowledge Bases.
EDBT, 608-611, 2016

[26] G. Moerkotte and T. Neumann. Analysis of Two Existing and One New Dynamic Programming Algorithm for the
Generation of Optimal Bushy Join Trees without Cross Products. VLDB, 930–941, 2006

[27] H. Mousavi, M. Atzori, S. Gao, and C. Zaniolo. Text-Mining, Structured Queries, and Knowledge Management on
Web Document Corpora. SIGMOD Record 43(3), 48–54, 2014

[28] S. R. Petrick. Natural Language Based Computer Systems. IBM J. Res. Dev., Vol. 20(4):314–325, 1976

[29] A. Pugliese, O. Udrea, and V. S. Subrahmanian. Scaling RDF with Time. WWW, 605–614, 2008

[30] J. Tappolet and A. Bernstein. Applied Temporal RDF: Efficient Temporal Querying of RDF Data with SPARQL.
ESWC, 308–322, 2009

[31] D. Toman. Point vs. Interval-based Query Languages for Temporal Databases. PODS, 58–67, 1996

[32] K. Xu, Y. Feng, and D. Zhao. Answering Natural Language Questions via Phrasal Semantic Parsing. Working Notes
for CLEF 2014 Conference, 1260–1274, 2014

[33] L. Zou, R. Huang, H. Wang, J. X. Yu, W. He, and D. Zhao. Natural language question answering over RDF: a graph
data driven approach. SIGMOD, 313–324, 2014

[34] http://www.cyc.com/platform/opencyc

[35] http://www.drugbank.ca/

[36] http://www.geonames.org/

[37] https://www.govtrack.us/

[38] http://linkeddata.org/

[39] http://musicbrainz.org/

[40] http://www.sc.cit-ec.uni-bielefeld.de/qald

[41] http://sideeffects.embl.de/

[42] http://wifo5-03.informatik.uni-mannheim.de/diseasome/

[43] http://wiki.dbpedia.org/

96

http://www.cyc.com/platform/opencyc
http://www.drugbank.ca/
http://www.geonames.org/
https://www.govtrack.us/
http://linkeddata.org/
http://musicbrainz.org/
http://www.sc.cit-ec.uni-bielefeld.de/qald
http://sideeffects.embl.de/
http://wifo5-03.informatik.uni-mannheim.de/diseasome/
http://wiki.dbpedia.org/

IEEE Computer Society
1730 Massachusetts Ave, NW
Washington, D.C. 20036-1903

Non-profit Org.
U.S. Postage

PAID
Silver Spring, MD

Permit 1398

