Interactive Data Exploration via Machine Learning Models

Olga Papaemmanouil*, Yanlei Diao*, Kyriaki Dimitriadou*, Liping Peng*
* Brandeis University, jEUniversity of Massachusetts, Amherst
olga@cs.brandeis.edu, yanlei@cs.umass.edu, kiki@cs.brandeis.edu, Ippeng @ cs.umass.edu

Abstract

This article provides an overview of our research on data exploration. Our work aims to facilitate
interactive exploration tasks in many big data applications in the scientific, biomedical and healthcare
domains. We argue for a shift towards learning-based exploration techniques that automatically steer
the user towards interesting data areas based on relevance feedback on database samples, aiming to
achieve the goal of identifying all database objects that match the user interest with high efficiency.
Our research realizes machine learning theory in the new setting of interactive data exploration and
develops new optimizations to support “automated” data exploration with high performance over large
databases. In this paper, we discuss a suite of techniques that draw insights from machine learning
algorithms to guide the exploration of a big data space and leverage the knowledge of exploration
patterns to optimize query processing inside the database.

1 Introduction

Today data is being generated at an unprecedented rate. Every day large data sets are collected from sensors and
scientific instruments that monitor our environment. For instance, LSST [I7], a leading effort in astronomical
surveys, is expected to store 55 petabytes of raw imagery ultimately and the database catalog containing descrip-
tions of these objects and their observations is expected to approach 50 petabytes in size. Although data volumes
and the user community of big data sets continue to grow, the human ability to comprehend data remains as lim-
ited as before. Hence, in the “Big Data” era we are faced with an increasing gap between the growth of data and
the limited human ability to comprehend the data. Our work on data exploration aims to deliver new software
tools to bridge this increasing gap.

Database management systems (DBMSs) have been long used as standard tools to store data and query it to
obtain valuable information. However, traditional DBMSs are suited for applications in which the structure and
the content of the database, as well as the questions (queries) to be asked are already well understood by the user.
Unfortunately, these fundamental assumptions made by the DBMSs are becoming less true as the volume and
diversity of data grow. First, the structure and content of the database are hard to understand, even for database
experts. Second, finding the right question to ask is a long running complex task by itself, often requiring a great
deal of experimentation with queries, backtracking on the basis of query results and revision of results at various
points in the process.
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Therefore, we argue that fundamental new models and tools are needed to increase the usability of DBMSs.
Towards this direction, our work proposes “interactive data exploration” as a new service of a database man-
agement system, and it offers a suite of new algorithms, methods and optimizations to support this service for a
broad user community across science, healthcare, and business. Our approach leverages machine learning tech-
niques and offers new data management optimization algorithms to provide effective data exploration results as
well as high interactive performance over databases of big sizes.

2 Interactive Data Exploration: Overview & Challenges

To support the task of interactive data exploration, we introduce a new approach for system-aided exploration
of big data spaces that relies on automatically learning user interests and infers “classification” models that
retrieve data relevant to the user interests. To achieve this, we rely on an interactive learning approach that
iteratively requests user feedback on strategically collected data samples. In a nutshell, the user engages in a
“conversation” with the system by characterizing a set of data samples as relevant or irrelevant to his interest.
The user feedback is incrementally incorporated into the system and used to gradually improve the effectiveness
of the query steering process, that is, to lead the user towards interesting data areas and eventually generate a
classification model that precisely characterizes the set of data matching the user interest.

This interactive query steering process is depicted in Figure [. Initially, the user is presented with a sample
set selected to capture the diversity of the overall data exploration space. The iterative query steering process
starts when the user provides feedback on the relevance of these samples. Labeled samples are used as the train-
ing set of a classification model that characterizes the user interest, i.e., predicting the data objects relevant to the
user based on the feedback collected so far (Learning). Subsequent iterations aim to refine the characterization
of the user interest by exploring further the data space: it identifies promising data areas to be sampled further
(Space Exploration) and it retrieves the next sample set to show to the user. To achieve that, we leverage current
knowledge of the user interest as defined by the user model. New samples and the user feedback on them are
incorporated with the already labeled samples and a new user model is built in the next iteration. The above
steps are executed iteratively aiming to converge to a model that captures the user interest within acceptable
accuracy. The steering process is terminated when the classifier’s accuracy reaches a system-defined threshold
(i.e., on the number of labeled objects or convergence rate) or the user terminates the process explicitly.

In our framework, users are asked for feedback on data Interactive Data Exploration

objects. In the back-end, each object is mapped to a set of User
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tools. Data objects in our target applications include many X
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the feature space one uses for visualizing data objects for an-
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ically, while the front-end should visualize high-level fea- . Workloads Space
tures which humans can understand and interact with effec- LBy OFLDT
tively (i.e., pictures, maps, summarized values), the back-

end exploration is performed on an extended set of dimen- Figure 1: Interactive Data Exploration.

sions that include also lower level features. This distinction allows users to review data objects while concealing
the detailed feature (attribute) set of the underlying database. At the same time, it allows for more effective
exploration as the system learns user interests based on a set of features that is wider from the one humans can
perceive. Hence, our learning-based approach can provide more insightful descriptions of the user interests than
the one humans could generate manually.
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Research Challenges Towards realizing our vision for a learning-based data exploration system, we have
identified two main research challenges:

1. Fast Convergence: A core research issue is to decide our exploration areas and how to sample them for
objects to present to the user for further feedback. The challenge is to make such exploration decisions in
a way that the user model converges to the true model with the minimum number of labeled samples.

2. Interactive Performance: The learning and space exploration steps of each iteration must offer interactive
performance, e.g., complete within seconds, as the user may be waiting online. This challenge becomes
even more apparent in large databases.

Existing DBMSs are not designed to support multi-step exploration tasks with interactive performance over
large databases. At the same time, existing machine learning algorithms cannot solve our data exploration
problem either. Classification algorithms (e.g., [B]) can build the user model but do not deal with the question of
which data samples to show to the user and cannot be used to tackle the challenge for fast convergence. Active
learning solutions [?4] aim to identify the most promising data samples to label in order to maximize the learning
outcome while minimizing the user effort. However, our recent results [9] revealed that those algorithms are not
designed for interactive data exploration over large databases as they examine and rank all database objects
before they identify the best sample to show to the user. Therefore, they cannot offer fast convergence nor
interactive performance on big data sets.

In a nutshell, existing machine learning algorithms and database systems do not address the two main chal-
lenges of interactive data exploration. Hence, our research advocates a close synergy between machine learning
and database algorithms and offers methods and tools that address the above research challenges.

3 Learning-based Exploration Strategies

We next discuss two exploration strategies that target diverse types of user interests. One uses decision tree
classifiers for predicting linear interest patterns and the second one uses SVM (Support Vector Machine) models
for capturing non-linear interest patterns.

3.1 Decision trees: learning linear patterns

Decision-tree classifiers can be very effective in discovering linear patterns of user interests, i.e., interests cap-
tured by conjunctive and/or disjunctive of linear (range) predicates. We refer to such interests as relevant areas.
We designed an exploration framework [[7-Y] that leverages decision tree learning to efficiently produce highly
accurate user models. Decision trees are easy-to-interpret prediction models that describe the features character-
izing our relevant objects. Hence, the classification rules can be easily translated to simple boolean expressions
and therefore to query expressions that retrieve all objects predicted to be relevant to the user.

The exploration is performed in a d-dimensional space where each tuple represents a d-dimensional object
and the relevant areas are hyper-rectangles with up to d dimensions. The exploration space may include attributes
both relevant and irrelevant to the final expression that captures the true user interest. The steering process starts
when the user provides feedback on the relevance of the first set of retrieved samples. We assume a binary
feedback model where the user indicates whether a data object is relevant or not to her. The labeled samples are
used to train a decision tree which may use any subset of the d attributes of the exploration space to characterize
user interests. Each iteration refines the characterization of the user interest by exploring further the data space
trying to collect more insight on what the user likes as well as exploiting the knowledge we have collected.

Exploration. To explore our data space, our framework defines sampling areas over multiple exploration
levels. For a given level, we divide each normalized attribute domain into width ranges that cover a given
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percentage of the normalized domain, effectively creating a number of grid cells (Figure D(a)). The width of
each cell defines the granularity of the specific exploration level. A lower number leads to more grid cells of
smaller width per dimension. Each cell in our grid covers a certain range of attribute values for each of the d
exploration attributes. Therefore, each cell includes a set of unique attribute value combinations and it includes
the data objects that match these attribute values. For the same exploration level we also construct k clusters, by
clustering off line all data in the data space. By default our highest level creates a single cluster and each level
doubles the number of clusters of its previous one.
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(a) Data Space Exploration (b) Misclassified and Boundary Exploitation

justs the sample size to the skewness of our exploration space

(i.e., we collect more samples from dense sub-areas) while it Figure 2: Exploration and Exploitation

ensures that any sparse relevant areas will not be missed (i.e., sparse sub-areas are sufficiently explored).
Exploitation. The exploitation step aims to leverage prior knowledge. At each iteration it uses the feedback

collect so far as well as the latest user model to identify promising data areas to be sampled further. Specifically,

we exploit the following information:

e Misclassified objects: We randomly sample around each false negative (i.e., objects labeled as relevant
but classified as non-relevant by the latest user model) (Figure D(b)). To further reduce the sampling areas
(and hence the sampling overhead), clustering techniques are used to identify close-by false negatives
(which most likely belong to the same relevant area) and create a single sample area around each of the
generated clusters. This technique increases both the precision and the recall of the user model (since it
increases the relevant samples) while reducing the false negatives.

e Decision boundaries: Given a set of relevant areas identified by the decision tree classifier, we randomly
sample around each boundary (Figure D(b)) aiming to refine them and improve the accuracy of our user
model. The approach is applied in parallel to all the boundaries of the relevant areas, allowing us to
shrink/expand each area as we get more feedback from the user.

In Figure B we demonstrate the impact our explo-

——Explore/ExploitAll  =8=Explore/ExploitFN Explore
ration and exploitation techniques. Our evaluation met- 1
ric is the number of samples we need to reach different 4
accuracy levels of our user model. We measure accuracy o
by the F-measure (i.e., the harmonic mean of precision § 06
and recall) and we assume the user’s relevant objects lie £ 0.4
within one single area that covers 7-9% of the normal-
ized domain of the rowc and colc attributes of the Y
PhotoObjAll table in the SDSS database [?6]. In 0 200 200 600 800 1000
this figure, Explore uses only the exploration step, Ex- Number of Samples

plore/ExploitFN uses the exploration and the exploita- Figure 3: Exploration & Exploitation Impact

tion of the false negatives and Explore/ExploitAll uses the exploration and all exploitation steps (i.e., false nega-
tives and boundaries). The results show that combining all three steps gives the best results, i.e., better accuracy
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with fewer labeled samples. Specifically, using only the exploration step requires more than 800 labeled sam-
ples to reach an accuracy higher than 20%. Adding the false negative exploitation increases the accuracy by an
average of 54%. Finally, adding the boundary exploitation further improves the accuracy by an average of 15%.
Hence, all three phases are highly effective in predicting relevant areas while reducing the amount of user effort.

3.2 SVM: discovering non linear patterns

Non-linear patterns, that is, patterns that cannot be captured by range predicates, are prevalent in applications
ranging from location-based searches to scientific exploration tasks using complex predicates. While our deci-
sion tree based approach can approximate non-linear patterns, it suffers from poor performance. For example, to
predict a circle-shaped relevant area “(rowc—742.76)*+(colc—1022.18)? < 100%” on two location attributes rowc
and colc in the SDSS data set [26], the decision tree model required over 1800 training samples and approxi-
mated the circle region with 95% accuracy using 71 range predicates combined through conjunction/disjunction,
as illustrated in Figure Bl. This motivated us to seek a more efficient approach to supporting non-linear patterns,
reducing both the user labeling effort and the querying and sampling cost in the database.

Our exploration approach uses Support Vector Machines 1200

(SVMs) as the classification algorithm [[7]. Here, the training

set (i.e., labeled samples) in the data space is mapped, via a

kernel function, to a higher-dimensional feature space where 100 d
examples of different classes are linearly separable. Figure B

shows a 3-dimensional feature space (manually selected by us) g 1000 - 1
where the training points of the circle area in Figure B are lin-

early separated; in practice an SVM may need many more di- 900 |- 4
mensions to see such linear separation. Then among the many

hyperplanes that might classify the data in the feature space, 200 ‘ ‘

SVM selects the one, called the decision boundary L, with the 600 700 800 900
largest distance to the nearest mapped samples of any class; rowc

this boundary £ is used as the model of user interest as it sepa- Figure 4: A circle area (green area) approximated
rates relevant from irrelevant objects. The main challenge here by decision trees (blue area), with training points in
is to identify at each iteration of the exploration process, the 2-D data space (red: Y, green: N).

next to-be-labeled sample that can quickly improve the accuracy of the current user model L.

Exploration. Recent active learning theory [2] proposed
to choose the example closest to the current decision bound-
ary. However, they suggest a search through the entire data
set in each iteration, which is prohibitively expensive. Pre-
computation to store the distance of each tuple to the current
decision boundary is not possible either, because the decision
boundary changes in each iteration. Our system puts active
learning theory into practice: we find the unlabeled example
closest to the current decision boundary £ without retrieving
all the tuples and evaluating their distances to £. Our system
uses two techniques for identifying samples to show to the user
in each iteration.

Bounding the search area using decision trees. We define
a d-region around the current SVM decision boundary £ and
form a two-class training data set such that points inside the
d-region are the relevant class and points outside the d-region are not. Then a decision tree can be trained to
approximate the J-region and can be easily translated to an exploration query, (), to send to the database D.

Figure 5: Linear separation of training points in a
3-D feature space using SVM (red: Y, green: N).
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Finally given the query result Q(D) C D, we iterate over this set and find the example closest to £. Note that
d can be set to balance two trends: a too small  can lead to too few training points in the relevant class while a
too large § may result in Q(D) = D.

Branch and bound search. Our system also builds indexes such as R-trees [[I] and CF trees [?9] over the
database, and performs fast branch-and-bound search over these indexes. Take R-tree for example. Each R-tree

node offers a hyper-rectangle, [a;, b;], j = 1,...,d, as a minimum bounding box of all the data points reachable
from this node. Given the current SVM decision boundary £, we search the R-tree top-down in a depth-first
def

fashion and always maintain the current closest tuple, *, and its distance to £, f(z*,£) = f*. Note that
f* =00 before any leaf node is visited. For each intermediate node visited, we dynamically compute a lower
bound of the distance from any point in its hyper-rectangle to £ by calling a constrained optimization solver:
ming f(x, L) s.t. a; < z) < bj, 7 =1,...,d. If the lower bound is already higher than f*, we can prune the
entire subtree rooted at this node. Once we reach a leaf node, we can update «* and f* accordingly. Then the
final * is the closest tuple to £ in the entire database.

While the above optimizations may lead to a more efficient implementation of active learning theory, we
also observe that existing learning theory falls short in two aspects.

Convergence rates. Although active learning theory aims to identify the best samples from input to expedite
the convergence of the model, it offers only asymptotic results on the convergence rate [2’Z]. To bring such theory
to practice, it is crucial to know the accuracy of the user interest model at any point of the exploration process,
so that the DBMS knows when the model is “good enough” and can return the rest of relevant objects from the
database with high confidence. Our current research is performing an in-depth analysis of the convergence rate
in order to provide useful runtime information on the effectiveness of a learned model.

Sparse or insufficient samples. Our initial results reveal that SVM-based exploration strategies suffer from
slow convergence when the data space involves more than 4 or 5 dimensions (high dimensionality) and when
the true user interest model amounts to a very small area in the total data space (high selectivity). In the case
of high dimensionality, samples are sparsely distributed in the data space, which prevents SVM from learning
the correct model efficiently even if the number of truly relevant dimensions is limited. In the case of high
selectivity, the true user interest model may select less than 1% of the objects in the database. Existing active
learning theory leads to a sample set that is strongly biased towards negative samples. Such imbalance between
negative samples and positive samples also causes SVM to take long to learn the correct model. Our ongoing
work is exploring new sampling techniques for the workloads where existing active theory does not work well.

4 Supporting Interactive Performance

Our research aims to advance the state-of-the-art of database system design by developing new query processing
and optimization techniques for new data exploration workloads. Next we describe two optimizations that are
part of our future work.

4.1 Sample Acquisition Optimizations

Our data exploration approach adds a big processing overhead on the underlying data processing engine due
to large numbers of sample acquisition queries issued to retrieve additional samples. These queries represent
new interesting workloads in the data processing back-end. Next we discuss the unique characteristics of these
exploration queries and propose optimizations for these workloads.

In the decision tree-based exploration, our results indicated that our data exploration workload consists
mostly of numerous range queries on individual attributes. Specifically, for k& d-dimensional data areas charac-
terized as relevant by the classifier and for m misclassified objects we execute (k + m) X d range queries, or
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hyper-rectangle queries in the d-dimensional space, in each iteration”. To illustrate the workload better, consider
two attributes, A and B, used in a decision tree. The exploration queries may include Q1: A € [aj, as] and
B € (—o0,00), where dense sampling is performed for A € [a1,a2] and B € [by, bo], and sparse random
sampling is performed for B € (—o00, b1) U (ba, 00) to check if the attribute B is irrelevant to the user interest.
Similarly, we may also have a simultaneous exploration query Q2: A € (—o0,00) and B € [bs, by, where areas
of A € [a3,a4] and B € [bs, by are densely sampled while A € (—o0,as) U (ag, 00) is randomly sampled.
If we have a covering index on (A, B, C), the access patterns of the two queries in the index are illustrated in
Figure B. As the dimensionality of the exploration queries increases, e.g., to 5 or 10 attributes, the number of
simultaneous queries and the overlap among them increase significantly. Similarly, in the SVM-based explo-
ration, the exploration queries may be k-nearest neighbor queries from a set of data points (support vectors),
which can be viewed as a set of ball-shaped queries in a d-dimensional space where significant overlap among
these queries exists.

Since each iteration of query steering may issue many simultaneous
queries with possible overlap in the data space, separate evaluation of

these queries wastes processing resources and leads to poor performance. '[f,%x,é’?

Traditional multiple-query optimization [20, 2T, ?3] and continuous Q1: Acat, 2]
query processing (e.g., [5,6]) focus on analyzing query expressions and e A Be(-0,%)
ﬁnfimg the.common sub-expressions for shared processing. Our explo- o\ Q2: Ae(-0,0)
ration queries, however, have more clearly-defined access patterns, e.g., T /‘ ‘\K A Be[b3, b4]
a set of hyper-rectangles or ball-shaped areas in a d-dimensional space.  sparse random dense

. . . . . . sampling sampling
Hence more effective optimizations may be possible. For instance, given

a covering index that includes all attributes in the exploration queries, a  Fjgure 6: Access patterns of two explo-
single scan of all the leaf nodes of the covering index offers an improve- ration queries in a covering index.

ment because it avoids repeated scans of the overlapped regions among

queries. When the index is large itself, better prediction of necessary regions to visit allow us to skip a fraction
of leaf nodes of the index. Furthermore, some queries could mix dense sampling in focused regions and sparse
random sampling in wide regions as shown in Figure B. Hence, the multi-query optimization will also consider
quick random sampling using indexes [1Y].

4.2 Model-based Collaborative Filtering: Predicting exploration trajectories

Data exploration tasks can greatly benefit from information about past user profiles. To this end, we recently
focused on how to leverage detailed information of user profiles with the end goal of improving the efficiency of
interactive data exploration tasks. User profiles include feedback on data objects, the final classification model
as well as its lineage, i.e., sequence of steering queries and samples that resulted from the exploration process.

To leverage past user exploration profiles, we employ a model-based collaborative filtering approach. Col-
laborative filtering (CF) uses the known preferences of a group of users to predict the unknown preferences of
other users. Model-based CF systems involve learning a model based on data objects (aka items) ratings. This
allows the system to learn to recognize complex patterns based on the training data, and then make intelligent
predictions for collaborative filtering tasks based on the learned models without having to use the complete data
set every time. This offers the benefits of speed and scalability making model-based CF techniques a good fit
for real-time predictions on the basis of very large data sets.

In the context of our interactive data exploration framework clustering models can be used to predict relevant
areas and recommend them to the back-end as promising sampling areas. Specifically, clustering algorithms can
identify groups of users who appear to have similar relevance feedback. Once the clustering model is created,
we can leverage it during an online exploration task as follows. Given the relevance feedback of the current

'In some cases, the data space can be reduced to include only relevant attributes however, in the worse case scenario, sampling
queries are executed on all d dimensions of the exploration space.
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user, the system predicts the cluster it belongs to, i.e., its neighbors with respect to their relevant objects. Then
a traditional CF algorithm is applied to rate candidate areas to sample based on the interests of only these
neighbors. At each iteration, more feedback is collected and our prediction of the “neighbors” improves helping
the system to converge faster to the current user’s classification model. Our clustering-based approach has better
scalability than typical CF methods because it makes predictions within much smaller clusters rather than the
entire user and object base. The complex and expensive clustering computation is run once offline and the
resulting clusters can be used by any future user. Next we sketch the technique in more detail.

Cluster-based Exploration CF techniques use user ratings on data objects to calculate the similarity be-
tween users (or objects) and make predictions according to those calculated similarity values. However, similar-
ity values are based on common data objects and therefore are unreliable when the common data objects rated
by the users are therefore few. This is indeed the case of our interactive exploration framework: users provide
feedback on few sample objects of the entire database and the intersection of labeled data sets of past users is of-
ten quite small, even when user interests highly overlap. To address this challenge we apply our clustering-based
exploration on the level of the predicted relevant areas as opposed to labeled items by using past user models.

Each past user of our interactive exploration framework, u; € {u1,us, ..., un}, is represented by its final
classification model that characterizes the relevant areas for that user. Given a collection of user models one
can identify a partitioning schema of the data space such that each partition p; € {p1, p2, ..., pn } involves items
that are all relevant to the same set of users. Each user is represent by (partition, relevance) pairs which can be
summarized in a user-partition table 2. This table R contains the relevance score R;; that is provided by the
user u; on the partition p;. For a binary relevance feedback model R;; is 1 if the partition p; contains objects
characterized as relevant by the model of user u; and is 0 otherwise. Alternatively one can use a fixed partitioning
schema of the exploration space in which case the relevance score R;; is the degree of overlap between the user’s
u; predicted relevant areas and the partition p;.

We use a clustering algorithm on the user partition table R to form groups of users that appear to provide
similar relevance feedback (identified the same partitions as relevant). We can then assign the current user to
one of these clusters as follows. Given the active user’s u, latest decision tree, we calculate the overlap of the
user’s relevant areas with each data partition p;. We create a vector with the overlap per partition R; vector to
characterize the current user. Full overlap indicates a relevance of 1 for that partition and no overlap a relevance
of zero. Partial overlap can be calculated based on the size of the overlapping area. Using this vector the current
user will be assigned to the cluster with the most relevant past users (i.e., users that explored similar partitions).

Once the neighborhood is obtained, a CF algorithm is used to predict the relevance score for all partitions.
In particular, the relevance (prediction) score R, ; for the active user u, on a partition p; can be calculated by
aggregating the neighbors relevance feedback on the partition p; using a number of aggregation functions. Ex-
amples include averaging the relevance score of that partition over all the neighbors or calculating the weighted
average of the neighbors relevance feedback where the weight is based on the Pearson similarity between the
neighbor and the current user (i.e., the more similar two users are wrt to their feedback, the higher their weight
on identifying promising sampling areas).

Our data exploration framework can leverage the output of the above process in multiple ways. For example,
we can use the relevance score of each partition for the current user to apply a weighted sampling on them, i.e.,
more relevant partitions are sampled with higher ratio than less relevant ones. Diversification techniques [T6]
can also be combined with the relevance score in order to identify the most diversified set of samples with high
relevance score to show to the current user. Collecting feedback on these samples will allow our system to collect
more insight on the user’s interests. All the above can be executed iteratively - each round improves the user
model which improves also the relevance predictions on each partition increasing eventually the convergence
rate of our exploration.
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4.3 Dimensionality Reduction

Our initial results revealed that the exploration space is often characterized by high redundancy. As data sets
become highly multi-dimensional data exploration suffers from slow convergence. This is due to the fact that
many dimensions are correlated with others while some are irrelevant to the user’s interest.

Offline Reduction Eliminating redundant feature combinations can be done offline by removing dimensions
with low variation, since these dimensions will not be “useful” to our classifier. To demonstrate this with an
extreme example, if all sky objects have the same brightness level, then the brightness attribute will not be a
good separator of irrelevant/relevant objects. Variation along each dimension can be captured by the variance
of its values and dimensions with relatively low variance can be removed. Principal component analysis (PCA)
can also be used offline to identify only the uncorrelated dimensions our models should be using.

Online Reduction Online reduction techniques aim to identify dimensions irrelevant to the current user and
hence eliminate them as early as possible from the exploration space. One approach we explore is based on the
expectation that the distribution of relevant labels collected from the current user will be more scattered when
projected on irrelevant dimensions and more clustered on specific areas of the relevant domains. Based on this,
projecting the samples characterized as relevant on each dimension of our exploration area and comparing their
distribution across each dimension independently could indicate the most relevant dimensions and allow us to
adapt the number of samples to be higher for the relevant domains.

We also leverage past user models to identify dimensions irrelevant to the current user. Specifically, past
user models (i.e., decision trees) reveal the relevant dimensions for past users. Hence, once the neighbors of the
current user are identified we apply dense sampling on the relevant dimensions for these neighbors and sparse
sampling on the rest of the exploration domains. The collected feedback is further used to identify the relevant
dimensions for the current user as described above.

S Prototyping and Demonstration

We have implemented a prototype of our interactive /" AIDE Frontend 2\ AIDE Middleware
. . Attribute
data exploration framework that includes the tech- selection Exploration Space | | Feedback Model

Learning
(decision tree, SVM)

niques we described in Section BT and B2 The sys- li oo
tem is designed on top of a relational database SYs- m rocsos| ( Feedback Collection
tem and its architecture (Figure ) includes three soft-¥ T
ware layers: (1) an interactive visualization front-end, Exploration
(2) the AIDE middleware that implements our explo- EXP\'/‘E’;“"’”‘ (relevaxifgiljﬂﬂg areas) | [Exploration| czﬂr:cﬂzn *i
ration techniques and (3) a database backend support- p—

ing our data exploration. An initial prototype of our Figure 7: Architecture of our system

system was demonstrated at VLDB 2015 [[].

Our visualization front-end provides several functionalities. The user is initially presented with the database
schema and he can select an initial subset of attributes of interest, which will be refined later by the data explo-
ration. Our front-end can also visualize domain distributions of each attribute to further allow the user to filter
attributes based on the domain characteristics and restrict the value ranges of the relevant attributes for consid-
eration (e.g., focus on a dense region or a region close to a landmark). Users can select between different types
of plots of the underlying data distributions, such as histograms and heat maps. Figure B4 shows a histogram
example on an attribute in the SDSS [2] data set.

The system starts a series of iterations of sample labeling, model learning and space exploration. The front-
end supports this process by visualizing various subspaces of the exploration attributes, presenting data samples
to the user, collecting yes/no labels from the user regarding the relevance of the shown samples and showing the
locations of labeled samples in the exploration space. Figure KR shows an example of this interface.
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(a) Histogram visualization for exploration attributes. (b) Exploration visualization (learned areas, labeled samples).

Figure 8: Front-end visualization interface.

Sitting below the visualization front-end is the “automatic user steering” layer (middleware in Figure @),
which is the heart of our system. This component is implemented in Java, with a few machine learning libraries
integrated in the system. At each iteration it incorporates the newly collected labeled samples and generates
a new classification model. At any point the user can request a visualization of the current user model (i.e.,
decision tree or SVM decision boundary) which entails highlighting the objects classified as relevant to the user.
The user can then decide to stop the exploration (if he is satisfied with the current set of identified objects) or to
proceed to the next round of exploration.

The database backend uses PostgreSQL. The database engine includes various sampling techniques imple-
mented as stored procedures. These techniques are designed to support the exploration approaches we discussed
above. For example one procedure supports the decision tree approach to learning linear patterns (§811) by se-
lecting a predefined number of random samples within a given distance from the center of a d-dimensional area,
while other procedures support random and weighted sampling.

6 Related Work

Numerous recent research efforts focus on data exploration. The vision for automatic, interactive navigation
in databases was first discussed in [2] and more recently in [28]. YMALDB [IU] supports data exploration by
recommending to the user data similar to his query results. DICE [[[3] supports exploration of data cubes using
faceted search and in [I2] they propose a new “drill-down” operator for exploring and summarizing groups of
tuples. SciBORQ [25] relies on hierarchical database samples to support scientific exploration queries within
strict query execution times. Idreos et al. [[[8] proposed a system for interactive data processing tasks aiming to
reduce the time spent on data analysis. In [27] they interactively explore the space based on statistical properties
of the data and provide query suggestions for further exploration. In [[1] they propose a technique for providing
feedback during the query specification and eventually guiding the user towards her intended query. In [I3]
users rely on prefetching and incremental online processing to offer interactive exploration times for window-
based queries. SearchLight [[[4] offers fast searching, mining and exploration of multidimensional data based
on constraint programming. All the above systems differ from our approach: we rely on the user’s feedback on
data samples to create progressively an effective training set for generating machine learning models that predict
the user’s data interests.
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7 Conclusions

This article provided an overview of our on-going work on learning-based data exploration. We highlighted the
research challenges and a set of solutions that attempt to address them. Our proposed techniques can be crucial
for deriving insights from huge and complex data sets found in many discovery-oriented applications. Human
exploration effort across large data sets will be significantly reduced, as users will be methodically steered
through the data in a meaningful way. Such automated steering, fully exploiting user interests and application
characteristics while grounded in rigorous learning theory, will assist users in discovering new interesting data
patterns and eliminate expensive ad-hoc exploratory queries.

8 Acknowledgments

This work was funded by NSF grants I11S-1253196, IIS-1218524, and 1IS-1218524 and a gift from HP Labs.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]
(14]

[15]

N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger. The R*-Tree: An Efficient and Robust Access Method for
Points and Rectangles. 1990.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and active learning. J. Mach.
Learn. Res., 6:1579-1619, Dec. 2005.

L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Chapman and
Hall/CRC, 1984.

U. Cetintemel, M. Cherniack, J. DeBrabant, Y. Diao, K. Dimitriadou, A. Kalinin, O. Papaemmanouil, and S. Zdonik.
Query steering for interactive data exploration. In Proceedings of the 6th Biennial Conference in Innovative Data
Systems Research (CIDR), 2013.

J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagaraCQ: A scalable continuous query system for internet databases.
In W. Chen, J. F. Naughton, and P. A. Bernstein, editors, SIGMOD, 2000.

Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer. Path sharing and predicate evaluation for high-
performance XML filtering. ACM Trans. Database Syst., 28(4):467-516, 2003.

Y. Diao, K. Dimitriadou, Z. Li, W. Liu, O. Papaemmanouil, K. Peng, and L. Peng. AIDE: An Automatic User
Navigation Service for Interactive Data Exploration (Demonstration). In VLDB, 2015.

K. Dimitriadou, O. Papaemmanouil, and Y. Diao. Explore-by-Example: An Automatic Query Steering Framework
for Interactive Data Exploration. In 33rd ACM Special Interest Group in Data Management (SIGMOD), 2014.

K. Dimitriadou, O. Papaemmanouil, and Y. Diao. AIDE: An Active Learning-based Approach for Interactive Data
Exploration. IEEE Transactions on Knowledge and Data Engineering (TKDE), 28(11):2842 — 2856, 2016.

M. Drosou and E. Pitoura. YMALDB: exploring relational databases via result-driven recommendations. VLDB
Journal, 22:849-874, 2013.

L. Jiang and A. Nandi. SnapToQuery: Providing Interactive Feedback During Exploratory Query Specification.
VLDB 2015.

M. Joglekar, H. Garcia-Molina, and A. G. Parameswaran. Smart drill-down: A new data exploration operator. VLDB
2015.

A. Kalinin, U. Cetintemel, and S. Zdonic. Interactive data exploration using semantic windows. In SIGMOD, 2014.

A. Kalinin, U. Cetintemel, and S. B. Zdonik. Searchlight: Enabling integrated search and exploration over large
multidimensional data. VLDB 2015.

N. Kamat, P. Jayachandran, K. Tunga, and A. Nandi. Distributed and Interactive Cube Exploration. In ICDE, 2014.

48



[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]
(24]
[25]

(26]
(27]

(28]

[29]

H. Khan, M. Sharaf, and A. Albarrak. DivIDE: efficient diversification for interactive data exploration. In Pro-
ceedings of the 26th International Conference on Scientific and Statistical Database Management (SSDBM’ 14),
2014.

Large synoptic survey telescope: the widest, fastest, deepest eye of the new digital age. http://htto:/www.
Isst.org/.

Martin Kersten and Stratos Idreos and Stefan Manegold and Erietta Liarou. The Researcher’s Guide to the Data
Deluge: Querying a Scientific Database in Just a Few Seconds. International Conference of Very Large Databases
(VLDB), 4(12), 2011.

F. Olken. Randomized sampling from databases. PhD thesis, University of California, Berkeley, 1993.

A. Rosenthal and U. S. Chakravarthy. Anatomy of a mudular multiple query optimizer. In Proceedings of the 14th
International Conference on Very Large Data Bases, VLDB ’88, pages 230-239, San Francisco, CA, USA, 1988.
Morgan Kaufmann Publishers Inc.

P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algorithms for multi query optimization.
SIGMOD Rec., 29(2):249-260, May 2000.

T. Sellam and M. L. Kersten. Meet Charles, big data query advisor. In biennial Conference on Innovative Data
Systems Research (CIDR), 2013.

T. K. Sellis. Multiple-query optimization. ACM Trans. Database Syst., 13(1):23-52, Mar. 1988.
B. Settles. Active Learning. Morgan & Claypool, 2012.

L. Sidirourgos, M. Kersten, and P. Boncz. SciBORQ: Scientific data management with Bounds On Runtime and
Quality. In CIDR, 2011.

Sloan digital sky survey. htto://www.sdss.org/.

S. Tong and D. Koller. Support vector machine active learning with applications to text classification. J. Mach.
Learn. Res., 2:45-66, Mar. 2002.

A. Wasay, M. Athanassoulis, and S. Idreos. Queriosity: Automated Data Exploration. In IEEE International
Congress on Big Data, 2015.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering Method for Very Large Databases.
In SIGMOD, 1996.

49


http://http:/www.lsst.org/
http://http:/www.lsst.org/
http://www.sdss.org/

