Independent Range Sampling on a RAM

Xiaocheng Hu Miao Qiao Yufei Tao

Department of Computer Science and Engineering
Chinese University of Hong Kong
New Territories, Hong Kong
{xchu, mqiao, taoyf} @cse.cuhk.edu.hk

Abstract

This invited paper summarizes our results on the “independent range sampling” problem in the RAM
computation model. The input is a set P of n points in R. Given an interval ¢ = [z,y| and an integer
t > 1, a query returns t elements uniformly sampled (with/without replacement) from P N q. The
sampling result must be independent from those returned by the previous queries. The objective is to
store P in a structure for answering all queries efficiently. If no updates are allowed, there is a trivial
O(n)-size structure that guarantees O(logn + t) query time. The problem is much more interesting
when P is dynamic (allowing both insertions and deletions). The state of the art is a structure of O(n)
space that answers a query in O(tlogn) time, and supports an update in O(logn) time. We describe a
new structure of O(n) space that answers a query in O(log n+1t) expected time, and supports an update
in O(logn) time.

1 Introduction

A reporting query, in general, retrieves from a dataset all the elements satisfying a condition. In the current
big data era, such a query easily turns into a “big query”, namely, one whose result contains a huge number of
elements. In this case, even the simple task of enumerating all those elements can be extremely time consuming.
This phenomenon naturally brings back the notion of query sampling, a classic concept that was introduced to
the database community several decades ago. The goal of query sampling is to return, instead of an entire query
result, only a random sample set of the elements therein. The usefulness of such a sample set has long been
recognized even in the non-big-data days (see an excellent survey in [I2]). The unprecedented gigantic data
volume we are facing nowadays has only strengthened the importance of query sampling. Particularly, this is an
effective technique in dealing with the big-query issue mentioned earlier in many scenarios where acquiring a
query result in its entirety is not compulsory.

This work aims to endow query sampling with independence; namely, the samples returned by each query
should be independent from the samples returned by the previous queries. In particular, we investigate how to
achieve this purpose on range reporting, as it is a very fundamental query in the database and data structure
fields. Formally, the problem we study can be stated as follows:

Copyright 2015 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.

Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

76

Problem 1 (Independent Range Sampling (IRS)): Let P be a set of n points in R. Given an interval ¢ = [z, y]
in R and an integer ¢ > 1, we define two types of queries:

e A with replacement (WR) query returns a sequence of ¢ points, each of which is taken uniformly at
random from P(q) = P Ngq.

e Requiring ¢t < |P(q)|, a without replacement (WoR) query returns a subset R of P(q) with |R| = ¢,
which is taken uniformly at random from all the size-t subsets of P(q). The query may output the elements
of R in an arbitrary order.

In both cases, the output of the query must be independent from the outputs of all previous queries. L]

Guaranteeing independence among the sampling results of all queries ensures a strong sense of fairness: the
elements satisfying a query predicate always have the same chance of being reported (regardless of the samples
returned previously), as is a desirable feature in battling the “big-query issue”. Furthermore, the independence
requirement also offers convenience in statistical analysis and algorithm design. In particular, it allows one to
issue the same query multiple times to fetch different samples. This is especially useful when one attempts to test
a property by sampling, but is willing to accept only a small failure probability of drawing a wrong conclusion.
The independence guarantees that the failure probability decreases exponentially with the number of times the
query is repeated.

Computation Model. We study IRS on a random access machine (RAM), where it takes constant time to
perform a comparison, a + operation, and to access a memory location. For randomized algorithms, we make
the standard assumption that it takes constant time to generate a random integer in [0, 2" — 1], where w is the
length of a word.

Existing Results. Next we review the literature on IRS, assuming the WR semantics—we will see later that a
WOoR query with parameters ¢, ¢ can be answered by a constant number (in expectation) of WR queries having
parameters g, 2t.

The problem is trivial when P is static. Specifically, we can simply store the points of P in ascending
order using an array A. Given a query with parameters ¢ = [x,y] and ¢, we can first perform binary search to
identify the subsequence in A that consists of the elements covered by g. Then, we can simply sample from the
subsequence by generating ¢ random ranks and accessing ¢ elements. The total query cost is O(logn + t).

The problem becomes much more interesting when P is dynamic, namely, it admits insertions and deletions
of elements. This problem was first studied more than two decades ago. The best solution to this date uses O(n)
space, answers a query in O(tlog n) time, and supports an update in O(log n) time (see [I7] and the references
therein). This can be achieved by creating a “rank structure” on P that allows us to fetch the i-th (for any
i € [1,n]) largest element of P in O(logn) time. After this, we can then simulate the static algorithm described
earlier by spending O(logn) time, instead of O(1), fetching each sample.

If one does not require independence of the sampling results of different queries, query sampling can be
supported as follows. For each i = 0,1, ..., [log n|, maintain a set P; by independently including each element
of P with probability 1/2°. Given a query with interval ¢ = [z, %], P; N ¢ serves as a sample set where each
element in P(q) is taken with probability 1/2¢. However, by issuing the same query again, one always gets back
the same samples, thus losing the benefits of IRS mentioned before.

Also somewhat relevant is the recent work of Wei and Yi [[[6], in which they studied how to return various
statistical summaries (e.g., quantiles) on the result of range reporting. They did not address the problem of query
sampling, let alone how to enforce the independence requirement. At a high level, IRS may be loosely classified
as a form of online aggregation [B], because most research on this topic has been devoted to the maintenance
of a random sample set of a long-running query (typically, aggregation from a series of joins); see [I0] and the

77

references therein. As far as IRS is concerned, we are not aware of any work along this line that guarantees
better performance than the solutions surveyed previously.

It is worth mentioning that sampling algorithms have been studied extensively in various contexts (for entry
points into the literature, see [, B, &, B, [, 1, T4, 15]). These algorithms aim at efficiently producing sample sets
for different purposes over a static or evolving dataset. Our focus, on the other hand, is to design data structures

for sampling the results of arbitrary range queries.

Our Results. Recall that a query specifies two parameters: a range ¢ = [z, y| and the number ¢ of samples. We
say that the query is one-sided if t = —oo0 or y = 00; otherwise, the query is two-sided. We will describe a
dynamic structure of O(n) space that answers a two-sided WR or WoR query in O(logn + t) expected time,
and supports an update in O(logn) time (all the expectations in this paper depend only on the random choices
made by our algorithms). For one-sided queries, the query time can be improved to O(loglogn + t) expected,
while retaining the same space and update complexities. Besides their excellent theoretical guarantees, all of
our structures have the additional advantage of being fairly easy to implement.

Assuming the WR semantics, we will first describe a structure for one-sided queries (Section), before
attending to two-sided ones (Sections B and B). In Section B, we will explain how to answer WoR queries.

2 A One-Sided Structure

Structure. We build a weight-balanced B-tree (WBB-tree) [?] on the input set P with leaf capacity b = 4 and
branching parameter f = 8. In general, a WBB-tree parameterized by b and f is a B-tree where

e data elements are stored in the leaves. We label the leaf level as level O; if a node is at level ¢, then its
parent is at level ¢ + 1.

e anon-root node w at the i-th level has between bf? /4 and b elements stored in its subtree. We denote by
P(u) the set of those elements. This property implies that an internal node has between f/4 and 4 f child
nodes.

Each node w is naturally associated with an interval I(u) defined as follows. If u is a leaf, then I(u) = (¢, €]
where e (or €/, resp.) is the largest element stored in u (or the leaf preceding u, resp.); specially, if no leaf
precedes u, then ¢/ = —oo. If w is an internal node, then I () unions the intervals of all the child nodes of .

Let z; be the leftmost leaf (i.e., the leaf containing the smallest element of P). Denote by II, the path
from the root to z;. For every node u on 11, store all the elements of P(u) in an array A(u). Note that the
element ordering in A(u) is arbitrary. The total space of all arrays is O(n), noticing that the arrays’ sizes shrink
geometrically as we descend 11,.

Query. A one-sided query with parameters ¢ = (—o0,y| and ¢ is answered as follows. We first identify the
lowest node u on II; such that I(u) fully covers ¢. If u is a leaf, we obtain the entire P(q) = P N ¢ from u in
constant time, after which the samples can be obtained trivially in O(¢) time. If is an internal node, we obtain
a sequence R by repeating the next step until the length of R is ¢: select uniformly at random an element e from
A(u), and append e to R if e is covered by q. We return R as the query’s output. Note that the R computed this
way is independent from all the past queries.

We argue that the above algorithm runs in O(loglogn + t) expected time, focusing on the case where u is
not a leaf. Let & = |P(q)|. Node u can be found in O(loglogn) time by creating a binary search tree on the
intervals of the nodes on II,. It is easy to see that the size of A(u) is at least k but at most ck for some constant
¢ > 1. Hence, a random sample e from A(u) has at least 1/c probability of falling in ¢. This implies that we
expect to sample no more than ¢t = O(t) times before filling up R.

78

Update. Recall the well-known fact that an array can be maintained in O(1) time per insertion and deletion™—
this is true even if the array’s size needs to grow or shrink—provided that the element ordering in the array does
not matter. The key to updating our structure lies in modifying the secondary arrays along II,. Whenever we
insert/delete an element e in the subtree of a node u on Il,, e must be inserted/deleted in A(u) as well. Insertion
is easy: simply append e to A(u). To delete e, we first locate e in A(u), swap it with the last element of A(u),
and then shrink the size of A(u) by 1. The problem, however, is how to find the location of e; although hashing
does this trivially, the update time becomes O(logn) expected.

The update time can be made worst case by slightly augmenting our structure. For each element e € P,
we maintain a linked list of all its positions in the secondary arrays. This linked list is updated in constant time
whenever a position changes (this requires some proper bookkeeping, e.g., pointers between a position in an
array and its record in a linked list). In this way, when e is deleted, we can find all its array positions in O(log n)
time. Taking care of other standard details of node balancing (see []), we have arrived at:

Theorem 1: For the IRS problem, there is a RAM structure of O(n) space that can answer a one-sided WR
query in O(loglogn + t) expected time, and can be updated in O(logn) worst-case time per insertion and
deletion.

3 A 2-Sided Structure of O(n log n) Space

By applying standard range-tree ideas to the one-sided structure in Theorem [, we obtain a structure for two-
sided queries with space O(n log n) and query time O(log n + t) expected. However, it takes O(log? n) time to
update the structure. Next, we give an alternative structure with improved update cost.

Structure. Again, we build a WBB-tree 7" on the input set P with leaf capacity b = 4 and branching parameter
f = 8. At each node u in the tree, we keep a count equal to |P(u)|, i.e., the number of elements in its subtree.
We also associate v with an array A(u) that stores all the elements of P(u); the ordering in A(u) does not
matter. The overall space consumption is clearly O(n logn).

Query. We will see how to use the structure to answer a query with parameters ¢ = [z, y] and t. Let k = |P(q)|.
Since we aim at query time of 2(log n), it suffices to consider only & > 0 (one can check whether k£ > 0 easily
with a separate “range count” structure). The crucial step is to find at most two nodes u;, us satisfying two
conditions:

cl I(uy) and I(us) are disjoint, and their union covers g;
2 |P(u1)[+[P(u2)| = O(k).

These nodes can be found as follows. First, identify the lowest node u in 7" such that (u) covers g. If u is a leaf
node, setting u; = u and ug = nul satisfies both conditions.

Now, suppose that u is an internal node. If ¢ spans the interval I(u') of at least one child «’ of u, then once
again setting u; = w and uy = n4l satisfies both conditions. Now, consider that ¢ does not span the interval
of any child of w. In this case, x and y must fall in the intervals of two consecutive child nodes u’, u” of u,
respectively. Define g1 = ¢ N I(v') and g2 = ¢ N I(u”). We decide uy (ug, resp.) as the lowest node in the
subtree of v’ (u”, resp.) whose interval covers q; (qo, resp.); see Figure [for an illustration. The lemma below
shows that our choice is correct.

Lemma 2: The u; and us we decided satisfy conditions c1 and c2.

'A deletion needs to specify where the target element is in the array.

79

Figure 1: Answering a query at two nodes

Proof: We will focus on the scenario where w is an internal node. Let k1 (k2, resp.) be the number of elements
in the subtree of u’ (u”, resp.) covered by q. Clearly, k = ki + ko. It suffices to show that |P(u1)| = O(k;)
and |P(u2)] = O(k2). We will prove only the former due to symmetry. In fact, if u; is a leaf, then both
k1 and |P(uqp)| are O(1). Otherwise, g definitely spans the interval of a child node, say u, of u;. Hence,
|P(u)| = O(|P(4)]) = O(k1). O

Let us continue the description of the query algorithm, given that u; and us are already found. We concep-
tually append A(uq) to A(uz) to obtain a concatenated array A. Then, we repetitively perform the following
step until an initially empty sequence R has length ¢: sample uniformly at random an element e from A, and
append e to R if it lies in ¢. Note that since we know both |A(u1)| and | A(uz)|, each sample can be obtained in
constant time. Since A has size O(k) and at least k elements covered by ¢, we expect to sample O(¢) elements
before filling up R. The total query cost is therefore O(log n + t) expected.

Update. The key to updating our structure is to modify the secondary arrays, as can be done using the ideas
explained in Section & for updating our one-sided structure. The overall update time is O(logn).

Lemma 3: For the IRS problem, there is a RAM structure of O(n log n) space that can answer a two-sided WR
query in O(logn + t) expected time, and can be updated in O(log n) worst-case time per insertion and deletion.

4 A 2-Sided Structure of O(n) Space

In this subsection, we improve the space of our two-sided structure to linear using a two-level sampling idea.

Structure. Let s be an integer between log, n — 1 and log, n + 1. We divide the domain R into a set Z of
g = O©(n/logn) disjoint intervals Zi, ..., Z, such that each Z; (1 < i < g) covers between s/2 and s points of
P. Define C; = Z; N P, and call it a chunk. Store the points of each C; in an array (i.e., one array per chunk).

We build a structure 7" of Lemma B on {7, ...,Z,}. T allows us to sample at the chunk level, when given a
query range ¢* = [x*,y*] aligned with the intervals’ endpoints (in other words, ¢* equals the union of several
consecutive intervals in 7). More specifically, given a query with such a range ¢* and parameter ¢, we can use
T to obtain a sequence S of ¢ chunk ids, each of which is taken uniformly at random from the ids of the chunks
whose intervals are covered by ¢*. We slightly augment 7" such that whenever a chunk id ¢ is returned in S, the
chunk size |C;| is always returned along with it. The space of T7"is O(glog g) = O(n).

We will also need a rank structure on P, which (as explained in Section [) allows us to obtain ¢ samples
from any query range in O(tlogn) time.

80

Query. We answer a query with parameters ¢ = [z, y] and ¢ as follows. First, in O(logn) time, we can identify
the intervals Z; and Z;s that contain x and vy, respectively. If i = ¢/, we answer the query bruteforce by reading
all the O(logn) points in C;.

If ¢ # i’, we break ¢ into three disjoint intervals ¢1 = [z, z*], g2 = [2*,y*], and ¢35 = [y*, y], where x* (y*,
resp.) is the right (left, resp.) endpoint of Z; (Z;, resp.). In O(logn) time (using the rank structure on P), we
can obtain the number of data points in the three intervals: k1 = |q1 N P|, k2 = |g2 N P|, and k3 = |g3 N P|. Let
k=ki+ ko + ks.

We now determine the numbers 1, ¢, t3 of samples to take from qi, ¢2, and g3, respectively. To do so,
generate ¢ random integers in [1, k]; ¢; equals how many of those integers fall in [1, k1], t2 equals how many in
[k1 + 1, k1 + k2|, and t3 how many in [k; + k2 + 1, k]. We now proceed to take the desired number of samples
from each interval (we will clarify how to do so shortly). Finally, we randomly permute the ¢ samples in O(t)
time, and return the resulting permutation.

Sampling ¢; and t3 elements from ¢; and g3 respectively can be easily done in O(logn) time. Next, we
concentrate on taking t2 samples from ¢o. If £2 < 61n 2, we simply obtain ¢t samples from the rank structure in
O(talogn) = O(logn) time. For to > 61n 2, we first utilize 7" to obtain a sequence S of 4ty chunk ids for the
range g2 = [x*, y*]. We then generate a sequence R of samples as follows. Take the next id 7 from S. Toss a coin
with head probability |C;|/ 5.2 If the coin tails, do nothing; otherwise, append to R a point selected uniformly at
random from C;. The algorithm finishes as soon as R has collected 5 samples. It is possible, however, that the
length of R is still less than to even after having processed all the 4¢5 ids in .S. In this case, we restart the whole
query algorithm from scratch.

We argue that the expected cost of the algorithm is O(log n+1t). As |C;|/s > 1/2 for any j, the coin we toss
in processing .S heads at least 4t5/2 = 2t9 times in expectation. A simple application of Chernoff bounds shows
that the probability it heads less than ¢ times is at most 1/2 when ¢ > 61n2. This means that the algorithm
terminates with probability at least 1/2. Each time the algorithm is repeated, its cost is bounded by O(logn + t)
(regardless of whether another round is needed). Therefore, overall, the expected running time is O(logn + t).

Update. 7' is updated whenever a chunk (either its interval or the number of points therein) changes. This can
be done in O(log n) time per insertion/deletion of a point in P. A chunk overflow (i.e., size over s) or underflow
(below s/2) can be treated in O(s) time by a chunk split or merge, respectively. Standard analysis shows that
each update bears only O(1) time amortized. Finally, to make sure s is between logy n — 1 and logy n + 1, we
rebuild the whole structure whenever n has doubled or halved, and set s = logy n. Overall, the amortized update
cost is O(logn). The amortization can be removed by standard techniques [T3]. We have now established:

Theorem 4: For the IRS problem, there is a RAM structure of O(n) space that can answer a two-sided WR
query in O(log n + t) expected time, and can be updated in O(log n) worst-case time per insertion and deletion.

5 Reduction from WoR to WR
We will need the fact below:

Lemma 5: Let S be a set of £ elements. Consider taking 2s samples uniformly at random from S with replace-
ment, where s < k/(3e). The probability that we get at least s distinct samples is at least 1/2.

Proof: Denote by R the set of samples we obtain after eliminating duplicates. Consider any ¢ < s, and an
arbitrary subset S” of S with |S’| = t. Thus, Pr[R C S'] = (t/k)?*. Hence, the probability that R = S is at

*This can be done without division: generate a random integer in [1, s] and check if it is smaller than or equal to |C;].

81

most (t/k)?S. Therefore:

Pr[|R| < s] = iPrHR| =t]

s—1 k
(t/k)*
> (1)
s—1
> (ek/t) - (t/k)*
t=1
(byel <e® <e®™h < Sz_:(et/k)%_t

t=1

s—1

< D les/k)>
t=1
es/k 1/3
Toesfi 2 2

IN

IN

The lemma thus follows. U

A two-sided WoR query with parameters ¢, ¢ on dataset P can be answered using a structure of Theorem &
as follows. First, check whether ¢ > k/(3e) where k = |P(q)| can be obtained in O(logn) time. If so, we run
a sampling WoR algorithm (e.g., [13]) to take ¢ samples from P(q) directly, which requires O(logn + k) =
O(logn + t) time. Otherwise, we run a WR query with parameters ¢, 2¢ to obtain a sequence R of samples in
O(logn + t) expected time. If R has at least ¢ distinct samples (which can be checked in O(t) expected time
using hashing), we collect all these samples into a set .S, and sample WoR ¢ elements from S; the total running
time in this case is O(logn + t). On the other hand, if R has less than ¢ distinct elements, we repeat the above
by issuing another WR query with parameters ¢, 2¢t. By Lemma B, a repeat is necessary with probability at most
1/2. Therefore, overall the expected query time remains O(logn + t).

Similarly, a one-sided WoR query can be answered using a structure of Theorem 0 in O(loglogn + t)
expected time.

6 Concluding Remarks and Future Work

In this paper, we have described an IRS structure that consumes O(n) space, answers a WoR/WR query in
O(log n+t) expected time, and supports an insertion/deletion in O(log n) time. The query time can be improved
to O(loglogn + t) if the query range is one-sided.

For two-sided queries, we can make the query time O(logn + t) hold deterministically (currently, it is
expected). For that purpose, we need sophisticated big-twiddling structures (specifically, the fusion tree [8])
that allow one to beat comparison-based lower bounds on searching an ordered set. We do not elaborate further
on this because the resulting structures are perhaps too complex to be interesting in practice. How to make the
one-sided query time O(log log n + t) hold deterministically is still an open question. IRS has also been studied
in external memory (i.e., in the scenario where P does fit in memory). Interested readers may refer to [U] for
details.

The concept of independent query sampling can be integrated with any reporting queries (e.g., multidimen-
sional range reporting, stabbing queries on intervals, half-plane reporting, etc.), and defines a new variant for
every individual problem. All these variants are expected to play increasingly crucial roles in countering the

82

big-query issue. The techniques developed in this paper pave the foundation for further studies in this line of
research.

Acknowledgments

This work was supported in part by projects GRF 4164/12, 4168/13, and 142072/14 from HKRGC.

References

(1]

(2]

(4]

(5]

(6]

(7]
(8]

[9]

[10]

(11]

[12]
(13]
(14]

[15]
[16]

Swarup Acharya, Phillip B. Gibbons, and Viswanath Poosala. Congressional samples for approximate answering of
group-by queries. In Proceedings of ACM Management of Data (SIGMOD), pages 487—-498, 2000.

Lars Arge and Jeffrey Scott Vitter. Optimal external memory interval management. SIAM Journal of Computing,
32(6):1488-1508, 2003.

Vladimir Braverman, Rafail Ostrovsky, and Carlo Zaniolo. Optimal sampling from sliding windows. Journal of
Computer and System Sciences (JCSS), 78(1):260-272, 2012.

Pavlos Efraimidis and Paul G. Spirakis. Weighted random sampling with a reservoir. Information Processing Letters
(IPL), 97(5):181-185, 2006.

Michael L. Fredman and Dan E. Willard. Blasting through the information theoretic barrier with fusion trees. In
Proceedings of ACM Symposium on Theory of Computing (STOC), pages 1-7, 1990.

Rainer Gemulla, Wolfgang Lehner, and Peter J. Haas. Maintaining bernoulli samples over evolving multisets. In
Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 93—-102, 2007.

Jens Gustedt. Efficient sampling of random permutations. Journal of Discrete Algorithms, 6(1):125-139, 2008.

Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. Online aggregation. In Proceedings of ACM Management
of Data (SIGMOD), pages 171-182, 1997.

Xiaocheng Hu, Miao Qiao, and Yufei Tao. Independent range sampling. In Proceedings of ACM Symposium on
Principles of Database Systems (PODS), pages 246-255, 2014.

Chris Jermaine, Subramanian Arumugam, Abhijit Pol, and Alin Dobra. Scalable approximate query processing with
the dbo engine. ACM Transactions on Database Systems (TODS), 33(4), 2008.

Suman Nath and Phillip B. Gibbons. Online maintenance of very large random samples on flash storage. The VLDB
Journal, 19(1):67-90, 2010.

Frank Olken. Random Sampling from Databases. PhD thesis, University of California at Berkeley, 1993.
Mark H. Overmars. The Design of Dynamic Data Structures. Springer-Verlag, 1983.

Abhijit Pol, Christopher M. Jermaine, and Subramanian Arumugam. Maintaining very large random samples using
the geometric file. The VLDB Journal, 17(5):997-1018, 2008.

Jeffrey Scott Vitter. Random sampling with a reservoir. ACM Trans. Math. Softw., 11(1):37-57, 1985.

Zhewei Wei and Ke Yi. Beyond simple aggregates: indexing for summary queries. In Proceedings of ACM Sympo-
sium on Principles of Database Systems (PODS), pages 117-128, 2011.

83

