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Abstract

An important obstacle to accurate data analytics is dirty data in the form of missing, duplicate, incorrect,
or inconsistent values. In the SampleClean project, we have developed a new suite of techniques to esti-
mate the results of queries when only a sample of data can be cleaned. Some forms of data corruption,
such as duplication, can affect sampling probabilities, and thus, new techniques have to be designed to
ensure correctness of the approximate query results. We first describe our initial project on computing
statistically bounded estimates of sum, count, and avg queries from samples of cleaned data. We sub-
sequently explored how the same techniques could apply to other problems in database research, namely,
materialized view maintenance. To avoid expensive incremental maintenance, we maintain only a sam-
ple of rows in a view, and then leverage SampleClean to approximate aggregate query results. Finally,
we describe our work on a gradient-descent algorithm that extends the key ideas to the increasingly
common Machine Learning-based analytics.

1 Introduction

Data are susceptible to various forms of corruption such as missing, incorrect, or inconsistent representations
[42]. Real-world data are commonly integrated from multiple sources, and the integration process may lead to
a variety of errors [20]. Data analysts report that data cleaning remains one of the most time consuming steps
in the analysis process [3]. Identifying and fixing data error often requires manually inspecting data, which can
quickly become costly and time-consuming. While crowdsourcing is an increasingly viable option for correcting
some types of errors [29, 22, 48, 24, 38, 4, 14], it comes at the significant cost of additional latency and the
overhead of managing human workers.

On the other hand, ignoring the effects of dirty data is potentially dangerous. Analysts have to choose
between facing the cost of data cleaning or coping with consequences of unknown inaccuracy. In this article, we
describe a middle ground that we call SampleClean. SampleClean leverages insights from statistical estimation
theory, approximate query processing, and data cleaning to devise algorithms for estimating query results when
only a sample of data is cleaned. The intriguing part of SampleClean is that results computed using a small
clean sample, results can be more accurate than those computed over the full data due to the data cleaning. This
approximation error is boundable, unlike the unknown data error, and the tightness of the bound is parametrized
by a flexible cleaning cost (i.e., the sampling size).
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The motivation behind SampleClean is in many ways analogous to that of Approximate Query Processing
(AQP) [36, 15, 23, 6]. For decision problems, exploratory analysis problems, and visualization, it often suffices
to return an approximate query result bounded in confidence intervals. For many common aggregates, a sample
size of k results in an approximation error O( 1√

k
), and therefore every additional ϵ factor of accuracy costs

quadratically more. In applications where approximation can be tolerated, sampling avoids the expensive “last
mile” of processing and timely answers facilitate improved user experiences and faster analysis.

In traditional AQP, approximation necessarily sacrifices accuracy for reduced latency. However, the goal of
SampleClean differs from AQP, as SampleClean trades off data cleaning cost for gradual improvements in query
accuracy. While SampleClean introduces approximation error, the data cleaning mitigates bias due to dirty data.
There is a break-even point where a sufficient amount of data is cleaned to facilitate an accurate approximation
of queries on the cleaned data, and in this sense, sampling actually improves the accuracy of the query result.

SampleClean [45] and all of its extensions [30, 31, 25], work in the budgeted data cleaning setting. An
analyst is allowed to apply an expensive data transformation C(·) to only k ≪ N rows in a relation. One solution
could be to draw k records uniformly at random and apply data cleaning, e.g., a direct extension of AQP [6] to
the cleaned sample. However, data cleaning presents a number of statistical methodology problems that make
this hard. First, C(·) may change the sampling statistics, for example, duplicated records are more likely to be
sampled. Next, query processing on partially clean data, i.e., a mix of dirty and clean data, can lead to unreliable
results due to the well known Simpsons Paradox. Finally, high-dimensional analytics such as Machine Learning
may be very sensitive to sample size, perhaps even more so than to dirty data, and techniques for avoiding sample
size dependence are required. Our research contribution in SampleClean is to study estimation techniques that
avoid or mitigate these challenges.

There are two contrasting estimation techniques to address every budgeted data cleaning problem: direct
estimation and correction. The direct estimate applies a query, possibly with some re-weighting and scaling to
account for data cleaning, to the cleaned sample of data. Alternatively, a sample of cleaned data can also be used
to correct the error in a query result over the dirty data. There is an interesting theoretical tradeoff between these
approaches, where the direct approach is robust as its accuracy is independent of the magnitude of data error,
and the correction is sample-efficient as its accuracy is less dependent on sample size than the direct estimate.

There are a number of new research opportunities at the intersection of data cleaning and approximate
query processing. We applied the same principles to other domains with expensive data transformations such as
Materialized View Maintenance and Machine Learning. In this article, we highlight three projects:

SampleClean [45] 1: SampleClean estimates aggregate (sum, count, avg) queries using samples of clean
data. SampleClean reweights the data to compensate for changes in sampling statistics such that query result
estimations remain unbiased and bounded in confidence intervals.

View Cleaning [30]: View Cleaning generalizes the notion of data cleaning to include expensive incremental
maintenance of out-of-date views. Staleness in materialized views (MVs) manifests itself as data error, i.e., a
stale view has missing, superfluous, and incorrect rows. Like data cleaning, eager MV maintenance is expensive.
Aggregate queries are approximated from a stale MV using a small sample of up-to-date data, resulting in
bounded estimates.

ActiveClean [31]: ActiveClean extends SampleClean to a class of analytics problems called Convex Data
Analytics; subsuming the aggregates studied in SampleClean and including Machine Learning such as Support
Vector Machines and Linear Regression. ActiveClean exploits the convex structure of the problem to prioritize
cleaning data that is likely to affect the model. ActiveClean directly integrates cleaning into the model training
loop and as a result gives a bounded approximation for a given cleaning budget.

This article is organized as follows. Section 2 introduces the project and its main ideas. Section 4/5/6
1SampleClean refers to both the entire project and our initial publication.
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describes SampleClean, View Cleaning, and ActiveClean respectively. Section 7 reviews the related work in
this field. In Section 8, we highlight some of the open problems and future directions of the SampleClean
project. Finally, we conclude in Section 9.

2 Background and Main Ideas

This section describes the key idea of SampleClean, namely, that data cleaning can be integrated with approx-
imate query processing leading to bounded approximations of clean query results for a fraction of the cleaning
cost.

2.1 Traditional Approximate Query Processing

A number of approximation schemes have been proposed including using Sampling, Wavelets, Sketching, and
Hashing (see Cormode et al. for a survey [16]). This article focuses on Sampling-based approximations and
we will use the term AQP to refer to such systems (e.g., BlinkDB[6]). Sampling-based approximate query
processing is a powerful technique that allows for fast approximate results on large datasets. It has been well
studied in the database community since the 1990s [27, 5, 36, 35], and methods such as BlinkDB [6] have drawn
renewed attention in recent big data research. An important aspect of this work is confidence intervals, as many
types of aggregates can be bounded with techniques such as concentration inequalities (e.g., Hoeffding bounds),
large-deviation inequalities (e.g., Central Limit Theorem), or empirically (e.g., Bootstrap). Suppose, there is a
relation R and a uniform sample S. AQP applies a query Q to S (possibly with some scaling c) to return an
estimate:

Q(R) ≈ est = c ·Q(S)

Traditionally, AQP sacrifices accuracy due to sampling for improved query latency. However in AQP, the
bounds on est assume that the only source of error is approximation error introduced by sampling, however, the
data itself may contain errors which could also affect query results. When the data itself is erroneous, a query
result on the full data–let alone a sample, will be incorrect. The main argument for SampleClean is that when
data errors significantly affect query results, sampling can be combined with data cleaning to actually improve
accuracy. This leads to a counter-intuitive result where it is possible that a query on a cleaned sample of data is
more accurate than a query on the entire dirty data.

2.2 Approximate Query Processing on Dirty Data

2.2.1 Two Sources of Errors: Sampling Error and Data Error

If R is dirty, then there is a true relation Rclean.
Q(Rclean) ̸= Q(R) ≈ est = c ·Q(S)

The error in est has two components: error due to sampling ϵs and error due to the difference with the cleaned
relation ϵc = Q(Rclean)−Q(R):

| Q(Rclean)− est |≤ ϵs + ϵc
While they are both forms of query result error, ϵs and ϵc are very different quantities. ϵs is a random

variable due to the sampling, and different samples would result in different realizations of ϵs. As a random
variable introduced by sampling, ϵs can be bounded by a variety of techniques as a function of the sample size.
On the other hand, ϵc is deterministic, and by definition is an unknown quantity until all the data is cleaned.
Thus, the bounds returned by a typical AQP framework on dirty data would neglect ϵc.

It is possible that Rclean ̸= R but ϵc = 0. Consider a sum query on the relation R(a), where a is a
numerical attribute. If half of the rows in R are corrupted with +1 and the other half are corrupted with−1, then
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Figure 1: Comparison of the convergence
of the methods on two TPC-H datasets of
6M tuples with simulated errors 50% error
and 5% error. On the dataset with larger
errors, the direct estimate gives a narrower
confidence interval, and on the other the
correction is more accurate.
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Q(Rclean) = Q(R). The interesting problem is when there are systematic errors[43] i.e., | ϵc |> 0. In other
words, the corruption that is correlated with the data, e.g., where every record is corrupted with a +1.

2.2.2 Key Idea I: Direct Estimate vs. Correction

The key quantity of interest is ϵc, and to be able to bound a query result on dirty data, requires that ϵc is 0 or
bound ϵc.

Direct Estimate: This technique is a direct extension of AQP to handle data cleaning. A set of k rows is
sampled uniformly at random from the dirty relation R resulting in a sample S. Data cleaning is applied to the
sample S resulting in Sclean. Data cleaning and sampling may change the statistical and scaling properties of
the query Q, so Q may have to be re-written to a query Q̂. Q̂ is applied to the sample Sclean and the result
is returned. There are a couple of important points to note about this techniques. First, as in AQP, the direct
estimate only processes a sample of data. Next, since it processes a cleaned sample of data, at no point is there
a dependence on the dirty data. As we will show later in the article, the direct estimate returns a result whose
accuracy is independent of the magnitude or rate of data error. One way to think about this technique is that it
ensures ϵc = 0 within the sample.

Correction: The direct estimate suffers a subtle drawback. Suppose, there are relatively few errors in the data.
The errors introduced by sampling may dominate any error reductions due to data cleaning. As an alternative,
we can try to estimate ϵc. A set of k rows is sampled uniformly at random from the dirty relation R resulting in
a sample S. Data cleaning is applied to the sample S resulting in Sclean. The difference in applying Q̂ to S and
Q̂ to Sclean gives an estimate of ϵc. The interpretation of this estimate is a correction to the query result on the
full dirty data. In contrast to the direct estimate, this technique requires processing the entire dirty data (but only
cleaning a sample). However, as we will later show, if errors are rare this technique gives significantly improved
accuracy over the direct estimates.

2.2.3 Key Idea II: Sampling to Improve Accuracy

Figure 1 plots error as a function of the cleaned sample size on a corrupted TPCH dataset for a direct estimate,
correction, and AllDirty (query on the full dirty data). In both cases, there is a break-even point (in terms of
number of cleaned samples) when the data cleaning has mitigated more data error than the approximation error
introduced by sampling. After this point, SampleClean improves query accuracy in comparison to AllDirty.
When errors are relatively rare (5% corruption rate), the correction is more accurate. When errors are more
significant (50% corruption rate), the direct estimate is more accurate. Note that the direct estimate returns
results of the same accuracy regardless of the corruption rate.
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3 SampleClean: Aggregate Query Processing on Dirty Data

This section introduces the SampleClean framework where the results of aggregate queries on dirty relations are
estimated and bounded.

3.1 Problem Setup

Dirty Relation: Let R be a dirty relation corrupted with the following errors: (Attribute Errors) a row r ∈ R
has an attribute error in an attribute a if r(a) is incorrect or has a missing value, (Duplication Errors ) a row
r ∈ R is said to be a duplicate if there exists another distinct r′ ∈ R such that they refer to the same entity.
For every dirty relation R, there is a cleaned version Rclean where attribute errors are corrected (or filled) and
duplicates are merged to a canonical version.
Data Cleaning Model: For each row r ∈ R the user-specified data cleaning technique C(·) must provide the
following quantities: Correct(r) [a] the corrected value of the attribute, Numdup(r) the number of times the
record is duplicated in the entire dataset.
Queries: SampleClean addresses aggregate queries of the form:

SELECT f(a) FROM R WHERE predicate GROUP BY gb_attrs

where f is avg, sum, or count.
SampleClean Problem Given a dirty relation R, and a user-specified data cleaning function C(·), the Sam-
pleClean problem is to estimate the result of an aggregate query q applied to the hypothetical cleaned relation
q(Rclean) with a budget of applying C to at most k rows of R.

3.2 Sample Estimates

Consider a simpler problem; suppose we want to estimate the mean value of a set of real numbers R ignoring
data error from a sample S. If S is sampled uniformly at random from R (with or without replacement), we
can calculate the mean of S and for a large enough sample, the Central Limit Theorem (CLT) states that these
estimates follow a normal distribution:

N(mean(R),
var(R)

k
)

Since the estimate is normally distributed, we can define a confidence interval parametrized by λ (e.g., 95%
indicates λ = 1.96)2.

mean(S)± λ

√
var(S)

k
. (10)

It turns out that we can reformulate sum, count, and avg on an attribute a of a relation R as calculating
a mean value so we can estimate their confidence intervals with the CLT f(S) = 1

k

∑
r∈S ϕ(r). where ϕ(·)3

expresses all of the necessary scaling to translate the query into a mean value calculation:
• count: ϕ(t) = Predicate(r) ·N
• sum: ϕ(t) = Predicate(r) ·N · r(a)
• avg: ϕ(t) = Predicate(r) · k

kpred
· r(a)

It turns out that these estimates are unbiased or conditionally unbiased; that is the expectation over all samples
of the same size is the true answer.

2When estimating means from samples without replacement there is a finite population correction factor of FPC = N−k
N−1

which scales the confi-
dence interval.

3Predicate(t) is the predicate of the aggregate query, where Predicate(t) = 1 or 0 denotes r satisfies or dissatisfies the predi-
cate, respectively. kpred is the number of tuples that satisfy the predicate in the sample.
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3.3 Direct Estimation with Data Errors

We are actually interested in estimating an aggregate query on Rclean. However, since we do not have the clean
data, we cannot directly sample from Rclean. We must draw our sample from the dirty data R and then clean
the sample. Running an aggregate query on the cleaned sample is not equivalent to computing the query result
on a sample directly drawn from the clean data. Consider the case where data is duplicated, sampling from the
dirty data leads to an over representation of the duplicated data in the sample. Even if cleaning is subsequently
applied it does not change the fact that the sample is not uniform; and thus, the estimation method without errors
presented before does not apply. Our goal is to define a new function ϕclean(·), an analog to ϕ(·), that corrects
attribute values and re-scales to ensures that the estimate remains unbiased.

3.3.1 Attribute Errors

Attribute errors affect an individual row and thus do not change the sampling statistics. Consequently, if we
apply the ϕ(·) to the corrected tuple, we still preserve the uniform sampling properties of the sample S. In other
words, the probability that a given tuple is sampled is not changed by the cleaning, thus we define ϕclean(t) as:

ϕclean(t) = ϕ (Correct(t)) .

Note that the ϕ(·) for an avg query is dependent on the parameter kpred. If we correct values in the predicate
attributes, we need to recompute kpred in the cleaned sample.

3.3.2 Duplication Errors

The duplicated data is more likely to be sampled and thus be over-represented in the estimate of the mean. We
can address this with a weighted mean to reduce the effects of this over-representation. Furthermore, we can
incorporate this weighting into ϕclean(·). Specifically, if a tuple r is duplicated m = Numdup(r) times, then
it is m times more likely to be sampled, and we should down weight it with a 1

m factor compared to the other
tuples in the sample. We formalize this intuition with the following lemma (proved in [45]):

Lemma 1: Let R be a population with duplicated tuples. Let S ⊆ R be a uniform sample of size k. For each
ri ∈ S, let mi denote its number of duplicates in R. (1) For sum and count queries, applying ϕclean(ri) =
ϕ(ri)
mi

yields an unbiased estimate; (2) For an avg query, the result has to be scaled by the duplication rate d = k
k′ ,

where k′ =
∑

i
1
mi

, so using ϕclean(ri) = d · ϕ(ri)mi
yields an unbiased estimate.

These results follow directly from importance sampling [32], where expected values can be estimated with
respect to one probability measure, and corrected to reflect the expectation with respect to another.

3.3.3 Summary and Algorithm

In Table 1, we describe the transformation ϕclean(·). Using this function, we formulate the direct estimation
procedure:

1. Given a sample S and an aggregation function f(·)
2. Apply ϕclean(·) to each ti ∈ S and call the resulting set ϕclean(S)

3. Calculate the mean µc, and the variance σ2
c of ϕclean(S)

4. Return µc ± λ

√
σ2
c

K
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Table 1: ϕclean(·) for count, sum, and avg. Note that N is the total size of dirty data (including duplicates).

Query ϕclean(·)
count Predicate(Correct(r)) ·N · 1

Numdup(r)

sum Predicate(Correct(r)) ·N · Correct(r)[a]Numdup(r)

avg Predicate(Correct(t)) · dk
kpred

· Correct(r)[a]Numdup(r)

3.4 Correction with Data Errors

Due to data errors, the result of the aggregation function f on the dirty population R differs from the true result
f(R) = f(Rclean) + ϵ. We derived a function ϕclean(·) for the direct estimation. We contrasted this function
with ϕ(·) which does not clean the data. Therefore, we can write:

f(R) =
1

N

∑
r∈R

ϕ(r) f(Rclean) =
1

N

∑
r∈R

ϕclean(t)

If we solve for ϵ, we find that:

ϵ =
1

N

∑
r∈R

(
ϕ(r)− ϕclean(r)

)
In other words, for every tuple r, we calculate how much ϕclean(r) changes ϕ(r). For a sample S, we can
construct the set of differences between the two functions:

Q = {ϕ(r1)− ϕclean(r1), ϕ(r2)− ϕclean(r2), · · · , ϕ(rK)− ϕclean(rK)}
The mean difference is an unbiased estimate of ϵ, the difference between f(R) and f(Rclean). We can subtract
this estimate from an existing aggregation of data to get an estimate of f(Rclean).

We derive the correction estimation procedure, which corrects an aggregation result:

1. Given a sample S and an aggregation function f(·)

2. Apply ϕ(·) and ϕclean(·) to each ri ∈ S and call the set of differences Q(S).

3. Calculate the mean µq, and the variance σq of Q(S)

4. Return (f(R)− µq)± λ

√
σ2
q

k

3.5 Analysis

Direct Estimate vs. Correction: In terms of the confidence intervals, we can analyze how direct estimation
compares to correction for a fixed sample size k. Direct estimation gives an estimate that is proportional to
the variance of the clean sample view: σ2

c
k . Correction gives and estimate proportional to the variance of the

differences before and after cleaning: σ2
q

k . σ2
q can be rewritten as
σ2
c + σ2

q − 2cov(S, Sclean)

cov(S, Sclean) is the covariance between the the variables ϕ(r) and ϕclean(r). Therefore, a correction will have
less variance when:

σ2
S ≤ 2cov(S, Sclean) (11)

If there are no errors Sclean = S and then cov(S, Sclean) = σ2
c clearly satisfying the condition. Generally,

if errors are small (i.e., the cleaned data is highly correlated with the dirty data) corrections will give higher
accuracy. In practice, we can run both the correction and the direct estimate and take the one with a narrower
confidence interval:

error2 ≤ O(
min{σ2

c , σ
2
q}

k
) (12)
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Rakesh Agarwal 353 211 18.13% 1.28

Jeffery Ullman 460 255 05.00% 1.65
Michael Franklin 560 173 65.09% 1.13

Figure 2: We can return the correct ranking with 95% probability after cleaning only 210 total samples. To
achieve a correct ranking with 99% probability, we require 326 samples to be cleaned.

Selectivity: Let p be the selectivity of the query and k be the sample size; that is, a fraction p records from the
relation satisfy the predicate. For these queries, we can model selectivity as a reduction of effective sample size
k · p making the estimate variance: O( 1

k∗p). Thus, the confidence interval’s size is scaled up by 1√
p . Just like

there is a tradeoff between accuracy and maintenance cost, for a fixed accuracy, there is also a tradeoff between
answering more selective queries and maintenance cost.

3.6 Results: Ranking Academic Authors

Microsoft maintains a public database of academic publications4. The errors in this dataset are primarily du-
plicated publications and mis-attributed publications. We selected publications from three database researchers:
Jeffrey Ullman, Michael Franklin, and Rakesh Agarwal. To clean a sample of publications, we first manually
removed the mis-attributions in the sample. Then, we applied the technique used in [44] to identify potential
duplicates for all of publications in our sample, and manually examined the potential matches. For illustration
purpose, we cleaned the entire dataset, and showed the cleaning results in Figure 2.

This table shows the difference between the reported number of publications (Dirty) and the number of
publications after our cleaning (Clean). We also diagnosed the errors and recorded the duplication ratio (Dup)
and the percentage of mis-attributed papers (Pred). Both Rakesh Agarwal and Michael Franklin had a large
number of mis-attributed papers due to other authors with the same name (64 and 402 respectively). Jeffery
Ullman had a comparatively larger number of duplicated papers (182).

If we were interested in ranking the authors, the dirty data would give us the wrong result. In Figure 2, we
plot the probability of a correct ranking as a function of number of cleaned records with SampleClean. We show
how we can return the correct ranking with 95% probability after cleaning only 210 total samples. To achieve
a correct ranking with 99% probability, we require 326 samples to be cleaned. In comparison, AllDirty always
returns an incorrect ranking. SampleClean provides a flexible way to achieve a desired confidence on decision
based on dirty data queries.

4 View Cleaning: Stale Views are Dirty Data [30]

Suppose the relation R is in fact a derived relation V of an underlying dirty database D. We explored how we
can efficiently apply a data cleaning operation to a sample of V . This extension has an important application in
approximate Materialized View maintenance, where we model a stale Materialized View as dirty data, and the
maintenance procedure as cleaning.

4http://academic.research.microsoft.com (Accessed Nov. 3, 2013)
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4.1 Motivation

Some materialized views are computationally difficult to maintain and will have maintenance costs that can
grow with the size of data (e.g, correlated aggregate in a sub-query). When faced with such challenges, it is
common to batch updates to amortize maintenance overheads and add flexibility to scheduling. Like dirty data,
any amount of staleness can lead to erroneous query results where the user has no idea about the magnitude or
the scope of query error. Thus, we explore how samples of “clean” (up-to-date) data can be used for improved
query processing on MVs without incurring the full cost of maintenance.

4.2 Notation and Definitions

View Cleaning returns a bounded approximation for aggregate queries on stale MVs for a flexible additional
maintenance cost.
Materialized Views: Let D be a database which is a collection of relations {Ri}. A materialized view V
is the result of applying a view definition to D. View definitions are composed of standard relational algebra
expressions: Select (σϕ), Project (Π), Join (◃▹), Aggregation (γ), Union (∪), Intersection (∩) and Difference
(−).

Staleness: For each relation Ri there is a set of insertions ∆Ri (modeled as a relation) and a set of deletions
∇Ri. An “update” to Ri can be modeled as a deletion and then an insertion. We refer to the set of insertion and
deletion relations as “delta relations”, denoted by ∂D:

∂D = {∆R1, ...,∆Rk} ∪ {∇R1, ...,∇Rk}
A view S is considered stale when there exist insertions or deletions to any of its base relations. This means that
at least one of the delta relations in ∂D is non-empty.

Maintenance: There may be multiple ways (e.g., incremental maintenance or re-computation) to maintain a
view V , and we denote the up-to-date view as V ′. We formalize the procedure to maintain the view as a
maintenance strategyM. A maintenance strategy is a relational expression the execution of which will return
V ′. It is a function of the database D, the stale view V , and all the insertion and deletion relations ∂D. In this
work, we consider maintenance strategies composed of the same relational expressions as materialized views
described above.

V ′ =M(V,D, ∂D)

Uniform Random Sampling: We define a sampling ratio m ∈ [0, 1] and for each row in a view V , we include
it into a sample with probability m. The relation S is a uniform sample of V if

(1) ∀s ∈ S : s ∈ V ; (2) Pr(s1 ∈ S) = Pr(s2 ∈ S) = m.

A sample is clean if and only if it is a uniform random sample of the up-to-date view V ′.

4.3 Stale View Cleaning Problem

We are given a stale view S, a sample of this stale view S with ratio m, the maintenance strategyM, the base
relations D, and the insertion and deletion relations ∂D. We want to find a relational expression C such that:

V ′ = C(S,D, ∂D),
where V ′ is a sample of the up-to-date view with ratio m.
Query Result Estimation: This problem can be addressed with the direct estimation and correction techniques
described previously once we have a sample of up-to-date rows.
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4.4 Cleaning a Sample View

We need to find an efficient maintnenance plan that avoids extra effort (i.e., materialization of rows outside the
sample). The challenge is thatM does not always commute with sampling. To address the commutativity prob-
lem, we need to ensure that for each s ∈ V ′ all contributing rows in subexpressions to s are also sampled. We
address this with a two-step process: (1) build a relation expression tree that preserves primary key relationships,
and (2) use a hashing operator to push down along these relationships.
Primary Key: We recursively define a set of primary keys for all relations in the expression tree to define tuple
provenance. The primary keys allow us to determine the set of rows that contribute to a row r in a derived
relation. The following rules define a constructive definition for these keys:

Definition 2 (Primary Key Generation): For every relational expression R, we define the primary key at-
tribute(s) of every expression to be:

• Base Case: All relations (leaves) must have an attribute p which is designated as a primary key.

• σϕ(R): Primary key of the result is the primary key of R

• Π(a1,...,ak)(R): Primary key of the result is the primary key of R. The primary key must always be included
in the projection.

• ◃▹ϕ(r1,r2) (R1, R2): Primary key of the result is the tuple of the primary keys of R1 and R2.

• γf,A(R): The primary key of the result is the group by key A (which may be a set of attributes).

• R1 ∪R2: Primary key of the result is the union of the primary keys of R1 and R2

• R1 ∩R2: Primary key of the result is the intersection of the primary keys of R1 and R2

• R1 −R2: Primary key of the result is the primary key of R1

For every node at the expression tree, these keys are guaranteed to uniquely identify a row.

Hashing: Next, instead of sampling with pseudo-random number generation, we use a hashing procedure. This
procedure is a deterministic way of mapping a primary key to a Boolean, we can ensure that all contributing
rows are also sampled. Let us denote the hashing operator ηa,m(R). For all tuples in R, this operator applies a
hash function whose range is [0, 1] to primary key a (which may be a set) and selects those records with hash less
than or equal to m. In a process analgous to predicate push down, we can optimize the maintenance expression
by applying ηa,m(M). The result C is an optimized maintenance plan expression that materializes a sample of
rows.

Definition 3 (Hash push-down): For a derived relation R, the following rules can be applied to push ηa,m(R)
down the expression tree.

• σϕ(R): Push η through the expression.

• Π(a1,...,ak)(R): Push η through if a is in the projection.

• ◃▹ϕ(r1,r2) (R1, R2): Push down is possible for foreign key equality joins.

• γf,A(R): Push η through if a is in the group by clause A.

• R1 ∪R2: Push η through to both R1 and R2

• R1 ∩R2: Push η through to both R1 and R2

• R1 −R2: Push η through to both R1 and R2
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Figure 3: (a) We compare the maintenance time of View Cleaning with a 10% sample and full incremental
maintenance (IVM). (b) We also evaluate the accuracy of the estimation techniques: (Direct DIR), Correction
(CORR), and Dirty (Stale).

4.5 Results: Video Streaming Log Analysis

We evaluate View Cleaning on Apache Spark 1.1.0 with 1TB of logs from a video streaming company, Conviva
[2]. This is a denormalized user activity log corresponding to video views and various metrics such as data
transfer rates, and latencies. Accompanying this data is a four month trace of queries in SQL. We identified 8
common summary statistics-type queries that calculated engagement and error-diagnosis metrics. We populated
these view definitions using the first 800GB of user activity log records. We then applied the remaining 200GB
of user activity log records as the updates (i.e., in the order they arrived) in our experiments. We generated
aggregate random queries over this view by taking either random time ranges or random subsets of customers.

In Figure 3(a), we show that on average over all the views, View Cleaning with a 10% sample gives a 7.5x
speedup. For one of the views full incremental maintenance takes nearly 800 seconds, even on a 10-node cluster,
which is a very significant cost. In Figure 3(b), we show that View Cleaning also gives highly accurate results
with an average error of 0.98% for the correction estimate. This experiment highlights a few salient benefits
of View Cleaning: (1) sampling is a relatively cheap operation and the relative speedups in a single node and
distributed environment are similar, (2) for analytic workloads like Conviva (i.e., user engagement analysis) a
10% sample gives results with 99% accuracy, and (3) savings are still significant in systems like Spark that do
not support selective updates.

5 ActiveClean: Machine Learning on Dirty Data [31]

Analytics is moving beyond SQL, and the growing popularity of predictive models [1, 7, 17, 28] leads to addi-
tional challenges in managing dirty data.

5.1 Simpson’s Paradox

The challenge is that the high-dimensional models are very sensitive to systematic biases, and many of the
techniques applied in practice suffer methodological problems. Consider the following approach: let k rows be
cleaned, but all of the remaining dirty rows are retained in the dataset. Figure 4 highlights the dangers of this
approach on a very simple dirty dataset and a linear regression model i.e., the best fit line for two variables. One
of the variables is systematically corrupted with a translation in the x-axis (Figure 4a). The dirty data is marked
in brown and the clean data in green, and their respective best fit lines are in blue. After cleaning only two of
the data points (Figure 4b), the resulting best fit line is in the opposite direction of the true model. This is a
well-known phenomenon called Simpsons paradox, where mixtures of different populations of data can result in
spurious relationships [41]. Training models on a mixture of dirty and clean data can lead to unreliable results,
where artificial trends introduced by the mixture can be confused for the effects of data cleaning. Figure 4c also
illustrates that, even in two dimensions, models trained from small samples can be as incorrect as the mixing
solution described before.
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Figure 4: (a) Systematic corruption in one variable can lead to a shifted model. (b) Mixed dirty and clean data
results in a less accurate model than no cleaning. (c) Small samples of only clean data can result in similarly
inaccurate models.

5.2 Problem Setup

This work focuses on a class of well analyzed predictive analytics problems; ones that can be expressed as the
minimization of convex loss functions. Examples includes all generalized linear models (including linear and
logistic regression), all variants of support vector machines, and in fact, avg and median are also special cases.

Formally, for labeled training examples {(xi, yi)}Ni=1, the problem is to find a vector of model parameters θ
by minimizing a loss function ϕ over all training examples:

θ∗ = argmin
θ

N∑
i=1

ϕ(xi, yi, θ)

Where ϕ is a convex function in θ. Without loss of generality, we will include regularization as part of the loss
function i.e., ϕ(xi, yi, θ) includes r(θ).

Definition 4 (Convex Data Analytics): A convex data analytics problem is specified by a set of features X ,
corresponding set of labels Y , and a parametrized loss function ϕ that is convex in its parameter θ. The result is
a model θ that minimizes the sum of losses over all features and labels.

ActiveClean Problem: Let R be a dirty relation, F (r) 7→ (x, y) be a featurization that maps a record r ∈ R to
a feature vector x and label y, ϕ be a convex regularized loss, and C(r) 7→ rclean be a cleaning technique that
maps a record to its cleaned value. Given these inputs, the ActiveClean problem is to return a reliable estimate
θ̂ of the clean model for any limit k on the number of times the data cleaning C(·) can be applied.

Reliable precisely means that the expected error in this estimate (i.e., L2 difference w.r.t a model trained
on a fully cleaned dataset) is bounded above by a monotonically decreasing function in k and a monotonically
decreasing function of the error of the dirty model. In other words, more cleaning implies more accuracy, and
less initial error implies faster convergence.

5.3 Model Updates

The main insight of this work is that, in Convex Data Analytics, sampling is naturally part of the query pro-
cessing. Mini-batch stochastic gradient descent (SGD) is an algorithm for finding the optimal value given the
convex loss and data. In mini-batch SGD, random subsets of data are selected at each iteration and the average
gradient is computed for every batch. Instead of calculating the average gradient for the batch w.r.t to the dirty
data, we apply data cleaning at that point–inheriting the convergence bounds from batch SGD. It is well known
that even for an arbitrary initialization SGD makes significant progress in less than one epoch (a pass through
the entire dataset) [10]. Furthermore in this setting, the dirty model can be much more accurate than an arbitrary
initialization; leading to highly accurate models without processing the entire data.
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ActiveClean is initialized with θ(1) = θ(d) which is the dirty model. At each iteration t = {1, ..., T}, the
cleaning is applied to a batch of data b selected from the set of candidate dirty rows R. Then, an average gradient
is estimated from the cleaned batch and the model is updated. Iterations continue until k = T ·b rows are cleaned.
The user sets the learning rate λ initially.

1. Calculate the gradient over the sample of clean data and call the result gS(θ(t))

2. Apply the following update rule:
θ(t+1) ← θ(t) − λ · gS(θ(t))

5.4 Optimizations

ActiveClean has a number of additional optimizations exploiting the structure of Convex Data Analytics prob-
lems.
Detector: In this step, the detector select a candidate set of dirty rows Rdirty ⊆ R. There are two techniques
to do this: (1) an a priori case, and (2) and an adaptive case. In the a priori case, the detector knows which data
is dirty in advance. In the adaptive case, the detector learns classifier based on previously cleaned data to detect
corruption in uncleaned data. This allows ActiveClean to prioritize cleaning data expected to be dirty.

Non-uniform Sampler: The sampler draws a sample of rows Sdirty ⊆ Rdirty. This is a non-uniform sample
where each record r has a sampling probability p(r). We derive the theoretical minimum variance sampling
distribution, which is impossible to realize as it requires knowing the clean data in advance. Therefore, we use
a first order first-order approximation of this distribution based on estimates of the clean data.

Estimator: The estimator approximates the optimal distribution derived in the Sample step. Based on the
change in the featurized data F (Sclean) and F (Sdirty), it directs the next iteration of sampling to select points
that will have changes most valuable to the next model update.

6 Related Work

Approximate Query Processing: AQP has been studied for more than two decades [23, 16]. Many AQP
approaches [12, 5, 40, 8, 27, 37, 15, 47] were proposed, aiming to enable interactive query response times.
There are also many studies on creating other synopsis of the data, such as histograms or wavelets [16]. While
a substantial works on approximate query processing, these works mainly focus on how to deal with sampling
errors, with little attention to data errors.

Data Cleaning: There have been many studies on various data-cleaning techniques, such as rule-based ap-
proaches [21, 18], outlier detection [26, 19], filling missing values, and duplicate detection [13, 9, 44]. In order
to ensure reliable cleaning results, most of these techniques require human involvement. For example, Fan et
al. [22] proposed to employ editing rules, master data and user confirmation to clean data, and proved that their
approaches can always lead to correct cleaning results. Wang et al. [44] proposed a hybrid human-machine
approach to detect duplicate entities in data, which can achieve higher detection accuracy than machine-only
approaches. In SampleClean, the main focus is not on a specific data-cleaning technique, but rather on a new
framework that enables a flexible trade-off between data cleaning cost and result quality. Indeed, we can apply
any data-cleaning technique to clean the sample data, and then utilize our framework to estimate query results
based on the cleaned sample.

Views and Cleaning: Meliou et al. [33] proposed a technique to trace errors in an MV to base data and
find responsible erroneous tuples. They do not, however, propose a technique to correct the errors as in View
Cleaning. Correcting general errors as in Meliou et al. is a hard constraint satisfaction problem. However,
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in View Cleaning, through our formalization of staleness, we have a model of how updates to the base data
(modeled as errors) affect MVs, which allows us to both trace errors and clean them. Wu and Madden [46] did
propose a model to correct “outliers” in an MV through deletion of records in the base data. This is a more
restricted model of data cleaning than View Cleaning, where the authors only consider changes to existing rows
in an MV (no insertion or deletion) and do not handle the same generality of relational expressions (e.g., nested
aggregates). Challamalla et al. [11] proposed an approximate technique for specifying errors as constraints on
a materialized view and proposing changes to the base data such that these constraints can be satisfied. While
complementary, one major difference between the three works [33, 46, 11] and View Cleaning is that they
require an explicit specification of erroneous rows in a materialized view. Identifying whether a row is erroneous
requires materialization and thus specifying the errors is equivalent to full incremental maintenance. However,
while these approaches are not directly applicable for staleness, we see View Cleaning as complementary to
these works in the dirty data setting.

7 Future Work and Open Problems

We further describe a number of open theoretical and practical problems to challenge the community:

Sample-based Optimization of Workflows: In practical data cleaning workflows, there are numerous design
choices e.g., whether or not to use crowdsourcing, similarity functions, etc. An open problem is using samples
of cleaned data to estimate and tune parameters on data cleaning workflows.

Optimality: For aggregate queries in the budgeted data cleaning setting, variance of the clean data σ2
c , variance

of the pairwise differences between clean and dirty data σ2
d, and sample size k, is O(min{σc,σd}√

k
) (derived in this

work) an optimal error bound? By optimal error bound, we mean that given no other information about the data
distribution, the bound cannot be tightened.

Point-Lookup Dichotomy: This work focuses on aggregate analytics such as queries and statistical models.
In fact, as the selectivity of the analytics goes to 0 (i.e., single row lookup), the bounds in this work limit to
infinity. However, in practice, cleaning a sample of data can be used to address such queries, where a statistical
model can be trained on a sample of data to learn a mapping between dirty and clean data. An open problem
is exploring how much looser is a generalization bound (e.g., via Learning Theory) compared to the bounds on
aggregate queries.

Confirmation Bias and Sample Re-use: Confirmation bias is defined as a “tendency to search for or interpret
information in a way that confirms one’s preconceptions”[39]. In systems like SampleClean, users repeatedly
query and clean the sample of data. This process may encourage confirmation bias as users are allowed to modify
data based on reviewing a query result (i.e., what prevents a user from removing data that does not match his or
her hypothesis). An open problem is designing efficient APIs to mitigate the effects of confirmation bias, perhaps
by limiting the number of times a user can query the sample to review the effects of a cleaning operation.

8 Conclusion

An important challenge in data analytics is presence of dirty data in the form of missing, duplicate, incorrect or
inconsistent values. Data analysts report that data cleaning remains one of the most time consuming steps in the
analysis process, and data cleaning can require a significant amount of developer effort in writing software or
rules to fix the corruption. SampleClean studies the integration of Sample-based Approximate Query Processing
and data cleaning; to provide analysts a tradeoff between cleaning the entire dataset and avoiding cleaning
altogether. To the best of our knowledge, this is the first work to marry data cleaning with sampling-based
query processing. While sampling introduces approximation error, the data cleaning mitigates errors in query
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results. This idea opened up a number of new research opportunities, and we applied the same principles to
other domains such as Materialized View Maintenance and Machine Learning.
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