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Abstract

There has been much research on various aspects of Approximate Query Processing (AQP), such as
different sampling strategies, error estimation mechanisms, and various types of data synopses. How-
ever, many subtle challenges arise when building an actual AQP engine that can be deployed and used
by real world applications. These subtleties are often ignored (or at least not elaborated) by the theo-
retical literature and academic prototypes alike. For the first time to the best of our knowledge, in this
article, we focus on these subtle challenges that one must address when designing an AQP system. Our
intention for this article is to serve as a handbook listing critical design choices that database practi-
tioners must be aware of when building or using an AQP system, not to prescribe a specific solution to
each challenge.

1 Introduction

We start this article with a discussion of when and why AQP is a viable solution in Section 2. After a brief
overview of the typical anatomy of AQP systems in Section 3, we discuss the common sampling techniques used
in practice in Section 4. Often, database developers are not aware of the subtle differences between different
sampling strategies and their implications on the error estimation procedures. While confidence intervals are
commonly used for quantifying the approximation error, in Section 5 we discuss other important types of error
(i.e., subset and superset errors) that are not expressible as confidence intervals, but are quite common in practice.
We then discuss another source of error, bias, in Section 6. Surprisingly, while well-studied and understood by
statisticians, bias seems to be often overlooked in the database literature on AQP systems. The complexity
and variety of different types of errors can easily render an AQP system incomprehensible and unusable for an
average user of database systems. Intuitive but truthful communication of error with the end user is discussed in
Section 7. We conclude this article in Section 8.

2 Why use Approximation in the First Place?

Since its inception 25 years ago [63], Approximate Query Processing (AQP) has always been an active area
of research in academia [7, 11, 20, 9, 32, 53, 58]. However, AQP has recently gained substantial attention in
the commercial world as well. Soon after the commercialization of BlinkDB by Databricks [1], other Big Data
query engines also started to add support for approximation features in their query engines (e.g., SnappyData [5]
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or Facebook’s Presto [4]). In the rest of this section, we try to explain the reason, rationale, and justification
behind this commercial interest.

2.1 The Losing Battle for Interactive Response Times

Online services, wireless devices, and scientific simulations are all creating massive volumes of data at un-
precedented rates. This abundance of rich datasets has made data-driven decisions the predominant approach
across businesses, science, and even governments. Ironically, existing data processing tools have now become
the bottleneck in data-driven activities. When faced with sufficiently large datasets (e.g., a few terabytes), even
the fastest database systems can take hours or days to answer the simplest queries [11]. This response time is
simply unacceptable to many users and applications. The exploratory data analytics is often an interactive and
iterative process: a data scientist forms an initial hypothesis (e.g., by visualizing the data), consults the data,
adjusts his/her hypothesis accordingly, and repeats this process until a satisfactory answer is discovered. Thus,
slow and costly interactions with data can severely inhibit a data scientist’s productivity, engagement, and even
creativity.1

Driven by the growing market for interactive analytics, commercial and open source data warehouses (e.g.,
Teradata, HP Vertica, Hive, Impala, Presto, Spark SQL, Redshift) have entered an arms race towards providing
interactive response times through implementing various optimization techniques. These optimization range
from exploiting parallelism, to indexing, materialization, better query plans, data compression, columnar for-
mats, and in-memory and in-situ processing. In essence, these optimizations are no different than the mainstream
database research on query processing over the past four decades, where the goal has been simply to:

1. efficiently access all relevant tuples to the query while avoiding the irrelevant tuples (e.g., via indexing,
materialization, compression, caching); and

2. choose a query plan with the least cost among a set of alternative plans that are all equivalent (i.e., all
plans are correct).

As long as we pursue these utopian goals,2 all our query optimization techniques are eventually destined to
fail. This is because the growth rate of data has already surpassed Moore’s law [3]. It is true that the set of tuples
queried by the user, called the working set, is often significantly smaller than the entire data, e.g., queries might
focus on the last week worth of data. However, even the data generated and collected each week is growing at
the same speed. This means that even if we know which exact tuples are accessed by a query in advance, at
some point, the number of those tuples will be large enough that they will no longer fit in memory (even when
compressed). In other words, since memory and CPU improvements are lagging exponentially behind the rate of
data growth, our ability to provide interactive response times will only decrease. Eventually, when the datasets
become large enough, no optimization technique will be able to provide interactive response times unless we
relax our goal of processing all relevant tuples.

Therefore, AQP—whereby only a small fraction of the relevant tuples are processed—presents itself as the
only viable approach to ensure interactive response times in the near future.

2.2 Perfect Decisions are Possible even with Imperfect Answers

In many applications, query results are only useful inasmuch as they enable best decisions, as exemplified by
the following use cases.

1For instance, studies have shown that to maintain a human’s interactive engagement with a computer, the response time must not
exceed 2–10 seconds [44].

2Our discussion here is focused on relaxing the first goal. For a discussion on relaxing the second goal refer to [46].
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A/B testing —. The goal in A/B testing is to compare two quantities f(A) and f(B) for some assessment
function f , and thereby choose the better explanation. However, as long as our estimates of these quantities
reliably allow for such comparisons, there is no need for computing their exact values. For instance, as long as
our approximations guarantee with high confidence (e.g., 99%) that f(A) ∈ [0.1, 0.2] while f(B) ∈ [0.5, 0.8],
there is no need for knowing the exact values of those two quantities.

Hypothesis testing — A major goal of data scientists is to evaluate and test a set of competing hypotheses
and choose the best one. Choosing the best hypothesis often involves comparing the effectiveness scores of
different hypotheses. The effectiveness score of a hypothesis can be measured by computing some function
of the hypothesis, e.g., probability values (p-values), the generalization-error, confidence intervals, occurrence
ratios, or reduction of entropy. These scores are initially only useful insofar as they allow for ruling out the
unlikely hypotheses in light of the more likely ones. In other words, scientists do not need the precise value of
these scores. As long as we can guarantee that a hypothesis yields a lower score than others, the researchers can
proceed to choose the better hypothesis.

Root cause analysis — Scientists and data analysts frequently seek explanations for or identify the root causes
of various observations, symptoms, or faults. Similar to previous cases, root cause analysis can be accomplished
without having precise values.

Exploratory analytics — Data scientists often slice and dice their dataset in search of interesting trends, cor-
relations or outliers. For these exploration purposes, receiving approximate answers at interactive speeds is
preferred over exact and slow results. In fact, research on human-computer interaction has shown that, to keep
users engaged, the response time of an interactive system must be below 10 seconds. In particular, during cre-
ative efforts, the idle time beyond a couple of seconds, while the user waits to see the consequence of his/her
query, is inhibitive and intolerable [44].

Feature selection — An important step in training high-quality models in machine learning consists of searching
the space of possible subsets of features. The exponential number of possibilities has made feature selection one
of the most expensive (yet crucial) steps in a machine learning workflow. Similar to the previous examples, as
long as a set of features can be assessed as inferior to another set, the former can be safely ruled out without
having to compute the exact prediction error of the model under these subsets of features (e.g., see [38]).

Big data visualization —Interactive visualization is a key means through which analysts discover interesting
trends in scientific or business-related data. Modern visualization tools, such as Tableau [6] and GoodData [2],
use external database engines to manage large datasets. When the user requests a plot, the visualization tool
submits a query to the database engine to fetch the data needed for the visualization. Unfortunately, for large
datasets it may take the system several minutes or even hours to obtain the tuples necessary for generating a
plot. Increasingly, the explicit goal of visualization systems is not just to generate a single precise image, but
to enable a fluid back-and-forth engagement between the user and the dataset [41]. When the database system
fails to respond in a short amount of time, this fluid interactivity is lost. However, loading (and plotting) more
data does not always improve the quality of the visualization. This is due to three reasons [55]: (i) the finite
number of pixels on the screen, (ii) the cognitive limitations of human vision in noticing small details, and (iii)
the redundancy in most real-world datasets. Thus, it is often possible for the database system to generate a
degraded query answer using a small sample of the large dataset but with minimal impact on the visualization’s
quality [27, 37, 55].

2.3 The Data Itself is Often Noisy

Most of the data collected in the real world is inherently noisy, due to human error, missing values, white
noise, sensor misreadings, erroneous data extractors, data conversions and even rounding errors. In other words,
precise answers are often a myth: even when processing the entire data, the answer is still an approximate one.

5



Due to these reasons, a significant body of research in learning theory has accounted for this inherent noise when
performing inference using training data. In fact, there has been much research on trade-off between inference
error and computation [18]. Likewise, introducing a controlled degree of noise by database systems in exchange
for significant savings in computational resources is quite natural.

2.4 Inference and Predictive Analytics are Probabilistic in Nature

The majority of the commonly used techniques for inference in machine learning, computational statistics, and
stochastic modeling are based on probabilistic analysis. In some cases, the predictions themselves are proba-
bilistic (e.g., in probabilistic regression [17]), while in other cases, the predictions are based on probabilistic
reasoning. As these predictive models are designed to account for uncertainty and noise in their training data,
adding a controlled degree of uncertainty to their input (e.g., by using a carefully selected sample) will not
necessarily break their logic. In many cases, using a smaller sample of the data will lead to significant com-
putational savings with no or little impact on the utility and accuracy of their predictions. This is because the
time complexity of many learning algorithms is super-linear (e.g., cubic or quadratic) in their input size, while
the improvement of their learning curve follows a diminishing return rule. In other words, the learning error is
often proportional to O( 1√

n
) where n is the number of tuples used for training, e.g., to reduce the error from

20% to 2%, one typically needs to use 100× more data (see Corollary 3.4 in [45]). In fact, in some cases, cer-
tain forms of data reduction can significantly improve accuracy, e.g., by sampling down the majority class and
creating a more balanced distribution of different labels for classification tasks [40]. In general, sampling is a
systematic way of reducing the data size while maintaining the essential properties of the data [43]. For instance,
with proper sampling, the solution to the sub-sampled problem of linear regression is also a good approximate
solution to the original problem [24].

Therefore, in many cases where the output of database queries are consumed by predictive analytics or
machine learning algorithms, returning samples of the data or approximate results is a sound decision that can
yield considerable performance benefits.

3 General Anatomy of Approximate Query Processing Systems

AQP systems can widely differ in their methodology and design choices. However, in this section, we attempt
to provide a general anatomy by identifying the common architectural components of these systems. Our dis-
cussion of the various design decisions in each component will also serve as a natural taxonomy of the AQP
systems. These components, shown in Figure 1, are discussed in the following subsections.

3.1 User Interface

This component is typically in charge of receiving queries and accuracy or latency requirements from the user,
as well as communicating the approximate answers and the error bounds (or accuracy guarantees) back to the
user. Some of these functionalities vary among different AQP systems. For example, systems providing an
online aggregation [32, 65] interface do not take accuracy requirements from the user. Instead, they periodically
report the current approximation and its estimated error as they are progressively processing the user query
over a larger portion of the data. In these systems, the user can decide, based on the current accuracy of the
running approximation (or the rate of its improvement), whether to terminate the query execution or await its
completion over the entire data. As another exception, the user interface in certain AQP systems may not
even return any error estimation to the user. These systems are often designed for debugging or real-time
exploration purposes (e.g., in massive distributed systems [59] or scientific datasets [52]), and hence, the focus is
on retrieving the outliers or corner cases. Here, an approximate answer—even without an accuracy guarantee—
is often sufficient for a programmer or scientist to find a bug or suspect a trend in the underlying data. Once
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Figure 1: The general anatomy of an approximate query processing system.

a reasonable hypothesis is formed, an exact answer can be obtained by running on the entire data. However,
most AQP systems allow the users to specify their accuracy or latency requirements (either on a per-query
basis [12, 66] or as a system-wide setting), and report the accuracy of their results back to the user. The ability to
specify and receive accuracy guarantees seems to an important factor in convincing users to use AQP systems.
Min-max ranges [57], confidence intervals (a.k.a. error bars) [7, 16, 32, 66], additive errors [22], and probability
of existence [23] have been used for communicating the error to the end users. However, given that the majority
of database users are not statisticians, devising user-friendly and high-level mechanisms for expressing the error
seems to be an area of research that requires more attention (see Section 7).

3.2 Summary Storage Manager

The summary storage manager is one of the key architectural components of an AQP system, responsible for
(i) the type of data summary to use, (ii) when to build it, (iii) how to store it, and (iv) when to update it. The
behavior, generality and efficiency of an AQP system depends heavily on the design choices made for how to
handle these responsibilities in the summary storage manager.

Different types of data summaries — Various forms of data summaries and synopses have been utilized by
AQP systems. Samples have been the most commonly used form of data summary. Several reasons have con-
tributed to this popularity. By adhering to the same schema as the original table, samples support the widest
range of queries compared to other types of data summaries. Besides their generality, samples are also ex-
tremely easy to implement. Most queries can be evaluated on a sample with little or no modifications to existing
database engines. As one of the oldest concepts in statistics, there is also a large body of rich literature on the
design and analysis of sampling-based approximations. Sampling also avoids the so called “curse of dimension-
ality”; the accuracy of a sample does not degrade with the the number of data dimensions. In particular, with
random (a.k.a. uniform) sampling, the space required to store the sample only grows linearly with the number
of attributes. Finally, most sampling algorithms do not use the AVI (Attribute Value Independence) assumption,
and therefore, allow for high quality selectivity estimation [15]. Although virtually any query can be evaluated
on a sample (rather than the entire dataset), the quality of the resulting approximation varies widely depending
on the query. For example, evaluating MIN, MAX, top-K, and COUNT DISTINCT queries on a sample is often
futile. Moreover, random samples are by definition inapt at capturing outliers in skewed distributions. As a
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result, many AQP systems have utilized various forms of biased samples in addition to random samples. In
particular, stratified sampling has been a popular choice [8, 11, 13, 20, 35]. In survey design, stratified sampling
has been traditionally used for reducing the overall variance by grouping similar items into the same stratum
(and hence, reducing the intra-stratum variance). However, in AQP systems, stratified sampling has been used
mainly for a different reason. Queries with highly selective WHERE clauses may match zero or only a few tuples
in a random sample, leading to extremely large (or infinite) errors. By stratifying tuples based on the value of a
subset of the attributes, any combination of those columns—no matter how rare—will be preserved in the sam-
ple [8, 11, 13, 20, 35]. Thus, a key challenge in using stratified samples is to decide which subsets of columns to
stratify on. In other words, finding an optimal set of stratified samples is a physical design problem: given a fixed
storage budget, choose subsets of columns that are most skewed, or are most likely to be filtered on by future
queries (see [11] for a mathematical formulation of this problem). The choice of optimal set of stratified and
random samples depends heavily on the specific queries that users want to run. However, since future queries
are not always known a priori (especially, for exploratory and adhoc workloads [48]), special care needs to be
taken to ensure that the selected samples remain optimal even when future workloads deviate from past ones
(see [47] for a solution).

Histograms are another form of data summaries commonly used by AQP systems. A histogram is a binned
representation of the (empirical) distribution of the data. One-dimensional (i.e., single-column) histograms
are internally used by nearly all database systems to cost and selectivity estimation of different query plans.
Since AQP systems are often built atop an existing DBMS, these histograms can also be used for producing fast
approximate answers without incurring an additional storage overhead. The main drawback of histograms is that
they suffer from the curse of dimensionality; the number of bins for k-column histograms grows exponentially
with k. Using the AVI assumption to estimate the joint distribution of k columns from the 1-column histograms
is equally futile (due to intra-column correlations).

Wavelet transforms are another means for summarizing large datasets, whereby a small set of wavelet co-
efficients can serve as a concise synopsis of the original data. While wavelets can exploit the structure of the
data to provide considerable data compaction, they suffer from the same limitation as histograms, i.e., curse of
dimensionality. In other words, one-dimensional wavelet synopses can only support a limited set of database
queries. Moreover, the error guarantees traditionally offered by wavelet synopses are not always meaningful in
an AQP context (see [30]).

There are numerous other types of synopses structures that can be built and used by AQP systems, including
but not limited to sketches, coresets, and ϵ-nets. A detailed overview of various types of synopses is beyond
the scope of this article.3 While some of these data summaries are more practical than others, their common
theme is that they are all specific to a certain type of query, but provide significantly better approximations than
sampling-based techniques. Therefore, these types of synopses are typically used when users demand a specific
query to be executed quickly and when there is an existing technique to support that type of query. Exam-
ples include HyperLogLog for COUNT DISTINCT queries [28], Count-Min-Sketch (CMS) for COUNT-GROUP BY

queries [22, 42], Join Synopsis for foreign-key join queries [9], balanced box-decomposition (BBD) trees for
range queries [14], and Neighbor Sensitive Hashing (KSH) tables for k-nearest neighbor queries [54].

The choice of the specific data summary depends on the target workload. AQP systems designed for speeding
up a predetermined set of queries utilize various sketches, wavelets or histograms, whereas general-purpose
AQP systems tend to rely on sampling strategies. Often, a combination of these data summaries are built to
provide general support for most queries, while producing better approximations for those queries that are more
important to the user. As a rule of thumb, building a random sample, several stratified samples, as well as a few
common sketches is a reasonable choice.

Offline versus online data summarization — Another choice made by the Summary Storage Manager is
whether to summarize the data prior to the arrival of the query (offline) or perform the summarization on demand

3Interested readers are referred to [21] for an excellent and detailed discussion of different types of synopses.

8



after receiving the query (online). Performing the data summarization offline allows the AQP system to utilize
expensive, more sophisticated types of synopses, e.g., summaries that require multiple passes over the data. At
the same time, the generated summaries can be further optimized through various physical layout strategies,
such as replication, indexing, partitioning and caching (see below). However, there is a potential downside to
the offline approach: the lack of precise knowledge of future queries can lead the Summary Storage Manager
to making sub-optimal choices, e.g., by not building an appropriate stratified sample. In contrast, the online
approach does not have to make any choices a priori. However, efficient data summarization in an online
fashion is significantly more challenging. In other words, the online approach will incur an additional run-time
overhead and will have fewer opportunities for building sophisticated types of synopses or auxiliary structures
on demand.

Different storage strategies — The Summary Storage Manager is also in charge of the physical layout of the
generated summaries. For example, this component may choose to store certain summaries at multiple granular-
ities. For instance, it may physically store three samples of size 1%, 2% and 4%, respectively, to provide three
logical samples of size 1%, 3% and 7%. The advantage of such logical samples, called overlapping samples, is
that once the query is run on a 1% sample, its results on a 3% sample can be obtained by simply performing a
delta computation using the 2% sample. This strategy is particularly useful when the initially chosen sample size
does not meet the accuracy requirements of the user. An alternative strategy is to use each sample individually.
Given the same storage budget, this choice provides a finer range of sample size selections, e.g., if the 1% size
is deemed insufficient, the next choice will be 2% rather than 3%. However, delta computation will no longer be
an option in this case. For most queries, delta computation is typically faster than a re-evaluation on the entire
data. However, for non-monotonic or nested queries with HAVING clauses, this may not be the case [65].

Most AQP systems use an existing RDBMS to store their summaries, e.g., samples of a table are themselves
stored as tables. However, the Summary Storage Manager can still decide which samples need to be cached in
memory and which ones should be kept on disk [11]. For example, for time series data, the most recent window
might be more likely to be queried, and hence, should be kept in memory. When on disk, the columnar or
row-wise layout of a sample will affect its I/O cost as well as its ease-of-update. Whether and how to index each
sample is yet another choice. In distributed AQP systems, partitioning and replication strategies applied to each
sample will also have significant performance implications. For example, replicating a popular sample on every
node may be a reasonable strategy unless it needs to be updated frequently.

Different maintenance strategies — There are several alternatives for the maintenance of the different synopses
and summaries in an AQP system. In a lazy approach, the summaries are only updated as a batch, either
periodically (e.g., once a week) or upon the user’s explicit request. This approach is often preferred when the
cost of updates is prohibitive, while the downside is the obvious staleness of the approximate results until the
next update is performed. In an eager approach, the updates to the database are immediately reflected in the
data summaries. For example, whenever a tuple is inserted to or deleted from a table, all samples on that table
are also updated accordingly. Typically, data summaries are easier to update in face of insertions than deletions.
As a result, most AQP systems only allow insert operations, which is sufficient for append-only environments,
such as data streams or HDFS-based systems (e.g., Hive, Presto, Impala, SparkSQL).

3.3 Approximate Query Evaluator

This component is perhaps the heart of every AQP system, computing approximate answers for queries received
through the User Interface. The overwhelming majority of the existing AQP systems are built atop an existing
database system, for two main reasons: (i) to minimize the implementation effort as the majority of the logic
from existing query processors can be rescued for approximation, and (ii) to provide users an option to always
go back to the entire data and request a precise answer, if they decide to. The latter has been an important
factor in improving the uptake of the AQP systems in the database market. In fact, one of the reasons behind the
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popularity of sampling-based approximations (compared to other forms of data summaries) is that they can be
supported with minimal changes to the existing database systems.

The Approximate Query Evaluator has to decide whether the given query is of a form that can be answered
with any of the available data summaries. Adhoc synopses (e.g., sketches) are often preferred over more generic
types of synopses. Otherwise, the system has to decide if and which of the existing samples can be used to
best meet the user’s requirement. When applicable to the query, stratified samples are preferred over random
samples. Once a sample type is decided, an appropriate fraction of it is chosen based on the latency and error
requirements.

Once an appropriate data summary is selected, the Approximate Query Evaluator either directly evaluates
the query using that structure, or, in most cases, issues certain queries to the underlying database to evaluate
the query on its behalf. When possible, the latter approach allows the AQP system to take full advantage of
the mature query optimizers and the efficient implementation of off-the-shelf database systems. Certain post-
processing steps, such as scaling and bias correction, may also be applied to the results before returning an
approximate answer to the user.

To verify whether the user’s accuracy requirements are met, the Approximate Query Evaluator needs to
communicate with the Error Quantification Module, either during the query evaluation or at the end of the pro-
cess. While a more sophisticated Approximate Query Evaluator can perform multi-query optimization, resource
management, or load balancing, in practice most AQP systems simply rely on an underlying off-the-shelf query
engine to perform these tasks for them.

3.4 Error Quantification Module

An approximate answer is as useful as its accuracy guarantees. The Error Quantification Module (EQM) is
in charge of quantifying or estimating the extent of error in the approximate results. Some EQMs provide an
error estimate only for the final answer [7, 11], while others provide a running error estimate as the query is
progressing (i.e., online aggregation [32, 65]). The latter allow users to terminate the execution as soon as
they are satisfied with the current estimate or otherwise decide to abandon their current query. However, there
are few AQP systems that do not provide any error guarantees, and simply return a best-effort approximation
(see [52, 59]).

Another important distinction between various error quantification strategies is their ability to predict the
error without evaluating the query. For example, given a sample of the data, a closed-form error can predict the
error of an AVG query using a few basic statistics, e.g., the sample size and the estimated variance of the data.
On the other hand, more sophisticated error estimation strategies (e.g., simulation-based bootstrap) will only
know the error once they perform an expensive computation, i.e., after evaluating the query on the sample. The
ability to predict the approximation is an important factor, as it allows the AQP system to choose the best type
and resolution among the available data summaries according to the latency or accuracy goals of the user. When
this ability is missing, the EQM module has to resort to trial-and-error: the EQM will have to use heuristics
to choose a data summary, evaluate the query on that summary, and then quantify the error to see if the results
meet the accuracy requirements (otherwise, the query will be repeated on a different data summary). There are
different forms of approximation error used in AQP systems, as described next.

Variance — Many AQP systems have used variance as a measure of quality for their sampling-based approx-
imate answers. Other types of data summaries have rarely been analyzed for their variance. This is perhaps
due to the large body of statistical literature on the variance of sampling and survey estimators. The work on
variance estimation in the context of AQP systems can be categorized into two main approaches. The first ap-
proach [11, 19, 20, 32, 34, 9, 36, 53, 64] analytically derives closed-form error estimates for simple aggregate
functions, such as SUM, AVG and COUNT. Although computationally appealing, analytic error quantification suf-
fers from its lack of generality. For every new type of queries, a new formula must be derived. This derivation
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is a manual process that is ad-hoc and often impractical for complex queries [56].
A second approach to error estimation is to use the so called bootstrap. By providing a routine method

for estimating errors, bootstrap is a far more general method than closed forms [10, 30, 56]. The downside
of bootstrap is its computational overhead, as hundreds or thousands of bootstrap trials are typically needed
to obtain reliable estimates. However, several optimizations have been proposed for speeding up the bootstrap
process (see Section 6.2).

Assuming asymptotic normality (and an unbiased answer), the variance is sufficient for computing a con-
fidence interval for the approximate answer. Rather than reporting the variance, a confidence interval is often
used to communicate the error to the end user.

Bias — Bias is another important measure of quality for approximate answers. We would like to minimize the
bias in our approximations, or ideally, have unbiased answers. While the formal definition of bias can be found in
Section 4, its intuitive meaning is quite simple: an unbiased approximation is one where the chances of an over-
estimation is the same as that of an under-estimation. In other words, if the approximation procedure is repeated
many times, the results will be centered around the true answer. While taken seriously in the statistics literature,
the bias is often overlooked in Error Quantification Modules of AQP systems. Most AQP systems assume that
the bias approaches zero as the sample size increases. We will show, in Section 6, that this assumption is not
necessarily true.

Probability of existence — Bias and variance are used for assessing the approximation quality of a numerical
estimate. However, the output of database queries is not a single number, but a relation. Due to the propagation of
various forms of uncertainty during query processing, certain tuples may appear in the output of the approximate
answer that will not appear in the output of the exact query (see Section 5). To assess the likelihood of this
phenomenon, the EQM computes a different form of error, called the probability of existence. The probability
of existence of an output tuple is the probability with which it would also appear in the output of the exact query.
This form of error is well-studied in the context of probabilistic databases [23]. In an EQM, these probabilities
can be easily computed using bootstrap [67].

Other forms of error — There are many other (less common) forms of error used by EQMs for various types of
data summaries. For example, coresets—a carefully selected subset of the original tuples used for approximating
computational geometry problems, such as as k-medians and k-means— provide multiplicative error guarantees
of 1 ± ϵ [31].. In other words, coresets guarantee that (1 − ϵ)θ ≤ θ̂ ≤ (1 + ϵ), where θ is the true answer,
θ̂ is the approximate answer, and ϵ > 0 is a pre-specified parameter chosen by the user (the smaller the ϵ, the
more accurate the results but the larger the coreset size). For ϵ-nets (another subset selection approximation for
geometric problems), the guarantees state that any range query containing at least ϵ > 0 fraction of the original
tuples will also contain at least one tuple of the selected subset. The quality of wavelet-based reconstructions is
often expressed in terms of the L2-norm error of the approximation. However, there are thresholding algorithms
for Haar wavelets that minimize other forms of error, such as the maximum absolute or relative error of the
approximate results (see [21] and the references within). Other AQP systems have also used absolute range
guarantees [57] as a measure of accuracy. Typically, none of these error guarantees are easily convertible into
one another. Consequently, most AQP systems do not combine multiple types of data summaries for answering
the same query, i.e., the entire query is evaluated only using one type of data summary.

4 Not All Samples are Created Equal

Let D be our dataset (e.g., a large table), q be a query, and q(D) be the result of evaluating q on the entire dataset
D. In sampling-based AQP systems, the goal is to use a small sample of D, say S, to provide an approximate
answer to q. This is typically achieved by running a (potentially) modified version of q, say q′, on S, such that
q′(S) ≈ q(D). In this case, q′ is called an estimator for q. When |S| << |D|, q′(S) can often be computed
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much more efficiently than q(D). An important characteristic of an estimator is its bias b, defined as follows:

b = E|S|=n[q
′(S)]− q(D) (1)

Since the expectation is always over all possible samples of size n, henceforth we omit the |S| = n subscript
from our expectation notation. Also, for ease of presentation, we assume that queries only return a single number
(though these definitions can be easily extended to relations). An ideal estimator is one that is unbiased, namely:

b = E|S|=k[q
′(S)]− q(D) = 0

Unfortunately, in general, deriving an unbiased estimator q′ can be extremely difficult and adhoc. As a result,
most AQP systems use a heuristic, which we call the plug-in approach and describe in Section 4.1. (However,
we later show (in Section 6) that this plug-in approach does not guarantee an unbiased estimate and thus, an
additional bias correction step is often needed.) After a brief overview of the most common sampling strategies
(Section 4.2), we provide a list of estimators—along with their bias and variance closed forms—for simple
aggregate functions under each strategy (Section 4.3). In particular, to the best of our knowledge, some of our
closed-form estimates for conditional aggregates (i.e., aggregates with a WHERE clause) have not been previously
derived in the literature. We list these new and existing closed-form estimates in concise tables to serve as
an accessible reference for non-statisticians (e.g., practitioners and engineers) involved in implementing AQP
systems.

4.1 Plug-in Approach

To provide reasonable approximations without having to modify every query or make significant changes to
existing query evaluation engines, the following heuristic is used by almost all AQP systems:

1. Assign an appropriate weight wi to each sampled tuple ti according to its sampling rate. For example, in
the original table (before sampling) the weight of every tuple is 1, whereas in a random sample comprised
of 1% of the original tuples wi = 0.01 for all ti. Different tuples can have different weights, e.g., in
stratified sampling (see Section 4.2) the tuples in each stratum have a different sampling rate, and hence,
a different weight.

2. Modify the aggregate functions (e.g., SUM, AVG, COUNT, quantiles) to take these weights into account in
their computation. For example, to calculate the SUM of attribute A in n tuples, use

∑n
i=1

ti·A
wi

(instead
of

∑n
i=1 ti·A), where ti·A is the value of attribute A in tuple ti. Similarly, the AVG of attribute A will

be computed as 1
n

∑n
i=1

Ai
wi

(instead of 1
n

∑n
i=1Ai). COUNT and quantile aggregates can be modified

similarly.4 (This scaling is also known as the Horvitz-Thompson (HT) estimator [33].)

3. After the two modifications above, simply run the same query (i.e., q′ = q) on sample S to produce an
approximation of q(D), namely:

q(D) ≈ q(S) (2)

We call this the plug-in approach since we simply plug in a sample instead of the original data but run the
same query. While this approach might seem intuitive and natural, it does not necessarily produce unbiased
answers (see Section 6). Next, we briefly enumerate the most commonly used sampling strategies in AQP
systems.

4While similar weighting could also be used for MIN and MAX, the resulting estimators would still be biased for these extreme statistics.
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4.2 Sampling Strategies

Given the popularity of sampling techniques in AQP systems, in this section we briefly review the most common
sampling strategies employed in these systems. Subsequently, in Section 4.3, we present the closed form expres-
sions of the error for each strategy. We refer the reader to [61] for a detailed comparison of different sampling
strategies, [62] for different sampling algorithms, and [29] for a discussion of updating samples.

Fixed-size sampling with replacement — Given a fixed sample size n, we choose n tuples from D, indepen-
dently and at random, and include them in our sample S. Each item can be sampled multiple times. Throughout
this article, we use sets and multisets interchangeably, i.e., we allow duplicate values in a set. Thus, even
though there might be duplicate tuples in S, we still have |S| = n. This form of sampling allows for the use of
bootstrap, which is a powerful error estimation technique (see Section 6.2). However, it is rarely used in AQP
systems since, given the same sample size, sampling without replacement can capture more information about
the underlying data.

Fixed-size sampling without replacement — Given a fixed sample size n, we choose n tuples from D at
random, and include them in our sample S. Each tuple can be sampled at most once. When n << |D|, sampling
with replacement behaves similarly to sampling without replacement. As a result, even thought bootstrap is only
designed for the former, in practice it is also used for the latter when this condition holds. When maintained
for a streaming dataset (where items can be added or removed), fixed-size sampling without replacement is
referred to as reservoir sampling [62]. Probabilistic variations of this form of sampling are also available,
whereby tolerating a small possibility of error (in producing the requested sample size) allows for an efficient
and embarrassingly parallel implementation [43].

Bernoulli sampling without scaling — Given a sampling ratio P (0<P≤1), draw a random number r in [0, 1]
for every tuple T in D; include T in S if r ≤ P . This is the classical formulation of Bernoulli sampling, which
is rarely used in AQP systems (see below).

Bernoulli sampling with scaling — Given a sampling ratio P (0≤P≤1), draw a random number r in (0, 1] for
every tuple T in D; include 1

P T in S if r ≤ P , and otherwise add a 0 to S. Here, 1
P T is tuple T with all its

attributes multiplied by 1
P , and 0 is a tuple with 0 for all attributes. Thus, the sample size is the same as the

original data, i.e., |S| = |D| = N . Despite this conceptually large sample size, this sampling technique has the
same performance advantage as Bernoulli sampling without scaling since the 0 tuples are not necessarily stored
and evaluated during query evaluation. The main advantage of Bernoulli sampling with scaling over Bernoulli
sampling without scaling is that the sample size is no longer a random variable [51]. This greatly simplifies the
derivation of the closed form error estimation (see Table 2). This type of sampling can be easily implemented
for streaming or distributed environments (e.g., load shedding in a data stream management system [60]).

Stratified sampling — Given L strata D1, · · · , DL, sample Si of size ni is chosen from each stratum Di

independently, using fixed-size sampling without replacement.5 Our sample S is defined as S = ∪L
i=1Si, and

we have n = |S| = ∪L
i=1ni.

The main advantage of stratified sampling is the potential reduction of variance, especially when the tuples
are similar within each stratum but dissimilar across different strata. In AQP systems, stratified sampling has
another (even more important) advantage. If the tuples are stratified based on the value of their attributes with a
skewed distribution, then queries will be guaranteed to match at least a minimum number of tuples, even if their
filtering conditions match rare values of those columns. This is different than classical survey sampling. In an
AQP system, the effective population changes depending on the filtering conditions of the query (see Table 2 in
Section 4.3).

While various sampling strategies differ in their ease of updates and amenability to parallelism, they also
5In this article, we only consider fixed-size sampling without replacement per stratum. However, combining the error of multiple

strata follows the same principle regardless of the sampling strategy applied to each stratum.
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widely differ in their approximation error and ease of closed-form estimation. In the next section, we will present
the closed-form estimations of bias and variance for simple aggregate queries under each of these sampling
strategies.

4.3 Closed-form Error

Our main goal in this section is to provide practitioners (and non-statisticians) a concise and accessible list of
closed-form estimators for common forms of aggregates and sampling strategies.6

The sample estimators are widely discussed in the statistics literature. However, deriving and applying such
estimators in an AQP context requires additional care. This is because database queries often have a WHERE

clause, which effectively changes the population D and the sample S for every new query. Thus, the population
size of tuples satisfying condition c can no longer be known in advance. Although the fraction of tuples in D
satisfying c, Fc, can be computed by evaluating all tuples in D, such an approach is too costly. To enable fast
computation, only a sample S of D must be accessed during query evaluation. For example, the fraction of
tuples in S satisfying c, fc, can be used as an approximation of Fc. However, fc, will no longer be a constant
but a random variable, and its variance must be taken into account when estimating the variance of aggregate
queries. Even worse, when fc = 0, one must still consider the possibility that Fc ̸= 0. These challenges translate
to more complicated closed-forms for aggregate queries with a WHERE clause.

In the following discussion, we divide different statistics into computable and incomputable to distinguish
them based on whether they can be computed efficiently. We call a statistic or estimator computable if it can be
computed from the original population without knowing the condition c in the query’s WHERE clause, or from
the sample. For example, N , n, and

∑n
i=1 Ic(Yi) are all computable statistics. Although the latter depends

on c, it can be computed from the sample and hence, is computable. Likewise, γc = N
n

∑n
i=1 Ic(Yi) is also

a computable estimator, as it only requires computable statistics. In contrast, we call a statistic or estimator
incomputable if it requires certain statistics of the original population that depend on the query’s WHERE clause
condition c, or from the sample. For example, X̄c and σDc are incomputable statistics.

For ease of reference, we have summarized all our notation in Table 1. In this table, the target attribute
refers to the attribute being aggregated on by the query. Table 2 provides a concise list of various estimators for
simple aggregate queries under different sampling strategies.7 The results of Table 2 can be easily generalized
to SELECT clauses with multiple aggregates or aggregates over arithmetic expressions of the original attributes.
Although omitted from Table 2, supporting the GROUP BY clause is also straightforward. Conceptually, each
query can be re-evaluated once per every group g, each time with a new predicate cg added its WHERE clause,
such that cg evaluates to true only for tuples in group g. Finally, the condition c in Table 2 is any condition that
can be evaluated for each tuple in D without accessing other tuples in D. In other words, c can be either a simple
condition on various attributes of tuple T ∈ D, or a nested query that does not reference D.

In Table 2, for each pair of aggregate and sampling type, we have provided the following:

1. A computable (and typically unbiased) query estimator for computing the approximate answer. For ex-
ample, to approximate a conditional count query under fixed-sized sampling without replacement, γc can
be computed using only the number of tuples in S satisfying c (i.e.,

∑n
i=1 Ic(Yi), the size of the sample

n, and the total size of the original population N .

2. The exact expression of the query estimator’s standard deviation. However, this expression is often in-
computable.

3. A computable unbiased estimator for the query estimator’s variance, when possible. This estimator is
important because the exact expression of the query estimator’s standard deviation (e.g., σγc) is incom-

6The error estimation of more complex queries requires (analytical or Monte-Carlo) bootstrap, which will be discussed in Section 6.2.
7The references, proofs and derivations of these closed-form estimations are deferred to our technical report [49].
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putable (see above).8 When such an estimator is not available, we have instead provided computable
unbiased estimators (under the right-most column of Table 2) for each of the incomputable statistics used
in the expression of the query estimator’s standard deviation. By substituting such statistics with their
computable unbiased estimators, one can compute a reasonable (but biased) approximation of the query
estimator’s standard deviation.

To use the formulas presented in this article, one must use the following definitions of population and sample
standard deviation:9.

σD =

√√√√ 1

N

N∑
i=1

(Xi − X̄)2 and σS =

√√√√ 1

n

n∑
i=1

(Yi − Ȳ )2

While in this section we focused on traditional error metrics (i.e., bias and variance), in the next section we
discuss other (subtle) forms of error that can occur in an AQP system.

5 Subtle Types of Error: Subset and Superset Errors

Consider a IRS (Internal Revenue Service) table storing the income and age of different citizens living in differ-
ent parts of the country:

IRS (citizen_name, city, age, income)

Now consider the following query against this table:

SELECT city, avg(income) as avg_income
FROM IRS
GROUP BY city

Let us assume that the true answer (i.e., the answer of running this query against the original table) is as
follows.

Now assume that the query above is evaluated against only a sample of the original table. Then, the output
aggregate values will be approximate. For example:

Here ± represents a confidence interval at a certain level of confidence, e.g., 95%. The problem here is
that if a city (e.g., Ann Arbor) has significantly fewer tuples in the original table than larger cities (e.g., New
York), then it may not be present in the selected sample. Thus, using such a sample will naturally leave out
the group pertaining to Ann Arbor from the query’s output altogether. When this situation occurs, the error is
no longer one of aggregation error. In other words, Ann Arbor will not be even present in the output to be
accompanied with accuracy guarantees for its aggregate value (here, average income). This phenomenon has
been the motivation behind the wide use of stratified samples, increasing the likelihood of rare groups being
present in the sample [8, 20, 11, 66]. Even when a reliable estimate cannot be obtained for a particular group,
one would wish to at least know that such a group should have existed. In other words, the following would be
an ideal output:

Unfortunately, the use of stratified samples does not always prevent missing records from the output. This
problem, called subset error, becomes more evident by considering the following slightly more involved query.

8The square root of our unbiased estimators for variance may be used as an approximation of the standard deviation. However, note
that the square root of an unbiased estimator for a random variable is not necessarily an unbiased estimator for the square root of that
random variable!

9In other words, we do not use the σS =
√

1
n−1

∑n
i=1(Yi − Ȳ )2 definition. Instead, we apply a correction factor separately.
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Symbol Meaning

D The entire set of tuples
S The selected sample of tuples, i.e., S ⊆ D

N The number of original tuples, i.e., N = |D|
n The number of tuples in the sample, i.e., n = |S|
c The condition used in the WHERE clause
Ic The indicator function, where Ic(t) = 1 if tuple t satisfies c and Ic(t) = 0 otherwise
Fc The fraction of tuples in D satisfying condition c (0≤Fc≤1)
fc The fraction of tuples in S satisfying condition c (0≤fc≤1)
Nc The number of tuples in S satisfying condition c (0≤Nc≤N )
T1, · · · , TN The tuples in D

t1, · · · , tn The tuples in S

X1, · · · , XN The values of the target attribute in T1, · · · , TN

Y1, · · · , Yn The values of the target attribute in t1, · · · , tn
Zc1 , · · · , ZcN Zci = Xi if Ic(Ti) = 1 and Zci = 0 otherwise
X̄ The mean of the target attribute in D, i.e., X̄ = 1

N

∑N
i=1Xi

Ȳ The mean of the target attribute in S, i.e., Ȳ = 1
n

∑n
i=1 Yi

X̄c The conditional mean of the target attribute in D, i.e., Xc =
∑N

i=1 XiIc(Xi)∑N
i=1 Ic(Xi)

Ȳc The conditional mean of the target attribute in S, i.e., Yc =
∑n

i=1 YiIc(Yi)∑N
i=1 Ic(Yi)

Z̄c The mean of the Zci values, i.e., Z̄c =
1
N

∑N
i=1 Zci

σD The standard deviation of the target attribute in D, i.e., σD =
√

1
N

∑N
i=1(Xi − X̄)2

σS The standard deviation of the target attribute in S, i.e., σS =
√

1
n

∑n
i=1(Yi − Ȳ )2

σZ The standard deviation of the Zci values, i.e., σZ =
√

1
N

∑N
i=1(Zci − Z̄c)2

σZY The standard deviation of the Zci values for items included in S

σZYi The standard deviation of the Zci values for items included in Si

σDc The standard deviation of the target attribute in {Xi | Ti ∈ D, Ic(Ti) = 1}
σSc The standard deviation of the target attribute in {Yi | ti ∈ S, Ic(ti) = 1}
P The sampling probability in Bernoulli sampling (0 < P ≤ 1)
L The number of strata in stratified sampling (1 ≤ L ≤ N ).
D1, · · · , DL The strata of D, i.e., D = ∪L

i=1Di and Di ∩Dj = ∅ for i ̸= j

S1, · · · , SL The samples from different strata of D, i.e., S = ∪L
i=1Si and Si ⊆ Di

N1, · · · , NL The number of tuples in different strata, i.e., Ni = |Di| and N =
∑L

i=1Ni

Nc1 , · · · , NcL The number of tuples in different strata satisfying c, i.e., 0 ≤ Nci ≤ Ni

n1, · · · , nL The number of sampled items from each stratum, i.e., ni = |Si| and n =
∑L

i=1 ni

X̄1, · · · , X̄L The mean of the target attribute in each stratum
Ȳ1, · · · , ȲL The mean of the target attribute in the sample from each stratum
Z̄1, · · · , Z̄L The mean of the Zci values in each stratum
Fc1 , · · · , FcL The fraction of tuples satisfying c in each stratum
fc1 , · · · , fcL The fraction of tuples satisfying c in each Si

σDi The standard deviation of the target attribute in Di

σSi The standard deviation of the target attribute in Si

σDci
The standard deviation of the target attribute for those tuples in Di that satisfy c

σSci
The standard deviation of the target attribute for those tuples in Si that satisfy c

σZi The standard deviation of the Zci values in Di

θ The estimator for approximating X̄ using S (AVG(X) FROM D)
ϕ The estimator for approximating

∑N
i=1Xi using S (SUM(X) FROM D)

γc The estimator for approximating
∑N

i=1 Ic(Xi) using S (COUNT ∗ FROM D WHERE c)
θc The estimator for approximating X̄c using S (AVG(X) FROM D WHERE c)
ϕc The estimator for approximating

∑N
i=1XiIc(Xi) using S (SUM(X) FROM D WHERE c)

σθ The standard deviation of θ
σϕ The standard deviation of ϕ
σγc The standard deviation of γc
σθc The standard deviation of θc
σϕc The standard deviation of ϕc

Table 1: Notation used in this paper.
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Ȳ
c

ϕ
c
=

N n

n ∑ i=
1
Y
iI

c
(Y

i)
(u

nb
ia

se
d)

γ
c
=

N
f c

(u
nb

ia
se

d)

Fi
xe

d-
si

ze
θ
=

Ȳ
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city avg income
New York 13,010
Los Angeles 34,560
Detroit 12,800
Ann Arbor 5,000

city avg income
New York 12,600 ± 700
Los Angeles 33,200 ± 1,100
Detroit 13,100 ±250

SELECT city, avg(income) as avg_income
FROM IRS
GROUP BY city
HAVING avg(income) > 13,000

The true answer to this query would be the following: However, using the same sample as the previous query,
the approximate answer returned for this query will be as follows:

The problem with this approximation is self-evident. Certain tuples are missing from the output altogether,
i.e., the row pertaining to New York city would have been present in the output of the query if executed against
the original data. This is called subset error. This error cannot be easily prevented with stratified samples. Here,
for example, the reason for New York’s row being missing from the output is that our current estimate of its
average income is 12, 600 which is below the 13, 000 cut-off point set by the HAVING clause.

Likewise, certain tuples should not have been present in the output of this query (i.e., the row pertaining to
Detroit) as its true aggregate value in reality is 12, 800 which is lower than 13, 000. However, we have a group
for Detroit in our output simply because our current estimate of Detroit’s average income happens to be 13, 100.
This is the opposite side of the subset error, and is called the superset error.

Confidence intervals and other range-based accuracy guarantees are only apt at expressing the error of point
estimates, such as the error of an aggregate function’s output. However, as evident from these simple examples,
subset and superset errors are of a different nature. These types of errors originate from the relational opera-
tors (e.g., selection, grouping, and projection) and are almost unheard of in the statistics literature. However,
both subset and superset errors can be easily defined using the possible worlds semantics widely used in proba-
bilistic query processing literature [23]. (See [67] as an example of the close connection between probabilistic
and approximate databases). In particular, the subset and superset errors could be managed by computing the
probability of existence for each possible output group [67]. For example, the following output will be far more
informative (and semantically more consistent) than the previous output:

This additional probability accompanying each output tuple can easily cause further confusion and lead to
an overwhelming number of output tuples. However, the purpose of this section is to simply point out the need
for AQP systems to compute and treat these probabilities in a principled manner, in order to ensure correct
semantics. Later, in Section 7, we discuss several approaches to hide this added complexity from the end users.

6 An Important Error Often Overlooked: Bias

As mentioned in Section 4, it is important to provide unbiased estimates to ensure that in the long run all
the approximate answers are centered around the true answer. First, in Section 6.1, we show that the plug-in
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city avg income
New York 12,600 ± 700
Los Angeles 33,200 ± 1,100
Detroit 13,100 ±250
Ann Arbor NaN ±∞

city avg income
New York 13,010
Los Angeles 34,560

approach can produce biased estimates even for relatively simple queries. Then, in Sections 6.3 and 6.4, we
propose the use of bootstrap for estimating and correcting the bias.

6.1 Bias in the Plug-in Approach

Here, we show how the plug-in approach can lead to statistical bias even for queries that are relatively simple.
Consider T3 as an instance of the IRS relation (shown in Table 3). Assume that the user wants to execute Q2
against T3. The true answer to this query will therefore be θ = Q2(T3) = (100K+200K+250K)/3 = 183.3K.

For the sake of this toy example, let us assume that the AQP system decides to use the plug-in approach
on a sample of size 3 to answer this query, i.e., |S| = 3. To compute the expected value of the returned
approximation, E|S|=k[θ̂S ], we need to consider all possible samples of size 3. Since

(
4
3

)
= 4, we can enumerate

all these possibilities for this toy example:

E|S|=3(θ(S)) = 100K · (5/3 + 2 + 7/4 + 9/4)/4 = 191.7K

Thus, the bias b of our estimator for Q2 is non-zero:

b = E|S|=3(θ(S))− θ = (191.7− 183.3) ∗ 1000 = 8.4K ̸= 0 (3)

Note that this query was quite simple: it only consisted of two AVG aggregates, with no HAVING or even
WHERE clause. Yet, the plug-in approach led us to a biased answer.10 Almost all existing AQP systems have
assumed (at least, implicitly) that the execution of the original query on a sample (i.e., the plug-in approach)
yields an unbiased estimate of the true answer. Consequently, to this date, all error quantification efforts in the
AQP community have focused on estimating the variance of the approximate answers. Given that the sampling
error is often asymptotically normal, the estimated variance can be used to provide a confidence interval centered
around the approximate answer. This is based on the assumption that the approximate answer from the plug-in
approach is an unbiased estimate. Even more recent studies using bootstrap for error quantification assume that
an unbiased estimate (e.g., in form of a re-written query) is provided by the user [67]. In other words, these
techniques have only been used for estimating the variance but not the bias of the estimators.

In the next section, we explain how (non-parametric) bootstrap can be used to estimate the bias of the
approximate answer produced by the plug-in approach. Once estimated, the bias can be subtracted from the
original estimate to produce an unbiased approximate answer. For the unfamiliar reader, we first provide a brief
introduction to the bootstrap theory.

10As an example of an even simpler query (i.e., with no nested sub-query) that still leads to bias, consider the following query:
SELECT AVG(X) FROM D WHERE X > 3 that is to be run against a sample of size n = 1 chosen from a table D = {0, 5}. There are two
possible samples {0} and {5}, with equal probabilities. These samples yield 0 and 5, respectively, as an approximate answer. Thus, the
expected value of our approximation will be 0+5

2
= 2.5, while the true answer is 5.
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city avg income
Los Angeles 33,200 ± 1,100
Detroit 13,100 ± 250

city avg income probability of existence
New York 12,600 ± 700 0.98
Los Angeles 33,200 ± 1,100 0.999999
Detroit 13,100 ± 250 0.90
Ann Arbor 4,010 ± 150 0.0000001

6.2 Background: Bootstrap

In this section, we provide a brief overview of the nonparametric bootstrap (or simply the bootstrap), which
has many applications in AQP systems. Bootstrap [26] is a powerful statistical technique traditionally designed
for estimating the uncertainty of sample estimators. Consider an estimator θ (i.e., a query) that is evaluated
on a sample S. This estimated value, denoted as θ(S), is a point-estimate (i.e., a single value), and hence,
reveals little information about how this value would have changed had we used a different sample S′. This
information is critical as the answer could be quite different from one sample to the next. Thus, S should
be treated as a random variable drawn from the original population (dataset D in our case). Consequently,
statisticians are often interested in measuring distributional information about θ(S), such as variance, bias,
etc. Ideally, one could measure such statistics by (i) drawing many new samples, say S1, · · · , Sk for some
large k, from the same population D from which the original S was drawn, such that |S| = |Si|, (ii) computing
θ(S1), · · · , θ(Sk), and finally (iii) inducing a distribution for θ(S) based on the observed values of θ(Si). We call
this the true distribution of θ(S). Figure 3a illustrates this computation. Given this distribution, any distributional
information (e.g., variance) can be computed.

Unfortunately, in practice, the original dataset D cannot be easily accessed (e.g., due to its large size), and
therefore, direct computation of θ(S)’s distribution using the procedure of Figure 3a is impossible. This is
where bootstrap [26] becomes useful. The main idea of bootstrap is simple: treat S as a proxy for its original
population D. In other words, instead of drawing Si’s directly from D, generate new samples S∗

1 , · · · , S∗
k by

resampling from S itself. Each S∗
i is called a (bootstrap) replicate or simply a bootstrap. Each S∗

i is generated by
drawing n = |S| independently and identically distributed (I.I.D.) samples with replacement from S, and thus,
some elements of S might be repeated or missing in each S∗

i . Note that all bootstraps have the same cardinality
as S, i.e. |S∗

i | = |S| for all i. By computing θ on these bootstraps, namely θ(S∗
1), · · · , θ(S∗

k), we can create an
empirical distribution of θ(S). This is the bootstrap computation, which is visualized in Figure 3b.

The theory of bootstrap guarantees that for a large class of estimators θ and sufficiently large k, we can use
the generated empirical distribution of θ(S) as a consistent approximation of its true distribution. The intuition is
that, by resampling from S, we emulate the original population D from which S was drawn. Here, it is sufficient
(but not necessary) that θ be relatively smooth (i.e., Hadamard differentiable [26]) which holds for a large class
of queries.11 In practice, k = 100 is usually sufficient for achieving reasonable accuracy (k can also be tuned
automatically; see [26]).

Advantages — Employing bootstrap has several key advantages for AQP systems. First, as noted, bootstrap
delivers consistent estimates for a large class of estimators. Second, the bootstrap computation uses a “plug-in”
principle; that is, we simply need to re-evaluate our query θ on S∗

i ’s instead of S. Thus, we do not need to
modify or re-write θ. Finally, individual bootstrap computations θ(S∗

1), · · · , θ(S∗
k) are independent from each

other, and hence can be executed in parallel. This embarrassingly parallel execution model enables scalability
11Bootstrap has even been used for estimating the uncertainty of complex functions, such as machine learning classifiers (see [50]).
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citizen name city age income
John Detroit 38 100K
Alice Ann Arbor 35 200K
Bob Los Angeles 25 200K
Mary Los Angeles 42 300K

Table 3: T3: another instance of the IRS relation.

SELECT AVG(city_income)
FROM (

SELECT city, AVG(income) as city_income
FROM IRS
GROUP BY city

);

Figure 2: Q2: a simple query, computing the average of the average income across all cities.

by taking full advantage of modern many-core and distributed systems.

Disadvantages — The downside of bootstrap is its computational overhead, as hundreds or thousands of boot-
strap trials are typically needed to obtain reliable estimates. However, several optimizations have been proposed
for speeding up the bootstrap process. Pol et al. [56] have proposed Tuple Augmentation (TA) and On-Demand
Materialization (ODM) for efficient generation of bootstrap samples, while Laptev et al. [30] have exploited the
computation overlap across different bootstrap trials. Agarwal et al. [10] have shown that leveraging Poissonized
resampling (as opposed to sampling with replacement) can yield significant speed ups. An alternative approach,
called Analytical Bootstrap Method (ABM) [66, 67], avoids the Monte Carlo simulations altogether; instead,
ABM uses a probabilistic relational model for the bootstrap process to automatically estimate the error (for a
large class of SQL queries) to bypass the actual Monte Carlo simulation. Unlike the Poissonized resampling,
ABM is limited to SQL operators and cannot handle user-defined aggregates.

6.3 Bias Estimation and Correction Using Bootstrap

The bias b of the plug-in approach is defined as:

b = E|S|=k[θS ]− θ = E|S|=k[q(S)]− q(D) (4)

Using bootstrap theory, we can estimate E|S|=k[q(S)] − q(D) by replacing S with S∗ and D with S, as
follows:

b ≈ E|S∗|=k[q(S
∗)]− q(S) (5)

where S∗ is a bootstrap resample of S and the expectation is taken over all bootstrap resamples. Since enumer-
ating all possible bootstrap resamples is infeasible, we often restrict ourselves to m independent resamples of S
for sufficiently large values of m. We denote these bootstrap resamples by S1, S2, ..., SB , and take the average
of q(Si) over i ∈ {1, 2, ....,m}:

b ≈ 1

m

m∑
i=1

q(Si)− q(S) (6)
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(a) Ideal computation of θ(S)’s distribution

(b) Bootstrap computation of θ(S)’s distribution

Figure 3: Since the original data D may not be easily accessible to generate new samples Si from, bootstrap uses resamples
S∗
i of the original sample S instead, where |S| = |S∗

i |, to produce an empirical distribution for θ(S).

Choosing a large m (many bootstrap resamples) improves the accuracy of the bias estimation. The compu-
tational overhead of repeatedly evaluating q on each resample can be avoided by using the analytical bootstrap
method (ABM) [67].

As a toy example, we apply this bias estimation technique to query Q2 and relation T3. Assume that k = 3
and that the chosen sample is S = {(200K,AnnArbor), (200K,LosAngeles), (300K,LosAngeles)}. Here,
for brevity, we only display the income and city fields as the other fields do not affect the query results. For this
small example, we can exhaustively enumerate all possible bootstrap resamples, their appearance probability,
and their corresponding query result q(Si):

Thus, we have:

E|S|=3[q(S
∗)] = 100K(2 ∗ 8/27 + 3 ∗ 1/27 + 2.5 ∗ 6/27 + 7/3 ∗ 3/27 + 8/3 ∗ 3/27 + 9/4 ∗ 6/27) = 231.5K

Since q(S) = (200K+250K)/2 = 225K, bootstrap will estimate the bias as b ≈ 231.5K−225K = 6.5K.
This value is quite close to the true bias, which as computed in (3) is b = 8.4K. However, while this bias
estimation strategy works well for the toy example at hand, it is important to note that this technique can be
highly inaccurate when the sample size (i.e., k = |S|) or the number of resamples (i.e., m) are small. In the next
section, we explain a reentering technique that can improve the accuracy of this bias estimation strategy.
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Table 4: Bootstrap resamples and their corresponding probability of appearance.

Resample Probability of Appearance q(Si)

{(200K,Ann Arbor) , (200K,Ann Arbor) , (200K,Ann Arbor)} 1/27 200K
{(200K,Los Angeles), (200K,Los Angeles), (200K,Los Angeles)} 1/27 200K
{(300K,Los Angeles), (300K,Los Angeles), (300K,Los Angeles)} 1/27 300K
{(200K,Ann Arbor) , (200K,Los Angeles), (200K,Los Angeles)} 3/27 200K
{(200K,Ann Arbor) , (200K,Ann Arbor) , (200K,Los Angeles)} 3/27 200K
{(200K,Ann Arbor) , (200K,Ann Arbor) , (300K,Los Angeles)} 3/27 500K/2
{(200K,Ann Arbor) , (300K,Los Angeles), (300K,Los Angeles)} 3/27 500K/2
{(200K,Los Angeles), (200K,Los Angeles), (300K,Los Angeles)} 3/27 700K/3
{(200K,Los Angeles), (300K,Los Angeles), (300K,Los Angeles)} 3/27 800K/3
{(200K,Ann Arbor) , (200K,Los Angeles), (300K,Los Angeles)} 6/27 900K/4

6.4 Bias Estimation and Correction Using Bootstrap and Recentering

Let S = {X1, X2, ..., Xk}, where each Xj is a tuple. Also, let S1, S2, ..., Sm be m bootstrap resamples of
S. To apply the recentering method, we represent each Si by a vector Vi = (ai,1, ai,2, · · · , ai,k), where ai,j
is the number of times that tuple Xj is repeated in Si. Thus, based on the definition of bootstrap resamples,∑k

j=1 ai,j = k. For example, if S1 consists of k − 1 repetitions of X1 and one instance of Xk, then V1 =
(k − 1, 0, · · · , 0, 1). We abuse our notation to use this vector representation: we replace q(Si) with q(Vi). Let
V̄ denote the average of all Vi’s:

V̄ =
1

m

m∑
i=1

Vi

With this notation, the bootstrap with recentering technique [26] estimates the bias of an approximation as
follows:

b ≈ 1

m

m∑
i=1

q(Si)− q(V̄ ) (7)

The difference between equations (6) and (7) is that, in the latter, we have replaced q(S) with q(V̄ ).
The intuition behind why (7) is superior in accuracy to (6) is as follows. Note that 1

m

∑m
i=1 q(Si) in (6)

is used as an approximation of E|S|=k[q(S
∗)] in equation (5). However, unless we consider all (or many) pos-

sible resamples of S, this approximation can be quite inaccurate. Due to computational constraints, m may
not be sufficiently large in practice. To compensate for this shortcoming, the recentering technique (conceptu-
ally) changes the distribution of the tuples in S to enforce that 1

m

∑m
i=1 q(Si) is an accurate approximation of

E|S|=k[q(S
∗)]. In other words, before estimating the bias, we replace S with a new sample that fits the empirical

distribution formed by our m bootstrap resamples. This new sample is our V̄ , which is formed by averaging
the m bootstrapped resamples. It has been shown that this reentering strategy exhibits less variance than the
technique described in Section 6.3 [26].

The toy example used in Section 6.3 enumerated all bootstrap resamples. When this is the case, it is easy to
show that q(S) = q(V̄ ), which causes the two techniques to produce identical estimates of the bias. However,
in practice, enumerating all possible resamples is often infeasible, and thus, the reentering technique becomes
superior. To demonstrate this, we reconsider the same query Q2 and sample S as used in the previous section,
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but limit ourselves to only m = 6 bootstrap resamples S1, S2, · · · , S6. These resamples, their Vi representation,
and their corresponding q(Si) are all listed in the following table:

Table 5: Bootstrap resamples and their vector representations

Si Vi q(Si)

S1 ={(200K,Ann Arbor) ,(300K,Los Angeles),(300K,Los Angeles)} V1 = (1, 0, 2) q(S1) = 500K/2

S2 ={(300K,Los Angeles),(300K,Los Angeles),(300K,Los Angeles)} V2 = (0, 0, 3) q(S2) = 300K

S3 ={(200K,Los Angeles),(300K,Los Angeles),(300K,Los Angeles)} V3 = (0, 1, 2) q(S3) = 800K/3

S4 ={(200K,Los Angeles),(300K,Los Angeles),(300K,Los Angeles)} V4 = (0, 1, 2) q(S4) = 800K/3

S5 ={(200K,Ann Arbor) ,(200K,Los Angeles),(300K,Los Angeles)} V5 = (1, 1, 1) q(S5) = 900K/4

S6 ={(200K,Ann Arbor) ,(200K,Ann Arbor) ,(200K,Ann Arbor) } V6 = (3, 0, 0) q(S6) = 200K

Thus, using equation (6), the bias will be estimated as:

b ≈ 1

6

6∑
i=1

q(Si)− q(S) = 251.4K − 225K = 26.4K

To use equation (7), we have V̄ = (500K6 , 100K2 , 500K3 ), and:

q(V̄ ) = 100K ∗
2 + (1/2)∗2+(5/3)∗3

(1/2)+(5/3)

2
= 238.5K

Now, we can use equation (7) to estimate the bias as:

b ≈ 1

6

6∑
i=1

q(Si)− q(V̄ ) = 251.4K − 238.5K = 12.9K

This estimate is closer to the real bias, which as computed in (3) is b = 8.4K.
In this example, although there is equal probability to bootstrap each of the tuples (200K, Ann Arbor),

(200K, Los Angeles), and (300K, Los Angeles) from S, our bootstrap resamples included (300K, Los Angeles)
more frequently than the other two tuples. Therefore, by recentering S to fit the empirical distribution formed by
these 6 bootstrap resamples, the probability of bootstrapping (300K, Los Angeles) is enforced to be significantly
higher than the probability of bootstrapping the other two items.

7 Communicating Error to Non-Statisticians

In general, for a SQL query with m aggregate columns in its SELECT clause, each output row is associated
with m + 1 error terms: one error will capture the row’s probability of existence, while others will capture the
approximation quality of the aggregate columns in the row. Using confidence intervals as a common means
of expressing aggregation error, we will need to (at least conceptually) append 2m + 1 columns to the output
relation of an approximate query, where each aggregation error will be captured using two columns: one for the
confidence level α (e.g., 95%) and one for half of the interval width β. In other words, each output tuple T will
have the following attributes:

T : B1, · · · , Bk, A1, · · · , Am, α1, · · · , αm, β1, · · · , βm, pe
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where B1, · · · , Bk are the non-aggregate columns in the output, A1, · · · , Am are the aggregate columns, αi and
βi are the confidence level and half interval width for Ai, respectively. Finally, pe is the probability of existence
for tuple T (see Section 5). For example, assuming Ai is an unbiased estimate, with a probability of α, the true
answer will be in the [Ai − βi, Ai + βi] range.

While providing a rich set of accuracy measures, this scheme suffers from two major drawbacks:

1. Adding additional columns to the query output will break existing BI (Business Intelligence) tools de-
signed to work with traditional database systems. Unless such tools are modified to expect (and ignore
or use) the additional columns, they cannot work with an AQP system that modifies the output schema of
the queries. In contrast, an AQP system that keeps the output schema intact will enjoy a greater degree
of adoption: any off-the-shelf reporting and BI tool can be sped up by simply replacing its underlying
RDBMS with such an AQP system, without the tool having to be aware of the fact that it is using an AQP
database.

2. While a statistician might be able to understand, combine, and use these rich set of error statistics to
perform sophisticated forms of inference, a typical database user will simply find a large number of errors
associated with each row overwhelming. In fact, the majority of non-statisticians (e.g., developers and
practitioners) may even find it difficult to interpret statistical error guarantees, such as confidence intervals
and asymptotic errors.12

On the other hand, there is clear advantage to provide and use these error estimates when relying on approx-
imate answers for decision making. While there is a clear need for more research in this area (i.e., how to best
communicate statistical errors to a non-statisticians), here we outline a basic solution to this dilemma, which we
call a high-level accuracy contract (HAC).

High-level Accuracy Contract (HAC) — First, the AQP system calculates all these errors but, by default, does
not add them to the query output. The query, however, can access these error estimates by explicitly invoking a
designated function. For example,

SELECT call_center_id, AVG(review) AS satisfaction
FROM customer_service_logs
WHERE satisfaction < 2.0

AND existence_probability() > 0.95
AND relative_error(satisfaction, 0.95, 0.3)

GROUP BY call_center_id
ORDER BY satisfaction
);

where existence probability() and relative error() are special functions provided by the AQP engine.
This will simply allow users (and BI tools) to decide if and when they would like to use the error estimates.
However, to allow practitioners and existing BI tools that are not ready or willing to explicitly invoke such
functions, the AQP system provides a high-level accuracy contract, expressed as a single number ϕ, where
0ϕ ≤ 1. Once a high-level accuracy contract is set to a particular ϕ, the AQP system guarantees that any results
returned to the users will be at least ϕ× 100% accurate. This is enforced as follows.

The AQP system simply omits every output tuple whose probability of existence is below ϕ. However, to
deal with an aggregate value that does not meet this requested HAC13 there are several policies that the AQP

12One solution is to substitute βi with βi
|Ai|

× 100% (when Ai > 0) for a relative error or with ±βi for an absolute error. Even better,
one might use a graphical interface where these numbers are replaced with error bars [32]. However, grasping the statistical significance
of all these error bars will still remain overwhelming.

13An aggregate value does not meet the HAC if βi
max{|Ai|,ϵ}

< ϕ, where ϵ > 0 is a small constant to prevent unduly small values of
Ai from causing large relative errors. αi can be also set to ϕ or to a default value, e.g., 0.95 or 0.99.
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system can adopt:

• Do nothing. The AQP system simply returns all the aggregate values (possibility with a different display
color if a graphical terminal is used).

• Use a special symbol. The system replaces the aggregate value with a special value, e.g., NULL, −1, or
other user-specified values.

• Drop the row. The system drops the entire row if any of the aggregate columns in that row do not meet
the required HAC.

• Fail. The system drops the entire output relation and throws an exception (e.g., through a SQL error) if
any of the aggregate columns in any of the rows do not meet the required HAC.

The user can control the AQP system’s behavior by choosing any of these policies, with ‘do nothing’ being
the most lenient approach and ‘fail’ being the strictest behavior. In the latter, the user can decide whether to re-
run the query with a more lenient policy or with a larger sample size, or simply resort to exact query evaluation.
The downside of the ‘drop the row’ policy is that it will affect the internal logic of the BI tools if they keep
track of the row count of the output relation. The ‘use a special symbol’ does not change the output cardinality,
however, it will need a special symbol that is not present in the original data. The main advantages of the HAC
approach is that (i) it allows AQP systems to be used as a drop-in solution for existing BI tools, (ii) enables
practitioners and developers to express their required level of accuracy in an intuitive fashion, i.e., as a single
percentage, (iii) provides a range of intuitive policies to cater to different levels of accuracy concerns, and (iv)
allows advanced users to still access and use the detailed error statistics if they want to.

8 Conclusion

With the Big Data on the rise, there has been much demands in the recent years for building and using Approxi-
mate Query Processing (AQP) systems. Despite the rich history of database research in this area, there are many
technical subtitles and open challenges that need to be properly addressed in order to build sound, efficient, and
deployable AQP systems. In this chapter, for the first time, we focused on these subtle challenges, ranging from
the marketing opportunities for AQP systems to their general anatomy and architecture. Considering that most
database developers and practitioners are not statisticians, we provided a self-contained and self-explanatory
cheatsheet for error estimation under different sampling strategies. At the same time, we explained a few major
types of error in these systems—that tend to be easily overlooked—using simple examples. Finally, we intro-
duced our high-level accuracy contract (HAC) approach to prevent the complexity of different types of error
from overwhelming the end user of an AQP system.
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