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Abstract

Off-the-Shelf (OTS), relational databases can be challenging when deployed in the cloud. Given their
architectures, limitations arise regarding performance (because of virtualization), scalability (because of
multi-tenancy), and elasticity (because existing engines cannot easily take advantage of the application
migration possibilities of virtualized environments). As a result, many database engines tailored to cloud
computing differ from conventional engines in functionality, consistency levels, support for queries or
transactions, and even interfaces.

Efficiently supporting Off-the-Shelf databases in the cloud would allow to port entire application
stacks without rewriting them. In this paper we present a system that combines snapshot isolation (SI)
replication with virtualization to provide a flexible solution for running unmodified databases in the
cloud while taking advantage of the opportunities cloud architectures provide. Unlike replication-only
solutions, our system works well both within larger servers and across clusters. Unlike virtualization
only solutions, our system provides better performance and more flexibility in the deployment.

1 Introduction

When deploying applications on the cloud there is a trade-off between using Off-the-Shelf (OTS) databases or
cloud-ready solutions. While using OTS databases is convenient as entire application stacks can be migrated to
the cloud, there is no efficient way of doing this yet [1]. Ad-hoc solutions that try to virtualize OTS databases
often hit performance bottlenecks due to virtualization [6] or a miss-match between what virtualization offers
and what OTS databases support [34]. Recent trends in increasing number of cores in cluster nodes also add
to the complexity of the problem. OTS databases and replication-based solutions built on top of them have
difficulties in harnessing these computational resources [19, 29, 7].

Cloud-ready solutions offer scalability and elasticity at the cost of reduced functionality, varied levels of
consistency, or limited support in queries and transactions. For instance, Dynamo [13] sacrifices consistency
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under certain scenarios and has a simple put/get query API. Bigtable [10] also has a simple query API that does
not support a full relational model.

Relational systems like SQL Azure [9] use replication for fault tolerance and load balancing, but the replica-
tion factor is fixed with no way of tuning it in favor of fault tolerance or performance. Similarly, Amazon RDS
[2] relies on replication but imposes a variety of restrictions based on the chosen underlying database engine.

In this paper we present Vela, a system for running OTS databases on the cloud. The system relies on
virtualization (to take advantage of the system architectural possibilities available in the cloud) and snapshot
isolation (SI) replication (for fault tolerance, performance, and scalability, without sacrificing consistency).
Synchronous replication has become a de facto standard for achieving scalability and availability with industry
solutions like SQL Azure [8], Megastore [3], or Oracle RAC [25] relying on it.

Novel virtualization related techniques such as memory ballooning [4], hot plugging/removing cores or live-
migration [11] add flexibility and support for online reconfiguration to Vela.

Although based on known techniques like replication and virtualization, the design of Vela faced several non-
trivial challenges. The biggest ones were in designing our system such that it can seamlessly take advantage of
both the size and number of cluster machines over which it is deployed. First, handling the two dimensions (of
size and number) separately makes reasoning and taking decisions (e.g., deployment, online reconfiguration)
about the system more difficult. Virtualizing the hardware reduces the complexity with a minimal cost in re-
sources and performance. Further, having a homogeneous view of the machines allowed us to define an API for
the online reconfiguration of the system. Second, managing a dynamic set of replicated OTS database instances
over a virtualized cluster required a coordinator component that implements the replication logic, monitors the
deployment, and automatically takes decisions in order to react to load changes. Third, addressing performance
and functional miss-matches between databases and virtual machine monitors required engineering effort in
order to achieve good scalability and support the reconfiguration APIL.

The performance evaluation of the system, relying on standard workloads (e.g., TPC-W and TPC-E), shows
that it scales both on large servers and on clusters, it supports multi-tenancy and can be dynamically reconfigured
at run-time. In scalability tests, spanning two dozen nodes, the system handles more than 15k transactions per
second servicing transactions for 400 clients, while maintaining response times less than 50ms. The multi-
tenancy experiments show that the system can easily accommodate 20 collocated tenants while maintaining
response times below 400ms under an aggregated load generated by 800 clients.

The main contributions of the paper are the following:

e To the best of our knowledge, Vela is the first solution that treats clusters and multicore machines as a
uniform pool of resources for deploying and managing a replicated database system, an architectural step
necessary to operate in modern cloud systems.

e Vela demonstrates how to combine virtualization and replication such that the benefits of both can be
simultaneously achieved: a scalable system that does not have a static deployment and can be reconfigured
at runtime.

e The evaluation of the system illustrates many important technical design choices that lead to a system
that is generic (handling different read- intensive workloads), scalable, online reconfigurable and supports
multitenancy.

2 Motivation

The main argument in favor of using Off-the-Shelf (OTS) databases in cloud setups comes from the shortcomings
of existing cloud-ready solutions. Existing solutions like Dynamo [13], Dynamo DB or Bigtable [10] require
the applications running on top to implement logic that traditionally resides in the database. This includes
consistency guarantees, support for transactions over the whole data-sets, or support for complex queries and
operators (e.g., join).
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There are also counter arguments for running OTS databases in the cloud. Virtualization, elasticity, and
online reconfigurability are common traits of cloud systems which do not match the design of OTS databases
as these are usually deployed on dedicated servers and statically provisioned with resources (CPU, memory) for
peak loads.

In virtualized environments, hot plugging / removing of resources is a common mechanism for online recon-
figuration, supported by most hypervisors like Xen or VMWare. While OTS databases, both commercial (Sys-
temX) and open source (PostgreSQL, MySQL) will react to hot plugging or removing of CPUs, they face larger
challenges with memory. This comes from the fact that databases take memory management under their own
control (to different degrees). For example, commercial SystemX is statically configured with a fixed memory
size that serves as both data-cache and as a memory pool used for sorting or aggregation operations. At the other
extreme we find PostgreSQL which liberally only takes a small amount of memory (i.e., the “shared_buffer”,
recommended R‘iM ) under its control, relying on the OS disk cache for data-caching.

For OTS systems like PostgreSQL, dynamic memory plugging or removing can be used out of the box, while
for systems like InnoDB or SystemX, Application Level Ballooning [22, 31] mechanisms are needed.

While OTS databases provide functionality lacking in readily available cloud solutions, a naive solution
does not work out of the box. We show however that with the design of Vela, elasticity, collocation and online
reconfiguration can be achieved.

2.1 Replication is not enough

Snapshot Isolation based replication is commonly used in both commercial products (SQL Azure [8] built on
top of Cloud SQL Server [5] or Teradata [40]) and research prototypes ([21], Tashkent [14], Ganymed [28]) as
a means of scaling read intensive workloads over compute clusters and to increase availability.

Where these systems come short is user controlled dynamic reconfiguration or flexibility. For instance SQL
Azure [8] does not emphasize virtualization or flexibility in the replication configuration.

Its Intra-Stamp replication offers fault tolerance and load balancing by having a primary master and two sec-
ondary replicas, synchronously replicated. The Inter-Stamp asynchronous replication is used for geo-replication
and disaster recovery, as well as a mechanism for data migration.

The authors of [16] investigate the performance of SQL Azure as a black box. The points of interest are
the network interconnect inside the cluster (peaking 95% of the time at 90MB/sec) and the cost of a TCP RTT,
which is below 30ms for 90% of the samples. Also, under a TPC-E [36] like workload, they observe that the
system scales up to 64 clients. In our evaluation we show that Vela scales well beyond this in an environment
with a similar network configuration.

While these systems scale their replicas over clusters, they rely on the database engine’s parallelization to
scale up with the individual resources of each cluster node. As servers have increasingly more cores, many new
factors impede traditional relational databases from scaling up. Some of them include contention on synchro-
nization primitives in a database [18, 19], workload interaction in the presence of many real hardware contexts
[32] as well as the effects of hardware islands in database deployments on NUMA systems [29].

Scaling up refers to the ability of the system to usefully utilize the resources of a single machine and to
yield performance gains as more resources (in our case CPU and memory) are added. Scaling out refers to the
ability to utilize and gain performance benefits from adding more machines (cluster nodes) to the system. In
most replication based systems, scaling out and up are seen as two orthogonal problems as there is no uniform
view of resources within a machine and in the cluster. Using virtualization over clusters of multicore machines,
it is possible to define a uniform resource pool, with replication used for scaling both up and out.
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2.2 Virtualization is not enough

Favorable arguments for running databases in virtualized environments emphasize consolidation opportunities
and dynamic reconfiguration of allocated resources.

Recent work shows a large adoption of virtualized databases for multi-tenancy. Tuning database performance
by controlling the encapsulating virtual machine [34] or optimal data placement in the storage layer based on
the tenant workload characteristics [26] are commonly investigated.

Virtualizing OTS databases may lead to a degradation in performance. A few studies have investigated this
[6], corroborating our experience in building Vela. In most cases, main memory workloads behave very similarly
in Bare Metal vs. Virtualized setups, mostly due to Intel’s VI-x and AMD’s AMD-V support for virtulization.
For I/O intensive workloads, virtualized performance degrades and CPU utilization increases, as compared to
Bare Metal.

Counter arguments for virtualizing databases hint at resource overheads. The Relational Cloud [12] system
makes the case for a database-as-a-service that efficiently handles multi-tenancy, has elastic scalability and
supports privacy. The authors argue that achieving multi-tenancy by having a database in a VM architecture is
inefficient due to additional instances of the OS and database binaries. In our evaluation of Vela, we have not
seen the memory consumption overhead of the OS and database binaries to be an issue, being far lower than that
of the data being processed.

We consider virtualization to be a suitable solution being a proved technology that is readily available and
that requires no modifications to the existing database engines. It allows fast deployments, easy manageability,
implicit resource separation, and offers means for online reconfiguration of the system through techniques like
live migration, memory ballooning or hot plugging of CPU cores.

2.3 Dynamic reconfiguration

Dynamic system reconfiguration addresses the system’s ability to change (at runtime) at different levels of
granularity. Solutions like SCADS [37] or that of Lim et al. [20] do automatic scaling only through coarse
grained operations by adding / removing physical servers. DeepDive [24] reconfigures the collocation of VMs
in case of performance interference. These solutions do not cover fine grained reconfiguration like hot plugging /
removing of memory or cores in VMs. Other approaches study finer grained online reconfiguration. For instance
Microsoft SQL Server’s dynamic memory configured on top of Hyper-V [30] and “Application Level Ballooing”
as a generic memory ballooning mechanism implemented for MySQL [31] demonstrate that memory can be
dynamically added or removed from databases running in VMs. However, neither takes into account coarse
grained operations.

Complementing mechanisms for online reconfiguration, research looks at policies that drive them. For
example, dynamic resource allocation for database servers for proportioning caches and storage bandwidth from
a virtual storage server is described in [35].

Besides virtualization, there are also custom resource management and task scheduling solutions for large
data-centers. Projects like Omega [33] or Mesos [17] are generic frameworks for running varied jobs in data-
centers. They are not designed for relational data processing and might require re-engineering the database
engines in order to be suitable for running on top of them. Both projects avoid virtualization for the purpose of
managing the global set of resources in a data center, arguing that seemingly small resource overheads can be
huge at scale.

In contrast to most of the existing cloud database systems for OTS databases, Vela emphasizes scaling both
up and out and has an API for online reconfiguration. Instead of relying on data replication for durability, it uses
replication for improving latency and scalability, decoupling the update workload from the read-only workload.
Vela expands on using virtualization for supporting online reconfiguration with minimal overhead in resource
utilization and performance.
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Figure 1: Architecture overview: an example deployment over a cluster of multicores

3 System architecture

Vela achieves scalability both within the boundaries of the same multicore machine and in a cluster of multicores
by relying on single master data replication, similar to the Intra-Stamp replication of WAS [8] or Ganymed [27].

In this replication model, we define a “master” copy of the data and a series of replicas (“satellites™). All
update transactions go to the master while read transactions go to the satellites, which are kept in sync with the
master. Upon committing an update transaction, the master’s server count number (SCN) is incremented and its
change set is extracted and propagated to all satellites along with the SCN. Satellites increment their SCN after
applying the changes from the master in the same order. Each transaction is tagged with the current SCN of the
master when entering the system.

The system guarantees snapshot isolation as its consistency level. When using snapshot isolation the queries
are guaranteed to see all changes that have been committed at the time the transaction they belong to started (a
form of multiversion concurrency control that is present in many database engines such as Oracle, SQLServer,
or PostgreSQL).

3.1 Replication

Vela extends the design of Multimed [32], a similar system designed for scaling transactional data processing
on large multicores, though lacking support for scaling out over clusters, virtualization and dynamic reconfigu-
ration. Figure 1 illustrates the components of the system, in a possible deployment over a cluster of multicores.
At a high level Vela is composed of different Data Processing Instances (DPIs) and a Router.

The Router accepts requests and returns responses to and from the clients.

Worker threads dispatch requests to the databases in the Data Processing Instances (DPIs). The Router also
extracts the changes to the data on the Master (called WriteSets) and propagates them to the other DPIs in the
system. Each DPI is backed up by a database engine holding a copy of the data and is allocated a dynamic set
of resources (CPU, memory). Each database within a DPI holds two data components: the actual data and the
transaction logs. The options for storing the two can be specified for each replica as: RAM, local disk, or remote
storage (NAS).
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Like Amazon RDS or SQL Azure, our system uses existing relational database engines in its design. We
chose PostgreSQL as the supporting database as it is open-source, with a well understood behavior and shows
good standalone scalability on multicore systems. Also, PostgreSQL by its data cache design can react out of
the box to memory ballooning operations in VMs. Replacing it with another database engine is straightforward
as the only engine specific part is the WriteSet extraction mechanism. This is well described in Multimed [32].

The DPIs in Vela can have different types: Master, Satellite, HotBackup, or Observer. As shown in Figure 1,
the Router and each DPI is encapsulated in a virtual machine. Vela supports multi-tenancy by allowing multiple
Masters. Each Master DPI has its own set of Satellite, HotBackup and Observer DPIs. In the configuration
shown in Figure 1, Vela handles two tenants (A and B), each having a Master, a HotBackup and multiple
Satellites. Tenant A also has an Observer DPI.

The Masters are primary copies of the data and are configured to offer durability, with the transaction log
on a local disk and the data on either local disk or NAS. Alternatively, in a non-durable setup, the Master can be
entirely held in RAM. The Router dispatches each tenant’s update transactions to its Master.

Satellites hold replicas of the data of a Master. The Router assigns the read-only transactions to Satellites
that have the SCN matching the transaction’s SCN. When more Satellites fulfill this condition, the one with least
load is chosen. The load is defined as the number of current active transactions bound to a Satellite. Satellites
do not need to ensure durability (but could be configured to do so).

The HotBackup and Observer are special and optional types of DPI. HotBackups do not process client
requests, though they are kept up to date, receiving all the WriteSets. HotBackups are used for spawning new
Satellites at runtime for each tenant. Observers are used to approximate the best response time for the read-only
transactions of a tenant. Vela ensures that there is always one read-only transaction routed to each Observer.

The Satellites, HotBackups and Observers do not need to offer durability. As most database engines do not
have an option for disabling the transaction log, we emulate this by storing it in RAM and disabling synchronous
commits. The overall system durability is given by the Master. While the transaction logs are small enough to
be always held in RAM, the actual data might be too large for this. In this case, the data is held on NAS and
the available RAM is used for caching. The reconfiguration API supports adjusting the memory of each DPI for
increasing or decreasing the memory cache. As PostgreSQL relies on the disk cache for most of its data caching
it requires no modifications to be able to adapt to changes in the DPI’s memory. For database engines that do
their own memory management, a virtulization based solution like Application Level Ballooning [31] can be
used.

3.2 Virtualization

In Vela, all the DPIs are spread out over the available resources in a cluster of multicores. We have looked
at different options for managing the resources (CPU, RAM) of a cluster of multicores and formulate Vela’s
requirements for a resource management system:
e Multiplexing the hardware for running multiple Data Processing Instances on the same physical machine
while allowing for NUMA-awareness. This enables Vela to scale up data processing.
e Isolation of CPU and memory allocated to each Data Processing Instance, such that it can make assump-
tions on the current available cores and memory.
e Reconfiguration at runtime of the resources allocated to Data Processing Instances.
e Uniform view of the whole cluster. Migrating a Data Processing Instance from one cluster node to another
should be seamless and with no service interruption.

In Vela we opted for virtualization (Xen Hypervisor [4, 39]), as it fulfills our requirements. The guest
domains (DomUs) run in paravirtualized mode. We have observed no impact on the performance of the Satellites
that have the dataset in main-memory. For the Master and the Router that are I/O intensive, the DomUs in their
default configuration have quickly become the bottleneck. Similar observations [23] indicate that network I/O
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can become a bottleneck very fast. Latency wise, we were able to tune the system through Linux Kernel network
specific settings in both Dom0 and DomU. CPU wise, the problem is more involved. For network I/O, Xen
allocates in the host domain (Dom0) one kernel thread for each virtual network interface (VIF) in the DomUs.
DomUs hosting Routers that do high frequency network I/O were provisioned with up to 8 VIFs. In order to
remove the CPU bottleneck of the VIF backing threads in Dom0O we allocated a number of cores equal to the
total number of VIFs of all DomUs. Alas, the interrupts generated in Dom0O and DomUs need to be balanced
over all available cores. Failing to do this leads to one core handling most IRQ requests, becoming a bottleneck.

3.3 Dynamic reconfiguration

Databases deployed on one server are traditionally given exclusive access to the machine’s resources. They are
generally also over-provisioned to handle peak load scenarios. Vela tries to avoid this by dynamically adjusting
the resources of each DPI and the number of DPIs in the system to the load.

We differentiate between two types of reconfiguration operations: DPI level (fine grained) reconfiguration
and System level (coarse grained) reconfiguration. At the DPI level, we can reconfigure the provisioned number
of cores and the amount of memory. At the System level, we can reconfigure the number of DPI as well as their
placement in the cluster. addCoresTolnstance and removeCoresFromInstance control the number of cores
allocated to each DPI. They rely on Xen’s ability to hot plug cores in a VM. increaselnstanceMemory and
decreaselnstanceMemory control the amount of RAM allocated to each DPI. Increasing / decreasing a DPI’s
memory uses Xen’s memory ballooning. addInstance operation is used to spawn new DPIs. A new Master is
added to the system for each new tenant, while a new Satellite can be added to mitigate an increase in the load
of a tenant. Adding a new Master requires spawning a new VM and starting the Master database in it. Adding a
Satellite is more involved. Besides spawning a new VM and starting a new database in this VM, Vela needs to
ensure that the database is identical to the one in the Master. Instead of halting requests to the Master database
and cloning it, Vela relies on the HotBackup described below. When removing a DPI (removelnstance), no
more requests are accepted by the Master of the corresponding tenant. When all outstanding requests are served,
the Master and all its Satellites are stopped (database then VM). The operation corresponds to removing a
tenant from the system. In the case of stopping a Satellite, no more transactions are routed to it and once the
outstanding ones complete, the database and the encapsulating VM are stopped and their resources (CPU and
RAM) are freed. movelnstance operation handles moving a DPI in the cluster from one physical machine to
another physical machine. Two types of “move” operations can be performed. A cold move will make the DPI
unusable during the operation. This is implemented in Vela either by removelnstance followed by addInstance
or through Xen’s cold migration. With sot moving, the DPI is migrated while it is still serving request, relying
on Xen’s live migration. Cold moves are faster then hot moves. As Satellites in Vela do not have any state
associated, except for the currently running transactions, they can always be cold moved. Masters however can
never be taken offline and consequently are always hot moved.

The HotBackups enable adding new Satellites without taking the whole system offline. The overhead is
minimal in terms of resources: the HotBackup requires only 1 core and main memory for the transaction log.
The time it takes to copy the HotBackup into a new Satellite is bound by the network bandwidth. This time only

influences the amount of main-memory needed by the queue that temporarily stores pending WriteSets for the
avg(WriteSetSize) «
Tx

HotBackup and new Satellite. The maximum size of the queue can be approximated: % X

CopyTime(sec). For a tenant processing 10k transactions per second, with average WriteSets of 1KB per
transaction (way more than the TPC-W average), deploying a 20GB dataset over a 1GBit network would grow
the queue to a maximum of ~ 1.5G'B — which is easily manageable.
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3.4 Automatic runtime reconfiguration

The dynamic reconfiguration of Vela can be done manually or automatically based on monitored metrics. The
system reports low level metrics for each VM corresponding to a DPI (e.g., CPU utilizations, memory consump-
tion and disk/network utilizations) as well as per-tenant statistics (e.g., overall throughput, read-only and update
transaction latencies, etc.). The system maintains a set of user specified target functions that describe threshold
values for monitored metrics and simple policies based on the reconfiguration API for achieving these thresh-
olds. Basic tenant SLAs, like desired response time, can be expressed through target functions. The evaluation
Section 4.2 exemplifies how the reconfiguration API and target functions work together.

For automatic reconfiguration support for target functions involving system response time, we rely on the
Observer for determining the best response time of read-only workload. The Observer is an optional DPI,
always deployed on 1 core. The Router ensures that if an Observer is present, it will always have one and only
one transaction routed to it. As only one transaction is being executed at a time there is no contention in the
Observer. Also as it runs on only 1 core it exhibits no scalability issues. The Observer approximates the best
transaction latency for the current workload and reports it as a metric that can be used in target functions.

4 Experimental evaluation

This section presents the experimental evaluation of Vela, focusing on the three key aspects of the system:
scalability, automatic online reconfiguration and support for multi-tenancy.

For the scalability study of Vela on large multicore machines, we used a 64 core (4 socketsx16 cores)
AMD Opteron 6276 (2.3GHz) with 256GB DDR3 RAM (1333MHz). For the scalability study over multiple
machines, we used a cluster of 10 servers, each with 16 cores (Intel Xeon L5520 2.27GHz) with Hyperthreading
enabled, with 2 NUMA Nodes, and a total of 24GB RAM. As the database engine we opted for PostgreSQL 9.2,
used both as a baseline in standalone experiments (in a Native setup) and as the underlying database for Vela
(in a Virtualized setup). We chose 2 read-intensive workloads from the TPC-W and TPC-E [36] benchmarks:
TPC-WB = 95% reads and TPC-E ~ 85% reads. Focusing on the data-processing system, we have omitted the
application stack from the benchmark and connect the clients straight to the database engine. Due to similarity
in results and space constraints, we only present the results for TPC-WB here.
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Figure 2: TPC-WB — Scaling up with number of cores: Vela vs. Standalone PostgreSQL
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4.1 Scalability study

A main property of Vela is that it needs to scale with the resources it has been allocated. We present a series
of experiments showing that Vela indeed seamlessly scales on multicores and on cluster of multicores, under
different read-intensive workloads. Vela scales the read transactional workload until an I/O bottleneck is reached.

Scaling up

Figure 2 shows the scalability of Vela compared to that of Native PostgreSQL over a ~ 23G B dataset. Both
systems are under a load generated by 200 clients, each sending blocking requests, according to the TPC-
WB benchmark. PostgreSQL has difficulties in scaling as number of cores it has at its disposal increases.
Increasing by 8 cores at a time, the throughput grows slowly until 32 cores. Due to NUMA effects, after 32
cores, the performance drops, and slightly recovers as more cores are added. Vela’s scalability line starts at 22
cores: 2 cores have been allocated to Xen’s Dom0, 8 cores to Vela’s Router and 12 cores to the Master. All
subsequent datapoints correspond to adding additional Satellites, each assigned 8 cores. With the first Satellite,
the throughput increases, as read load if offloaded to the Master (since the single Satellite has difficulties in
keeping up with the incoming WriteSets). Once the second Satellite is added, performance does not increase
as no more read transactions are being routed to the Master, and are handled by the two Satellites that can now
keep up with the Master. With subsequent Satellites, throughput increases linearly up to the 5" satellite, point
at which the Master’s CPU becomes the bottleneck.

It is clear that Vela has an added overhead of resources when deployed on a single machine. The cost
of the Router, the Master and the Virtualization layer add up to the used cores and main-memory. Even so,
Vela outperforms a traditional database by reducing contention on synchronization and minimizing workload
interaction. Vela also exhibits a better scaling trend with the number of cores.
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Figure 3: TPC-WB - Scaling out over a cluster of multicores

Scaling out
Using the same architecture Vela also scales over clusters of multicores until either the Master’s transaction log
disk becomes the bottleneck or the network’s bandwidth is fully utilized.

Figure 3 shows Vela’s scalability as increasingly more Satellites are added, while blocking clients are issuing
requests according to the TPC-WB benchmark. The dataset is ~ 6G B. All Satellites are configured to use 4
cores, and hold the data and the transaction logs in main memory. The Master is allocated 14 cores in a VM
using up all the cores and memory of a cluster machine (16 total cores with 2 pinned to Dom0). The Master
holds the data on NAS with the transaction logs on a local SSD drive, and has the shared buffers large enough to
cache the data in main memory. The Router is running on a Native system (without virtualization) on an entire
cluster node, in order to avoid the network issues described in Section 3.2.
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As we increase the number of Satellites, we expect a linear increase in throughput. First we observe that
for 50 and 100 clients, the system is underloaded. With 200 and 400 clients, the throughput is the same (lines
completely overlap). At this point the transaction log disk of the Master is the bottleneck. Finally, giving
up durability in order to further push the scalability of the system, we moved the Master’s transaction log in
main memory. With load offered by 400 clients, we see a further increase in throughput. The flattening of the
throughput line from 20 to 25 satellites is this time due to reaching a CPU bottleneck on the Master, which can
be solved by migrating it to a machine with more cores. At this point, the latency of the read workload cannot
be improved and most of the 400 client connections end up being update transactions in the Master.

We point out that the flat throughput between 3 and 5 Satellites is caused by contention in the Satellites
which cannot keep up with the Master. Consequently the Master also receives read-only transactions, improving
the throughput. Scaling both up and out, Vela reaches high throughput rates over a commodity multicore cluster,
processing more than 15’000 transactions/sec with latencies less than 50ms.

4.2 [Elasticity study

All the experiments in the elasticity study were carried out over the same cluster used in the scale out experi-
ments. This section presents both manual and automatic online reconfiguration of Vela, under a constant load
of 200 clients issuing requests based on the TPC-WB benchmark. While the reconfiguration API offers support
for shrinking the system, we present policies only for dynamically expanding the system.

Target functions
Manually monitoring and reconfiguring the system is an option. Alternatively, knowing what are the possible
bottlenecks, they can be automatically addressed using target functions.
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Figure 4: Automatic system reconfiguration

In Figure 4 (a) we show an experiment in which the system is under a heavy load based on TPC-WB.
Knowing that the Router can become a bottleneck under heavy load and as it is CPU intensive, we set a target
function on its CPU idle percentage.

Vela monitors the CPU idle % of the Router and uses the reconfiguration API to adjust the system. The
target function monitors the CPU idle %. As long as it is less then 12% of the CPU cycles, the Router core
count is increased. If no more cores are available on the current cluster node, the Router is live- migrated on a
cluster node with more free cores. The reconfiguration stops when the target function is reached or when the live
migration cannot be done. The plot shows the system throughput on the primary y-axis, CPU-idle percentage
on the secondary y-axis and the experiment time on the x-axis. The throughput grows as more cores are added
to the Router. Once the target function of 12% idle CPU is reached, the throughput is stable.
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Target functions can monitor response variables that are specific to Vela, not only on generic ones like CPU
or memory. Figure 4 (b) shows a target function set on the average response time of the system. The primary
y-axis shows the throughput and the secondary y-axis the response time. The x-axis is the experiment time. A
target value of 100ms for the average response time is set. The target function works by adding a new satellite
(using the addInstance API) until the target response time is reached (the check function).

The experiment starts with Vela configured with 1 Satellite of 4 cores. After 2 minutes a new Satellite is
added to the system. Within less than 4 minutes the new Satellite receives load. This continues until the 4"
Satellite is added, point at which the response time falls under the target value (minute 15 onwards).

In this approach a cut-off value was supplied. This value is unfortunately workload dependent. Using
the Observer described in Section 3.4, we monitor the best attainable response time for the current hardware,
software & workload combination. The target for Vela can be set to a percentage of this value, making the
system agnostic of the workload. We denote the optimal response time continuously measured in the Observer as
O(RT;). Assuming that the Satellites and the workload are uniform, we probe the response time from a Satellite
to get the runtime value V' (RT}) at time t. The new check function returns V (RT}) > %lgmm x O(RTy),
indicating if the overall system response time is matching the attainable response time, with the given tolerance.

TESTNEXTPACKAGE() FILLPACKAGE()

1 if TESTINCREASE(crtCores) 1 while crtCores < coresInCrtPkg
2 then crtCores + + 2 docrtCores + +

3  else return FULL 3 if ! CHECK(O,V)

4 if PERFGAIN(crtCores) 4 thenreturn DONE

5  thenreturn OK 5 return ! DONE

6  else crtCores — —

7 return !|OK ADAPT()

1 if ! CHECK(O,V)
ADDSATELLITES () 2 thenreturn DONFE
while CHECK(O, V') and HAVEHW () 3 repeat
do ADDSATELLITEINSTANCE() 4 if ! CHECK(O, V)
if ! CHECK(O,V) 5 then return DONE
then return DONE 6 until OK == TESTNEXTPACKAGE()
return WARN (Provision Hardware) 7 return ADDSATELLITES()

(O R S

Figure 5: Automatic satellite scaling pseudo-code

Automatic satellite scaling

Given a cluster of multicores we have shown that Vela can scale both up and out. One tradeoff has not be
discussed so far: should Vela opt for few replicas with many cores (fat replicas) or for many replicas with
few cores (thin replicas). Few fat replicas are easier to manage and require overall less RAM but will hit
the scalability issues of individual databases. Many thin replicas increase the overall RAM consumption and
transaction routing time. Each Satellite should be run at the optimal size with respect to the number of cores.
Unfortunately the sweet spot depends on the hardware topology, database software and current workload. Based
on empirical experience, we present an algorithm that adjusts the number of cores in a Satellite. It assumes that
all Satellites are uniform and that the clients of each tenant have the same workload distribution. On the other
hand it does tolerate changes in the workload, as long as all clients exhibit the same change.

From the experiments that we conducted, we observed that: (1) cache locality matters; and (2) cores that
share the same cache behave similarly. The adapt function described in Figure 5 controls the process. Starting
with each Satellite having 1 core, we expand it to all the cores sharing the same L2 cache (first package). If the
required latency is not met, we expand to the cores sharing the LL.C cache and then to different NUMA nodes.
When moving from one level to another, we “probe” to see if a speedup is gained or not (testNextPackage). If
no performance gain is obtained, then we stop increasing the cores. Otherwise we go ahead and allocate all the
cores of that level to the Satellite (fillPackage). Once the size of a Satellite is determined, more Satellites of the
same size are spawned (addSatellites) in an attempt to satisfy the check function.
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4.3 Multitenancy study

Scaling and dynamic reconfiguration in Vela work on a per-tenant base. This section shows that multiple Masters
(each with its set of Satellites) can be configured under the same deployment of Vela. The dynamic reconfigura-
tion plays an even larger role in this case. Satellites can be scaled for each tenant.
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Figure 6: Multitenancy supporting auto-reconfiguration

Figure 6 (a) shows 4 tenants deployed in Vela. Each has its own Master and 1 Satellite with 1 core. Each
tenant specified its target response time of 50ms. The plot shows the response time of each database tenant
during the experiment time. The load is generated by 50 clients for each tenant and is based on the TPC-WB
workload mix. The fast drop in response time captures the effect of increasing the Satellite cores from 1 to 4.
This is insufficient to meet the latency target and Vela adds a new 4 core Satellite for the tenant (which takes
about 5 minutes). At this point the target latency is met and the system stabilizes. Under similar load conditions
the tenants behave similarly and in isolation. Moreover, Vela can use the set of cluster nodes that it manages to
dynamically add Satellites for any of the tenants.

Figure 6 (b) shows Vela managing 20 tenant databases, each under a constant load from 40 clients (again,
TPC-WB). All Masters are collocated on the same cluster node and each tenant has 1 Satellite. Within the
standard deviation, all tenants perform similarly. The variation in response time is caused by contention on the
transaction log storage of the cluster node holding the Masters.

5 Conclusions

We have presented Vela, a replication based system that scales Off-the-Shelf database engines both on large
multicores as well as on clusters, using a primary master model. The system relies on virtualization for achieving
a uniform view of all the available resources and also for supporting both fine and coarse grained online system
reconfiguration. We also showed that multi-tenancy support is easily achieved by collocating database in the
system.

Future directions for Vela include support for diverse Satellites optimized for certain transactions (e.g.,
heterogenous storage engines, partial replication, different indexes among replicas) or adding functionality to
tenants (e.g., time-travel, sky-line or full text search operators) without affecting their performance. The appli-
cability of specialized Satellites is not limited to performance and functional aspects. Vela could also be used
for Byzantine fault tolerance, as proposed for heterogenous database replication systems [38, 15].

As shown in our evaluation, Vela handles diverse read-intensive workloads and exhibits little overhead from
virtualization. Paying attention to engineering aspects, both in implementing and deploying the system, we
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were able to achieve good scalability and high throughput rates while supporting transactional workloads with
snapshot isolation guarantees.
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